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SUMMARY 

Belay, T. K. 2017. Multivariate Analyses of Milk Infrared Spectra and Predictions from it in 

Dairy Cattle Populations. Norwegian University of Life Sciences, Philosophiae Doctor Thesis, 

2017: 65, ISSN: 1894-6402, ISBN: 978-82-575-1462-4. 

 

Fourier-transform mid-infrared (FT-MIR) spectra of milk is one of the multivariate information 

routinely recorded by many milk-recording organizations in the world. Use of such information is 

becoming central to research in dairy sciences. This is because the FT-MIR spectra and phenotypes 

predicted from those spectra could be useful for better estimation of parameters related to breeding, 

feeding and health. The focus of this PhD study has been to verify methods for exploiting milk 

FT-MIR spectral information for prediction of breeding values and phenotypes. 

 

In paper I, we compared the conventional single-trait (ST) and multi-trait (MT) animal models for 

genetic evaluations using test-day data from Norwegian milk recording. Results show that 

estimates of heritability were very similar in both analyses. The MT analyses improved accuracies 

of estimated breeding values (EBV) for cows (e.g., improvement from 2.5 % for milk yield to 9.83 

% protein yield) and sires with < 50 daughters (e.g., 3.25% improvement for protein yield), but 

they were similar for sires with >50 daughters. Estimated genetic trends were slightly higher under 

MT for protein and fat contents, and for fat yield, but slightly lower for the remaining traits. With 

comparison of MT with ST rank correlations for EBV, sires were less re-ranked than cows. In 

paper II, we compared two prediction approaches using mixed models for their ability to predict 

blood β-hydroxybutyrate (BHB) from milk FT-MIR spectra in Polish cows. One approach 

(indirect prediction – IP) transforms spectra to a single-trait before genetic analysis, while the other 

(direct prediction – DP) uses a multi-trait mixed model on (dimension reduced) spectral variables 

to obtain multi-trait predictions of random effects. Both approaches involve genetic analyses for 

ultimate phenotypic and EBV prediction. Performances of the IP and DP approaches were similar 

for phenotypic prediction of blood BHB. A slightly more accurate prediction of BHB was found 

when univariate variance structure (IP) was used compared to when multivariate covariance 

structures were used. Accuracies (R2) were low, 0.28-0.30 for the IP, and 0.26-0.30 for the DP 

approach. For partial least square (PLS) regression with untransformed blood BHB, the R2 was 

0.29 to 0.37. In paper III, an established connection between milk FT-MIR spectra and blood BHB 
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in Polish dairy cattle was used to identify Norwegian Red cows treated for ketosis. Genetic 

parameters for FT-MIR predicted blood BHB and for clinical ketosis (KET) were estimated. 

Genetic associations of predicted blood BHB with KET and milk production traits were also 

examined. Heritability estimates for predicted blood BHB at different stages of lactation were 

moderate, ranging from 0.250 to 0.365. Genetic correlations between BHB traits were higher for 

adjacent lactation stages. Predicted blood BHB at 11-30 DIM was moderately genetically 

correlated with KET (0.469) and milk traits (ranged from -0.367 with protein content to 0.277 with 

milk yield). In paper IV, we simulated three traits and compared the IP and DP approaches for 

predictions of EBV and phenotypes under different genetic (low: 0.10 to high: 0.90) and residual 

(zero to high: ± 0.90) correlation scenarios of the traits. Relationships between performances of 

the two approaches and the accuracy of calibration equations were evaluated. Moreover, the effect 

of using different PLS regression coefficients estimated from simulated phenotypes (βp), true 

breeding values (βg) and residuals (βr) on performance of the two approaches were evaluated. 

Aaccuracies of EBV predictions were higher in the DP than in the IP approach. The reverse was 

true for accuracy of phenotypic prediction when using βp, but not when using βg and βr. Within the 

DP approach, accuracies of EBV when using βg were higher than when using βp, especially at the 

low genetic correlation scenario. However, there were no differences in EBV prediction accuracy 

between the βp and βg in the IP approach. Performance of both approaches increased with increase 

in accuracy of the calibration model, which increased with increase in genetic or residual structures 

between traits. 

In conclusion, MT analyses would be useful when number of observations are small, for example 

for genetic evaluation of cows and sires with < 50 daughters. Use of the DP approach for prediction 

of EBV seems useful while the IP or PLS regression based prediction equations are a method of 

choice for phenotypic prediction. There is a direct relationship between performance of the two 

approaches and accuracy of the calibration model. Performance of the DP approach is sensitive to 

the type of PLS regression coefficients used. Milk predicted blood BHB is heritable and has 

moderate positive genetic correlations with ketosis. Therefore, predicted blood BHB can be an 

alternative for breeding cows to have lower susceptibility to ketosis.  
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SAMANDRAG 

Belay, T. K. 2017. Fleireigenskapsanalyse av infraraude mjølkespekter og prediksjonar frå dei 

i mjølkekupopulasjonar. Norges miljø- og biovitenskapelige universitetet, Philosophiae Doctor 

(Ph.d.) avhandling, 2017: 65, ISSN: 1894-6402, ISBN: 978-82-575-1462-4. 

 

Fourier-transformerte midt-infraraude (FT-MIR) spekter frå mjølkeprøver er eitt slag 

fleireigenskapsinformasjon som blir registrert rutinemessig av mange 

mjølkekontrollorganisasjonar. Bruk av slike spekter er i ferd med å bli viktig for mjølkeforsking 

fordi eigenskapar som kan predikerast frå spekter kan vera nyttige for avl, fôringsrettleiing og 

helsekontroll. Fokus i denne PhD-oppgåva har vore å verifisera metodar for utnytting av FT-MIR-

mjølkespekter til prediksjon av avlsverdiar og fenotypar. 

I artikkel 1 blei testdagsobservasjonar av mjølk analyserte med den vanlege ein-eigenskaps 

dyremodellen (ST) og samanlikna med ein fleireigenskaps-modell (MT) til avlsformål. 

Arvegradsestimat blei svært like i begge modellane. MT-modellen ga betre sikkerhet for predikerte 

avlsverdiar for kyr (for eksempel 2,5% betre for mjølkemengde og 9,83% for proteinmengde) og 

for oksar med mindre enn 50 døtrer. Estimert avlsframgang var litt høgare med MT for protein- 

og feitt-mengde, men litt mindre for dei andre eigenskapane. Ved samanlikning av avlsverdiar frå 

MT og ST hadde oksar høgare rangkorrelasjon enn kyr. I artikkel 2 samanlikna vi to metodar til å 

predikera blod-β-hydroxybutyrat (BHB) frå FT-MIR-mjølkespekter hos polske kyr. Den eine 

metoden (indirekte prediksjon – IP) gjer spekteret om til éin eigenskap før analyse med ein blanda 

modell, den andre (direkte prediksjon – DP) bruker fleireigenskaps- blanda modell på 

(dimensjonsreduserte) spekterdata. For begge predikerer ein dei tilfeldige effektane i modellane, 

og predikerer til slutt fenotypar og avlsverdiar for BHB. IP og DP ga omtrent like resultat for 

prediksjon av fenotypisk blod-BHB. Univariat variansstruktur (IP) ga litt meir nøyaktige 

prediksjonar. Sikkerhetane for modellane var låge: 0,28-0,30 for IP, 0,26-0,30 for DP. For PLS 

med utransformert BHB var sikkerheten 0,29-0,37. I artikkel 3 blei samanhengen mellom FT-

MIR-mjølkespekter og blod-BHB funnen for polske kyr brukt til å identifisera kyr i norsk 

kukontroll og sjekka om dei var behandla for ketose. Genetiske parameter for FT-MIR-predikert 

BHB og for registrert klinisk ketose (KET) blei estimerte. Genetisk samanheng mellom predikert 

BHB og KET og med mjølkeproduksjonseigenskapar blei òg estimerte. Arvegradar for predikert 
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blod-BHB for ulike laktasjonsstadiar var moderate: frå 0,250 til 0,365. Genetiske korrelasjonar var 

høgare for nære stadiar. Predikert blod-BHB for 11-30 dagar i laktasjonen hadde moderat genetisk 

korrelasjon med KET (0,469) og med mjølkeeigenskapar (-0,367 med proteininnhald og 0,277 

med mjølkemengde). I artikkel 4 simulerte vi tre eigenskapar og samanlikna IP- og DP-metoden 

med ulike genetiske (låg: 0,1 til høg: 0,9) og residual- (null til høg: ± 0,9) korrelasjonar for 

eigenskapane. Resultat for dei to metodane, og for PLS, blei studerte. Dessutan såg ein på bruk av 

ulike regresjonskoeffisientar som blei estimerte frå simulerte fenotypar (βp), sanne avlsverdiar (βg) 

eller residualar (βr) og kva effekt dette hadde. Sikkerhet for prediksjon av avlsverdiar (EBV) blei 

høgare med DP enn med IP. Når βp blei brukt var IP betre til fenotypisk prediksjon, men ikkje når 

βg eller βr blei brukte. Med DP blei sikkerheten høgare når ein brukte βg enn når ein brukte βp, 

spesielt med låg genetisk korrelasjonssenariet. Med IP var det ikkje forskjell på bruk av βg eller 

βp. For både DP og IP auka sikkerheten når sikkerheten med PLS auka. Dette skjedde når enten 

genetisk eller residual-korrelasjon auka. 

Til konklusjon: MT kan vera nyttig når det er få observasjonar, for eksempel for kyr eller for oksar 

med >50 døtrer. DP-metoden synest å vera nyttig for avlsverdiutrekning, mens IP eller PLS-

regresjon er betre for fenotypeprediksjon. Der er ein direkte samanheng mellom kor gode IP- og 

DP-metodane er og sikkerheten til PLS. DP-metoden er følsom for kva slag PLS-

regresjonskoeffisient som blir brukt. Blod-BHB predikert med mjølkespekter er arveleg og har 

moderat positiv korrelasjon med ketose. Difor kan det vera eit alternativ for å avla for kyr som er 

mindre utsette for ketose. 

 

 

 

 

 

 

 

 

 



 

XI 
 

ABBREVIATIONS 

BHB – β-hydroxybutyrate 

BLUP – Best Linear Unbiased Prediction 

DIM – Days in Milk  

DP – Direct Prediction 

EBV – Estimated Breeding Values 

EMSC – Extended Multiplicative Signal Correction 

FT-MIR – Fourier Transform Mid-Infrared  

HTD – Herd Test-Day 

IP – Indirect Prediction 

IR – Infrared  

KET – Clinical Ketosis 

MT – Multi-Trait  

NRF – Norwegian Red 

PCA – Principal Component Analysis 

PE – Permanent Environment  

PLS – Partial Least Square  

PNE – Phenotype without Error 

PWE – Phenotype with Error 

REML – Restricted Maximum Likelihood  

RMSE – Root Mean Square Error 

SCK – Sub-Clinical Ketosis 

SG – Savitzky-Golay 

ST – Single-Trait 

TBV – True Breeding Values 

TD – Test-Day 

TPV – True Phenotypic Values 

 



 

XII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XIII 
 

LIST OF PAPERS 

 

I. T. K. Belay, M. Svendsen, T. Ådnøy. Comparison of single-trait and multi-trait 

animal models for genetic evaluation of milk production traits predicted from 

milk infrared spectra in Norwegian dairy cattle. (Under resubmission to Acta 

Agriculturae Scandinavica, Section A - Animal Science) 

 

 

II. T. K. Belay, B. S. Dagnachew, Z. M. Kowalski, T. Ådnøy. An attempt at predicting 

blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk 

using multivariate mixed models in Polish dairy cattle.  

Journal of Dairy Science (In Press)  

 

 

III. T. K. Belay, M. Svendsen, Z. M. Kowalski, T. Ådnøy. Genetic parameters of blood 

β-hydroxybutyrate predicted from milk infrared spectra and clinical ketosis, and 

their associations with milk production traits in Norwegian Red cows.  

Journal of Dairy Science (In Press)  

 

 

IV. T. K. Belay, B. S. Dagnachew, S. A. Boison, T. Ådnøy. Prediction accuracy of direct 

and indirect approaches, and their relationships with accuracy of calibration 

models. (Submitted to Journal of Dairy Science) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GENERAL INTRODUCTION 

1 
 

1. GENERAL INTRODUCTION 

 

1.1. Background 

There is much unused information in animal husbandry. For example in Norway, about 45 % of 

the milk now comes from automatic milking systems (AMS). Additional analyses of milk, based 

on the light spectrum, conductivity, wet chemistry, ultrasound, etc., are becoming available. A 

corresponding information increase is found from slaughterhouse lines, aquaculture etc. 

Information that may be derived from these multivariate sources is only partially implemented.  In 

the dairy industry, a focus is to improve farm management to increase competitiveness.  

Multivariate data from daily records may be better-modeled using multivariate analysis approaches 

including multi-trait mixed models. Use of such information will also be central to research in 

animal sciences to develop practical animal husbandry and aquaculture. Competence in the use of 

multivariate information will be useful for better estimation of breeding, feeding and health-related 

parameters.  

In articles presented in this thesis, multivariate techniques and mixed multi-trait models have been 

applied to milk infrared spectral data. Phenotypes have been predicted from such spectra in 

Norwegian and Polish dairy cattle populations, to verify methods for exploiting milk FT-MIR 

spectral information for prediction of breeding values and phenotypes. Infrared spectra acquisition 

and its potential for phenotyping, methods of reducing dimensionality of the spectra to few 

components or to single traits, and methods for prediction of genetic parameters, breeding values 

and phenotypes for the components or traits, are described in the remaining part of this 

introduction.   

1.2.  Infrared spectroscopy: a potential tool for rapid phenotyping  

There are several definition for spectroscopy. The most general definition of spectroscopy is the 

study of the interaction (i.e. absorption, emission, and reflection) between matter and 

electromagnetic radiation (Gengler et al., 2016;McParland and Berry, 2016). Historical 

development of spectroscopy is summarized elsewhere (Gengler et al., 2016). The infrared (IR) 

part of the electromagnetic radiation has three regions: near-IR (12800 – 4000 cm-1), mid-IR (4000 

– 200 cm-1) and far-IR (200 – 10 cm-1). Milk analysis mostly uses absorption IR spectroscopy 



GENERAL INTRODUCTION 

2 
 

associated with the mid-IR region. Measurements are taken at up to a thousand different 

wavenumbers (e.g. 1,060 for Foss instruments) per milk sample. They are expressed as an inverted 

function of wavelengths, in centimeters−1. The absorbance values along this range of wavenumbers 

form what is generally called a mid-IR spectrum. Observations in a given spectrum are then 

combined in a linear equation to predict the concentration of the milk component of interest (e.g. 

fat percentage).  

Genetic and genomic evaluation of dairy animals depend on routine access to large quantities of 

phenotypic information on the animal itself or its relatives (Daetwyler et al., 2008). Gold standard 

methods are often not applicable for population-wide phenotyping due to high cost or other 

practical limitations, and are not rapid enough to obtain sufficient observations for genetic 

evaluations. Fourier transform mid-IR (FT-MIR) spectrometry is a potential tool to collect data at 

population level for phenotypic and genetic purposes. It is a rapid, nondestructive and cost-

effective tool used worldwide in regular milk recording schemes and milk payment systems to 

quantify major milk components (i.e., fat, protein, casein, lactose and urea). The usefulness of FT-

MIR to obtain new milk phenotypes such as more detailed milk composition, technological 

properties of milk, or cow physiological status, has been discussed in detail elsewhere (De Marchi 

et al., 2014;Bastin et al., 2016;McParland and Berry, 2016;Bonfatti et al., 2017b). The analysis of 

milk by FT-MIR spectrometry offers an opportunity to record a whole range of phenotypes to 

develop tools increasing profitability and sustainability of the dairy sector (Gengler et al., 2015). 

The predicted phenotypes can be used as indicator traits in dairy breeding programs for enhanced 

fertility and health (Bastin et al., 2016). For example, it created an opportunity for evaluating 

subclinical disease (e.g. ketosis) based on large numbers of phenotypic records available for 

indicator traits (Pryce et al., 2016).  

1.3.  Multivariate techniques for dimension reduction 

Variable selection and dimension reduction is a major task for multivariate statistical analysis, and 

for multivariate regression. Stepwise regression is a well-known method for dimension reduction 

in regression analysis (Maitra and Yan, 2008). However, this method is not sound when several of 

the predictor variables are highly correlated, as independence is one of the primary assumptions in 

such a method. Error variances in estimates of the regression parameters increase when there is a 

high degree of correlation among the predictor variables (Maitra and Yan, 2008). This is known 
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as multi-collinearity in regression literature. Milk FT-MIR spectral variables, for example, have 

high dimension and exhibit strong correlations among each other (Soyeurt et al., 2010;Dagnachew 

et al., 2013a), and prediction equations potentially over-parameterize (Gengler et la., 2016). 

Therefore, multivariate techniques that are capable of capturing relevant information from the high 

dimensional spectral data, handle multi-collinearity, and derive prediction equation coefficient are 

required. In studies presented in this thesis, commonly used multivariate methods such as partial 

least squares (PLS) regression were used for dimension reduction, calibration of prediction 

models, and solving the multi-collinearity problem. We have also used principal component 

analysis (PCA) for spectral dimension reduction. Results from such study are not included in this 

thesis, but reported elsewhere (Belay et al., 2015), and referred to in articles presented in this thesis.  

 

1.3.1. PCA  

PCA is an unsupervised multivariate technique commonly used for dimension reduction and 

solving the multi-collinearity problem. PCA as a dimension reduction method is applied without 

considering the correlation between the response variable and the predictor variables. The purpose 

of PCA is to derive a few, k, latent traits/variables that are a linear combination of the original 

many, m, variables and that can be used to summarize the data without losing too much information 

contained in the m original variables (Martens and Naes, 1989). All the derived latent traits are 

orthogonal to each other. Mathematically, PCA decomposes a data matrix X with n x m dimension 

for n individual samples into an orthogonal n x k score matrix T (X-score) and an m x k loading 

matrix P (X-loading): 

𝐗 = 𝐓𝐏′ + 𝐄, where E is residual matrix of dimension n x m.  

1.3.2. PLS regression  

PLS regression is a more recent multivariate technique that generalizes and combines features 

from PCA and ordinary multiple regression. The goal of PLS regression is to predict response 

variables Y from predictors X and to describe their common structure (Martens and Naes, 

1989;Abdi, 2003). Unlike the PCA, PLS searches for a set of factors that performs a simultaneous 

decomposition of X and Y with the constraint that these factors explain as much as possible of the 

covariance between X and Y, and use a decomposition of X to predict Y. When X is full rank and 

Y is a vector, the prediction of the response variable could be done using ordinary multiple 
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regression. PLS performs well even when the number of predictors is greater than the number of 

observations, or when strong collinearity exists between them: for example in spectroscopic data, 

where ordinary regression is no longer an option.  

PLS explains most of the variation in both predictors and responses with fewer factors than the 

number of latent traits from PCA. The PLS model has the form: 

𝐗 = 𝐓𝐏′ + 𝐄 

𝐘 = 𝐔𝐐′ + 𝐅 

Where P is a matrix of X-loadings; U is a matrix of Y-scores; Q is a matrix of Y-loadings that 

represents the correlation between the Y-variables and the X-score matrix T. E and F are error 

terms. The X-scores matrix T is then computed as T=XW and the PLS regression coefficients β 

of Y on X are computed as β=WQ’. W is a matrix of X-weights that reflects the covariance 

structure between the predictor and response variables.  

 

1.4.  Multivariate mixed model analysis 

One important assumption in most linear model analyses, where only one or more fixed effects 

and one random effect (i.e. an error term) are considered, is independence of observations. For this 

assumption to hold, the data points should come from different individuals (not related) and each 

individual should only contribute one data point (no multiple responses). However, observations 

are not independent when individuals are clustered or grouped (e.g., clustered data) or when each 

individual is measured more than once in space (e.g., repeated measurements) or in time (e.g., 

longitudinal data). This is a common scenario in animal and plant sciences at least. The 

dependencies are resolved by introducing additional random effects with structure to the random 

residual in the so-called mixed models. These models are important for analysis of dependent data. 

When modeling genetic relationships between individuals and prediction of genetic merits or 

breeding values and covariance components, unbalanced designs often occur.  

One of the potential targets of modern mixed modeling tools are multivariate analyses. Mixed 

model approaches have some advantages over classical multivariate analysis of variance 

techniques. In particular, they allow unbalanced data and relaxation of some of the usual 

assumptions of the linear models. In animal breeding, mixed models are commonly used for 

genetic analyses of traits in either single or multi-trait model settings. It may be challenging to 
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estimate (co)variance components of additive genetic and other random effects needed to run the 

mixed models, especially when more than 3-4 traits from a large number of animals with many 

records each are analyzed multivariately. Therefore, traits are often analyzed uni- or bi-variately 

or in subgroups. The precision of estimated genetic parameters and accuracy of predicted breeding 

values from the single trait (ST) models might be low, especially when the traits have low 

heritability and number of records are small. A way to increase the accuracy of estimated breeding 

values for traits in the breeding goal is to use multi-trait (MT) methods that enable fuller 

exploitation of the data, and to combine direct with indirect information from correlated traits 

(Pollak et al., 1984;Schaeffer, 1984;Thompson and Meyer, 1986;Van der Werf et al., 1992).   

The use of MT analysis is not limited to improving accuracy of estimated breeding values (EBV), 

but also to give less biased estimates when animals have been selected based on values of another 

correlated trait (Henderson, 1975;Pollak et al., 1984). A model including information on the 

correlated trait is able to correct for this type of selection. The fact that the main selection in dairy 

cattle for many years has been on production, may lead to biased predicted EBVs for traits not 

included in the breeding goal when ST estimation is used, because genetic correlations to traits 

selected for are not accounted for in the EBV prediction. This may show up as bias in estimated 

genetic trends (Pollak et al., 1984). Despite the aforementioned importance of MT genetic 

evaluation, this method has often not been used in breeding schemes. There is for example no 

published work on Norwegian dairy cattle data using multivariate mixed models. Therefore, in one 

article presented in this thesis, we have compared the genetic evaluation of Norwegian dairy cattle 

under ST with MT animal models using test-day records.  

 

1.5.  Indirect and direct prediction approaches 

Milk FT-MIR spectra are mainly utilized for phenotyping of individual traits. The predicted 

phenotypes are then, together with pedigree information and variance component estimates, used 

in best linear unbiased prediction (BLUP) to calculate individual EBV and other random 

components included into the model. This is the conventional method used today for genetic 

evaluation of animals and such approach has been referred to as indirect prediction (IP) 

(Dagnachew et al. 2013b). Alternatively, analyses for genetic evaluation of animals can directly 

be applied on the latent traits of milk FT-MIR spectral variables. BLUP predictions (EBV, herd 
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test-day, permanent environment and residual) for the traits of interest are predicted as correlated 

traits to the corresponding random components of spectra. Dagnachew et al. (2013b) referred to 

such an approach as direct prediction (DP).  

The IP and DP approaches have been used to predict EBV for milk fat, protein and lactose contents 

in goats (Dagnachew et al., 2013b) and for traits related to fine milk composition and technological 

properties of milk in cows (Bonfatti et al., 2017a). Dagnachew et al. (2013b) showed that the DP 

approach reduced prediction error variance, resulting in 3-5% improved relative genetic gain using 

DP instead of the IP approach. They also reported high rank correlation coefficients (0.93 to 0.96) 

between EBV predicted using the IP and the DP. However, independent chemical analyses 

(reference values) for the milk contents were not available in that study. Possibly because of this, 

the coefficients of determination (R2) in calibrations were very high (> 0.96). Moreover, the 

accuracies of EBV were estimated based on coefficient matrices of the mixed model equations in 

that study. The DP and IP approaches have not been compared using independent reference data 

obtained by reference methods, except in the work of Bonfatti et al. (2017a). Bonfatti et al. (2017a) 

compared the two approaches for calibration equations using independent reference data measured 

by reference methods and for traits predicted with medium (0.35) to high (0.86) R2 values. They 

reported rank correlation estimates ranging from 0.07 to 0.96. It has been indicated that the DP 

approach is more likely to be effective when traits of interest have high correlation with major 

sources of variation of the spectra (e.g. milk protein and fat contents) (Bonfatti et al., 2017). 

However, it is difficult to distinguish whether the IP or DP approach performed better for the cases 

of that study, because the IP and DP approaches were evaluated based on rank correlations. 

Based on the studies of Dagnachew et al. (2013b) and Bonfatti et al. ( 2017a), it is difficult to make 

a conclusive remark on whether or when the DP approach is better than the IP approach for EBV 

prediction. The DP and IP approaches have not been compared systematically under different 

genetic and environmental correlation scenarios between traits of interest and spectral variables.   

In addition, in both previous studies (i.e. Dagnachew et al., 2013b and Bonfatti et al., 2017a) 

covariance components of the latent traits estimated by the DP approach were converted to 

variance components to be used in the IP approach using PLS regression coefficients estimated 

based on phenotype (βp). Similarly, EBV of the latent traits were converted into EBV of traits of 

interest using the βp. Utilization of a βp to convert EBV or covariance components of latent traits 
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into EBV or variance components of trait of interest does not seem appropriate. Therefore the 

effect of using different PLS regression coefficients estimated from phenotypes (βp) and true 

breeding values (βg) for converting multi-trait structures to single-trait structures on performances 

of the two approaches is unknown. Moreover, rank correlations between EBV obtained by the IP 

and the DP approach have been shown not to be related to accuracy of calibration equations 

(Bonfatti et al., 2017a). However, the relationships between accuracies of EBV obtained by the 

two approaches, and accuracy of calibration equations are not established. Furthermore, the 

potential of the DP approach for phenotypic prediction has not been evaluated.  

 

1.6.Ketosis and its indicator traits 

Monitoring of metabolic disorders in early lactation is important to evaluate transition cow 

management and as a guide to strategies to improve health and fertility on dairy farm (van der 

Drift et al., 2012a). Ketosis is a common metabolic disorder frequently observed in dairy cows 

during the early lactation period (Enjalbert et al., 2001;Zhang et al., 2012;Koeck et al., 2014). It is 

characterized by increased levels of ketone bodies (BHB, acetoacetate and acetone) in the blood, 

urine, and milk (Andersson, 1988). It is caused by severe negative energy balance and excessive 

body fat mobilization (De Roos et al., 2007). Ketosis can have a clinical and subclinical 

presentation in dairy cows. The clinical ketosis (KET) that has visible clinical signs occurs less 

frequently than the subclinical ketosis (SCK). The KET results in decreased feed intake, weight 

loss, and drop in milk yield (Foster, 1988;Radostits et al., 2007;Youssef et al., 2010). Reported 

incidences of KET vary from 0.24% in first parity to 17.2% in third parity with a median incidence 

of 3.3% (Pryce et al., 2016). The SCK is defined as an excessive level of circulating ketone bodies 

without clinical signs of ketosis (Andersson, 1988). It is associated with less milk yield (Duffield 

et al., 2009), reduced reproductive performance (Walsh et al., 2007;McArt et al., 2012), and higher 

risks for KET (Seifi et al., 2011) and displaced abomasum (LeBlanc et al., 2005;Duffield et al., 

2009). Prevalences of SCK can vary between farms, ranging from 8.9 to 43% (McArt et al., 

2012;Van der Drift et al., 2012a;Suthar et al., 2013). Usually the SCK is detected by testing the 

ketone concentrations in blood, urine, or milk. 

It is difficult to assess the degree of ketosis problems in a herd based on the incidence of KET 

because many metabolic events including ketosis are subclinical by nature, and information on 

subclinical cases are mostly missing because it is difficult to detect (Pryce et al., 2016). Moreover, 
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diagnosis of KET is subjective, as definition of KET in herds and ability to detect clinical signs in 

early lactation cows may vary dramatically (Oetzel, 2007). Heritability estimates for ketosis have 

mostly been based on clinical records and are low, ranging from 0.01 to 0.16 (Pryce et al., 2016), 

partly due to the subjective nature of its diagnosis and to the low frequency of KET (Van der Drift 

et al., 2012b). Response to selection against KET is hampered by low reliabilities associated with 

the low heritability (Pryce et al., 2016). Use of information from correlated traits or from 

subclinical diagnosis could be an alternative to improve the accuracy of EBV and increase the 

selection response. Phenotypes derived from routinely collected data through milk recording such 

as fat-to-protein ratio and fatty acid profiles are promising ketosis indicators (Van Knegsel et al., 

2010). Phenotypes more closely associated with ketosis, such as BHB and acetone in milk may 

also be valuable. 

 

Concentration of BHB in blood has been used as a gold standard method for detection of SCK and 

several studies have used a threshold of 1.2 mmol/L (e.g. Van Knegsel et al., 2010; McArt et al., 

2012; van der Drift et al., 2012a) or 1.40 mmol/L (Oetzel, 2004;Denis-Robichaud et al., 2014) to 

identify cows with SCK. However, the gold standard method does not allow routine testing of all 

animals at risk due to practical limitations such as difficulty in blood sampling (especially for 

farmers) and capacity for analyzing many blood samples at a time. Determination of ketone bodies 

in milk could make the sampling easier (Enjalbert et al., 2001;De Roos et al., 2007). As milk 

sampling is performed monthly in milk recording procedures, more routine measurements of milk 

BHB can be done by FT-MIR spectroscopy analysis in milk samples at test-days (De Roos et al., 

2007;Van der Drift et al., 2012a). The BHB predicted from milk spectra have moderate heritability 

(0.07 to 0.40; Oikonomou et al., 2008; Jamrozik et al.,2016) and genetic correlations with KET 

(0.25 to 0.75; Koeck et al., 2014, 2016; Jamrozik et al., 2016); hence, indirect selection for ketosis 

using BHB as indicator trait should result in better genetic gain than direct selection for KET. KET 

itself has a very low heritability. For use and implementation of blood BHB predicted from milk 

spectra in dairy cattle breeding programs, knowledge of genetic parameters and genetic 

associations with clinical events and other traits in the breeding goal is essential. However, no 

report on genetic parameters and associations of predicted blood BHB with KET and milk 

production traits for cows in early lactation has been found. 
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2. AIM AND OUTLINE OF THIS THESIS 

The overall aim of the research presented in this thesis was to verify methods for exploiting milk 

FT-MIR spectral information for prediction of breeding values and phenotypes. The specific 

objectives have been to: 

 Compare ST and MT repeatability test-day animal models for genetic evaluations, and 

evaluate the practical usefulness of MT models compared to ST models in Norwegian dairy 

cattle. 

 

 Verify whether multivariate mixed modeling of FT-MIR milk spectra in the form of factor 

scores (DP) gives better prediction of phenotypic blood BHB than the univariate approach 

(IP).  

 

 See if an established connection between milk FT-MIR spectra and blood BHB in Polish 

dairy cattle could be used to identify Norwegian Red cows treated for ketosis, and estimate 

genetic parameters for the predicted blood BHB.  

 

 Evaluate prediction accuracy of direct (DP) and indirect (IP) approaches, and their 

relationships with accuracy of calibration models using simulation.  

 

Paper I assessed if there is a benefit from MT genetic evaluations compared to ST evaluation in 

test-day milk data.  

Paper II evaluated the main objective of this thesis. The predictive ability of the IP and DP 

approaches for prediction of blood BHB from milk FT-MIR spectra were investigated. Prediction 

equations for blood BHB from milk FT-MIR spectra and reference blood BHB values in Polish 

dairy cattle were also developed. 

Paper III applied the prediction equation developed for blood BHB using Polish data on FT-MIR 

spectra of Norwegian Red cows to predict blood BHB from milk spectra. Phenotypic relationships 

of the predicted blood BHB with veterinarian recorded ketosis (KET) and milk production traits 

were assessed. Also estimated was genetic parameters for the predicted blood BHB and clinical 

ketosis, and their genetic association with milk production traits.  
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Paper IV tried to wrap up importance of the IP and DP approaches using simulated data. Prediction 

accuracy of the IP and DP approaches for phenotype and EBV under different genetic and residual 

scenarios were assessed. Relationships between accuracy of the two approaches and accuracy of 

calibration models were also evaluated. Also evaluated was effect of using phenotype (βp) or 

genetic (βp) based calibration outputs for converting covariance components or EBV of latent traits 

into variance components or EBV of trait of interest on performance of the two approaches.  
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3. BRIEF SUMMARY OF PAPERS  

3.1. Paper I 

 

Comparison of single-trait and multi-trait animal models for genetic evaluation of milk 

production traits predicted from milk infrared spectra in Norwegian dairy cattle 

Estimation of (co)variance components of additive genetic and other random effects is challenging, 

especially when more than 3-4 traits from a large number of animals with many records each are 

analyzed multivariately. Consequently, traits are often analyzed univariately or in subgroups in 

breeding schemes. Information from correlated traits may improve the accuracy of predictions for 

a particular trait. Therefore, aim of this study was to evaluate the practical usefulness of MT models 

compared to ST models. The ST and MT repeatability test-day animal models were applied to 

875,460 test-day records from Norwegian dairy cattle. Genetic parameters, accuracy of breeding 

values, rank correlation and genetic trends were estimated for milk production traits (milk, fat and 

protein yields, and fat and protein contents). 

Main results 

 Estimates of heritability ranged from 0.119 for fat yield to 0.377 for milk protein content 

but were very similar in both types of analyses.  

 The MT analyses improved accuracies of EBVs for cows and for sires with less than 50 

daughters, but were similar in analyses for sires with >50 daughters. Sires were less re-

ranked compared to cows and all animals in pedigree when comparing MT and ST 

predictions.  

 Favorable genetic trends were observed in all traits. The genetic trends were slightly higher 

under MT for protein and fat contents, and fat yield, but slightly lower for the remaining 

traits.  

Conclusion  

Comparison of the ST and MT animal models applied for the genetic evaluation of Norwegian 

dairy cattle revealed small differences between the estimates obtained by the two methods. Multi-

trait analysis was more useful for cow genetic evaluations than for sire evaluations.  
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3.2. Paper II 

An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared 

spectra of milk using multivariate mixed models in Polish dairy cattle 

The aim of this study was to evaluate whether direct genetic analyses on milk FT-MIR spectra 

(DP) would give better prediction of blood BHB than univariate genetic analysis of BHB predicted 

from spectra before mixed model analysis (IP). In both cases, the prediction of phenotypes was 

the ultimate goal. The study also aimed to develop calibration equations to predict blood BHB 

from milk spectra. Links between (untransformed or log-transformed) blood BHB and (raw or pre-

processed) milk FT-MIR spectra were developed (n=496) and validated (n=330). Calibration 

outputs were used to reduce dimension of milk FT-MIR spectral variables (n=158,028) into factor 

scores (DP) or into single-trait prediction of BHB (IP). Covariance components for the factor 

scores estimated and used for BLUP analyses in either covariance (DP) or variance structure (IP) 

were estimated. BLUP predictions of the random and estimations of the fixed effect parts of the 

model were used to predict BHB phenotypes for observations in the validation set in both 

approaches. Blood BHB predicted by both approaches were then regressed to the reference blood 

BHB values to evaluate performance of the IP and DP approaches.  

 

Main results  

 Predictive ability of calibration models were low ranging from 0.21 to 0.32 for 

untransformed blood and from 0.31 to 0.38 for log-transformed BHB in cross-validation 

analyses. The corresponding estimates in validation analyses were from 0.29 to 0.37 and 

0.21 to 0.43, respectively, for untransformed and logarithmatic BHB.  

 Predictive ability of the IP and DP approaches were also low, with slightly better prediction 

in IP (0.28-0.31) than in DP (0.26-30) approaches for phenotypic BHB prediction. 

Predictive ability of the two approaches were lower than prediction ability of calibration 

equations in the validation analysis.  

Conclusion  

Contrary to our expectation, slightly better predictions of BHB were found when univariate 

variance structure was used (IP) than when multivariate covariance structures were used (DP). 

Blood BHB log-transformation, spectral pre-processing and use of extreme blood BHB values 

improved prediction accuracy of the calibration models and the two approaches. 
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3.3. Paper III 

Genetic parameters of blood β-hydroxybutyrate predicted from milk infrared spectra and 

clinical ketosis, and their associations with milk production traits in Norwegian Red cows 

A few reports exist on genetic studies of plasma BHB measured by reference methods. However, 

there is no report on genetic parameters and associations of predicted blood BHB from milk spectra 

with clinical events and other traits in the breeding goal. The aim of this study was to estimate 

genetic parameters for milk spectra predicted blood BHB and for KET, and to examine their 

genetic association with milk production traits. Data on milk traits, KET and milk spectra were 

obtained from the Norwegian Dairy Herd Recording System. Data recorded up to 120 days after 

calving were considered. Blood BHB were predicted from Norwegian milk spectra using a model 

developed based on data from Polish dairy cows (Paper II). The milk components were also 

predictions from the milk spectra using Foss calibration. Veterinarian recorded KET data within 

15 d before calving to 120 d after calving were used. Data were analyzed using ST or bivariate 

linear animal models.  

Main results 

 Contents of predicted blood BHB were in the range of literature values. Mean predicted 

blood BHB was higher at the beginning of lactation and decreased as DIM progressed.  

 Heritability estimates for the predicted blood BHB at different DIM intervals were 0.230 

to 0.365, while that for KET was 0.078 in ST, but 0.002 in bivariate analyses with either 

BHB or milk traits.  

 Blood BHB at 11-30 DIM was moderately genetically correlated with KET (0.469) and 

milk traits (from -0.367 with protein content to 0.277 with milk yield), except with milk 

fat content (0.033). Estimates of genetic correlation of KET with milk production traits 

were -0.333 (with protein content) to 0.178 (with milk yield). 

Conclusion  

Prediction equations developed for the Polish dairy cows can be used for Norwegian Red cows to 

predict blood BHB to be used for management or breeding purpose. Predicted blood BHB at 

different DIM intervals or across lactation stages are heritable. Blood BHB can routinely be 

predicted from milk spectra analyzed from test-day milk samples, and thereby provides a practical 

alternative for selecting cows with lower susceptibility to ketosis, even though the correlations are 

moderate. 
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3.4. Paper IV 

Prediction accuracy of direct and indirect approaches, and their relationships with accuracy 

of calibration models 

Few studies have compared performance of the IP and DP approaches for EBV or phenotype 

prediction. It is difficult to make a conclusive remark on whether the DP approach is better than 

the IP approach based on studies done so far. The aim was to compare the IP and DP approaches 

for predictions of EBV and phenotypes under different genetic and residual correlation scenarios. 

We also evaluated relationships between performances of the two approaches and the accuracy of 

calibration equations. Moreover, effect of using different regression coefficients (e.g., phenotypic: 

βp, genetic: βg etc.) on performance of the two approaches were evaluated. In this study, we 

simulated three traits under different genetic (low: 0.10 to high: 0.90) and residual (zero to high: 

± 0.90) correlation scenarios between the traits and assumed that the first trait is a linear 

combination of the other two traits. The simulated data contained 2,100 parents (100 sires and 

2000 cows) and 8,000 offspring (four offspring per cow). Of the 8,000 observations, 2,000 were 

randomly selected and used to develop links between the first and the other two traits using PLS 

regression analysis. The different PLS regression coefficients (such as βp, βg etc.) were used in 

subsequent predictions following the IP and DP approaches. BLUP analyses were done on the 

remaining 6,000 observations using the ‘true’ (co)variance components that had been used for the 

simulation. Accuracy of prediction (of EBV and phenotype) was calculated as a correlation 

between predicted and true values from the simulations. 

Main results 

 Accuracies of EBV prediction were higher in the DP than in the IP approach. The reverse 

was true for accuracy of phenotypic prediction (βp), but not when using βg and βr 

(regression coefficients for residual) where accuracy of phenotypic prediction in the DP 

was slightly higher than in the IP approach.  

 Within the DP approach, accuracies of EBV when using βg were higher than when using 

βp, especially at the low genetic correlation scenario. However, there were no differences 

in EBV prediction accuracy between the βp and βg in the IP approach. For phenotypic 

prediction, there was generally no difference in accuracy under βg and βp within either the 

DP or IP approach. 
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 Accuracy of the calibration models increased with increase in genetic and residual 

correlations between the traits. Performance of both approaches increased with increase in 

accuracy of the calibration models. Differences in phenotypic prediction accuracy between 

the two approaches became clearer as prediction ability of calibration models increased, 

but this was not the case for EBV prediction accuracy. 

Conclusion  

The DP approach is a good strategy for EBV prediction, but not for phenotypic prediction, where 

the classical PLS regression based equations or IP approach provided better results. Type of 

calibration outputs (βg or βp) used for converting covariance components or EBV of latent traits 

into univariate structure had impact on accuracy of EBV, but not on accuracy of phenotypic 

prediction.  
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4. GENERAL DISCUSSION  

The focus of this PhD study has been to verify methods for exploiting milk FT-MIR spectra for 

prediction of phenotypes and breeding values. Accuracy or validity of phenotypes (or genetic 

parameters) and breeding values predicted from milk spectra by different methods were discussed. 

Advantages and limitations of each method, as well as effect of multivariate techniques used in 

dimension reduction on accuracy EBV prediction in the DP approach were highlighted.  

4.1.  FT-MIR spectra for prediction of phenotypes and breeding values 
 

4.1.1. Predicting phenotypes from milk FT-MIR spectra  

Routine and accurate phenotype prediction is important in farm management and genetic and/or 

genomic evaluations of livestock. In studies presented in this thesis, phenotypes for traits of 

interest were predicted from FT-MIR spectra in either using 1) the classical PLS regression based 

prediction equations or 2) mixed model analyses following the IP and DP approaches. It is 

important that the predicted phenotypes are reasonable before using them for the desired purposes. 

In paper III, we used PLS regression based prediction equation to predict phenotypic blood BHB 

from FT-MIR spectra, and their validity could be assessed in several ways. From a biological point 

of view, the predicted blood BHB values made sense. For example, mean blood BHB 

concentrations were higher in early lactation and then decreased as DIM progressed, and its 

phenotypic distribution was similar to reference and published values. Heritability of predicted 

phenotypic blood BHB was in a range reported in literature (Van der Drift et al., 2012b;Koeck et 

al., 2014;Jamrozik et al., 2016;Koeck et al., 2016), but this alone is not sufficient. This is because 

estimates of heritability for traits predicted from FT-MIR might differ from estimates based on 

reference values for the same trait (Rutten et al., 2009;Poulsen et al., 2014;Bonfatti et al., 2017b). 

Validity of predicted phenotypes can also be assessed by studying its phenotypic associations with 

other traits, and we found meaningful phenotypic relationships between predicted blood BHB, 

KET and milk traits. For example, high-yielding cows had higher blood BHB concentration and 

were more prone to the risk of developing ketosis in early lactation compared with lower-yielding 

cows in Paper III. Similarly, cows with higher predicted blood BHB values had higher frequencies 

of KET (3.41%) compared with cows with lower blood BHB values (1.01%). Cows with higher 

predicted blood BHB values also had higher milk fat content throughout early lactation stage 
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compared with cows with lower blood BHB values. These results suggested that models developed 

for Polish dairy cows work and give reasonable results with Norwegian milk spectral data. 

 

Application of mixed models for phenotypic prediction is not common in animal breeding. 

However, in paper II and IV, we used mixed model methods (i.e., IP and DP approaches) to predict 

phenotypes from milk spectra for blood BHB and other milk constituents. Accuracy of the 

predicted phenotypes were evaluated based on either coefficient of determination (paper II) or 

correlation coefficient (paper IV) between predicted and true (or measured) phenotypes. In using 

real data (paper II), slightly more accurate predictions of blood BHB phenotypes were observed 

when using the IP than the DP method. This is in contrast with previous reports (Dagnachew et 

al., 2013b), who found better accuracy of EBV prediction in using the DP than the IP approaches. 

It was also in contrast to our expectation that multivariate information would give better prediction 

than those that are univariate. Several possible reasons were postulated for the inferior phenotypic 

prediction by the DP approach. These include low genetic correlations between the latent traits, 

lack of enough information about contemporary cows in validation set, low correlation of blood 

BHB with milk contents (fat, protein etc.), and low accuracy of the calibration models developed. 

In paper IV, using simulated data, we tried to address some of the aforementioned limiting factors 

that we thought affected the performance of the DP approach. Results from the simulation study 

supported our previous finding from the real data (paper II) i.e. the IP approach performed better 

than the DP approaches for phenotypic prediction when using phenotypic regression coefficient 

(βp). The exception was when using βg and βr, where accuracy of phenotypic prediction in the DP 

was slightly higher than in the IP approach. Accuracy of phenotypic prediction in both approaches 

were affected by genetic and residual correlation structures between traits and accuracy of the 

calibration models used. Use of different regression coefficients had marginal effect on accuracy 

of phenotypic prediction. We also observed that spectral preprocessing and blood BHB log-

transformation had an effect on phenotypic prediction accuracy in both IP and DP approaches.  

Phenotypic prediction accuracies of the two approaches were also compared with classical PLS 

regression based prediction equations. Both with simulation and real data, the PLS regression 

based prediction equations performed better than the mixed model (IP and DP) methods, especially 

for phenotypes predicted without including the residual effects. For phenotypes predicted with 

residual effects, performance of the IP and PLS was equal, but better than the DP approach. This 
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indicated that inclusion of cows’ circumstances at a given test-day into the IP or DP model did not 

improve prediction of phenotypes over the classical PLS method. Therefore, it does not seem to 

be a good strategy to use the IP or DP approach for phenotypic prediction, where the classical PLS 

regression based equations provided better results. Alternatively, information related to cow at a 

given test-day could be directly added to the spectra before PLS. For example, Vanlierde et al. 

(2015) included DIM directly into spectra using Legendre polynomial to predict methane, and 

prediction equations developed in such a way were shown to be more robust than equations that 

did not integrate the DIM information. Similarly, Shetty et al. (2017) used milk yield and live 

weight as predictors along with spectral variables to predict residual feed intake and dry matter 

intake. They showed improvement in accuracy of models that included spectral information along 

with milk yield and live weight as predictors for dry matter intake. Therefore, inclusion of cows’ 

circumstances directly into spectra before PLS or using them as predictors along with spectral 

information during PLS can be an alternative to improve prediction accuracy for blood BHB from 

milk FT-MIR spectra. 

 

4.1.2. Genetic parameters of traits predicted from FT-MIR spectra  

In addition to using the FT-MIR predicted phenotypes in payment systems to reward or penalize 

producers or in monitoring metabolic status of cows (Gengler et al., 2016), they could be used as 

indicator traits in breeding programs for dairy cattle populations (Bastin et al., 2016; Gengler et 

al., 2016).  The potential of FT-MIR predicted phenotypes in indirect selective breeding relies on 

heritability of the prediction and genetic correlation between the predicted and measured trait 

(Bonfatti et al., 2017b). 

4.1.2.1. Covariance components and heritabilities  

In papers presented in this thesis, we have estimated (co)variance components and corresponding 

heritabilities for latent traits, blood BHB, and milk production traits predicted from milk spectra, 

using ST and MT models (paper I and III), or IP and DP approaches (paper II). Estimates of 

covariance components, heritabilities and other variance ratios of these traits were similar in ST 

and MT analyses. This is as expected because genetic and environmental variances of the traits 

themselves are not expected to be different, regardless of analyzing them univariately or 

multivariately. In paper II, variance components and heritability estimates for the DP predicted 
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blood BHB were slightly higher than the IP predicted BHB, indicating better information content 

in the DP approach. We also observed that spectral preprocessing had an effect on genetic 

parameter estimates. For example, in Paper II, most of the factor scores and blood BHB that were 

predicted from unprocessed spectra had higher estimates of heritability and proportion of variance 

due to permanent environment and herd test-date effects than those from preprocessed spectra. In 

paper III, genetic parameters of milk spectra-derived blood BHB and milk production traits 

increased with increase in DIM in both ST and MT analyses. This suggest that expression of 

additive genetic effects of these traits increase with the progress in lactation stage of the cow. A 

higher genetic variance rather than a decrease in environmental variance is the main cause for the 

increased heritabilities with the progress in DIM.  

Recently, Bonfatti et al. (2017b) evaluated effect of predictive ability of calibration models on 

genetic parameter estimates (additive genetic and phenotypic variances, heritability, and genetic 

correlation between measured and infrared predicted traits). Those authors found a decrease in 

additive and phenotypic variances of predicted traits compared with measured traits, and the 

reduction in the variances were lower for traits predicted with higher R2. However, the magnitude 

of heritability estimates for predicted traits was not related to R2 of calibration models (Bonfatti et 

al., 2017b). Gengler et al. (2016) indicated that random noise of prediction (prediction error) would 

affect the heritability of the predicted traits.  

 

Heritability of predicted traits also varies depending on the types of lactation records used (i.e., 

test-day or 305-d data). Milk, fat and protein yields are part of the Norwegian red (NRF) breeding 

goals and the genetic evaluations for these traits are based on the conventional 305-d lactation 

records. Estimates of heritabilities for the 305-d lactation milk, fat, and protein yields are 0.28, 

0.21, and 0.24, respectively (http://www.genoglobal.com/Start/Norwegian-Red/about-norwegian-

red/Norwegian-Red-Total-Merit-Index/), which is higher than corresponding estimates based on 

test-day records (paper I). Several studies (Shadparvar and Yazdanshenas, 2005;Miglior et al., 

2007;Ptak et al., 2012) also reported higher heritabilities of whole-lactation traits compared with 

test-day heritabilities. Those authors implied that increased heritabilities of 305-d yield could be 

related to residual variance, which might be decreased when taking an overall value of all test-

days used for making the 305-d. In addition, there is a difference in defining heritability between 

our study and NRF breeding company (e.g. Geno), where heritability was defined as ratio of 

http://www.genoglobal.com/Start/Norwegian-Red/about-norwegian-red/Norwegian-Red-Total-Merit-Index/
http://www.genoglobal.com/Start/Norwegian-Red/about-norwegian-red/Norwegian-Red-Total-Merit-Index/
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genetic variance to the sum of genetic and residual variance. If such a definition of heritability is 

adopted in our study, heritability estimates for 305-d yield and test-day yields become very similar 

at least for milk and protein yields in the Norwegian dairy cattle population.   

4.1.2.2. Genetic correlations 

In addition to heritability and additive genetic variance of predicted traits, genetic correlation 

between the predicted traits (indicator traits – blood BHB) and traits of interest (e.g., ketosis) is a 

key factor affecting the potential usefulness of the predicted trait for indirect selective breeding 

programs. In paper III, we found moderate genetic correlations (0.469) between KET and its 

indicator (BHB at 11-30 DIM), as well as between BHB at 11-31 DIM and milk production traits 

(ranged from -0.367 with protein content to 0.277 with milk yield). Those correlations decreased 

as DIM progressed. Given its heritability, genetic correlation and routine availability, predicted 

blood BHB in early lactation could be used as an indicator trait in a routine genetic evaluation for 

resistance to ketosis, but selective breeding for lower BHB might have negative impact on yield 

traits. Genetic correlations between predicted blood BHB and other traits in breeding goal of NRF 

breeding program (e.g., health, fertility and conformation traits) are not known and need to be 

evaluated before considering the BHB in genetic selection. In a Canadian dairy population, lower 

EBV for milk BHB at early lactation stage was favorably correlated with several health and fertility 

measures, including somatic cell score, calving to first service, number of services, first service to 

conception, and days open (Koeck et al., 2014). Oikonomou et al. (2008) found moderate genetic 

correlations between blood BHB and several fertility traits, with estimates ranging from -0.65 

(between blood BHB and conception rate in the first 305 d of first lactation) to 0.56 (between 

blood BHB and number of inseminations per conception). Longevity, overall score for 

conformation and for feet and legs, were favorably associated with milk BHB EBV (Koeck et al., 

2014).  

4.1.3.  Predicting breeding values from milk FT-MIR spectra 

As indicated earlier, EBV prediction from milk FT-MIR spectra (or from predicted phenotypes) for 

the traits of interest could be obtained using the conventional ST and MT methods or the 

contemporary IP and DP approaches. 
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4.1.3.1. EBV prediction using the ST and MT mixed model analyses 

For traits predicted from FT-MIR spectra, EBV would be estimated in either an ST or MT mixed 

model setting. In paper I, generally, we found little improvement in accuracy of EBV prediction 

for milk production traits in using the MT instead of ST model analysis. This could be due to the 

similarities in heritability and small differences in genetic and residual correlations between the 

investigated traits, as concluded in the older studies (Schaeffer, 1984;Falconer and Mackay, 1996). 

In a simulation study by Schaeffer (1984), he speculated that MT analyses for milk and fat yields 

would result in around 5% reduction of prediction error variance (PEV) (hence increase EBV 

accuracy) because heritabilities of the trait are similar and the difference between genetic and 

residual correlations is small. He also speculated that a larger percentage reduction of PEV would 

be had if milk yield, fat and protein percentages were analyzed simultaneously. In using real data, 

however, we observed little to no difference in accuracy when milk yield has been analyzed with 

yields or percentages fat and protein, especially for sire genetic evaluation. This would not be the 

case for MT analyses of fertility traits with production traits. For example, several studies have 

shown that MT analyses improved accuracy of EBV prediction for fertility traits when analyzed 

with milk production traits compared to analyzing only fertility traits together or separately 

(Kadarmideen et al., 2003;Biffani et al., 2005;Sun et al., 2010).  

As discussed in paper I and elsewhere (Gengler and Coenraets, 1997;Guo et al., 2014), MT 

analyses would be useful when numbers of observations are small. With smaller numbers of 

observations (e.g., for sires with <50 daughters), EBV from MT evaluation tend to gain more in 

accuracy (e.g., 3.25% improvement for protein yield) compared to EBV accuracy from ST 

analysis. Moreover, MT analysis was found more useful for cow genetic evaluations than sire 

evaluations. Improvement in accuracy of cow EBV due to MT ranged from 2.5 % for milk yield 

to 9.83 % protein yield. We found similar results when using simulated data in paper IV, where 

the difference in EBV accuracy between the IP and DP approaches was more noticeable for cows 

than for sires’ genetic evaluations. Relatively higher improvement in EBV accuracy due to MT 

analysis for cows than for sires in lactation yields of dairy cattle in Belgium were also reported 

(Gengler and Coenraets, 1997). The relative improvement in accuracy we found in paper I for milk 

yield for both cows and sires were similar to their results, but that of protein yield was higher in 

paper I than reported by Gengler and Coenraets (1997).  
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4.1.3.2. EBV prediction using the IP and DP approaches 

In addition to the indirect EBV prediction, using ST or MT models for traits predicted from spectra, 

EBV could be predicted from the spectra following the DP approach. In both the DP and IP 

approaches, in paper IV, we observed increase in accuracy of EBV prediction with increase in 

genetic and residual correlations between the traits, as well as with increase in calibration accuracy. 

In paper IV, we simulated traits using genetic correlations that were almost in opposite direction 

to residual correlations and found higher accuracy of EBV prediction in the DP than the IP 

approach; confirming results of previous study on goat milk contents (Dagnachew et al., 2013b). 

Nevertheless, the difference in performance between the IP and DP approaches was marginal when 

we simulated the traits using genetic correlations that were similar (in magnitude and sign) to 

residual correlations between the traits. This is in line with earlier reports (Schaefer, 1984; 

Thompson and Meyer, 1986) that indicated that the larger the difference between the residual and 

genetic correlations the better the accuracies from MT analysis. Generally, improvement in 

accuracy of EBV prediction in the DP over the IP approach depends on genetic and residual 

correlations between traits, accuracy of calibration models, type of PLS regression coefficients and 

amount of information (number of observations) used. Effects of each of these factors on EBV 

accuracies are described in the next paragraphs.  

The DP approach outperformed the IP approach in the cases simulated, especially when using βg 

and at low genetic correlation scenario. Average rate of improvement in the DP over the IP 

approach when using βp ranged from 4.09% for high genetic correlation to 54.43% for low genetic 

correlation scenarios. The corresponding values when using the βg were from 4.22% for high 

genetic correlation to 248.94% for low genetic correlation scenarios. Here, two questions could 

possibly be raised: 1) why much better accuracy in DP than IP at low genetic correlation regardless 

of the type of βs used? 2) Why much better accuracy in DP than IP at low genetic correlation when 

using βg rather than βp?  

The first question might be related to the accuracy of the calibration model from which the βs were 

estimated. Accuracy of calibration itself depends on degree of genetic correlations between the 

traits. At low accuracy of calibration (i.e. when it is difficult to predict the intended trait from the 

spectra), the estimated βs that generated the predicted phenotype (for IP) or EBV (for DP) capture 

little information relevant for the intended traits. The EBV prediction from such poorly predicted 
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phenotypes (IP) would be inaccurate. In the DP approach, however, existing info in the βs 

regarding the intended trait is fully utilized, resulting in better accuracy of EBV prediction than in 

the IP approach. As the accuracy of the calibration model increased, however, the βs contained 

almost all information about the traits of interest and hence accurately predict phenotypes that later 

used for better EBV prediction in the IP approach. Breeding values prediction from such accurately 

predicted phenotypes are expected to be accurate. Hence, under high accuracy of calibration 

models, the DP approach utilizes little information that was not utilized by the IP approach, 

resulting in smaller differences in performance between the approaches.  

 

Why much better accuracy in DP than IP at low genetic correlation when using βg rather than βp? 

In the DP approach, EBV of the latent traits are predicted more accurately due to utilization of 

covariance between traits and are combined through βs into EBV of the intended trait. That means 

accuracy of EBV for the trait of interest depends on the type of β and amount of information 

contained in the β used to convert the EBV of latent traits into EBV of the traits of interest. When 

using βp that contained little information about genetic part of the intended trait, EBV accuracy of 

the intended traits might be lower than when using βg that are expected to contain more genetic 

information. That is why we observed larger variation in performance between the two approaches 

(as well as within the DP approach) at low genetic scenario when using βg than using βp. The 

difference in performance of the IP and DP approaches due to the type of βs used would be reduced 

as accuracy of calibration models increased. Unlike for the phenotypic prediction accuracy, 

difference in EBV prediction accuracy between the two approaches did not vary widely as the 

accuracy of calibration model increased. Therefore, even though the prediction accuracy of EBV 

increased with increase in the accuracy of calibration model, it is not necessary to have a 

calibration model with high accuracy to see the difference in performance between the two 

approaches for EBV accuracy prediction. As indicated above, the difference in EBV accuracy 

between the IP and DP approaches was more noticeable when using small number of records (e.g., 

for cows) than large number of observations (for sire genetic evaluation). 

 

4.2. Multi-trait mixed model vs direct prediction approach  

The conventional MT mixed model is similar in principle to the DP approach, as both involve 

analyses of two or more traits simultaneously. Both perform better under small number of 
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observations. However, they differ conceptually. Unlike in the MT model, traits in the DP 

approach are not ‘full’ traits, but component traits that later combine into a ‘full’ trait through 

calibration outputs. Hence, performance of the DP approach depends on not only genetic and 

residual relationships between component traits but also on the relationship between the 

component traits (spectral variables) and the trait of interest. This has been confirmed using 

simulated data in paper IV. In the conventional MT mixed model analysis, however, only genetic 

and residual correlation structures between traits matter, especially for traits measured independent 

of spectra. MT model accounts for selection bias, but the DP may not, and performance of DP 

depends on type of regression coefficients and accuracy of calibration model.  

In addition, EBV or phenotype prediction in the DP approach is more complex and tedious 

compared to the conventional MT model or the IP approach. In the DP approach, all steps from 

spectral dimension reduction to combining component estimates into estimates for traits of interest 

have to be done. Furthermore, the number of components retained and/or amount of original 

spectral variations captured by the components have an impact on the performance of the DP 

approach. The techniques used for spectral dimension reduction also influences performance of 

the DP approach. For example, when the DP approach is based on latent traits from PCA rather 

than from PLS regression, relevant information needed for prediction could be lost, as PCA does 

not take into account information of the response variable while decomposing spectral variables.  

Despite improving EBV accuracy, increasing precision of genetic parameters and accounting for 

selection bias, the MT or DP analysis are complex and computationally demanding. In general, 

parameter estimation in MT mixed models is cubic in the number of traits. It was worse when traits 

were interdependent (e.g., MT analysis of fat and protein yields with milk yield, milk fat and 

protein contents), as well as when phenotypic values of (latent) traits are very small.  Under such 

conditions, the analysis went through a number of iterations with small change in log likelihood 

and spent long time per iteration. In addition to computational challenges, covariance component 

estimations suffer from overfitting as the dimension of the trait-covariance increases (Bickel and 

Levina, 2008), mainly because the number of parameters of these models grow quadratically 

whereas data only linearly (Lippert et al., 2014). 
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4.3. Multivariate calibration and dimension reduction 

As indicated earlier, PLS regression was used to extract relevant spectral information from high 

dimensional milk FT-MIR spectra into few factor scores and develop link between the spectra and 

traits of interest. Optimal number of PLS factors is usually determined based on minimum of 

prediction errors for cross-validation, external validation etc.  Several strategies are applied to 

determine the optimal number from the prediction errors: global minimum – often result in 

overfitting; local minimum – most often used; and one standard error rule (Varmuza and 

Filzmoser, 2009). In paper II, five to ten PLS factors were retained based on local minimum value 

in root mean square error of cross-validation resulting in R2 ranging from 0.21 to 0.32 for 

untransformed BHB and from 0.31 to 0.38 for log-transformed BHB. Those PLS factor scores 

explained from 96 to 99% variation in original predictors (spectral variables), but explained < 45% 

variation in the response variable (blood BHB). The low accuracies of prediction models could be 

due to non-linear or weak relationship between blood BHB and milk spectra, low concentrations 

of BHB in milk, and difference in metabolism of BHB in blood and milk due to sampling time and 

genetic differences between cows.  

 

In using PCA for dimension reduction, components that explain about 99% of the original spectral 

variations are usually considered. However, the remaining 1% of the total spectral variation could 

contain relevant information needed for prediction (Dagnachew et al., 2013b; Belay et al., 2015; 

Bonfatti et al., 2017a). For example, Bonfatti et al. (2017a) showed that a considerable amount of 

information needed to predict phenotypes is lost when using 99% of original spectral variability, 

and that loss of such information could affect prediction of EBV from spectral information. One 

way of capturing more of the remaining 1% spectral variation is to increase the number of 

components retained. Doing that, however, might lead to overfitting and poses difficulties in 

estimation of covariance components for the retained large number of latent traits. The latter could 

be addressed by integrating PCA with canonical transformation as implemented in the study by 

Soyeurt et al. (2010), who managed to estimate covariance components for 46 latent traits.  

Another way of capturing relevant information from spectra is to retain latent traits based on their 

associations with the traits of interest, instead of retaining them based on amount of their 

eigenvalues (Bonfatti et al., 2017a). Latent traits with the greatest eigenvalues do not necessarily 

contain the greatest part of spectral genetic variation (Dagnachew et al., 2013a, b; Belay et al., 
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2015; Bonfatti et al., 2017a; Paper II).  Those authors showed that latent traits having the largest 

eigenvalues are not necessarily those having the highest heritability estimates.  Other latent traits 

that explained limited variation might play fundamental roles in the prediction of some traits 

(Bonfatti et al., 2017a). Moreover, PLS regression captures relevant variation of spectra associated 

with traits included in the PLS calibration models and hence are expected to give better prediction 

for those traits. This has been confirmed in paper II and Bonfatti et al. (2017a). For example, 

phenotypic prediction accuracy of DP was much lower than the IP approach when PCA was used 

(Belay et al., 2015) compared to when PLS was used for spectral dimension reduction (paper II) 

for the same dataset. The retained eight latent traits from PCA that explained 99% of the total 

spectral variation (Belay et al., 2015) could not contain as much relevant information about the 

blood BHB as the five PLS factors used in paper II did. Bonfatti et al. (2017a) showed that traits 

that were difficult to predict from spectra had much lower R2 from principal component regression 

(PCR – that used the PCA principle) than the R2
 from PLS regression, but for traits that were easily 

predicted from spectra the PLS and PCR based calibrations had similar performance. However, 

PLS regression will not guarantee that information for other milk composition traits, which are not 

included in the calibration model, are retained in the factor scores.   

4.4. Data quality and quantity 

For papers presented in this thesis, already existing datasets were used, except the simulated data 

in Paper IV. Milk production traits (milk yield, and milk fat, protein and lactose contents), milk 

FT-MIR spectra, ketosis and pedigree information were obtained from Norwegian dairy control 

recording system (TINE). Measured blood BHB, milk FT-MIR spectra and pedigree information 

were obtained from Polish Federation of Cattle Breeders and Dairy Farmers (PFCBDF). These 

datasets are from other completed projects (e.g., blood BHB) and routine measurements as part of 

genetic evaluation programs.  

Quality of the data obtained from milk FT-MIR spectra depends on accuracy of prediction models 

used, which is influenced at least by sample size from which reference values to be used in the 

calibration are measured. As the reference values are not routinely available, prediction equations 

are often developed based on small sample sizes and hence possibly with low accuracy, especially 

for traits with low concentrations. As a result, calibration models are validated internally and their 

predictive ability for new data sets becomes low. A way to increase sample size and hence improve 
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prediction accuracy is collaboration with different institutes within and across countries to create 

a common database that combines reference values and FT-MIR spectra. This may need 

standardization of both the spectra and the reference measurements as different instruments and 

technicians measure them. This could improve prediction ability of calibration models and enable 

the detection of relevant phenotypic traits and their reflection in the spectra (Friedrichs et al., 

2015). In addition to the sample size, the way in which blood BHB was measured (i.e., values with 

few digits: 0.1, 0.2, … 6.3) have influenced predictive ability of the prediction models. Many 

samples had the same BHB values, resulting in a large number of few distinct values that reduced 

variation or range of values used. Instruments that can give more digits may help to increase the 

observed variability of blood BHB values and hence possibly the prediction accuracy.  
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5. GENERAL CONCLUSIONS 

Based on findings of studies included in this thesis, the following concluding remarks are made: 

 Multi-trait analysis were found to improve accuracy of EBV prediction; for example from 

2.50 to 9.83 % due to MT analysis in Paper I and from 4.09% to 56.43% due to the DP 

approach in Paper IV. However, the benefits obtained from the MT models are conditional 

on several factors (heritability, genetic and residual correlation structures, number of 

observations, types of regression coefficient etc.). 

 A more accurate prediction of blood BHB phenotypes were found with the IP than with 

the DP approach. Both the IP and DP approaches had lower predictive ability for 

phenotyping than the classical PLS regression based prediction equations, indicating 

unnecessity of doing mixed model to account for cows’ information in phenotypic 

prediction from milk spectra. This has also been confirmed in the simulation study (Paper 

IV). Therefore, for phenotypic predication, the classical PLS regression based prediction 

equation seems the method of choice. 

 Prediction equations developed for the Polish dairy cows can be used for Norwegian Red 

cows to predict blood BHB to be used for management or breeding purposes. Blood BHB 

at different DIM intervals or across lactation stages is heritable and has moderate genetic 

correlations with ketosis and milk production traits. Blood BHB can routinely be predicted 

from milk spectra analyzed from test-day milk samples, and thereby provides a practical 

alternative for selecting cows with lower susceptibility to ketosis, even though the genetic 

correlations are moderate. 

 The DP approach is confirmed to be a method of choice for EBV prediction directly from 

heritable parts of spectra, but it’s performance was inferior for phenotypic prediction, 

where the classical PLS regression based equations provided better prediction accuracy. 

Even though it is difficult practically to get βg, use of the βg for converting EBV of latent 

traits into EBV of traits of interest improved accuracy of EBV in the simulations.  
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6. FURTHER RESEARCH 

 Based on the results presented, the following topics are recommended for further research: 

 In paper I, the conventional repeatability animal model was applied to test-day data, and 

difference in estimates between the ST and MT repeatability models were small. Other 

test-day models that are expected to better suit the nature of such repeated measurement 

may be evaluated (e.g. using random regression).  

 

 The link between milk spectra and phenotypic blood BHB was developed with a simple 

classical method (i.e., PLS) and the circumstances of cows at a given test day was included 

in the mixed model after PLS regression. Predictive ability of prediction equations 

developed in paper II was low. Further research on how to improve accuracy of blood BHB 

prediction from milk FT-MIR is needed. For example, inclusion of cow related information 

(yield traits, DIM, etc.) directly into spectra before PLS or using them as predictors along 

with spectral information. Use of Bayesian methods may be an alternative to improve 

prediction accuracy for blood BHB from milk FT-MIR spectra. 

 

 Paper III evaluated only the genetic and phenotypic associations of predicted blood BHB 

with ketosis and milk production traits. Hence, further studies on genetic associations of 

BHB with health, fertility and other traits are needed before commencing selection for a 

lower BHB in NRF dairy cattle. Moreover, the benefit of using FT-MIR predicted indicator 

trait (e.g. BHB) in addition to the directly observed ketosis should be studied. 

 

 Paper IV confirmed the importance of using the heritable part of spectra for better 

prediction of EBV for the traits of interest. However, importance of environmental 

components (HTD, PE etc.) of spectra in animal husbandry (for example as farm 

management tool) was not yet studied. 
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Abstract   

The objective of this study was to compare single-trait (ST) and multi-trait (MT) animal models 

and to evaluate the practical usefulness of MT models compared to ST models. The methods were 

applied to 875,460 test-day records from Norwegian dairy cattle.  Data were analyzed using 

repeatability test-day animal models. Traits studied include milk, fat and protein yields, and fat 

and protein contents. Estimates of heritability were very similar in both analyses. The MT analyses 

improved accuracies of estimated breeding values (EBV) for cows and sires with < 50 daughters, 

but they were similar for sires with >50 daughters. Sires were less re-ranked compared to cows’ 

rank correlation. Estimated genetic trends were slightly higher under MT for protein and fat 

contents, and for fat yield, but slightly lower for the remaining traits. In conclusion, small 

differences were found between the estimates obtained by the ST and MT animal models for this 

population. 
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Introduction  

In animal breeding, traits can be analyzed either univariately or multivariately. It may be 

challenging to estimate (co)variance components of additive genetic and other random effects 

needed to run the models, especially when more than 3-4 traits from a large number of animals 

with many records each are analyzed multivariately. Therefore, traits are often analyzed 

univariately or in subgroups. Information from correlated traits may improve the accuracy of 

predictions for a particular trait if covariance are correct (Schaeffer, 1984). 

The breeding program for Norwegian Red (NRF) depends on multi-trait selection (total merit 

index). Predicted breeding values for individual traits in the breeding goal are combined based on 

relative weights for the traits. The breeding goal comprises traits with low and high heritability. 

Genetic parameters and predicted breeding values for the traits are obtained from single-trait (ST) 

animal models. The precision of predicted breeding values from ST models may be low when the 

traits have low heritability and number of records are small (Guo et al., 2014). A way to increase 

the accuracy of estimated breeding values for traits in the breeding goal is to use multivariate 

methods that enable full exploitation of the data and to combine direct with indirect information 

from correlated traits (Pollak et al., 1984, Thompson and Meyer, 1986, Van der Werf et al., 1992).  

In addition to improving the accuracy of estimated breeding values (EBV), multi-trait (MT) 

analyses give less biased estimates when animals have been selected based on values of another 

correlated trait (Henderson, 1975, Pollak et al., 1984). A model including information on the 

correlated trait is able to correct for this type of selection. The fact that the main selection in dairy 

cattle for many years has been on production may lead to biased predicted breeding values when 

ST estimation is used since genetic correlations are not included in the breeding value prediction. 

This will show up as bias in estimated genetic trends (Pollak et al., 1984). Despite the expected 
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importance of MT genetic evaluation, this has often not been done in breeding schemes. There is 

for example no published work on Norwegian dairy cattle data using multi-trait mixed models. In 

this paper, we will compare the genetic evaluation of Norwegian dairy cattle under ST with MT 

animal models to see if there is a benefit from MT evaluation.  

On the other hand, MT genetic evaluation is computationally demanding (even not feasible if all 

traits in the breeding goal are to be analyzed together) due to the increasing number of equations 

to be solved (Ducrocq, 1994, Konstantinov and Erasmus, 1993). A second drawback of MT 

evaluation is that the correlations used are only estimates, – often estimated with high uncertainty. 

Studies show that response to selection may depend highly on the precision of the variance 

components applied (Villanueva et al., 1993). Under such conditions, univariate models may 

provide more precise estimates than MT models.  

Genetic evaluations of dairy cattle in Norway have been based on 305-d lactation records of milk, 

fat, and protein yields. Within the dairy herd recording system, daily milk yields are recorded 

monthly while milk content and other traits are measured either monthly or bimonthly. These 

recordings are subsequently aggregated into a measure of lactation yields, and the individual test-

day (TD) records are weighted by duration of testing periods to obtain the 305-d yields. Use of 

original TD records instead of the aggregated lactation yields could help to improve accuracy of 

EBV estimation (Ptak and Schaeffer, 1993, Kettunen et al., 2000) and to provide more 

comprehensive management information to farmer (Kettunen et al., 2000). Other advantages of 

TD records for genetic evaluation of dairy cattle over the lactation records are described in the 

literature (Ptak and Schaeffer, 1993, Bilal and Khan, 2009, Dzomba et al., 2010).  

Various TD models have been used to analyze TD records in genetic evaluation of dairy cattle and 

all the models have their advantages and disadvantages. Type of TD model to use might depend 
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on the objective of the study, number of TD records per lactation, and computing environments. 

In the present study, the simplest TD model, the repeatability TD model was applied assuming 

constant genetic variance throughout lactation and unity genetic correlations among TD records. 

TD records within and across lactation were considered repeated measurement of the same trait. 

This study compares ST and MT repeatability TD animal models for estimation of genetic 

parameters, prediction of breeding values and genetic trends of TD milk, fat, and protein yields, 

and milk fat and protein contents. Our intention is not to fit models that best suit the TD records, 

but primarily to compare the ST and MT genetic evaluations.   

Materials and methods 

Data and data edits 

Norwegian dairy herd recording system TD data on milk, fat, and protein yields, and milk fat and 

protein contents collected in 2007 to 2013 were used in this study.  The milk samples had been 

analyzed by a Fourier-transformed mid-infrared spectrometer (MilkoscanTM Combifoss 6500, Foss 

Electric, Hillerød, Denmark) to find milk fat and protein contents. The fat and protein yields were 

calculated by multiplying the respective milk contents with the observed TD milk yield.  

Original size of the TD data was 5,301,687 records from 638,743 cows kept in 13,100 herds and 

daughters of 2088 sires. Multivariate genetic covariance estimation with such a number of records 

is very difficult (even impossible) with the currently available statistical packages and computer 

hardware. Therefore, certain criteria were implemented to reduce the data into manageable size. 

Cows with unknown sires or dams, herds with less than 1250 TD records and sires with less than 

10 daughters were excluded from the dataset. Moreover, only cows with age at calving of 18 to 

39, 30 to 51, 42 to 63 and 52 to 74 months in the first, second, third and fourth lactations, 

respectively, were considered. Number of records per herd test*date (HTD) were kept to at least 
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two. The final edited dataset contained 875,460 TD records from 91,186 cows that were progeny 

of 1282 sires and kept in 529 herds. A pedigree file containing animals with record and their 

ancestors was also available and the total number of animals in the pedigree file that had a link to 

the data file was 197,497.  

 

Statistical analysis 

In a preliminary step, the PROC GLM procedure of SAS was used to study the statistical 

significance of fixed factors. The factors were lactation stage (between 10 and 320 days in milk 

categorized into 10 days intervals with 32 levels), lactation number (parity 1 to 4), region (9 levels), 

year * month of test, and herd * year of test (HY). Cows were grouped by age at calving (in months) 

within lactation numbers. There were 15 possible age categories (classes) within each lactation. 

To get reasonable numbers of records for age classes at the peripheries in each age category, the 

first and the last few age classes were merged into the next and preceding age class, respectively.  

Furthermore, housing type (tie stall or loose housing) and milking system (robot milking or manual 

milking: bucket, pipe or milking parlor) were modelled. Beside the main factors, interactions 

among region*year*month of test (RYM), region*parity*lactation stage (RPS), parity*age at 

calving (PA) and housing*milking system (HMS) were fitted. All factors and interactions were 

found to be significant (P<0.01) and explained at least 60% of variation in all response variables. 

Interaction terms such as RYM (743 levels), RPS (1116 levels), HY (3633 levels), PA (60 levels) 

and HMS (4 levels) were retained in the final mixed model used for genetic analyses. Random 

factors included in the model were animal additive genetic, permanent animal environment (PE), 

HTD (28,256 levels) and residual effects.  
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(Co)variance components were estimated using ST and MT repeatability TD animal models with 

the restricted maximum likelihood (REML) method using the parameter expanded and average 

information (PX-AI) algorithm of the software WOMBAT (Meyer, 2007). Preliminary bivariate 

analyses were performed, and covariance component estimates from such analyses were pooled 

using the iterative summing of expanded part matrices approach (Mäntysaari, 1999) implemented 

in WOMBAT (Meyer, 2007). The pooled covariance matrix was used as prior to estimate 

covariance components in MT mixed model analysis.  

The ST and MT repeatability TD animal models used in this study in matrix notation: 

                                   𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐖𝐩 + 𝐇𝐝 + 𝐞 

where, y is the vector of TD records for milk, fat and protein yields, and milk fat and protein 

contents; b is a vector of fixed effects of RYM, RPS, HY, PA, and HMS; a is a vector of random 

animals’ additive genetic effects; p is a vector of random PE effects due to the cow; d is a vector 

of random HTD effects; e is a vector of random residual effects. X, Z, W and H are design matrices 

that relate records to the corresponding effects.  

Assumed variance structure in the ST analysis was:var(a) = σa
2𝐀, var(p) = σpe

2 𝐈, var(d) = σd
2𝐈 

and var(e) = σe
2𝐈 , where σa

2  is additive genetic variance, σpe
2  is PE variance, σd

2  is HTD variance, 

and 𝜎𝑒
2 is residual variance. The I are identity matrices of appropriate sizes and A is additive 

relationship matrix. For the MT analyses, the following covariance structures were assumed: 

var [

𝐚
𝐩
𝐝
𝐞

] = [

𝐆⨂𝐀 0 0 0
0 𝐏⨂𝐈 0 0
0 0 𝐇⨂𝐈 0
0 0 0 𝐑⨂𝐈

] 



 

7 
 

where, G is the genetic covariance matrix, P is the PE covariance matrix, H is the covariance 

matrix for HTD effects, R is the residual covariance matrix, I and A are as defined above, and  

is the Kronecker product. 

Heritability was calculated as h2 =
σa

2

σa
2+σpe

2 +σd
2 +σe

2.   The proportion of variance due to PE cow 

effect was calculated as c2 =
σpe

2

σa
2+σpe

2 +σd
2 +σe

2. The proportion of variance due to HTD was calculated 

as d2 =
σd

2

σa
2+σpe

2 +σd
2 +σe

2.  Standard errors (SE) for the variance components and variance ratios were 

estimated from the inverse of average information matrix whereas SE for the fixed and random 

effects were estimated with one additional iteration (after convergence) using EM-REML 

algorithm. With this algorithm, WOMBAT calculates the inverse of the coefficient matrix in the 

mixed model equations to obtain solutions for all fixed and random effects fitted, and provides 

corresponding SE, obtained from the diagonal elements of the inverse coefficient matrix. The 

approximate accuracy (r) of EBV for the ith individual was calculated from the SE of the EBV as: 

ri = √1 −
SEi

2

σa
2 . 

To assess re-ranking of individuals, Spearman rank correlation analysis was conducted using 

animal rankings based on EBV obtained from the ST and MT models. The rank correlation analysis 

was done either for all animals in pedigree, for cows with records, or for sires having daughters 

with records. Genetic trends were determined by averaging the EBV of cows obtained from the 

ST and MT analysis by birth year of cows.  

 

 


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Results 

Descriptive statistics 

Table 1 summarizes descriptive statistics for the studied traits. Yield traits had a much higher 

coefficient of variation than the milk content traits. Mean and standard deviation of milk protein 

yield and content were lower than for the corresponding values for fat.  

Estimates of genetic parameters 

Estimates of variance components and the corresponding variance ratios for the milk production 

traits from ST and MT models are presented in Table 2 and were similar in both types of analyses. 

The milk production traits had moderate heritability estimates ranging from 0.119 to 0.377 in ST 

models and 0.121 to 0.376 in MT models. Under both types of analyses, heritability estimates of 

milk fat and protein contents were higher than estimates for the corresponding yield traits. 

Approximate standard errors of the heritability estimates were similar in ST and MT analyses and 

ranged from 0.003 for milk fat content to 0.005 for milk protein content, protein yield and milk 

yield.   

Estimates of variance ratios of HTD and PE to total variance effects were very similar in both 

types of analyses for the same traits. The proportion of phenotypic variance attributed to the HTD 

effects ranged from 6% for milk yield to 13% for milk fat content (Table 2). The effect of HTD on 

milk fat content (13%) was comparable with the animal additive genetic effect (16%) for the same 

trait, suggesting that, in addition to genetics, management (e.g. feeding) is an important factor 

influencing milk fat content. For yield traits, PE effects were larger than additive genetic effects, 

but for the milk content traits, additive genetic effects were larger than the PE effects.  
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Estimates of genetic, PE, HTD and residual correlations among the milk production traits from 

bivariate analyses are presented in Table 3. These correlations were also estimated using MT 

model where three traits (milk with fat and protein yields: MT-Y model, or milk with fat and 

protein contents: MT-P model) were analyzed simultaneously. The estimates from such analyses 

(results not shown) were very similar to the ones from the bivariate analyses. Genetic correlations 

among yield traits were high positive, ranging from 0.772 (between milk and fat yields) to 0.869 

(between milk and protein yields). Genetic correlation between milk fat and protein contents was 

moderate positive (0.684) whereas the genetic correlations between yield and composition traits 

were low to moderate and ranged from -0.489 (between milk yield and its protein content) to 0.156 

(between fat yield and milk fat content).  Among the yield traits, phenotypic, genetic and residual 

effects were correlated in similar magnitude and in the same direction. 

PE correlations among yield traits were positive and very high (0.937 to 0.955) whereas the PE 

correlation between milk fat and protein contents was moderate (0.315). Permanent environmental 

correlations between yield and composition traits were moderately low except for correlations of 

fat content with fat yield (0.068) and protein yield (-0.082). Unlike the other correlations, HTD 

correlation of fat content with fat yield was moderately high (0.710). The standard errors of the 

genetic correlation estimates ranged from 0.001 to 0.015, and a similar range of standard errors 

was found for the correlation estimates of PE effects.  The standard errors for the correlation 

estimates of residual effects were from 0.000 to 0.008 and for HTD effects from 0.001 to 0.008.  

Distribution of estimated breeding values 

Estimated breeding values from ST and MT analyses were compared for each of the milk 

production traits studied. Standard deviations and range of EBVs for all animals in pedigree, and 

for sires having daughters with records are given in Table 4 for ST and MT analyses. For all 
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animals and sires, the standard deviation and the range (minimum and maximum) of EBV from 

both ST and MT models were similar, except the slightly lower estimates from ST than MT-Y 

analyses for milk yield (when milk was analyzed with fat and protein yields). In general, the ranges 

of EBV for yield traits (milk, fat and protein yields) were slightly higher for MT than ST analyses. 

As an example, a graphical distribution of milk EBV from the ST, MT-Y, and MT-P models for 

all animals in pedigree are given in Figure 1.  It shows that EBV for milk yield from MT-Y model 

had a wider variation than those from ST and MT-P models. Plots of EBV for milk yield from ST 

and MT-P models overlapped indicating similarities among estimates. Similar distributions are 

given in the form of ranges for other milk production traits in Table 4.  

Accuracy of EBV 

Table 5 show approximate accuracy (r) of EBV for sires categorized into four groups based on 

numbers of daughters, and for cows with records. The average accuracies of sire EBVs were high, 

ranging from 0.852 to 0.996, and increased with number of daughters per sire. Estimates of 

accuracy of sire EBV from MT model were very similar to the ones from ST model, except for 

protein yield for sires with 10-49 daughters where accuracy increased from 0.861 in ST to 0.889 

in MT (3.25% improvement). Milk EBV accuracy for sire from MT-Y was similar to the one from 

MT-P, but with a little improvement in MT-Y over MT-P (0.10 to 0.69% improvement). 

Accuracies of cows EBVs were much lower than those of the sires and ranged from 0.69 for fat 

yield to 0.86 for milk protein content. Accuracies of cows EBV were higher in MT than ST 

analysis. The highest improvement in accuracy of cows EBV due to MT was obtained for protein 

yield (9.83%), followed by milk yield (4.58% in MT-Y or 2.50% in MT-P) and fat content (3.06%). 

For the remaining traits, accuracies of cows’ EBVs were very similar in both types of analyses. 
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Milk EBV accuracy for cow from MT-Y was higher than the one from MT-P (2.03% 

improvement). 

Rank and EBV correlations 

EBV were predicted for each of the 197,498 animals in pedigree for all traits with ST and MT 

(MT-Y or MT-P) analyses. Correlations between ST and MT EBVs and rank correlations based 

on animal ranks using the same EBVs are presented in Table 6. The EBV correlation and rank 

correlation were also calculated for the 91,186 cows with records and the 1,282 sires having 

daughters with records.  

For all animals in pedigree and for cows with records, rank (or EBV) correlations were 

significantly (P<0.05) different from one at least for milk yield (range 0.792-0.968 for rank and 

0.820-0.974 for EBV), protein yield (range 0.776-0.803 for rank and 0.81 for EBV) and milk fat 

content (range 0.955-0.961 for rank and 0.96 for EBV). For fat yield, there was some re-ranking 

for all animals in pedigree and for cows with records as the rank correlation was about 0.989. For 

milk protein content some re-ranking of animals and cows were observed by going from ST to MT 

analysis as correlations were high (0.993-0.995 for rank and 0.994-0.995 for EBV).  For sires, rank 

(or EBV) correlations were not as severely affected as for all animals in pedigree and cows with 

records. Sire’s correlations were very close to one (0.992-0.999), except for protein and milk yields 

where the correlations between ST and MT-Y were far from one (0.854-0.920). Therefore, except 

for the protein and milk (from MT-Y) yields, re-ranking of sires was limited. For all three subsets 

of animals, rank (or EBV) correlations were highest for protein content, but lowest for protein 

yield, and rank correlations were lower than the respective EBV correlations for each trait. Rank 

(or EBV) correlations of milk yield found with ST and MT-Y models were much lower than the 

corresponding correlations from ST and MT-P models.  
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Genetic trends  

Average EBV per year for cows born in 2001 through 2011 are given in Figure 2 for milk yield; 

in Figure 3 for fat and protein yields; and in Figure 4 for milk fat and protein contents. Regardless 

of the type of analysis, average EBV of milk yield decreased for cows born from 2001 to 2004, 

where the lowest average estimate of EBV was obtained. After 2004, an increasing trend was 

observed in general (Figure 2). Estimates of genetic trend under ST model were slightly higher 

than the corresponding average estimates under MT-P model, with noticeable differences between 

the ST and MT-P EBV after 2005. For all years studied, however, estimates of genetic trend from 

MT-Y were lower (P<0.0001) than estimates from ST and MT-P models, but had the same genetic 

pattern as in ST and MT-P models (Figure 2). 

Estimates of genetic trend for fat yield under MT was slightly higher (P<0.0001) than the values 

estimated under ST models, but the reverse was true for protein yield (Figure 3). In both types of 

analyses, like in milk yield, average EBV of cows for fat and protein yields decreased in the first 

four years, but had increasing trend for cows born in later years (Figure 3).  

Figure 4 shows similar genetic trend for milk fat content or protein content under both models, but 

slightly higher in MT than ST models. Regardless of the type of analysis, average EBV of fat and 

protein contents were decreasing in the first few years, but generally showed increasing trend for 

cows born from year 2004 onwards (Figure 4). 
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Discussion  

Single-trait and MT genetic evaluation of milk production traits were investigated in this study. 

Accuracy of EBV is an important parameter in livestock genetic improvement. It is used to 

calculate response to selection (Falconer and Mackay, 1996) and to express the credibility of 

individual EBV, and it is related to the risk that this EBV will change over time when more 

information becomes available (Bijma, 2012). The MT analyses should improve accuracy of EBV 

for each trait involved, at least theoretically, by reducing prediction error variances (PEV) as they 

add information from correlated traits (Schaeffer, 1984). From quantitative genetic theory, the 

accuracy of EBV for a trait with low heritability can be improved using MT models when 

correlated traits that have relatively high heritability are included. The benefit obtained from MT 

analysis (improvement in accuracy of EBV) depends on the correlation structure and the 

differences in heritability between the traits involved in the model (Falconer, 1996, Schaeffer, 

1984). It also depends on the absolute difference between error and genetic correlations of two 

traits (Schaeffer, 1984). The greater the absolute difference in correlations, the greater is the 

reduction of PEV (and hence increase in accuracy) for both traits. When the error correlation is 

less (greater) than the genetic correlation, traits with lower (higher) heritability achieve a greater 

increase in accuracy (Schaeffer, 1984). In the present study, the estimates of heritability were 

moderate both for yield traits (0.121 to 0.201) and for composition traits (0.157 to 0.377). 

Moreover, there were low to moderate genetic correlations (-0.489 to 0.156) and error correlations 

(-0.319 to 0.597) between yield and composition traits. Genetic correlations either among yield 

traits or among composition traits were similar to the corresponding error correlations. These 

parameter estimates indicate that the accuracy of EBV for milk production traits would not increase 

or only slightly increase in a MT model including more milk production traits (Table 6).  
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Accuracies of EBV also depend on number of observations (amount of information) used for 

prediction of breeding values. Regardless of the type of analysis, EBV accuracy increased with 

increase in number of daughters per sire in all traits. With smaller numbers of observations (e.g., 

for sires with <50 daughters, and cows), traits with high heritability had better accuracy than those 

with relatively lower heritability. This difference in accuracy due to difference in heritability 

diminished as the number of daughters per sire increased. Multi-trait models would be useful when 

number of observations are small (Guo et al., 2014; Table 5). For example, for sires with less than 

fifty daughters, EBV from MT evaluation tend to gain more in accuracy (3.25% improvement) 

compared to EBV accuracy from ST analysis (e.g., for protein yield, Table 5). However, with large 

numbers of daughters per sire, EBV accuracies in both ST and MT models were very similar. Cows 

(with direct information from own production and with few daughters) had accuracies even lower 

than sires with less than fifty daughters.  

Cow genetic evaluations gain more from multi-trait analysis than sire evaluations. For cows, 

improvement of EBV accuracy was larger as additional information provided by other traits was 

added. The highest improvement in accuracy of cows EBV was obtained for protein yield (9.83%), 

followed by milk yield (4.58 in MT-Y or 2.50% in MT-P) and milk fat content (3.06%). For sires, 

very little improvement in accuracy due to MT analysis compared to ST was obtained, except for 

protein yield where accuracy was improved by 3.25%. Gengler and Coenraets (1997) also 

observed higher relative improvement due to MT analysis for cows than for sires in lactation yields 

of dairy cattle in Belgium. The relative improvement in accuracy found in the current study in milk 

yield for both cows and sires were similar to their results, but that of protein yield was higher here 

than reported by Gengler and Coenraets (1997).   
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Another advantage of MT models may be reduction or elimination of selection bias for the trait of 

interest, if correlated traits on which the selection was based are included in the analysis (Pollak 

et al., 1984; Schaeffer, 1984).  Among the traits investigated in this study, the yield traits (milk, 

fat and protein yields), in addition to fertility and disease traits, are part of the NRF breeding goals 

– i.e. milk fat and protein contents are not included.  Selection is currently done on milk, fat and 

protein yields, so ST genetic evaluation of either milk fat or milk protein content might suffer from 

selection bias and the resulting EBV could lead to less effective selection of future parents. Multi-

trait genetic evaluation of traits outside the breeding goal (e.g. milk fat and protein contents) with 

correlated traits (e.g. yield traits) would correct for possible selection bias (if any). However, there 

was no or little difference in parameter estimates for the composition traits between ST and 

bivariate (or MT) analyses in this study. This is probably because composition traits have been 

indirectly considered in selection through protein or fat yields, as they are a result of milk yield 

and respective percentages.  

In animal breeding programs, the main purpose of breeding value prediction is ranking animals in 

order to select superior individuals of the current generation that will be used as parents of next 

generations. The rank (or EBV) correlations between ST and MT sire evaluations were very close 

to unity, except for protein and milk yields in MT-Y model. The rank (or EBV) correlations 

between ST and MT calculations for cows (or all animal) evaluations differed from unity for milk, 

fat and protein yields, and fat content. Therefore, genetic evaluation of these milk production traits 

using an ST model or an MT model could lead to different ranking of candidates. Re-ranking of 

cows or all animals for milk protein content would be limited as correlations were close to one. 

For fat yield, rank correlations found in this study (0.9890 for cows or 0.9917 for sires) was similar 

to values reported by Gengler and Coenraets (1997) who found rank correlation of 0.981 for cows 
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or 0.991 for sires between ST and MT (milk, protein and fat yields) evaluations. Correlation 

estimates reported for protein and milk yields by Gengler and Coenraets (1997) were higher than 

values obtained in this study while rank correlations between ST and MT-P model for milk yield 

for sires ranking were similar to the report of Gengler and Coenraets (1997).  

There were two sets of rank (or EBV) correlations for milk yield: between ST and MT-Y, and 

between ST and MT-P evaluations.  For all the three subsets of animals, the correlations between 

ST and MT-Y were far from unity and much lower than the correlations between ST and MT-P 

models. In addition to rank (or EBV) correlations, genetic trends were lower in MT-Y than in ST 

model for protein or in both ST and MT-P for milk yield.  This could be related to the heritabilities 

and genetic correlation structures of the traits involved in the MT analysis. In an MT-P model, 

heritabilities of milk fat and protein contents were similar to or higher than the heritability of milk 

yield (Table 2) that were moderately correlated with these composition traits (Table 3). Because 

of this similarity in heritabilities and moderate genetic correlations, information gained from 

correlated traits by milk yield would be very limited. Hence, genetic evaluation of milk yield in 

MT-P would be very similar to the evaluation of milk yield from ST model. In the MT-Y 

evaluation, fat and protein yields had lower heritabilities than that of the milk yield, which had 

strong positive genetic correlations with fat (0.772) and protein (0.869) yields.  Fat yield had the 

lowest heritability among yield traits and was strongly correlated with protein yield (0.836). In this 

case, milk yield and possibly protein yield would give information to traits with low heritability in 

the model (e.g. fat yield). As a result, genetic evaluation of milk and protein yields in MT-Y models 

would be lower than in the ST evaluation whereas genetic evaluation of fat yield would be similar 

in both analyses, or higher in MT than in ST evaluation.  
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We have also analyzed the traits bivariately to investigate if the difference in rank (or EBV) 

correlations and genetic trend observed between ST and MT-Y or MT-P would be repeated 

between ST and bivariate evaluations. In such analyses, average rank (or EBV) correlations were 

very close to unity for milk (0.9978), fat (0.9975) and protein (0.9988) yields, indicating limited 

re-ranking of sires.  This is in contrast to the re-ranking of sires observed for milk and protein 

yields when all three yield-traits were analyzed together (MT-Y). For all traits and the three subsets 

of animals, estimates from bivariate analysis (rank (or EBV) correlations, genetic trends, annual 

genetic change and accuracy of EBVs) were slightly higher than estimates from ST or MT analysis. 

Therefore, given the computational cost and modelling complexity associated with multivariate 

analysis, ST or bivariate analysis of the milk production traits especially for the yield traits could 

be a good strategy for genetic evaluation of Norwegian dairy cattle.  

Conclusions  

Comparison of the ST and MT animal models applied for the genetic evaluation of NRF revealed 

small differences between the estimates (variance components, heritability, EBV, accuracy of 

EBV, rank (or EBV) correlations, and genetic trend obtained by the methods. Variances due to 

HTD effects was found to be an important source of variation for milk fat content under both types 

of analyses while effects of the PE were larger than the additive genetic effects for yield traits. 

Genetic and phenotypic correlations among the yield traits were high positive whereas these values 

were low to moderate positive or negative between yield traits and composition traits. Accuracies 

of EBV was high for sires (0.852 to 0.996), increased with daughter number, and was similar in 

both models except some noticeable improvement in MT (3.06%) for protein yield for sires in the 

10-49 daughter group. Accuracies of EBV for cows was higher with MT than ST: a 2.5% to 9.8% 

improvement in accuracy due to using MT models was found. Re-rankings of sires based on EBV 
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were very limited while for cows or all animals in pedigree some re-ranking was found. The three 

subsets of animals were highly re-ranked for protein and milk yield as the rank correlations 

between ST and MT-Y were far from unity (0.78 to 0.91). Annual genetic trends (Figures 2-4) 

were slightly higher under MT analyses for protein content, fat yield and fat content, but slightly 

lower for the remaining traits. Considering computing demands, it could be a good strategy for 

genetic evaluation of milk production traits in Norwegian Red to use a single-trait or bivariate 

models.   
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FIGURES 

Figure 1 Comparison of distributions of estimated breeding values (EBV) of 197,497 animals 

from single-trait (ST milk EBVs) and multi-trait (MT-P milk EBVs and MT-Y milk EBVs) 

analyses for milk yield.  

 

Figure 2 Predicted breeding values for test-day milk yield averaged by birth year of cows under 

single-trait (MilkEBV_ST), and multi-trait (MT) models: either when milk yield was analyzed 

with fat and protein yields (MilkEBV_MT-Y) or with fat and protein contents (MilkEBV_MT-P). 

  

Figure 3 Estimated breeding values for test-day fat and protein yields averaged by birth year of 

cows under single-trait (ST) and multi-trait (MT) models.  

 

Figure 4 Estimated breeding values for test-day milk fat and protein contents averaged by birth 

year of cows under the single-trait (ST) and multi-trait (MT) animal models. 
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Belay et al. Figure 1  
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Belay et al. Figure 3  

 

 

Belay et al. Figure 4 
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TABLES 

 

Table 1 Mean, standard deviation (SD), coefficient of variation (CV, %), minimum and maximum 

values for milk, fat and protein yields, and fat and protein contents in milk 

Traits Mean SD CV Minimum Maximum 

Milk yield, kg 25.86       8.13 31.44 5.00     50.00 

Fat yield, kg 1.06 0.34 32.08 0.10 3.44 

Protein, kg 0.88 0.25 28.41 0.10 2.39 

Fat, % 4.16 0.75 18.03 1.75 7.00 

Protein, % 3.45 0.34     9.86   1.04 6.98 
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Table 2 Estimates of additive genetic(σa
2), permanent animal environment (σpe

2 ), herd test-day 

(σhtd
2 ) and residual (σe

2) variances; and variance ratios* for genetic(h2), permanent environment 

(c2), herd*test-day (d2) and residual (e2) variances for milk, fat, and protein yields; and fat and 

protein contents from single-trait and multi-trait$ analyses 

Models &traits  𝛔𝐚
𝟐 𝛔𝐩𝐞

𝟐  𝛔𝐡𝐭𝐝
𝟐  𝛔𝐞

𝟐 𝐡𝟐 𝐜𝟐 𝐝𝟐 

Single-trait         

Milk, kg 6.1335 8.55680 1.67800 14.1850 0.201 0.280 0.055 

Fat, kg 0.00829 0.01243 0.00616 0.04262 0.119 0.179 0.089 

Protein, kg 0.00541 0.00867 0.00237 0.01543 0.170 0.272 0.074 

Fat, %  0.07395 0.02403 0.05854 0.30928 0.159 0.052 0.126 

Protein, %  0.02655 0.00598 0.00492 0.03301 0.377 0.085 0.070 

Multi-trait1         

Milk, kg 6.1236 8.55267 1.67914 14.1866 0.200 0.280 0.055 

Fat, kg 0.00852 0.01338 0.00614 0.04245 0.121 0.190 0.087 

Protein, kg 0.00566 0.00943 0.00307 0.01542 0.169 0.281 0.092 

Multi-trait2        

Milk, kg 6.1426 8.5479 1.6783 14.1865   0.201 0.280 0.055 

Fat, % 0.07302 0.02374 0.05855 0.30975 0.157 0.051 0.126 

Protein, % 0.02645 0.00605 0.00491 0.03301 0.376 0.086 0.070 

*h2with standard errors (SE) between 0.003 and 0.005;  c2with SE between 0.002 and 0.004; d2 

with SE = 0.001; $for multi-trait model, milk yield was either run 1with fat and protein yields (MT-

Y) or 2with fat and protein contents (MT-P). 
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Table 3 Estimate of genetic (above diagonal), permanent environmental (above diagonal in 

parenthesis), herd*test day (below diagonal) and residual (below diagonal in parenthesis) 

correlations among the milk production traits from bivariate analyses 

Traits  Milk, kg Fat, kg  Protein, kg Fat% Protein% 

Milk, kg  0.772(0.953) 0.869(0.955) -0.463(-0.211) -0.489(-0.405) 

Fat, kg 0.589(0.659)  0.836(0.937)  0.156(0.068) -0.063(-0.293) 

Protein, kg 0.801(0.933)  0.610(0.647)  -0.160(-0.082) -0.098(-0.218) 

Fat% -0.093(-0.137)  0.712(0.597) 0.0002(-0.096)   0.684(0.315) 

Protein%  0.046(-0.319)  0.176(-0.151) 0.364(-0.018) 0.211 (0.187)  

 

Table 4 Standard deviations (SD), minimum (Min) and maximum (Max) of estimated breeding 

values from single-trait and multi-trait* evaluation of milk production traits based on all 197,497 

animals in pedigree or on the 1,282 sires that had daughters with records.  

Traits  All animals in pedigree  Sires having daughters with records  

Single-trait EBV  Multi-trait EBV* Single-trait EBV  Multi-trait EBV* 

SD Min Max SD Min Max  SD Min Max SD Min Max 

Milk1, kg 1.36 -6.12 +10.27  1.58 -7.67 +10.77  2.14 -6.12 +9.52  2.33 -7.02 +9.05 

Fat, kg 0.05 -0.25 +0.31  0.05 -0.24 +0.33  0.08 -0.17 +0.28  0.08 -0.18 +0.30 

Protein, kg  0.04 -0.16 +0.28  0.04 -0.17 +0.27  0.06 -0.16 +0.27  0.06 -0.16 +0.24 

Milk2, kg - - -  1.38 -6.37 +10.25  - - -  2.13 -6.25 +9.66 

Fat,% 0.16 -0.80 +0.10  0.16 -0.85 +0.99  0.22 -0.74 +0.74  0.22 -0.74 +0.74 

Protein, % 0.11 -0.53 +0.93  0.11 -0.52 +0.19  0.13 -0.39 +0.51  0.13 -0.39 +0.51 

*For multi-trait EBV, milk yield was either run 1with fat and protein yields (MT-Y) or 2with fat 

and protein contents (MT-P). 
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Table 5 Accuracy* of predicted breeding values of cows and sires with different size of daughter 

groups for the milk production traits under single- and multi-trait models; and  number of cows 

and sires (N) within different daughter groups 

Model   N Yield traits (kg)  Percentage traits (%) 

Milk1 Fat Protein Milk2 Fat Protein 

Single-trait          

   Sire:         

10-49 1075 0.872 0.852 0.861 -  0.902 0.930 

50-99 89 0.940 0.930 0.934 -  0.958 0.971 

100-399 69 0.976 0.971 0.973 -  0.983 0.988 

≥400 49 0.992 0.991 0.991 -  0.995 0.996 

   Cow  91186 0.720 0.692 0.704 -  0.785 0.860 

Multi-trait         

   Sire:         

10-49 1075 0.881 0.854 0.889 0.875  0.906 0.930 

50-99 89 0.945 0.930 0.947 0.941  0.959 0.971 

100-399 69 0.977 0.971 0.978 0.976  0.983 0.988 

≥400 49 0.993 0.991 0.993 0.992  0.995 0.996 

   Cow  91186 0.753 0.693 0.773 0.738  0.809 0.863 

  * Accuracy calculated as 𝑟𝑖 = √1 −
𝑆𝐸𝑖

2

𝜎𝑎
2  ; 

1When milk yield was analyzed with fat and protein 

yields in the MT model (MT-Y); 2When milk yield was analyzed with fat and protein contents in 

the MT model (MT-P). 
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Table 6 Correlations between single- and multi-trait estimated breeding values, and rank 

correlations based on animal rank using the same breeding values, for all 197,497 animals in 

pedigree, or 91,186 cows, or 1,282 sires 

Traits All animals Cows Sires 

EBV Rank EBV Rank EBV Rank 

Milk1, kg 0.8204 0.7918 0.8322 0.8246 0.9198 0.9068 

Fat, kg 0.9906 0.9889 0.9897 0.9890 0.9925 0.9917 

Protein, kg 0.8066 0.7757 0.8127 0.8031 0.8740 0.8538 

Milk2, kg 0.9744 0.9675 0.9712 0.9674 0.9969 0.9960 

Fat,% 0.9653 0.9607 0.9595 0.9549 0.9942 0.9935 

Protein,% 0.9952 0.9946 0.9940 0.9931 0.9993 0.9991 

1When milk yield was analyzed with fat and protein yields in the MT model (MT-Y); 2When milk 

yield was analyzed with milk fat and protein contents in the MT model (MT-P). 
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ABSTRACT

Fourier transform mid-infrared (FT-MIR) spectra of 
milk are commonly used for phenotyping of traits of 
interest through links developed between the traits and 
milk FT-MIR spectra. Predicted traits are then used 
in genetic analysis for ultimate phenotypic prediction 
using a single-trait mixed model that account for cows’ 
circumstances at a given test day. Here, this approach 
is referred to as indirect prediction (IP). Alternatively, 
FT-MIR spectral variable can be kept multivariate in 
the form of factor scores in REML and BLUP analy-
ses. These BLUP predictions, including phenotype 
(predicted factor scores), were converted to single-trait 
through calibration outputs; this method is referred to 
as direct prediction (DP). The main aim of this study 
was to verify whether mixed modeling of milk spectra 
in the form of factors scores (DP) gives better predic-
tion of blood β-hydroxybutyrate (BHB) than the uni-
variate approach (IP). Models to predict blood BHB 
from milk spectra were also developed. Two data sets 
that contained milk FT-MIR spectra and other infor-
mation on Polish dairy cattle were used in this study. 
Data set 1 (n = 826) also contained BHB measured in 
blood samples, whereas data set 2 (n = 158,028) did 
not contain measured blood values. Part of data set 
1 was used to calibrate a prediction model (n = 496) 
and the remaining part of data set 1 (n = 330) was 
used to validate the calibration models, as well as to 
evaluate the DP and IP approaches. Dimensions of FT-
MIR spectra in data set 2 were reduced either into 5 
or 10 factor scores (DP) or into a single trait (IP) with 
calibration outputs. The REML estimates for these 
factor scores were found using WOMBAT. The BLUP 
values and predicted BHB for observations in the vali-
dation set were computed using the REML estimates. 
Blood BHB predicted from milk FT-MIR spectra by 

both approaches were regressed on reference blood 
BHB that had not been used in the model develop-
ment. Coefficients of determination in cross-validation 
for untransformed blood BHB were from 0.21 to 0.32, 
whereas that for the log-transformed BHB were from 
0.31 to 0.38. The corresponding estimates in validation 
were from 0.29 to 0.37 and 0.21 to 0.43, respectively, 
for untransformed and logarithmic BHB. Contrary to 
expectation, slightly better predictions of BHB were 
found when univariate variance structure was used (IP) 
than when multivariate covariance structures were used 
(DP). Conclusive remarks on the importance of keep-
ing spectral data in multivariate form for prediction of 
phenotypes may be found in data sets where the trait of 
interest has strong relationships with spectral variables.
Key words: direct prediction, indirect prediction, 
β-hydroxybutyrate, milk spectra, dairy cattle

INTRODUCTION

Subclinical ketosis (SCK) is an economically impor-
tant metabolic disorder in early-lactation dairy cows. 
It is associated with reduced milk production (Duffield 
et al., 2009), reduced reproductive performance (Walsh 
et al., 2007), and increased risk of displaced abomasum 
(LeBlanc et al., 2005; Duffield et al., 2009) and clinical 
ketosis (Seifi et al., 2011). The disorder is closely re-
lated to the negative energy balance occurring in early 
lactation. Prevalence of SCK can vary between farms; 
reported prevalence rates range from 8.9 to 43% in the 
first 2 mo of lactation (McArt et al., 2012; van der Drift 
et al., 2012; Suthar et al., 2013).

Clinical and SCK are characterized by increased con-
centrations of ketone bodies (BHB, acetoacetate, and 
acetone) in milk and blood (Andersson, 1988). Blood 
BHB concentration has been used as a gold standard 
for detection of SCK and several studies have used a 
threshold of 1.2 (Duffield et al., 1997; van der Drift 
et al., 2012) to 1.4 mmol/L (Geishauser et al., 2000; 
Oetzel, 2004; Denis-Robichaud et al., 2014) to discrimi-
nate between cows with and without SCK. However, 
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the gold standard method does not allow for routine 
testing of all animals at risk at regular intervals due to 
some practical limitations, such as difficulty in blood 
sampling, especially for farmers or testing many blood 
samples at a time. Determination of ketone bodies in 
milk could make the sampling easier (Enjalbert et al., 
2001; de Roos et al., 2007). Milk sampling is performed 
monthly in the milk recording procedures. More rou-
tinely, measurements of milk BHB can be done by Fou-
rier transform mid-infrared (FT-MIR) spectroscopy 
analysis in milk samples at test days (de Roos et al., 
2007; van der Drift et al., 2012). Blood or milk BHB 
predicted from milk spectra could be used for detection 
of SCK in farm management for dairy cows.

The FT-MIR spectra acquisition of the milk sample 
is multivariate (e.g., 1,060 variables per sample). Hun-
dreds of these spectral variables are used for phenotyp-
ing of traits of interest (e.g., BHB) through links devel-
oped between the traits and milk spectra. The predicted 
phenotypes are then together with pedigree information 
and variance component estimates used in BLUP to 
calculate individual breeding values (EBV) and other 
random components included into the model; this is the 
conventional method used today for genetic evaluation 
of animals. Dagnachew et al. (2013b) referred to such 
an approach as indirect prediction (IP) and also pro-
posed an alternative approach called direct prediction 
(DP), where genetic analyses are directly applied on 
the milk FT-MIR spectral variables or on factor scores 
(latent traits). The BLUP predictions (EBV, herd test 
day, permanent environment, and residual) for the 
traits of interest are predicted as correlated traits to 
the corresponding random components of spectra. Milk 
FT-MIR spectral variables exhibit strong correlations 
among each other (Soyeurt et al., 2010; Dagnachew et 
al., 2013a), and a direct genetic analyses on such cor-
related spectral variables may result in better accuracy 
of genetic evaluations (Dagnachew et al., 2013b). In 
our study, the 2 approaches, IP and DP, were used 
to predict phenotypes using BLUP predictions of the 
random and fixed effects part of the models.

The 2 approaches (IP and DP) have been used to 
predict EBV for milk fat, protein, and lactose contents 
using Norwegian dairy goat data (Dagnachew et al., 
2013b). Those authors showed that accuracy of EBV 
were improved by 3 to 5% when DP was used compared 
with the IP approach; they also reported high rank 
correlation coefficients (0.93 to 0.96) between EBV pre-
dicted using IP and DP. However, independent chemi-
cal analyses (reference values) for the milk content were 
not available in that study (i.e., the study relied on 
phenotypes predicted based on the same spectra for 
both model calibration and evaluation). Recently, Bon-
fatti et al. (2017) compared the IP and DP approaches 

to estimate EBV for several traits related to fine com-
position and technological properties of milk and re-
ported rank correlations ranging from 0.07 to 0.96, but 
<0.5 for most traits. In the present study, we adopted 
the IP and DP approaches to predict phenotype (not 
EBV) for BHB having an independent reference value 
for this trait. Our hypothesis was that keeping spectra 
multivariate in the form of factor scores or latent traits 
throughout REML and BLUP analyses instead of con-
verting the spectra into single-trait before the genetic 
analyses should keep more information, and possibly 
also give a better prediction of the derived single-trait 
BHB after multiple-trait mixed modeling accounting 
for the cows’ circumstances. We hypothesized that 
with multivariate information, one variable may carry 
information about another variable and thus improve 
the predictions.

The main objective of our study was to verify whether 
multivariate mixed modeling of milk FT-MIR spectra 
that are in the form factor scores (DP) gives better 
prediction of blood BHB than the univariate (IP) ap-
proach, where traits are first predicted from the spectra 
and then the predicted traits used in genetic analysis 
for ultimate phenotypic prediction. To do so, the cur-
rent study developed prediction models for blood BHB 
from milk spectra and blood BHB measured by refer-
ence method.

MATERIALS AND METHODS

Data

Two data sets (referred to as data set 1 and data 
set 2) were used in our study, made available by the 
Polish Federation of Cattle Breeders and Dairy Farm-
ers, which provides the monthly milk recording of cows 
in Poland. Both data sets contained FT-MIR spectra 
of individual milk samples, pedigree information, milk 
yield, and other cow and farm information. The milk 
samples had been analyzed by the MilkoScan FT6000 
instrument (Foss Analytical A/S, Hillerød, Denmark). 
Major milk components, such as protein, fat, lactose, 
fat composition (both group and individual fatty ac-
ids), and ketone bodies (acetone and BHB), had been 
predicted using the Foss calibration and were available 
in the data sets.

Data Set 1. After merging the measured blood BHB 
and phenotypes predicted from the spectra with their 
corresponding spectral data, data set 1 consisted of 
data on 832 Polish Holstein Friesian cows (1,914 ob-
servations; i.e., at least 2 records per cow) that had 
been milked 2 or 3 times per day. The spectra and 
other phenotypes that were predicted from the spectra 
were recorded for each milking, whereas blood BHB 
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was measured only once using the glucometer Optium 
Xido (Abbott, Winey, UK) on test day at 1000 to 1400 
h. For better correlation between blood BHB and milk 
spectra, milk and blood samples from the same milking 
were used. The data were collected between September 
2013 and June 2014, and the cows were from 2 to 127 
DIM. Cows with <5 (n = 1) or >65 DIM (n = 4) or 
with duplicated records (n = 1) were excluded from 
analysis, resulting in 826 cows kept in 55 herds. Mean 
blood BHB concentrations at each DIM were calculated 
for the cows (826) and is depicted in Figure 1.

Cows in data set 1 were randomly divided into a 
calibration and a validation set. The calibration set 
(n = 496 cows from 31 herds) was used to develop a 
link between milk spectra and blood BHB, whereas the 
validation set (n = 330 cows from 24 herds) was used 
to validate the prediction model and for evaluation of 
the IP and DP approaches. Descriptive statistics of 
the calibration and validation sets of data set 1 are 
presented in Table 1. Phenotypic associations of the 
measured blood BHB with Foss-predicted milk BHB 
and predicted blood BHB from spectra of validation 
set by models developed in our study were estimated.

Data Set 2. The large data set (data set 2) origi-
nally contained 1,173,141 observations recorded from 
September to December 2014. Unlike data set 1, data 
set 2 did not contain BHB measured from blood. All 

cows with <5 (n = 67 observations) or >65 DIM (n 
= 934,600 observations) were excluded from analysis, 
resulting in 238,474 observations. Furthermore, cows 
with no pedigree information or with an unknown age 
at test day were removed from the data set. For better 
separation of animal effects from herd effects, herd test 
days (HTD) with less than 2 records were also ex-
cluded from the data set. Finally, 158,028 observations 
from 107,988 cows (daughters of 8,339 sires and 100,423 
dams) kept in 9,102 herds remained for estimation of 
(co)variance components of the spectra. A pedigree file 
containing animals with records and their ancestors was 
available. The total number of animals in the pedigree 
file that had a link to the data file were 469,751.

Selection of Spectral Variables

The major proportion of milk is water, hence the 
water spectrum influences the milk spectra. Both the 
O-H bending region (approximately between 1,620 and 
1,700 cm−1) and the O-H stretching region (above 3,025 
cm−1) of water are more or less opaque for the infrared 
light used, resulting in noise-like regions (Afseth et al., 
2010; Dagnachew et al., 2013a). Therefore, the 2 regions 
comprising 536 spectral data points were excluded and 
only the remaining 524 spectral data points (926–1,617 
cm−1 and 1,701–3,025 cm−1) were considered for further 
analysis. These 524 spectral variables are referred to as 
region I.

Spectral region between 1,803 and 2,800 cm−1 (262 
wave numbers) has been reported to have no specific 
bands or useful chemical information (Andersen et 
al., 2002; Iñón et al., 2004; Dagnachew et al., 2013a). 
Region I without these spectral variables (between 
1,803–2,800 cm−1) is referred to as region II (i.e., region 
II is a subset of region I).

Preprocessing of Spectra

Calibrations of prediction models, for relationship of 
milk spectra and blood BHB, and genetic analyses were 
performed on both unprocessed and preprocessed spec-
tra. The selected spectral variables were preprocessed 
by 2 methods. First, second derivatives of the spectra 
by the Savitzky-Golay (SG) numerical algorithm with 

Figure 1. Mean and SD of blood BHB (mmol/L) by DIM from 826 
lactating Polish dairy cows.

Table 1. Descriptive statistics for reference blood BHB (mmol/L) in data set 1 and its subsets: calibration, 
subset of calibration (extreme values ≤0.5 or ≥1.4 mmol/L), and validation sets

Data No. of cows Mean SD Minimum Maximum

Data set 1 826 0.760 0.743 0.1 6.3
Calibration set 496 0.734 0.725 0.1 6.3
Calibration subset 296 0.716 0.928 0.1 6.3
Validation set 330 0.800 0.768 0.1 5.5
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9 window-size and second-order polynomials were cal-
culated. Second, the spectra preprocessed by the SG 
were further preprocessed using extended multiplica-
tive signal correction (EMSC). Preprocessing was 
performed on both region I and region II.

Multivariate Calibration of Prediction Models

The calibration data set (n = 496) was used to de-
velop a link between blood BHB and milk spectra using 
the pls package (Mevik and Wehrens, 2007) implement-
ed in R (R Core Team, 2016). Partial least squares 
(PLS) regression analyses were done on all 496 blood 
BHB values in the calibration set, and on a subset with 
296 observations with extreme blood BHB values (low: 
<0.6 mmol/L, high: ≥1.4 mmol/L). In the analyses, 
blood BHB was used as a response variable (y) whereas 
unprocessed or preprocessed spectra (region I or II) 
were used as predictor variables (X).

The calibration models were cross-validated using 10 
random segments, and the optimum number of PLS 
factors were determined based on the first local mini-
mum value in root mean squared error of prediction of 
the cross-validation (RMSEcv). The calibration models 
were then applied to the validation data set. The PLS 
regression parameters, such as regression coefficients 
ˆ ,βPLS( )  matrices of weights (W) that reflect covariance 

structures between y and X, matrices of factor scores 
(T), matrices of y-loadings (Q), and matrices of X-
loadings (P), were used in the subsequent predictions 
and calculations. Predictions were performed following 
the DP or IP approaches. Figure 2 shows a schematic 
representation of these 2 prediction approaches.

DP

The DP approach has several steps: spectral variables 
dimension reduction into few factors, estimation of co-
variance components for the factor scores from data set 
2, prediction of random components for factor scores 
from the validation set using the estimated covariance 
components, and conversion of predicted factor scores 
into predicted blood BHB. The steps are described in 
detail in subsequent sections.

Spectral Variables Dimension Reduction. Di-
rect genetic analysis to estimate (co)variance compo-
nents for the random effects of the mixed model of all 
the selected spectral variables (i.e., 524 or 262 spectral 
data points) simultaneously was not possible with cur-
rently available analytical packages used in quantita-
tive genetics. They are limited to fewer traits in multi-
trait analysis (Meyer, 2007; Madsen and Jensen, 2008; 
Gilmour et al., 2009). Moreover, many of the spectral 

variables are highly collinear and the redundancy needs 
to be removed or absorbed. Dimension reduction is usu-
ally done by principal component analysis (PCA), PLS 
regression, or factor analysis. In the current study, we 
reduced the dimension of the spectral variables into 
factor scores through a weight matrix (W) obtained 
from the PLS regression with respect to blood BHB, 
as described above. The PLS factors mainly contain 
information related to the response variable(s) in the 
regression, and hence are expected to give better pre-
diction than PCA components that contain general info 
in spectra. Previously, PCA was used on the same data 
set and results from such an analysis has been reported 
(Belay et al., 2015).

Estimation of Covariance Components for 
Factor Scores. A matrix of factor scores (T) were 
calculated for observations of spectra in data set 2 us-
ing the weight matrix (W) that had been obtained by 
PLS regression on the calibration part of data set 1:

	 T = XW,	 [1.1]

where T is an n × c matrix of factor scores, with n 
being number of observations (n = 158,028) and c the 
number of factors. Numbers of factors were chosen by 
cross-validation in PLS regression for the calibration 
part of data set 1. X is an n × k spectral data matrix 
for data set 2, with k being number of spectral variables. 
W is a k × c weight matrix that reflects the covariance 
structure between milk spectra (X) and blood BHB 
(y); W is determined as a function of X and y by PLS 
regression in the calibration part of data set 1.

The factor scores characterize the relationship of 
the milk information to the blood BHB and give the 
relationship among the spectral variables. Factor scores 
were then treated as traits in multiple-trait mixed 
model analyses. A repeatability test day animal model 
was used to estimate variance components for the fac-
tor scores, T, from data set 2 (only spectra, no blood 
BHB). The model in matrix notation was

	 t = Xb + Za + Wp + Hd + e,	 [1.2]

where t is a vector of factor scores (the t of 1 milk 
sample above the other); b is a vector of fixed effects of 
breed (2 levels), lactation number (1 to 4), herd size (3 
levels) × lactation stage (6 levels), and months of test 
(4 levels); a is a vector of random animal genetic ef-
fects; p is a vector of random permanent environmental 
effects; d is a vector of random HTD effects; and e is 
vector of random residual effects. X, Z, W, and H are 
design matrices that relate records to the correspond-
ing (fixed and random) effects. The 2 breed levels are 
Polish Holstein-Friesian (black-white), which accounted 
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for 86.4% of the records, and the other 15 breeds (such 
as Polish Holstein-Friesian red-white, Simental, Polish 
red-white, and so on), which accounted for 13.6% of 
the records all together. Herd size was defined based on 
number of cows with records per herd in the original 
data set (before edition) and categorized as small (<35 
cows), medium (35–99 cows), and large (≥100 cows). 
Each group contained similar numbers of cows. Days 
in milk (lactation stage) were categorized into 6 levels, 
each with 10 test days. Each of the 4 test months were 
modeled. The assumed (co)variance structure was

	 var
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, 	

where G is genetic covariance (5 × 5) matrix, P is the 
covariance (5 × 5) matrix for within-cow permanent 
environmental effects, H is the covariance (5 × 5) ma-
trix for HTD effects, and R is the residual covariance 
(5 × 5) matrix, I and A are identity and additive rela-

Figure 2. Schematic representation of the indirect (IP) and direct (DP) prediction approaches. In the IP, the phenotype for trait of interest 
(e.g., BHB) was predicted from milk spectra using regression coefficient (βPLS), and this predicted trait was analyzed with a genetic model for 
ultimate phenotypic prediction. In the DP, multiple predicted factor scores that were obtained through a weight matrix (W) were analyzed with 
a genetic multivariate model before predicted model components were combined through the y-loading (q) to eventually predict the phenotype. 

Reg = regression; Tv = factor scores for observations in the validation set; σ σ σ σa pe td e
2 2 2 2, , ,  and  = estimates of variance components for ge-

netic, permanent animal environment, herd test-day and residual, respectively; a, pe, td, and e = additive genetic, permanent animal environ-

mental, herd test-day, and residual effects, respectively; BHB�  = predicted BHB from spectra of data set 2 using the PLS regression-based 

prediction equation; BHBv�  = predicted BHB from spectra of validation set using the PLS regression-based prediction equation; BHBIP�  = 

predicted BHB using the IP approach; BHBDP�  = predicted BHB using the DP approach; BHBv = measured/reference blood in the validation 
set.
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tionship matrices, respectively, and ⊗ is the Kronecker 
product.

The (co)variance component estimates were ob-
tained by the REML method using the multivariate 
average information-REML algorithm of WOMBAT 
(Meyer, 2007). These estimated variance components 
are population parameters that should characterize 
any data coming from the population. Preliminary 
bivariate analyses were performed and (co)variance 
component estimates from the bivariate analyses of the 
factor scores were pooled using the iterative summing 
of expanded part matrices approach (Mäntysaari, 1999) 
implemented in WOMBAT (Meyer, 2007). The pooled 
covariance matrices were priors in the multivariate 
REML.

BLUP Analyses for Factor Scores from Spec-
tra of Validation Set. Once (co)variance components 
were estimated for factor scores from the large spectral 
data set (data set 2), BLUP values could be calculated 
for the random components of any new data set from 
the population using the estimated (co)variance com-
ponents and the structural circumstances of the new 
data set (genetic relationship, permanent environment, 
and HTD design). Factor scores (Tv) for observations 
in the validation set (n = 330) were calculated using 
the weight matrix W from the model calibration and 
milk spectra of the validation set as follows. Neither 
blood BHB nor milk spectra in the validation set were 
used in the model development:

	 Tv = XvW,	 [1.3]

where Tv is an nv × c matrix of factor scores, W is as 
defined in Eq. [1.1], and Xv is an nv × k spectral data 
matrix for the validation set, with k being number of 
spectral variables. The subscript v is used to indicate 
validation set.

A model similar to Eq. [1.2], with some modification 
in the fixed part of the model, was used to run BLUP 
for the Tv using the covariance components estimated 
with Eq. [1.2] and the I and A relevant for the valida-
tion set. In this model [1.4], fixed effects of lactation 
number (4 levels), lactation stage (6 levels), and year 
(2 levels) × season (2 levels: April to September and 
October to March) were fitted:

	 tv = Xb + Za + Wp + Hd + e,	 [1.4]

where tv is a vector of factor scores for observations in 
the validation set (with the tv of 1 milk sample above 
the other), and other model elements were as defined 
in the Eq. [1.2].

Conversion of the Predicted Factor Scores into 
Predicted Blood BHB. In addition to predictions of 
the random effects ˆ ˆ ˆ ,a p d, , and ( )  predicted factor scores 

T̂v( ) were given directly by WOMBAT from the BLUP 
run for the factor scores of the validation set. These 
predicted factor scores in multivariate form were con-
verted into predicted blood BHB BHBDP

�( ) through the 

Y-loading matrix (Q) used in transposed vector form 
as

	 BHBDP v
� = ′ˆ ,T q  	

where q is a vector, not a matrix, as only a single re-
sponse variable was in the PLS regression analysis. It 
had dimension 1 × c, where c is the number of factors 
retained and it relates factors to response variables.

IP

In this approach, BHB values were predicted from 
milk spectra using the PLS regression coefficient β̂PLS( ) 
estimated above, and the predicted phenotypes used in 
further analyses. This is the conventional approach 
used for genetic evaluation and other purposes in ani-
mal sciences or in other fields. The BHB was predicted 
as

	 BHB PLS
� = Xˆ ,β 	 [2.1]

where BHB� is predicted BHB phenotype from spectra 
X of data set 2 through PLS regression coefficient 
β̂PLS( ) found in the calibration part of data set 1.
Covariance components and the corresponding vari-

ance ratios were estimated by REML for the predicted 
BHB by fitting single-trait animal model considering 
the same effects as in Eq. [1.2]:

	 BHB� = + + + +Xb Za Wp Hd e.	 [2.2]

The model elements are as defined in Eq. [1.2], but with 
univariate variance structure. We assumed var ,a A( ) = σa

2  
var ,p I( ) = σpe2  var ,d I( ) = σd2  and var ,e I( ) = σe2  where σa

2 
is additive genetic variance, σpe

2  is permanent environ-
mental variance, σd

2 is HTD variance, and σe
2 is residual 

variance. The BHB were then predicted for observa-
tions in the validation set BHBv

�( ) using the β̂PLS that 

was used in Eq. [2.1], but using spectra from the valida-
tion set (Xv; i.e., BHBv v PLS

� = X β̂ ).
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Assuming similar effects as in Eq. [1.4], but with a 
single-trait animal model, BLUP solutions for fixed and 
random effects were found for BHBv

�  from validation 
set:

	 BHBv
� = + + + +Xb Za Wp Hd e,	 [2.3]

where model elements were as defined in Eq. [1.2] and 
Eq. [2.2]. A similar variance structure as in Eq. [2.2] 
was assumed.

For this BLUP, run on BHBv
� , the variance compo-

nents used were estimated either from (1) single-trait 
REML (i.e., the one estimated in Eq. [2.2]), or (2) 
multiple-trait REML, as estimated in Eq. [1.2] after 
converting from multivariate covariance to univariate 
variance structures. The multivariate covariance struc-
ture from Eq. [1.2] for additive, permanent environmen-
tal, HTD, and residual covariance were converted into 
the corresponding univariate variance structure as

	 ˆ ,σa
2 = ′qGq  	

	 ˆ ,σpe
2 = ′qPq 	

	 ˆ ,σd
2 = ′qHq  and	

	 ˆ .σe
2 = qRq 	 [2.4]

Predicted blood BHB BHBIP
�( ) were directly obtained 

from WOMBAT together with predicted random ef-
fects and solutions for random residuals. Thus, we got 
2 vectors of predicted BHB for observations in valida-
tion set, 1 from DP BHBDP

�( ) and the other from IP 

BHBIP
�( ). In addition to these predicted BHB, we mea-

sured blood BHB (reference values), which had not 
been used in calibration, from observations in the vali-
dation set.

Evaluation of the IP and DP Approaches

The 2 sets of predicted blood BHB BHB  and BHBDP IP
� �( ) 

are 2 different predictions of blood BHB. Performance 
of the 2 approaches for prediction of BHB was evalu-
ated based on adjusted coefficient of determination 
(R2) estimated by regressing the IP or DP predicted 
blood BHB against measured blood BHB (reference 
values). Prediction with the IP or DP approach was 
also compared with prediction of BHB by PLS (using 
the PLS regression found in calibration on the milk 
spectra of the validation set).

RESULTS

Description of Reference Blood BHB

Table 1 shows descriptive statistics for reference 
blood BHB data. Content of BHB in the 826 blood 
samples analyzed ranged from 0.1 to 6.3 mmol/L, with 
an average of 0.760 mmol/L and a standard deviation 
of 0.743 mmol/L. More than 80% of the samples had 
<1.0 mmol/L. The most frequent concentrations ob-
served were 0.3, 0.4, and 0.6 mmol/L. Out of the 826 
cows sampled, 114 of them had a concentration ≥1.2 
mmol/L of blood BHB. Mean blood BHB concentration 
for all cows (826) at each DIM was calculated and is 
given in Figure 1. The mean blood BHB concentration 
was generally high around the beginning of lactation 
and decreased as DIM progressed. Mean and standard 
deviation of BHB in calibration set were lower than 
the corresponding values in the validation set (Table 
1). We also found a difference in ranges of BHB values 
between calibration and validation set.

Cross-Validation and Validation Results

The link between untransformed or log-transformed 
blood BHB and milk spectra was developed using PLS 
regression analysis on the calibration set (all, n = 496) 
and on its subset (n = 296 with extreme values). The 
results from such analyses are presented in Tables 2 
and 3. Based on the 3 sets of spectra (unprocessed and 
preprocessed by SG and EMSC), the 2 spectral regions 
(regions I or II), and the 2 categories of blood BHB val-
ues (all or extreme), 9 different prediction models were 
developed. The idea was to find models with the better 
fit. Five to 10 PLS factors were retained based on the 
first local minimum value in RMSEcv. Table 2 shows 
cross-validation and validation statistics for untrans-
formed blood BHB predicted using the 9 prediction 
models developed. In the cross-validations, averages of 
predicted values were the same as corresponding mean 
reference values, but with smaller standard deviations 
and ranges than the reference values. These results 
(i.e., the low variation and the reduced range of pre-
dicted values) indicate lack of precision of the models 
on high values. For untransformed blood BHB, the R2 
in cross-validation (R2

cv) ranged from 0.217 to 0.316, 
with RMSEcv ranging from 0.630 to 0.787 (Table 3). 
The RMSEcv were relatively high, which might be due 
to the lack of precision of the models on high values 
of the data sets (Table 2) that had a high proportion 
of low values. This is evident from models developed 
based on extreme BHB values, where a majority of 
them were low with few high values. The logarithmic 
transformation of blood BHB values increased the R2

cv, 
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ranging from 0.313 to 0.381. The RMSEcv for the log-
transformed blood BHB values were between 0.222 and 
0.278.

In the validation, predicted BHB contents (Table 2) 
were smaller than the corresponding reference values 
(Table 1). For untransformed blood BHB, R2 in valida-
tion (R2

v) ranged from 0.308 to 0.374, with root mean 
square error of validation (RMSEv) ranging from 
0.607 to 0.638 (Table 3). Similar to the cross-validation, 
log-transformation of BHB values increased R2 in the 
validation, except for the extreme blood BHB values. 
For both untransformed and log-transformed blood 
BHB, R2

v were generally higher than the corresponding 
estimates in cross-validation, except models developed 

on log-transformed extreme blood BHB values (Table 
3). The RMSEv for untransformed BHB were also lower 
than the corresponding RMSEcv, whereas the reverse 
was true for the log-transformed BHB. This indicates 
that prediction ability of models based on log-trans-
formed BHB could be compromised compared with the 
untransformed BHB.

In both cross-validation and validation, preprocessing 
of spectra either by SG or EMSC generally increased 
R2 or reduced prediction errors, except for some models 
with untransformed BHB in the validation analyses. In 
validation, better results (high R2

v or low RMSEv) were 
obtained with unprocessed spectra for untransformed 
BHB and with EMSC for log-transformed BHB. In 

Table 2. Cross-validation and validation descriptive statistics1 for untransformed blood BHB (mmol/L) predicted from milk spectra using 
different calibration models

Model2

Cross-validation

 

Validation

Mean SD Minimum Maximum Mean SD Minimum Maximum

Unprocessed spectra                  
 All BHB values with region I 0.734 0.389 0.014 2.721   0.756 0.443 −0.059 2.612
  Extreme BHB with region II 0.716 0.565 −0.156 3.304   0.756 0.598 −0.389 3.082
  All BHB values with region II 0.734 0.390 −0.017 2.506   0.745 0.444 −0.085 2.629
2nd derivative spectra (SG)                  
  All BHB values with region I 0.734 0.397 −0.119 2.551   0.746 0.425 −0.056 2.535
  Extreme BHB with region II 0.716 0.608 −0.436 2.905   0.774 0.623 −0.426 3.327
  All BHB values with region II 0.734 0.403 −0.118 2.257   0.733 0.429 −0.075 2.509
EMSC preprocessed spectra                  
  All BHB values with region I 0.734 0.389 −0.118 2.114   0.732 0.403 −0.175 2.119
  Extreme BHB with region II 0.716 0.586 −0.845 2.900   0.730 0.593 −0.730 2.722
  All BHB values with region II 0.734 0.392 −0.260 2.159   0.724 0.405 −0.206 2.084
1Mean, SD, minimum, and maximum of predicted blood BHB values (mmol/L) are presented.
2Spectra were preprocessed by Savitzky-Golay (SG) algorithm and extended multiplicative signal correction (EMSC).

Table 3. Summary of partial least squares (PLS) regression prediction models for untransformed and log10-transformed blood BHB in cross-
validation and validation under unprocessed, second derivative (SG), and EMSC preprocessed1 spectra

Model
No. of  
factors2

Cross-validation3

 

Validation4

Untransformed BHB

 

Transformed BHB Untransformed BHB

 

Transformed BHB

RMSEcv R2
cv RMSEcv R2

cv RMSEv R2
v RMSEv R2

v

Unprocessed spectra                        
  All BHB values with region I 6 (8) 0.6396 0.2109   0.2318 0.3198   0.6065 0.3738   0.2469 0.3964
  Extreme BHB with region II 5 0.7865 0.2760   0.2776 0.3130   0.6327 0.3186   0.2792 0.2277
  All BHB values with region II 5 (7) 0.6397 0.2172   0.2326 0.3169   0.6153 0.3554   0.2468 0.3966
2nd derivative spectra (SG)                        
  All BHB values with region I 5 0.6383 0.2201   0.2223 0.3730   0.6153 0.3554   0.2462 0.3999
  Extreme BHB with region II 5 0.7748 0.2875   0.2628 0.3814   0.6199 0.3457   0.2765 0.2421
  All BHB values with region II 5 (10) 0.6384 0.2186   0.2210 0.3807   0.6150 0.3562   0.2446 0.4075
EMSC preprocessed spectra                        
  All BHB values with region I 5 (10) 0.6302 0.2368   0.2227 0.3701   0.6312 0.3217   0.2414 0.4228
  Extreme BHB with region II 5 0.7622 0.3159   0.2662 0.3718   0.6378 0.3075   0.2707 0.2741
  All BHB values with region II 5 (10) 0.6301 0.2351   0.2228 0.3690   0.6313 0.3216   0.2397 0.4309
1Spectra were preprocessed by Savitzky-Golay (SG) algorithm and extended multiplicative signal correction (EMSC).
2Number of PLS factors, and numbers of factors in parentheses were for models based on log-transformed blood BHB.
3RMSEcv = root mean squared error of the cross-validation; R2

cv = coefficient of determination of the cross-validation.
4RMSEv = root mean squared error of the validation; R2

v = coefficient of determination of the validation.
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the cross-validation, better results were obtained with 
EMSC for untransformed BHB and with EMSC or SG 
for log-transformed BHB. Despite the large number of 
spectral variables contained in region I, it had no effect 
on the R2 of validation or cross-validation, except for 
validation of unprocessed spectra with untransformed 
BHB values (Table 3). Comparing the models with 
respect to the 2 sets of BHB values, prediction models 
with extreme BHB values (both untransformed and log-
transformed) had generally higher R2

cv and RMSEcv, 
but had lower R2

v than models with all BHB values 
(Table 3).

Genetic Parameters for the Factor Scores and BHB

Out of the 9 prediction models that were developed 
based on untransformed blood BHB, 4 of them were 
selected to be used in the genetic analysis for ultimate 
phenotypic prediction: 2 models from raw and 2 from 
SG preprocessed spectra of region II with all or ex-
treme BHB values. Models based on spectra of region 
I were not selected, as they did not give better ac-
curacy despite the large number of spectral variables 
in region I. Models developed based on log-transformed 

BHB were not used for genetic analyses, as IP and DP 
approaches can be evaluated independent of the BHB 
scale. Moreover, models based on log-transformed BHB 
had slightly higher prediction error in the validation 
than in the cross-validation, whereas the reverse is true 
for models from untransformed BHB (Table 3). Esti-
mates of variance ratios for each factor score, calculated 
from raw and preprocessed spectra using the 4 selected 
calibration models, are presented in Tables 4 and 5. 
Genetic variance ratios (heritabilities) for the 5 factor 
scores calculated from unprocessed spectra ranged from 
0.053 to 0.227 (Table 4) and from 0.081 to 0.158 (Table 
5) for SG preprocessed spectra. The corresponding 
variance ratios of the permanent environmental effects 
ranged from 0.070 to 0.213 and from 0.074 to 0.153. 
Variance ratios of the HTD ranged from 0.080 to 0.504 
and from 0.130 to 0.374 for the factors from raw and 
preprocessed spectra, respectively. The corresponding 
variance ratios for the residual effects varied from 0.374 
to 0.595 and from 0.437 to 0.595.

Corresponding variance components for blood BHB 
were calculated from the estimated covariance struc-
tures of factor scores using Eq. [2.4]. Table 6 presents 
estimated variance ratios and variance components for 

Table 4. Estimates of variance ratios for genetic, permanent environment (PE), herd test days (HTD), and 
residual random effects for the factor scores calculated from raw spectra in region II and all (or extreme1) 
blood BHB values

Factor  
score

Variance ratio2

Genetic PE HTD Residual

1 0.093 (0.093) 0.143 (0.143) 0.169 (0.169) 0.595 (0.595)
2 0.221 (0.227) 0.212 (0.213) 0.082 (0.080) 0.485 (0.480)
3 0.176 (0.180) 0.119 (0.122) 0.158 (0.166) 0.547 (0.531)
4 0.163 (0.156) 0.165 (0.162) 0.137 (0.130) 0.534 (0.552)
5 0.053 (0.056) 0.070 (0.075) 0.504 (0.480) 0.374 (0.388)
1Numbers in parentheses are variance ratio for factor scores calculated from raw spectra in region II and ex-
treme blood BHB values. 
2Ratio is relative to total phenotypic variance for each factor score. Standard error of variance ratios due to 
genetic, PE, HTD, and residual were 0.004–0.012, 0.004–0.01, 0.003–0.004, and 0.004, respectively.

Table 5. Estimates of variance ratios for genetic, permanent environment (PE), herd test day (HTD), and 
residual random effects for the factor scores calculated from Savitzky-Golay (SG) preprocessed spectra in 
region II and all (or extreme1) blood BHB values

Factor  
score

Variance ratio2

Genetic PE HTD Residual

1 0.097 (0.095) 0.140 (0.140) 0.169 (0.169) 0.595 (0.595)
2 0.081 (0.084) 0.118 (0.111) 0.257 (0.259) 0.544 (0.545)
3 0.158 (0.144) 0.114 (0.106) 0.209 (0.231) 0.519 (0.519)
4 0.102 (0.096) 0.086 (0.074) 0.376 (0.349) 0.437 (0.481)
5 0.113 (0.118) 0.118 (0.153) 0.173 (0.130) 0.595 (0.599)
1Numbers in parentheses are variance ratio for factor scores calculated from Savitzky-Golay (SG) preprocessed 
spectra in region II and extreme blood BHB values. 
2Ratio is relative to total phenotypic variance for each factor. Standard error of variance ratios due to genetic, 
PE, HTD, and residual is 0.006–0.008, 0.000–0.007, 0.003–0.004, and 0.004, respectively.



10 BELAY ET AL.

Journal of Dairy Science Vol. 100 No. 8, 2017

genetic, PE, HTD, and residual of BHB. For BHB from 
unprocessed spectra, average estimates of variance ra-
tios (variance ratios for BHB from all and extreme BHB 
values were averaged within spectral sets) for genetic, 
PE, HTD, and residual were 0.110, 0.143, 0.277, and 
0.471, respectively. The corresponding values for BHB 
from SG preprocessed spectra were 0.086, 0.152, 0.340, 
and 0.423. Variance components for BHB were also 
estimated by univariate REML using Eq. [2.2], where 
spectral variables had first been converted into a single 
trait (BHB) through the PLS regression coefficient. 
Variance components and variance ratios for such BHB 
were slightly lower than the genetic parameters pre-
sented in Table 6, except the estimates for HTD, and 
estimated residual effects that were the same (Tables 
6 and 7).

Most of the factor scores and BHB that were predict-
ed from unprocessed spectra had higher estimates of 
heritability and proportion of variance due to PE and 
HTD effects than those from SG preprocessed spectra 
(Tables 4–7). The larger estimates for factors and BHB 
from unprocessed spectra may be due to unprocessed 
spectra possibly containing unwanted heritable varia-

tion, which could be removed by preprocessing. Spec-
tral preprocessing removes not only unwanted varia-
tions (such as variation in intensity of light sources, 
scattering, contaminants, optical path length, and so 
on) in spectra, but also some real molecular structures 
or milk constituents, which might be heritable.

Prediction Ability of the IP and DP Approaches

Performance of the IP and DP approaches were 
evaluated based on R2 estimated by regressing the 
IP- or DP-predicted blood BHB on the reference blood 
BHB values of the validation data set that had not 
been used in model calibrations. Table 8 presents the 
estimated R2 for the IP and DP approaches. The R2 
for the DP method were intermediate and ranged from 
0.263 to 0.298, whereas the corresponding estimates for 
IP method, when variance components from multiple 
REML were used, ranged from 0.281 to 0.301 and from 
0.278 to 0.306 when variance components from single-
trait REML were used (Table 8). The predictability 
of the IP approach was slightly higher compared with 
the predictability of the DP approach; this means that 

Table 6. Multifactor (direct prediction) REML based estimates of variance ratios and variance components 
for genetic, permanent environment (PE), herd test day (HTD), and residual random effects for BHB found 
from raw or Savitzky-Golay (SG) preprocessed milk spectra from data set 2 (n = 158,028) using the 4 selected 
calibration models1

Model

Variance ratio (variance component)

Genetic PE HTD Residual

Unprocessed spectra        
  All BHB values with region II 0.111 (0.018) 0.142 (0.023) 0.279 (0.045) 0.468 (0.076)
  Extreme BHB with region II 0.109 (0.036) 0.144 (0.047) 0.275 (0.090) 0.473 (0.156)
2nd derivative spectra (SG)        
  All BHB values with region II 0.083 (0.017) 0.158 (0.032) 0.342 (0.070) 0.416 (0.085)
  Extreme BHB with region II 0.088 (0.036) 0.145 (0.060) 0.337 (0.139) 0.430 (0.177)
1Estimated multivariate covariances have been converted into one-trait variance structure relevant for BHB 
prediction. Ratios are relative to total phenotypic variance for BHB from each model. Values in parentheses 
are estimates for variance components.

Table 7. Univariate (indirect prediction) REML based estimates of variance ratios and variance components 
for genetic, permanent environment (PE), herd test day (HTD), and residual random effects for BHB found 
from raw or Savitzky-Golay (SG) preprocessed milk spectra from data set 2 (n = 158,028) using the 4 selected 
calibration models1

Model

Variance ratio (variance component)

Genetic PE HTD Residual

Unprocessed spectra        
  All BHB values with region II 0.103 (0.017) 0.141 (0.023) 0.288 (0.047) 0.468 (0.076)
  Extreme BHB with region II 0.101 (0.033) 0.142 (0.047) 0.283 (0.094) 0.473 (0.156)
2nd derivative spectra (SG)        
  All BHB values with region II 0.075 (0.015) 0.155 (0.032) 0.353 (0.072) 0.416 (0.085)
  Extreme BHB with region II 0.081 (0.033) 0.142 (0.059) 0.347 (0.143) 0.430 (0.178)
1Ratio is relative to total phenotypic variance for BHB from each model. Values in parentheses are estimates 
for variance components.
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a more accurate prediction of BHB was found when 
univariate variance structure was used than when mul-
tivariate covariance structures were used. Predictability 
of the 2 approaches were compared with the predict-
ability of models given in Table 3 (PLS regression 
based predictions equations) for untransformed BHB 
in the validation analyses. The PLS regression-based 
prediction equations are the commonly used methods 
for phenotyping of trait of interest from milk FT-MIR 
spectra. Predictability of the IP and DP approaches 
were lower than predictability of equations developed 
based on the classical PLS regression in validation 
(Table 3).

As in the calibration models, preprocessing of spectra 
slightly improved accuracy of BHB prediction in both 
the IP and DP approaches. The improvement in ac-
curacy due to preprocessing was slightly better in DP 
than in IP approaches. This indicated that the DP ap-
proach could perform better with spectra that contain 
less noisy information; noisy information in multivari-
ate form could result in inferior performance.

DISCUSSION

Multivariate Calibration Models

The distribution of the data in the calibration set was 
slightly different than in the validation set, mainly due 
to lower mean and standard deviation of the reference 
values (Table 1). This could explain some difference 
in cross-validation and validation statistics. That the 
R2

v was generally higher than the R2
cv might be due to 

higher mean and standard deviation of the reference 
values in validation. It has been shown that R2 is highly 
dependent on distribution of the data and especially on 
the range of data (Grelet et al., 2016). Because of the 
way in which blood BHB was measured (i.e., values 
with few digits: 0.1, 0.2, …, 6.3), many samples had 
the same BHB values; this resulted in a large number 

of few distinct values. Such duplication in BHB values 
(not in the corresponding spectra) could also influence 
the R2

cv by reducing variation or range of values in 
the random segments used for the cross-validation. In 
the validation set, data were not divided into random 
segments, so existing variation in the blood BHB was 
available. That could possibly result in the higher ob-
served R2

v than R2
cv.

The R2
cv of the prediction models developed in our 

study were low, but in the range of estimates reported 
for untransformed milk BHB (0.10 to 0.64) or for log-
transformed milk BHB (0.09 to 0.63; de Roos et al., 
2007). Grelet et al. (2016) found R2

cv of 0.71 and R2
v 

of 0.63 for milk BHB, larger than estimates found in 
the current study. With blood BHB used as a reference 
value in calibration, Broutin (2015, 2016) also found 
higher R2

cv (0.7360 or 0.5999) than that observed in 
our study. The predictive ability of calibration models 
developed in the present study may not be sufficient to 
determine exact values of blood BHB, but may allow 
for a rough screening to distinguish cows with high or 
low values. It has been concluded that FT-MIR–pre-
dicted ketone bodies may be promising as screening 
tool for ketosis at herd level, but not accurate enough 
for management decisions at an individual animal level 
(de Roos et al., 2007; van der Drift et al., 2012; Grelet 
et al., 2016).

The correlations between reference BHB and pre-
dicted BHB obtained by the models developed in our 
study (averaged to 0.584) were higher than the correla-
tion between reference blood BHB and Foss-predicted 
milk BHB (0.567). This indicates that these models 
may be more appropriate to indicate ketosis, as they 
predict blood BHB instead of milk BHB. It also shows 
the interest of predicting blood values directly from 
FT-MIR spectra rather than using milk BHB from FT-
MIR spectra. The R2 between reference and predicted 
blood BHB (Table 3) also indicate that milk spectra 
would contain substantial amount of information about 

Table 8. Coefficient of determination between reference blood BHB values and blood BHB predicted by the direct and indirect prediction 
approaches from milk spectra1

Calibration model

Indirect prediction (IP)

Direct prediction (DP)Variances from single REML Variances from multiple REML

Unprocessed spectra      
  All BHB values with region II 0.2865 0.2898 0.2692
  Extreme BHB with region II 0.2775 0.2805 0.2631
2nd derivative spectra (SG)      
  All BHB values with region II 0.2943 0.2972 0.2804
  Extreme BHB with region II 0.3061 0.3091 0.2978
1In the IP approach, where spectral variables first converted into single-trait and then genetic analysis was applied on the trait for ultimate 
phenotypic prediction, variances estimated from single-trait REML or multiple REML (after converting into variance structure) were used. In 
the DP approach, spectral variables reduced to factor scores that were analyzed using multitrait genetic analysis and eventually combined into 
the phenotypic trait.
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BHB. Reported phenotypic correlations between refer-
ence blood BHB and reference milk BHB vary widely, 
ranging from 0.66 to 0.89 (Enjalbert et al., 2001; Denis-
Robichaud et al., 2014; Friedrichs et al., 2015); cor-
relation coefficients found in the current study were in 
the lower range of the values reported in those studies. 
However, only Broutin (2016) reported on the correla-
tion between reference blood BHB and predicted blood 
BHB from milk spectra, finding a correlation of 0.7370.

Several factors could contribute to the degree of ac-
curacy of prediction models observed in our study. Re-
lationship between blood BHB and milk spectra might 
not be linear, which could in part explain the observed 
low R2. The R2 of prediction models and concentration 
of analyte (e.g., fat composition and so on) are known 
to have direct relationships (Soyeurt et al., 2006; Rut-
ten et al., 2009). Infrared absorbance is directly propor-
tional to concentration of analyte or substance (Beer’s 
law), indicating that analytes with very low concentra-
tions (e.g., BHB) are difficult to detect by the FT-MIR 
spectroscopy. The concentration of BHB in milk is very 
low (21.7 mg/L given its molar mass of 104.11 g/mol), 
which is below the detection limit (100 mg/L) of the 
FT-MIR spectroscopy (Dardenne et al., 2015). There-
fore, it is important to note that calibration of BHB in 
milk can only be done by indirect links with global milk 
composition, not by the specific spectral responses of 
BHB in milk (Grelet et al., 2016).

Moreover, the 2 information sources that were used 
in our study, milk spectra and blood BHB, were from 
different media (milk and blood). Genetic differences 
between cows in udder ketone body metabolism may 
exist and could influence excretion of ketone bodies 
from blood to milk (van der Drift et al., 2012). van der 
Drift et al. (2012) also found that the random effect of 
herd explained considerable variation in the probability 
of hyperketonemia for cows. Those authors explained 
the herd differences in the association between blood 
and milk ketone body concentrations by time of milk 
sampling, feeding, and blood sampling that were not 
identical on the different farms. Time of sampling (be-
fore or after feeding, morning or evening milking) could 
result in variation of BHB in blood and milk, as there 
might be difference in metabolism of BHB production 
in milk and blood.

Evaluation of the IP and DP Approaches

The slightly better prediction of blood BHB from 
milk FT-MIR spectra by the IP than the DP approach 
was not in line with our expectation. It is also in con-
trast to the work of Dagnachew et al. (2013b), who 
reported better prediction in accuracy of EBV for milk 
contents in goat by DP than IP approaches. Bonfatti et 

al. (2017) also reported results that are mostly in con-
trast with the work of Dagnachew et al. (2013b), who 
found high rank correlations (>0.94) between IP and 
DP predicted EBV of all traits investigated. Bonfatti 
et al. (2017) reported <0.5 rank correlations between 
EBV predicted by IP and DP for most traits included 
in their study. Reasons why the DP approach resulted 
in better prediction for EBV (e.g., Dagnachew et al., 
2013b), but not for phenotypic are not clear, but could 
be due to difference in methods of comparison (correla-
tion vs prediction error variance) and type of parame-
ters compared (phenotype vs EBV). Genetic parameter 
estimates (e.g., heritability) for BHB using covariance 
components (DP) after converting into univariate vari-
ance structure were higher (Table 6) than correspond-
ing estimates using variance components (IP; Table 7), 
indicating better information content in the DP ap-
proach. However, neither phenotypic prediction from 
the multivariate mixed model using spectral variables 
that were reduced into few components by PLS (Table 
8) nor principal component analysis (PCA; Belay et 
al., 2015) were promising. It is therefore important to 
verify if such results from the current study or previous 
studies (Dagnachew et al., 2013b; Belay et al., 2015) 
will be reproducible and to look for reasons behind the 
reported results for example using simulated data.

In the DP approach, dimension of spectral variables 
can be reduced into a few factor scores by PLS re-
gression, as in the current paper, or into latent traits 
by PCA. Covariance components for the latent traits 
from PCA are population parameters that characterize 
any information coming from the population, as they 
represent any information available in the milk spectra, 
whereas covariance components for factor scores from 
PLS regression mainly contain information related to 
the particular trait used in the calibration. The PLS 
factors are thus expected to give better prediction of 
the trait than the one with latent traits from PCA. 
However, with PLS, information about other milk com-
position traits not included in the calibration may not 
be retained in the factor scores, as also indicated by 
Dagnachew et al. (2013b) and Bonfatti et al. (2017). 
The expected better prediction of traits with PLS 
model was confirmed. For example, prediction accuracy 
of DP was much lower than the IP approach when PCA 
was used (Belay et al., 2015) compared with when PLS 
was used for spectral dimension reduction (Table 8). 
One possible reason for this could be that the retained 
8 latent traits from PCA, which explained 99% of the 
total spectral variation (Belay et al., 2015), did not 
contain as much relevant information about the blood 
BHB as those 5 PLS factors used in our study did. 
Dagnachew et al. (2013b) also used 8 latent traits to 
extract genetic component of the FT-MIR spectra and 
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indicated the possible existence of relevant information 
in the remaining 1% of the total spectral variation. 
Interestingly, Bonfatti et al. (2017) also showed that a 
considerable amount of information needed to predict 
phenotypes is lost when using 99% of original spectral 
variability, and loss of such information could affect 
prediction of EBV from spectral information. Those 
authors further showed that information left in 0.01% 
of original spectral variability is fundamental for pre-
diction of some of the traits included.

Several possible reasons exist for the slightly lower 
prediction accuracy in the DP compared with the IP 
approach found in our study. It could be due to the low 
genetic correlations observed among the latent traits 
(factor scores). Expected improvement in accuracy of 
prediction from multivariate analysis would be due 
to its ability to account for the covariance among the 
traits. When the covariance or correlation among the 
traits are very low, multivariate analysis might not per-
form better than the univariate one. Any errors in the 
covariance estimation or the modeling of the observa-
tions may also have reduced the accuracy. The genetic 
and environmental parameters used in BLUP analysis 
are estimates and possibly contain errors. Use of esti-
mates with errors in multivariate analysis would affect 
accuracy of prediction (Schaeffer, 1984; Thompson and 
Meyer, 1986). Response to selection, which is directly 
proportional to accuracy of predicted breeding values, 
highly depends on the precision of the estimates and the 
applied variance components (Villanueva et al., 1993). 
Under such conditions, univariate models can provide 
more precise estimates than multitrait models. Accura-
cies will also depend on the relevance of the models 
used, and whether or not anything can be gained by 
using the mixed model.

Lack of enough information about contemporary 
cows in the validation data set with blood BHB sam-
ples could be another major contributing factor to the 
poor performance observed in multivariate analysis. If 
no structure of the random effects of the model exists in 
the data to be predicted, there may be no benefit from 
using a multivariate mixed model. The number of cows 
in the validation set were small and each cow had only 
1 measured blood BHB; hence, the cows in validation 
set could possibly be not well connected to each other 
genetically. In addition, almost all of the HTD classes 
contained only 1 cow, which might impose difficulty in 
separating herd effect from genetic effect of cows and 
contribute to low accuracy in the multivariate analysis. 
With FT-MIR spectra, for more contemporary cows 
in the validation, more info that is multivariate could 
have been available. An attempt was made to merge 
the validation set with data set 2 to increase amount 
of information in the validation set (such as increasing 

number cows in the HTD classes); however, as these 2 
data sets were collected in different years, they had only 
1 cow in common. Hence, we failed to use information 
in both data sets for better accuracy in multiple model.

In our study, correlations of blood BHB with milk fat 
(0.35), protein (−0.06), and lactose (−0.20) contents 
were low to medium, which might have contributed to 
the lower accuracy in DP. These milk contents were 
prediction from spectra by Foss calibration. For exam-
ple, Bonfatti et al. (2017) found a positive relationship 
between rank correlation and correlations of traits of 
interest with major sources of spectral variation (such 
as milk protein, fat, and lactose contents), and that 
variability of the traits of interest is better explained 
when they are highly correlated with the major sources 
of spectral variation. In addition, for traits more cor-
related with the major sources of spectral variation, 
the DP approach is more likely to be effective (Bonfatti 
et al., 2017). Those authors indicated that the better 
accuracy of EBV from the DP than from the IP that 
Dagnachew et al. (2013b) reported would be due to 
large contribution of milk protein, fat, and lactose con-
tents to spectral variation.

In addition, R2
cv of the calibration models could 

affect accuracy of the DP approach. For example, in 
Dagnachew et al. (2013b), R2

cv was very high (>0.94) 
and the multivariate model performed better than the 
univariate one, possibly as a consequence of this. In 
the current study, the predictive ability of the calibra-
tion models was much lower (explained less than 45% 
of the variation in the blood BHB, Table 3), and the 
multivariate models performed slightly inferior to the 
univariate ones (Table 8). From these 2 studies, we 
can see that accuracy of predicting breeding values or 
phenotype seems to depend on predictive ability of the 
calibration model. This could lead us to the conclusion 
that, for DP to work better, there should be a strong 
relationship between the trait of interest and spectral 
variables. In other words, we should first be sure that 
the univariate method (IP) is working well with the 
data on hand before embarking on the DP method. Un-
der such conditions, where the univariate method was 
found to be working, the multivariate method might 
perform better, but this should be an assumption that 
needs to be made. Bonfatti et al. (2017) reported that 
rank correlations between EBV obtained by the IP and 
the DP approach are not related to the accuracy the 
calibration equations; however, the relationships be-
tween accuracies of EBV obtained by the 2 approaches 
and accuracy of calibration equations are not well es-
tablished.

Both the IP and DP approaches had lower predict-
ability for the phenotype than the predictability of equa-
tions developed based on the classical PLS regression. 
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This indicated that inclusion of cows’ circumstances 
at a given test day into the IP or DP model did not 
improve prediction of blood BHB from milk FT-MIR 
spectra. Therefore, for phenotypic prediction, the clas-
sical PLS regression-based prediction equation seems 
to be the method of choice. In our study, information 
related to the cow was added into the models after PLS 
regression or in the mixed model analysis of predicted 
trait or factor scores. On the other hand, it has been 
shown that it is possible to directly add the informa-
tion to the spectra before PLS. For example, Vanlierde 
et al. (2015) included DIM directly into spectra using 
Legendre polynomial to predict methane, and predic-
tion equations developed in such a way were shown to 
be more robust than equations that did not integrate 
the DIM information. Similarly, Shetty et al. (2017) 
used milk yield and live weight as predictors along with 
spectral variables to predict residual feed intake and 
DMI. They showed improvement in accuracy of model 
that included spectral information along with milk 
yield and live weight as predictors for DMI. Therefore, 
inclusion of cows’ circumstances directly into spectra 
before PLS or using them as predictors along with 
spectral information during PLS can be an alternative 
to improve prediction accuracy for blood BHB from 
milk FT-MIR spectra.

CONCLUSIONS

In this study, predictive ability of the DP and IP 
approaches were evaluated using measured blood BHB 
and milk spectra-predicted blood BHB. A calibration 
and an independent validation data set was used. Ac-
curacy of prediction with the 2 approaches were simi-
lar. Slightly better prediction of BHB was found when 
univariate variance structure was used (IP) than when 
multitrait covariance structures were used (DP) in 
mixed models. Prediction accuracies of the developed 
calibration models were also low, which could partly be 
due to a weak relationship between milk spectra and 
blood BHB. Blood BHB log-transformation, spectral 
preprocessing, and use of extreme blood BHB values 
have improved prediction accuracy of the calibration 
models and the 2 approaches. Conclusive remarks on 
the importance of keeping spectral data in a multivari-
ate form for prediction of phenotype and model com-
ponents (EBV, HTD, and so on) may be found in data 
sets where the trait of interest has strong relationships 
with spectral variables.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Polish Federa-
tion of Cattle Breeders and Dairy Farmers (Warsaw, 

Poland) for providing data for this work. The authors 
acknowledge especially K. Słoniewski (Polish Federation 
of Cattle Breeders and Dairy Farmers) for transferring 
the data and providing explanation on the data when 
needed. The authors also thank Artur and Wojciech 
Jagusiak (University of Agriculture in Krakow, Poland) 
for helping us to understand the data and construct the 
pedigree file, respectively. The authors also acknowl-
edge Achim Kohler and Valeria Tafintseva (Norwegian 
University of Life Sciences) for their help in model 
calibration.

REFERENCES

Afseth, N. K., H. Martens, Å. Randby, L. Gidskehaug, B. Narum, K. 
Jørgensen, S. Lien, and A. Kohler. 2010. Predicting the fatty acid 
composition of milk: A comparison of two Fourier transform infra-
red sampling techniques. Appl. Spectrosc. 64:700–707.

Andersen, S. K., P. W. Hansen, and H. V. Andersen. 2002. Vibrational 
spectroscopy in the analysis of dairy products and wine. Accessed 
Jul. 14, 2016. www.foss.dk/~/media/B4E6F6119A7548F4B380C-
3E6C958DBD1.ashx.

Andersson, L. 1988. Subclinical ketosis in dairy cows. Vet. Clin. North 
Am. Food Anim. Pract. 4:233–251.

Belay, T. K., K. Słoniewski, Z. Kowalski, and T. Adnoy. 2015. Pre-
dicting ketosis from milk mid infrared (MIR) spectra using mul-
tivariate mixed models. In Proc. Third DairyCare Conference, 
Croatia, Zadar. Accessed Jun. 20, 2016. www.dairycareaction.org/
uploads/2/4/2/6/24266896/belay_tuesday.pdf.

Bonfatti, V., D. Vicario, L. Degano, A. Lugo, and P. Carnier. 2017. 
Comparison between direct and indirect methods for exploiting 
Fourier transform spectral information in estimation of breeding 
values for fine composition and technological properties of milk. J. 
Dairy Sci. 100:2057–2067.

Broutin, P. 2015. Blood BHB determination by mid infrared spec-
troscopy for the monitoring of the cows metabolic activity and 
detection of subclinical ketosis—A new approach. ICAR Techni-
cal Workshop. Accessed Sep. 20, 2016. www.icar.org/wp-content/
uploads/2015/09/4-Pierr.pdf.

Broutin, P. 2016. Determination of the concentration of a component 
in one fluid of an animal by spectroscopic analysis of another flu-
id. United States, Bentley Instrument (Lille, FR) 20160238520. 
Accessed Oct. 12, 2016. http://www.freepatentsonline.com/
y2016/0238520.html.

Dagnachew, B. S., A. Kohler, and T. Ådnøy. 2013a. Genetic and en-
vironmental information in goat milk Fourier transform infrared 
spectra. J. Dairy Sci. 96:3973–3985.

Dagnachew, B. S., T. H. E. Meuwissen, and T. Ådnøy. 2013b. Ge-
netic components of milk Fourier-transform infrared spectra used 
to predict breeding values for milk composition and quality traits 
in dairy goats. J. Dairy Sci. 96:5933–5942.

Dardenne, P., J. Fernandez, O. Baeten, and B. Lecler. 2015. Untar-
geted contaminant detection by IR. Wallon Agricultural Research 
Centre. Accessed Dec. 15, 2016. http://www.namur2015.be/docs/
pdf/Session%205%20-%202%20-%20Dardenne.pdf.

de Roos, A., H. Van Den Bijgaart, J. Hørlyk, and G. De Jong. 2007. 
Screening for subclinical ketosis in dairy cattle by Fourier trans-
form infrared spectrometry. J. Dairy Sci. 90:1761–1766.

Denis-Robichaud, J., J. Dubuc, D. Lefebvre, and L. DesCôteaux. 
2014. Accuracy of milk ketone bodies from flow-injection analysis 
for the diagnosis of hyperketonemia in dairy cows. J. Dairy Sci. 
97:3364–3370.

Duffield, T. F., K. Lissemore, B. McBride, and K. Leslie. 2009. Impact 
of hyperketonemia in early lactation dairy cows on health and 
production. J. Dairy Sci. 92:571–580.

Duffield, T. F., D. F. Kelton, K. E. Leslie, K. D. Lissemore, and J. 
H. Lumsden. 1997. Use of test day milk fat and milk protein to 

http://www.freepatentsonline.com/y2016/0238520.html
www.foss.dk/~/media/B4E6F6119A7548F4B380C3E6C958DBD1.ashx
http://www.namur2015.be/docs/pdf/Session%205%20-%202%20-%20Dardenne.pdf
www.foss.dk/~/media/B4E6F6119A7548F4B380C3E6C958DBD1.ashx
www.dairycareaction.org/uploads/2/4/2/6/24266896/belay_tuesday.pdf
www.dairycareaction.org/uploads/2/4/2/6/24266896/belay_tuesday.pdf
http://www.namur2015.be/docs/pdf/Session%205%20-%202%20-%20Dardenne.pdf
http://www.icar.org/wp-content/uploads/2015/09/4-Pierr.pdf
http://www.freepatentsonline.com/y2016/0238520.html
http://www.icar.org/wp-content/uploads/2015/09/4-Pierr.pdf


Journal of Dairy Science Vol. 100 No. 8, 2017

PREDICTING BLOOD β-HYDROXYBUTYRATE USING A MIXED MODEL 15

detect subclinical ketosis in dairy cattle in Ontario. Can. Vet. J. 
38:713–718.

Enjalbert, F., M. Nicot, C. Bayourthe, and R. Moncoulon. 2001. Ke-
tone bodies in milk and blood of dairy cows: Relationship between 
concentrations and utilization for detection of subclinical ketosis. 
J. Dairy Sci. 84:583–589.

Friedrichs, P., C. Bastin, F. Dehareng, B. Wickham, and X. Massart. 
2015. Final OptiMIR Scientific and Expert Meeting: From milk 
analysis to advisory tools. Palais des Congrès, Namur, Belgium, 
16-17 April 2015. Biotechnol. Agron. Soc. Environ. 19:97–124.

Geishauser, T., K. Leslie, J. Tenhag, and A. Bashiri. 2000. Evaluation 
of eight cow-side ketone tests in milk for detection of subclinical 
ketosis in dairy cows. J. Dairy Sci. 83:296–299.

Gilmour, A. R., B. Gogel, B. Cullis, R. Thompson, and D. Butler. 
2009. ASReml user guide release 3.0. VSN International Ltd., 
Hemel Hempstead, UK.

Grelet, C., C. Bastin, M. Gelé, J.-B. Davière, M. Johan, A. Werner, 
R. Reding, J. F. Pierna, F. Colinet, and P. Dardenne. 2016. Devel-
opment of Fourier transform mid-infrared calibrations to predict 
acetone, β-hydroxybutyrate, and citrate contents in bovine milk 
through a European dairy network. J. Dairy Sci. 99:4816–4825.

Iñón, F. A., S. Garrigues, and M. de la Guardia. 2004. Nutritional 
parameters of commercially available milk samples by FTIR and 
chemometric techniques. Anal. Chim. Acta 513:401–412.

LeBlanc, S. J., K. Leslie, and T. Duffield. 2005. Metabolic predictors 
of displaced abomasum in dairy cattle. J. Dairy Sci. 88:159–170.

Madsen, P., and J. Jensen. 2008. DMU: A User’s Guide. A package for 
analysing multivariate mixed models. Version 6, release 4.7. DJF, 
Foulum, Denmark.

Mäntysaari, E. 1999. Derivation of Multiple Trait Reduced Random 
Regression (RR) Model for the First Lactation Test Day Records 
of Milk, Protein and Fat. Page 8 in 50th Annual Meeting. Europ. 
Ass. Anim. Prod. Mimeo. Zurich, Switzerland, Aug. 23–26, 1999.

McArt, J. A., D. Nydam, and G. Oetzel. 2012. Epidemiology of 
subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 
95:5056–5066.

Mevik, B.-H., and R. Wehrens. 2007. The pls package: Principal com-
ponent and partial least squares regression in R. J. Stat. Softw. 
18:1–24.

Meyer, K. 2007. WOMBAT—A tool for mixed model analyses in 
quantitative genetics by restricted maximum likelihood (REML). 
J. Zhejiang Univ. Sci. B 8:815–821.

Oetzel, G. R. 2004. Monitoring and testing dairy herds for metabolic 
disease. Vet. Clin. North Am. Food Anim. Pract. 20:651–674.

R Core Team. 2016. R: A language and environment for statistical 
computing R Foundation for Statistical Computing, Vienna, Aus-
tria. https://www.R-project.org/.

Rutten, M. J., H. Bovenhuis, K. Hettinga, H. van Valenberg, and J. 
Van Arendonk. 2009. Predicting bovine milk fat composition using 
infrared spectroscopy based on milk samples collected in winter 
and summer. J. Dairy Sci. 92:6202–6209.

Schaeffer, L. 1984. Sire and cow evaluation under multiple trait mod-
els. J. Dairy Sci. 67:1567–1580.

Seifi, H. A., S. J. LeBlanc, K. E. Leslie, and T. F. Duffield. 2011. 
Metabolic predictors of post-partum disease and culling risk in 
dairy cattle. Vet. J. 188:216–220.

Shetty, N., P. Løvendahl, M. Lund, and A. Buitenhuis. 2017. Predic-
tion and validation of residual feed intake and dry matter intake 
in Danish lactating dairy cows using mid-infrared spectroscopy of 
milk. J. Dairy Sci. 100:253–264.

Soyeurt, H., P. Dardenne, F. Dehareng, G. Lognay, D. Veselko, M. 
Marlier, C. Bertozzi, P. Mayeres, and N. Gengler. 2006. Estimating 
fatty acid content in cow milk using mid-infrared spectrometry. J. 
Dairy Sci. 89:3690–3695.

Soyeurt, H., I. Misztal, and N. Gengler. 2010. Genetic variability of 
milk components based on milk infrared spectral data. J. Dairy 
Sci. 93:1722–1728.

Suthar, V. S., J. Canelas-Raposo, A. Deniz, and W. Heuwieser. 2013. 
Prevalence of subclinical ketosis and relationships with postpar-
tum diseases in European dairy cows. J. Dairy Sci. 96:2925–2938.

Thompson, R., and K. Meyer. 1986. A review of theoretical aspects in 
the estimation of breeding values for multi-trait selection. Livest. 
Prod. Sci. 15:299–313.

van der Drift, S., R. Jorritsma, J. Schonewille, H. Knijn, and J. 
Stegeman. 2012. Routine detection of hyperketonemia in dairy 
cows using Fourier transform infrared spectroscopy analysis of 
β-hydroxybutyrate and acetone in milk in combination with test-
day information. J. Dairy Sci. 95:4886–4898.

Vanlierde, A., M.-L. Vanrobays, F. Dehareng, E. Froidmont, H. Soy-
eurt, S. McParland, E. Lewis, M. H. Deighton, F. Grandl, and 
M. Kreuzer. 2015. Hot topic: Innovative lactation-stage-dependent 
prediction of methane emissions from milk mid-infrared spectra. J. 
Dairy Sci. 98:5740–5747.

Villanueva, B., N. Wray, and R. Thompson. 1993. Prediction of as-
ymptotic rates of response from selection on multiple traits using 
univariate and multivariate best linear unbiased predictors. Anim. 
Sci. 57:1–13.

Walsh, R. B., J. Walton, D. Kelton, S. LeBlanc, K. Leslie, and T. 
Duffield. 2007. The effect of subclinical ketosis in early lactation 
on reproductive performance of postpartum dairy cows. J. Dairy 
Sci. 90:2788–2796.

https://www.R-project.org/




Genetic parameters of blood β-hydroxybutrate and clinical ketosis, and their 

 associations with milk production traits in Norwegian Red cows 

T.K. Belay, M. Svendsen, Z.M. Kowalski and T. Ådnøy 

Journal of Dairy Science (In Press) 

 Paper III 





1

J. Dairy Sci. 100:1–14
https://doi.org/10.3168/jds.2016-12458
© 2017, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

ABSTRACT

The aim of this study was to estimate genetic pa-
rameters for blood β-hydroxybutyrate (BHB) predicted 
from milk spectra and for clinical ketosis (KET), and 
to examine genetic association of blood BHB with 
KET and milk production traits (milk, fat, protein, 
and lactose yields, and milk fat, protein, and lactose 
contents). Data on milk traits, KET, and milk spectra 
were obtained from the Norwegian Dairy Herd Record-
ing System with legal permission from TINE SA (Ås, 
Norway), the Norwegian Dairy Association that man-
ages the central database. Data recorded up to 120 d 
after calving were considered. Blood BHB was predicted 
from milk spectra using a calibration model developed 
based on milk spectra and blood BHB measured in Pol-
ish dairy cows. The predicted blood BHB was grouped 
based on days in milk into 4 groups and each group was 
considered as a trait. The milk components for test-
day milk samples were obtained by Fourier transform 
mid-infrared spectrometer with previously developed 
calibration equations from Foss (Hillerød, Denmark). 
Veterinarian-recorded KET data within 15 d before 
calving to 120 d after calving were used. Data were 
analyzed using univariate or bivariate linear animal 
models. Heritability estimates for predicted blood BHB 
at different stages of lactation were moderate, ranging 
from 0.250 to 0.365. Heritability estimate for KET from 
univariate analysis was 0.078, and the corresponding 
average estimate from bivariate analysis with BHB or 
milk production traits was 0.002. Genetic correlations 
between BHB traits were higher for adjacent lactation 
intervals and decreased as intervals were further apart. 
Predicted blood BHB at first test day was moderately 
genetically correlated with KET (0.469) and milk traits 
(ranged from −0.367 with protein content to 0.277 with 

milk yield), except for milk fat content from across lac-
tation stages that had near zero genetic correlation with 
BHB (0.033). These genetic correlations indicate that 
a lower BHB is genetically associated with higher milk 
protein and lactose contents, but with lower yields of 
milk, fat, protein, and lactose, and with lower frequency 
of KET. Estimates of genetic correlation of KET with 
milk production traits were from −0.333 (with protein 
content) to 0.178 (with milk yield). Blood BHB can 
routinely be predicted from milk spectra analyzed from 
test-day milk samples, and thereby provides a practical 
alternative for selecting cows with lower susceptibility 
to ketosis, even though the correlations are moderate.
Key words: β-hydroxybutyrate, clinical ketosis, milk 
trait, genetic parameter

INTRODUCTION

Clinical ketosis (KET) is one of the most frequent 
metabolic diseases affecting dairy cattle. In a recent 
literature review, Pryce et al. (2016) found a median 
ketosis frequency of 3.3% with a range from 0.24% in 
first lactation up to 17.2% in third lactation. Those 
authors reported a median incident rate of 10.25% for 
Norwegian Red (NRF) cows based on 2 previous stud-
ies. The frequency of KET in NRF cows has decreased 
markedly since the mid-1980s, from 10.6% in 1987 to 
4.3% in 1998 in first-lactation cows (Heringstad et 
al., 2005) and from 23.88% in 1985 to 4.56% in 2005 
(Østerås et al., 2007).

In Norway, health data including KET have been re-
corded on an individual cow basis since 1978 based on 
veterinarian treatments (Heringstad et al., 2000). Many 
metabolic events, including ketosis, are subclinical by 
nature, and information on subclinical cases is mostly 
missing in records because it is difficult to detect (Pryce 
et al., 2016). Subclinical cases are assumed to receive 
less veterinary intervention, thus leading to underes-
timation of the incidence in systems that depend on 
veterinary data (Schwarzenbacher et al., 2010). Failure 
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to detect subclinical events can be expensive to dairy 
producers, as it negatively affects overall performance 
of cows (Duffield et al., 2009); therefore, systems to 
detect ketosis at a subclinical stage in addition to the 
clinical one would be useful.

Previous genetic studies of ketosis were mostly based 
on clinical records. Heritability estimates for KET re-
ported in those studies ranged from 0.01 to 0.16, as sum-
marized in the literature review by Pryce et al. (2016). 
Heritability estimates for KET may be influenced by the 
subjective nature of its diagnosis and the low frequency 
of KET compared with subclinical ketosis in cows (van 
der Drift et al., 2012b). Moreover, response to selection 
in KET is hampered by low reliabilities often associated 
with the low heritability (Pryce et al., 2016). Pryce et 
al. (2016) suggested that information from correlated 
traits or from subclinical diagnosis could be used to 
improve the accuracy of predicted breeding values and 
increase the selection response. Phenotypes derived 
from routinely collected data through milk recording, 
such as fat-to-protein ratio and fatty acid profiles, are 
promising ketosis indicators (van Knegsel et al., 2010). 
Phenotypes more closely associated with ketosis, such 
as BHB and acetone in milk (Pryce et al., 2016), may 
also be valuable. Concentration of BHB in blood has 
been used as a gold standard indicator of ketosis, and 
thresholds of 1.2 (van der Drift et al., 2012a) or 1.4 
mmol/L (Denis-Robichaud et al., 2014) have been used 
to identify cows with subclinical ketosis. However, the 
gold standard method does not allow routine testing of 
all animals at risk due to practical limitations, such as 
difficulty in blood sampling (especially for farmers) and 
capacity for analyzing many blood samples at a time.

Routine measurements of ketone bodies in milk can 
be done by Fourier transform mid-infrared (FT-MIR) 
spectrometer analysis of milk samples at test-days (de 
Roos et al., 2007; van der Drift et al., 2012a; Grelet et 
al., 2016). Those previous studies agreed that FT-MIR 
predicted milk ketone bodies adequately and that FT-
MIR might be useful for ketosis-screening purposes. In 
addition to their routine availability, indicator traits 
(e.g., milk or blood BHB) have moderate heritability 
(0.07 to 0.40; Oikonomou et al., 2008; van der Drift 
et al., 2012b; Jamrozik et al., 2016). Milk BHB has 
also moderate genetic correlations with KET, with es-
timates ranging from 0.25 to 0.75 (Koeck et al., 2014, 
2016; Jamrozik et al., 2016); hence, indirect selection 
for ketosis using BHB as an indicator trait should result 
in better genetic gain than direct selection for KET. 
For example, Koeck et al. (2016) estimated about 65% 
more selection response from indirect selection for the 
indicator trait (BHB) than direct selection for ketosis.

Ketone bodies have not routinely been measured 
by FT-MIR spectrometer analysis of milk samples at 

test days in Norway. Given the subclinical nature of 
ketosis, the potential of FT-MIR for routine prediction 
of ketosis indicators, and the moderate heritability 
and genetic correlations of the indicator traits with 
KET, it is important to assess the potential of FT-
MIR predicted phenotypes (e.g., BHB) for their use 
in dairy farm management and breeding programs. 
For use and implementation of blood BHB predicted 
from milk spectra in dairy cattle breeding programs, 
knowledge of genetic parameters and their genetic as-
sociations with clinical events and other traits in the 
breeding goal is essential. Few reports exist on genetic 
studies of plasma BHB measured by reference methods 
(Oikonomou et al., 2008; van der Drift et al., 2012b); 
however, there is no report on genetic parameters and 
associations of blood BHB predicted from milk spectra 
with KET and milk production traits for cows in early 
lactation. Therefore, the objective of our study were 
(1) to describe the phenotype of predicted blood BHB 
and to examine its phenotypic associations with KET 
and milk production traits; (2) to estimate genetic pa-
rameters for the predicted blood BHB traits and KET; 
and (3) to determine genetic associations between the 
predicted blood BHB and KET and milk production 
traits (milk, fat, protein, and lactose yields, and milk 
fat, protein, and lactose contents) in NRF cows.

MATERIALS AND METHODS

Data and Data Edits

We used 3 data sets, referred to as data set 1, data 
set 2, and data set 3.

Data Set 1. This data set consisted of test-day pre-
dicted blood BHB and milk production traits. Over 5 
million FT-MIR spectra from milk test-day samples re-
corded from February 2007 to June 2014 were obtained 
from the Norwegian dairy herd recording system. The 
milk spectra were from test-day milk samples analyzed 
by FT-MIR spectrometer (Milkoscan Combifoss 6500, 
Foss Electric, Hillerød, Denmark). Blood BHB was 
predicted from milk spectra of the NRF cows with a 
previously developed calibration model for blood BHB 
from milk spectra and reference blood BHB of Polish 
dairy cows (Belay et al., 2017) by permission from our 
Polish collaborators (Polish Federation of Cattle Breed-
ers and Dairy Farmers, Warsaw, Poland). The data set 
consisted of 826 Polish dairy cows (1 observation per 
cow), from 5 to 65 DIM, with measured blood BHB and 
milk spectra. It was randomly divided into a calibra-
tion (n = 496) and a validation (n = 330) set. The 
calibration model was developed by partial least square 
(PLS) regression, internally cross-validated using 10 
random segments, and externally validated using the 
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validation set. Optimum number of PLS factors (in 
this case 6 factors) were determined based on first local 
minimum value in root mean squared error of predic-
tion. The PLS regression coefficients were applied on 
the Norwegian milk spectra to predict blood BHB. The 
predicted blood BHB was merged with milk produc-
tion traits and other farm and cow information. Milk 
production traits, such as milk fat, protein, and lactose 
contents, were also predictions from the same spectra 
with machine integrated operational calibrations for 
the respective traits (Foss Analytical A/S, Hillerød, 
Denmark).

The predicted blood BHB and milk production 
traits were kept for cows in 11 to 120 DIM. Cows with 
unknown sires or dams, herds with less than 200 test 
day records, and sires with less than 25 daughters were 
excluded from further analysis. Only cows with age at 
calving of 18 to 40, 30 to 51, 42 to 63, and 52 to 74 
mo in the first, second, third, and fourth lactations, 
respectively, were considered. To get a reasonable num-
ber of records for age classes at peripheries in each age 
category, the first and last few age classes were merged 
into the next and preceding age class, respectively. 
Number of records per herd test date (HTD) were kept 
to at least 2. Twelve observations with extreme values 
(potential outliers) were also removed from the data 

set. The final edited data set contained 1,227,138 test 
day records from 324,920 cows that were progeny of 
1,427 sires and kept in 3,539 herds. Statistical analyses 
were carried out for the BHB across lactation number 
in early lactation at periods of 11 to 30 (BHB1), 31 
to 60 (BHB2), 61 to 90 (BHB3), and 91 to 120 DIM 
(BHB4), and across all periods of early lactation, 11 to 
120 DIM (BHBall). Descriptive statistics of BHB are 
presented in Table 1. Summary of descriptive statistics 
for the milk production traits across the lactation stages 
considered are shown in Table 2. The BHB was found 
to be reasonably normally distributed (Figure 1) and 
not log-transformed for genetic analysis. A pedigree 
file containing animals with records and their ances-
tors was also available with a total number of 671,849 
individuals.

Data Set 2. This data set contained information on 
KET. It consisted of 1,742,421 observations on cows 
in lactation 1 to 4 that gave birth from January 2007 
through December 2015. Absence or presence of KET 
was scored as 0 or 1, respectively, based on whether or 
not the cow received veterinary treatment between 15 d 
before calving to 120 d after calving. For genetic analy-
sis, animals with no sire or dam information and cows 
with less than 2 records were excluded. The final edited 
data set consisted of 1,054,381 records from 357,474 
cows that were progeny of 2,455 sires and 282,657 dams 
and kept in 12,533 herds. Statistical analyses were 
carried out for the KET across lactation numbers. A 
summary of descriptive statistics of the analyzed data 
set is presented in Table 2. A pedigree file for animals 
with records and their ancestors was also available and 
contained 886,401 individuals.

Data Set 3. The unedited data set of predicted 
blood BHB and milk production traits was merged with 
the unedited ketosis data set, keeping only cows with 
information on BHB. The merged data (data set 3) 
contained 1,520,446 records from 430,389 cows kept in 
11,697 herds. Bivariate genetic analysis of such a large 
data set was not feasible as the number of elements in 
mixed model equations were beyond the limit of the 
program used for REML estimates. Cows with no sire 
or dam information, small herds (with <225 records 

Table 1. Number of records and summary statistics of data set 1 for blood BHB predicted from milk spectra 
at 11 to 30 (BHB1), 31 to 60 (BHB2), 61 to 90 (BHB3), and 91 to 120 DIM (BHB4) and across early lactation 
stage (11–120 DIM; BHBall)

Trait
Period,  
DIM

No. of  
records

Mean, 
mmol/L

SD, 
mmol/L

Minimum, 
mmol/L

Maximum, 
mmol/L

BHB1 11–30 241,543 1.242 0.337 −1.919 6.133
BHB2 31–60 350,560 1.209 0.293 −4.047 6.317
BHB3 61–90 327,462 1.170 0.266 −1.163 6.050
BHB4 91–120 307,573 1.157 0.256 −3.264 4.211
BHBall 11–120 1,227,138 1.192 0.289 −4.047 6.317

Figure 1. Distribution (%) of blood BHB concentrations (mmol/L) 
predicted from milk spectra of Norwegian Red cows in data set 1.
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over all lactations), and sires with less than 30 daugh-
ters were excluded. The final edited merged data set 
contained 717,915 records from 179,691 cows that were 
a progeny of 1,169 sires and 135,985 dams and kept in 
2,828 herds. The pedigree file of animals with records 
and their ancestors contained 469,672 individuals.

Models

Data were analyzed with mixed linear animal models 
using the REML method with parameter expanded 
and average information algorithm (PX-AI) of the 
WOMBAT software (Meyer, 2007) or the DMU pack-
age (Madsen and Jensen, 2008). Univariate analyses of 
BHB traits, bivariate analyses among BHB traits, and 
BHB traits with milk production traits were done using 
WOMBAT (Meyer, 2007). Bivariate analysis of KET 
with either BHB or milk production traits were done 
using the DMU package (Madsen and Jensen, 2008), 
as DMU allows to fit separate models for each trait in 
bivariate analyses.

Genetic Parameters for Blood BHB. The test 
day-predicted blood BHB records were considered as 
repeated measurement of the same trait across and 
within lactations. We assumed constant genetic vari-
ance across lactation stages and unity genetic correla-
tions between test day records. Hence, predicted blood 
BHB across stages of early lactation (11–120 DIM) 
was analyzed with a single-trait repeatability test day 
animal model. The test day records of BHB were also 
grouped into adjacent DIM intervals, and each group 
was treated as a distinct trait and analyzed with single- 
or multiple-trait repeatability test day animal models. 
Single- and 2-trait repeatability test day animal models 
were applied to BHB at 11 to 30, 31 to 60, 61 to 90, and 
91 to 120 DIM using the data set 1. In matrix notation, 
the models were as follows

	 y = Xb + Za + Wc + Hd + e,	 [1]

where y is the vector of predicted blood BHB at differ-
ent DIM intervals or across DIM; b is a vector of fixed 

effects of region × year × month of test day, region × 
parity × DIM, herd × year of test day, parity × age 
at calving, and housing × milking system; a is a vector 
of random animal additive genetic effects; c is a vec-
tor of random permanent environmental (PE) effects 
due to the cow; d is a vector of random HTD effects; 
e is vector of random residual effects; and X, Z, W, 
and H are design matrices that relate records to the 
corresponding effects. Region had 9 levels; DIM was 
defined in 3 (or 11) classes of 10 d each. Interaction 
of housing type (tiestall or loose housing) and milking 
system (robot milking or manual milking: bucket, pipe, 
and milking parlor) was also modeled. All these fixed 
effects significantly (P < 0.001) affected the traits.

The assumed (co)variance structure in the single-
trait analysis was var ,a a( ) = σ2A  var ,p pe( ) = σ2 I  
var ,d d( ) = σ2I  and var ,e e( ) = σ2I  where σa

2 was additive 
genetic variance, σpe

2  was PE variance, σd
2 was HTD 

variance, and σe
2  was residual variance. The I were 

identity matrices of appropriate sizes and A was the 
additive relationship matrix.

For 2-trait analyses, the following covariance struc-
tures were assumed for the random effect vectors in-
cluded in the models:

	 var
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e
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, 	

where G was the genetic covariance matrix, P was the 
PE covariance matrix, J was the covariance matrix for 
HTD effects, and R was the residual covariance matrix. 
All covariance matrices were 2 × 2; I and A were as 
defined above; and ⊗ was the Kronecker product.

Genetic Parameters for KET. A single-trait lin-
ear repeatability animal model was applied on data set 
2 to estimate genetic parameters for KET. Threshold 
models are believed to be more appropriate to analyze 
binary traits, at least in theory. In previous studies on 

Table 2. Number of records and summary statistics for milk production traits based on data set 1 and for 
clinical ketosis as binary trait (0 = healthy, 1 = treated) across lactations based on data set 2

Trait No. of records Mean SD Minimum Maximum

Milk yield, kg 1,227,138 29.215 6.992 5 50
Fat yield, kg 1,227,138 1.178 0.351 0.094 3.440
Protein yield, kg 1,227,138 0.945 0.219 0.127 2.864
Lactose yield, kg 1,227,138 1.385 0.333 0.090 2.625
Fat, % 1,227,138 4.050 0.789 1.750 7.000
Protein, % 1,227,138 3.250 0.254 1.350 6.980
Lactose, % 1,227,138 4.743 0.180 1.100 5.600
Ketosis, % 1,054,381 2.040 1.414 0 1
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NRF health data, multivariate threshold models were 
used (Heringstad et al., 2005); however, mixed linear 
models were applied in the current study. In their lit-
erature review, Pryce et al. (2016) indicated that linear 
models have performed equally well and are comparable 
to results from threshold models; several recent studies 
have also used linear models for ketosis (Koeck et al., 
2014, 2016; Jamrozik et al., 2016). Moreover, genetic 
correlations are reported to be correct for binary traits 
using linear models (Negussie et al., 2008). In matrix 
notation, the following linear animal model was applied 
to the binary ketosis trait:

	 ket = Xb + Za + Wc + Hy + e,	 [2]

where ket was a vector of ketosis coded as 0 or 1 (per 
cow and lactation); b was a vector of systematic effects, 
including region × year× month of calving, parity × 
age at calving, and housing × milking system; a was a 
vector of random animal additive genetic effects; c was 
a vector of cows’ random PE effects; y was a vector 
of random herd-year-month (HY) of calving effects; e 
was vector of random residual effects; and X, Z, W, 
and H were design matrices that relate records to the 
corresponding effects. Classes for age at calving were 
formed in the same way as for equation [1]. Assump-
tions of variance structures were also the same as in 
equation [1] for the single-trait analysis.

Genetic Associations Among BHB, KET, 
and Milk Production Traits. For bivariate analysis 
of BHB traits with milk production traits, the same 
model as in equation [1] was applied using data set 1. 
Bivariate analyses of BHB traits or milk production 
traits with KET were done using data set 3. In the 
bivariate analysis of BHB traits or milk production 
traits with KET, 2 models were fitted: equation [1] for 
BHB traits or milk production traits, and equation [2] 
for KET using the AI-REML procedure in the DMU 
package (Madsen and Jensen, 2008).

RESULTS AND DISCUSSION

Phenotypic Description of BHB

Concentrations of blood BHB predicted from milk 
spectra ranged from −4.047 to 6.317 mmol/L, with an 
average of 1.192 mmol/L and a standard deviation of 
0.289 mmol/L (Table 1). This was slightly higher than 
reference blood BHB values presented by Denis-Robi-
chaud et al. (2014; average of 1.14 mmol/L, with values 
ranging from 0.2 to 6.3) and Belay et al. (2017), who 
found an average of 0.760 mmol/L with values ranging 
from 0.1 to 6.3 for Polish blood sample data. These 
values were also higher than predicted blood BHB from 

Polish dairy cows with the same calibration model as 
that used in the current study (Belay et al., 2017; aver-
age of 0.770 mmol/L, with values ranging from 0.492 
to 3.95 mmol/L). Higher predicted blood BHB values 
in the current study than our previous study might 
have resulted from differences in spectral profile due 
to management (e.g., feeding), breed, or equipment 
used to produce spectra (Milkoscan Combifoss 6500 
vs. MilkoScan FT6000). Unlike the reference methods, 
FT-MIR spectroscopy analysis may produce negative 
values; they account for about 0.004% of the observa-
tions in data set 1. These negative values may sug-
gest very low concentrations of BHB in milk. Both the 
negative and nonnegative predicted blood BHB values 
were considered in the genetic analysis to be existing 
variation in the data.

Mean predicted blood BHB concentration at each 
DIM was calculated and is depicted in Figure 2. Gen-
erally, the mean predicted blood BHB concentration 
was higher in the beginning of lactation and decreased 
as DIM progressed. This result was in line with previ-
ous reports on milk BHB predicted from milk spectra 
(Koeck et al., 2014) and blood BHB measured with 
reference method (Belay et al., 2017). Predicted blood 
BHB decreased up to 20 DIM, and then increased again 
between 20 and 30 DIM. This is in agreement with a 
report of Oetzel (2007), who found an increase in pre-
dicted blood BHB from 20 to 35 DIM. The rise in BHB 
between 20 and 30 DIM might be due to ketosis type 
I that occurs between 3 and 6 wk postcalving, because 
cows are entering a peak lactation and these cows sim-
ply cannot keep up with energy demand mostly because 
of underfeeding (Oetzel, 2007).

We wanted to determine if models developed for Pol-
ish dairy cows could work and give some reasonable 
results with Norwegian data. We were surprised to find 
that the performance of the models with Norwegian 

Figure 2. Mean blood BHB (mmol/L) predicted from milk spectra 
by DIM in first to fourth lactation Norwegian Red cows in data set 1.
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data were reasonable. The phenotypic distribution of 
the predicted blood BHB, its heritability, and pheno-
typic and genetic associations with ketosis and milk 
traits were reasonable and in agreement with most of 
the published values. More interestingly, at a threshold 
(≥1.2 mmol/L) that is commonly used to discriminate 
heathy from ketotic cows, the predicted blood BHB cor-
rectly classified more than 77% of the treated cows as 
ketotic cows. This is a practical validation of the model 
and does not mean that the models perfectly fitted the 
Norwegian data. The models might better fit data from 
the population that was used in the model development. 
Effects of different breeds and environments would be 
present, but might not hinder the use of the model in a 
different breed and environment where a calibration of 
milk spectra to blood BHB is not available.

Frequency of KET

Mean frequency and standard deviation of veteri-
nary-diagnosed KET across lactations based on data 
set 2 are given in Table 2. The mean frequency of 
KET across lactations that was 2.04% in data set 2 
was reduced to 1.76% in data set 3, as not all animals 
diagnosed for KET might have recorded spectra or vice 
versa. Frequency of KET observed in the current study 
was lower than in previous studies on NRF cows. Using 
data from only first-crop daughters of NRF sires that 
were progeny tested from 1978 through 1998, Hering-
stad et al. (2005) reported mean frequency of KET 
ranging from 7.5% in first-lactation to 17.2% in the 
third-lactation cows.

Phenotypic Associations of BHB  
with KET and Milk Traits

To investigate phenotypic associations of predicted 
blood BHB with KET and milk production traits, 
cows were grouped into 2 categories based on their 
predicted blood BHB test for risk of ketosis: negative 
(BHB <1.2 mmol/L), or positive (BHB ≥1.2 mmol/L). 
The threshold of ≥1.2 mmol/L was used because most 
authors have used that value (Rollin et al., 2010; van 
Knegsel et al., 2010; van der Drift et al., 2012a). Figure 
3 shows phenotypic associations of cows with positive 
and negative predicted blood BHB test across early 
lactation (11–120 DIM) with test-day milk yield, milk 
fat, protein, and lactose contents, and KET. Mean milk 
yield for cows with positive predicted blood BHB test 
increased up to 42 DIM and rapidly decreased after-
ward, whereas the increase in milk yield lasted up to 
60 DIM for cows with negative predicted blood BHB 
test (<1.2 mmol/L). During the first 2 mo of lactation, 
mean milk yield from cows with a positive test was 

higher than for cows with a negative test (Figure 3a). 
This indicates that high-yielding cows had higher blood 
BHB concentration and were possibly more prone to 
the risk of developing ketosis in early lactation com-
pared with lower-yielding cows. The difference in mean 
milk yield between cows with negative and positive test 
decreased for DIM up to 68 DIM and almost overlapped 
afterward.

In addition, cows with a positive predicted blood 
BHB test had a higher milk fat content throughout 
the early lactation stage compared with cows with a 
negative test (Figure 3b). However, cows with a posi-
tive predicted blood BHB test had a lower content of 
milk protein throughout the lactation stages considered 
compared with cows with a negative test (Figure 3c). 
Mean milk lactose content for both cows with positive 
and negative BHB test increased up to 30 DIM and de-
creased afterward. Cows with positive predicted blood 
BHB test had lower milk lactose content throughout 
the lactation stage compared with cows with a nega-
tive test (Figure 3d). As expected, cows with positive 
test for predicted blood BHB had higher frequency 
of KET (3.41%) compared with cows with negative 
test (1.01%) (Figure 3e). This indicated that 77.15% 
of cows with KET were categorized with a positive 
predicted blood BHB test. Koeck et al. (2014) also 
observed higher frequency of KET among cows testing 
positive (≥0.20 mmol/L of milk BHB, 10.8%), followed 
by cows classified as suspect (≤0.15–0.20 mmol/L of 
milk BHB, 5.4%) and negative (<0.15 mmol/L of milk 
BHB, 2.3%).

Phenotypic Associations of KET  
with BHB and Milk Traits

To study phenotypic associations of KET with pre-
dicted blood BHB and milk production traits, cows 
in data set 3 were grouped as nontreated (healthy) 
or treated (diseased) based on absence or presence 
of veterinary treatment for ketosis, respectively. The 
mean test day predicted blood BHB, milk yield, and 
milk fat, protein, and lactose contents between 11 and 
120 DIM from cows treated by veterinarian for ketosis 
or not (KET) are given in Figure 4. Mean predicted 
blood BHB of cows with KET was higher in early lac-
tation, but decreased rapidly with stage of lactation 
toward the level found in more healthy cows (Figure 
4e). Means of predicted blood BHB traits at different 
DIM intervals were also calculated for cows with and 
without KET (Table 3). Cows with KET had higher 
means (P < 0.05) for the predicted blood BHB in all 
lactation stages. The means of predicted blood BHB 
both at each DIM and at the different DIM intervals 
found in the current study were in agreement with the 
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finding of Koeck et al. (2016) in Canadian dairy cows 
between 5 and 100 DIM.

Cows with KET had slightly higher mean milk yield in 
early lactation up to around 22 DIM, but slightly lower 
afterward up to around 60 DIM compared with healthy 
cows (Figure 4a). This again supported the idea that 
high-yielding cows are more prone to the risk of KET 
in early lactation compared with low-yielding cows. 

Contrary to the current finding, Koeck et al. (2013) 
reported that cows with KET had a slightly lower milk 
yield in early lactation compared with healthy cows in 
first lactation.

In our study, mean milk fat content in both cows 
with and without KET decreased in early lactation up 
to 60 DIM. Afterward, the mean milk fat content stabi-
lized at an average value of around 4% (Figure 4b). The 

Figure 3. Mean (a) milk yield, (b) milk fat content, (c) protein content, (d) lactose content, and (e) frequency of clinical ketosis by DIM for 
cows with a negative (BHB <1.2 mmol/L) or positive (BHB ≥1.2 mmol/L) test result for risk of ketosis until 120 d after calving.
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mean milk fat content from cows with KET was higher 
in early lactation compared with healthy cows, whereas 
the mean milk protein content from cows with KET 
was slightly lower at every DIM compared with healthy 
cows (Figure 4c). In support of the current finding, 
Koeck et al. (2013) found higher mean milk fat content 

but a slightly lower milk protein content in cows with 
KET compared with healthy cows both at the first 
(5–30 DIM) and second test day (31–60 DIM). The 
mean milk lactose content from both cows with and 
without KET increased to about 30 DIM. Afterward, 
mean milk lactose content from healthy cows decreased 

Figure 4. Mean (a) milk yield, (b) milk fat content, (c) milk protein content, (d) lactose content, and (e) blood BHB predicted from milk 
spectra by DIM for healthy cows (not treated for ketosis) and cows treated by veterinarian for clinical ketosis within the first 120 d after calving.
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whereas that of treated cows stabilized at an average 
value of around 4.7% and slightly decreased in the last 
20 DIM (Figure 4d).

Cows treated for KET showed much more variation 
of the means per DIM for all traits compared with non-
treated cows (Figure 4). This is due to the smaller num-
ber of observations for treated cows (7,000) compared 
with nontreated cows (350,000). This is also evident in 
early lactation where, for treated cows, variation was 
smaller than in later lactation stages in all traits. This 
is because more animals were treated in early lactation. 
As DIM progressed the number of cows treated was re-
duced, resulting in larger variation in means per DIM.

Heritability

Table 4 shows estimates of variance components and 
corresponding variance ratios of predicted blood BHB 
traits from univariate analyses. The estimated herita-
bility of predicted blood BHB across lactation stages 
(11–120 DIM) was moderate (0.274); that of predicted 
blood BHB at different DIM intervals increased with 
lactation stage from 0.250 for BHB1 to 0.365 for BHB4, 
with standard errors ranging from 0.004 to 0.006 (Table 
4). The heritability estimates of predicted blood BHB 

at different stages were similar in univariate and bivari-
ate analyses [BHB at different DIM intervals with each 
other (Table 5) or with milk production traits]. In data 
set 3, however, heritability estimates of predicted blood 
BHB from bivariate analyses with KET were slightly 
lower (0.238 to 0.353), with relatively higher standard 
errors (0.006 to 0.008). The medium heritability of 
predicted blood BHB suggests that genetic selection 
for lower blood BHB concentrations in early lactation 
(<120 DIM) is feasible and may lower occurrences of 
ketosis. In agreement with the current study, Koeck 
et al. (2014) found an increasing trend in heritability 
for milk BHB with DIM, but Oikonomou et al. (2008) 
obtained a decreasing trend in heritability of measured 
serum BHB as DIM increased in primiparous cows. In 
the literature, estimates of heritabilities vary from 0.08 
to 0.40 for measured blood BHB (Oikonomou et al., 
2008; van der Drift et al., 2012b) and from 0.067 to 0.29 
for milk BHB (van der Drift et al., 2012b; Koeck et al., 
2014; Jamrozik et al., 2016). The heritability estimates 
of predicted blood BHB traits found in our study were 
generally in the range of published values, but slightly 
higher especially for BHB after 60 DIM. Among other 
factors, differences in periods of lactation (11–120 DIM 
vs. 5–60 or 100 DIM) and definitions of BHB traits 
might contribute to the differences in estimates.

Variance components and corresponding variance 
ratios of registered clinical KET across lactations from 
univariate analyses are given in Table 4. The heritabil-
ity estimate of KET in univariate analysis based on 
data set 2 was 0.078 (Table 4), but was reduced to 
0.002 when KET was analyzed bivariately either with 
predicted blood BHB traits (Table 7) or milk produc-
tion traits using data set 3 (Table 8). As estimates of 
heritability for binary traits with linear models are 
frequency-dependent, the reduction in heritability of 
KET in bivariate analysis could be due to the low 
frequency of KET in data set 3 compared with that 
in data set 2. Estimates of heritability from univari-

Table 3. Means (SD) of blood BHB predicted from milk spectra at 11 
to 30 (BHB1), 31 to 60 (BHB2), 61 to 90 (BHB3), and 91 to 120 DIM 
(BHB4) and across early lactation stage (11 to 120 DIM; BHBall) for 
nontreated cows or cows treated for clinical ketosis based on data set 3

Trait
Period,  
DIM

Clinical ketosis

Nontreated Treated

BHB1 11–30 1.218 (0.330)b 1.540 (0.374)a

BHB2 31–60 1.193 (0.291)b 1.405 (0.342)a

BHB3 61–90 1.155 (0.264)b 1.315 (0.297)a

BHB4 91–120 1.141 (0.258)b 1.232 (0.295)a

BHBall 11–120 1.195 (0.303)b 1.434 (0.359)a

a,bValues with different superscripts in the same row were significantly 
different at P < 0.05, which was tested by 2-sample t test.

Table 4. Estimates of additive genetic σa
2( ), permanent animal environment σpe

2( ), herd test day or herd year
σhtd

2( ) and residual σe
2( ) variances, as well as variance ratios for genetic (h2), permanent environment (c2), herd 

test day or herd year (d2), and residual (e2) effects for blood BHB predicted from milk spectra at 11 to 30 
(BHB1), 31 to 60 (BHB2), 61 to 90 (BHB3), 91 to 120 (BHB4), and 11 to 120 DIM (BHBall) and clinical ketosis 
(KET) from univariate analyses based on data set 1 for BHB and data set 2 for KET1

Trait σa
2 σpe

2  σhtd
2  σe

2 h2 c2 d2 e2

BHB1 0.023564 0.010366 0.015343 0.044974 0.250 0.110 0.163 0.477
BHB2 0.020551 0.007571 0.014075 0.031134 0.280 0.103 0.192 0.425
BHB3 0.020069 0.005571 0.012503 0.023387 0.326 0.091 0.203 0.380
BHB4 0.021047 0.004334 0.012248 0.020069 0.365 0.075 0.212 0.384
BHBall 0.019683 0.005257 0.013237 0.033719 0.274 0.073 0.184 0.469
KET2 0.001571 0.001017 0.001138 0.016472 0.078 0.050 0.056 0.816
1Standard error for h2 = 0.003–0.006; for c2 = 0.002–0.006; for d2 = 0.001–0.003; and for e2 = 0.002–0.006. 
2For KET, σhtd

2  and d2 represent herd-year variance and the corresponding variance ratio, respectively.
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ate analysis for KET were in agreement with previous 
estimates from linear models (0.01 to 0.08; Jamrozik 
et al., 2016; Koeck et al., 2016; Pryce et al., 2016), but 
lower than the majority of estimates from threshold 
models (0.02 to 0.16; Pryce et al., 2016). Heringstad et 
al. (2005) obtained substantially higher estimates for 
KET on the same population (NRF) with threshold 
models, with estimates of 0.14, 0.15, and 0.16 for first, 
second, and third lactations, respectively. However, it 
has to be noted that linear model estimates of heri-
tability for binary traits are frequency-dependent and 
therefore not directly comparable with estimates on the 
underlying liability scale (Pryce et al., 2016).

Proportion of Variance Attributed to PE, HTD, or HY

The proportion of variance attributed to PE, HTD, 
and residual for predicted blood BHB traits are also 
given in Table 4. The HTD variance was lower than the 
additive genetic variance and the proportion of vari-
ance attributed to HTD increased as DIM progressed, 
from 16 to 21%. This indicates that events on test days 
(e.g., feeding and management) have less influence on 
the etiology of ketosis than genetic difference between 
cows. In contrast, van der Drift et al. (2012b) found a 
larger proportion of variance attributed to herd (not 
to HTD) than that of additive genetic variance for 
plasma BHB. Though effects of HTD were smaller than 
additive genetic effects, they had considerable influ-
ences (explained 16 to 21% of variation) on BHB traits. 
Therefore, prevention strategies for ketosis should 
include both feeding and management strategies at 
dairy farms, and genetic improvement through breed-
ing programs, which was also concluded by van der 
Drift et al. (2012b). Similar to HTD effects, the pro-
portion of variance attributed to PE was smaller than 
that of additive genetic variance, and it decreased as 
DIM progressed, from 11 to 7.5% of the total variance. 
In the study of Jamrozik et al. (2016), the permanent 
environmental effect captured 25% of the total variance 
in milk BHB in later lactations, which is more than 2 
times the estimates found in the current study.

For KET, the proportion of variance attributed to 
HY, PE, and residual are presented in Table 4. The pro-
portion of variance attributed to HY was slightly lower 
than that of additive genetic variance (5.6 vs. 7.8%) 
for univariate analysis. However, in bivariate analysis, 
the proportion of variance attributed to HY was much 
larger (87.4%) than that of additive genetic variance 
(results not shown in table). This result suggests that 
environmental factors (feeding and management) have 
more influence on the prevalence of KET in HY than 
the genetic difference between cows. Estimates of the 
HY effect obtained in the current study were higher 
than estimates reported for HY effects in Canadian 
Holsteins (Jamrozik et al., 2016). For KET and its 
indicator (predicted blood BHB), estimates of residual 
effects were lower than values reported in literature 
(Jamrozik et al., 2016), indicating that the models used 
in the current study fit well.

Genetic and Phenotypic Correlations  
Among BHB Traits

Estimates of genetic and phenotypic correlations 
among predicted blood BHB traits are given in Table 
5. The genetic correlations between the predicted blood 
BHB traits were higher between adjacent DIM inter-
vals (0.92–0.98) and decreased as intervals were further 
apart (down to 0.76). This is in agreement with results 
found by Koeck et al. (2014) for milk BHB traits de-
fined in a 20-d interval for cows between 5 and 60 DIM. 
Similar to the genetic correlations, the estimates of 
phenotypic correlations were higher between adjacent 
DIM intervals and in line with Koeck et al. (2014). 
Genetic correlations were strongest between BHB2 and 
BHB3 as well as BHB3 and BHB4, whereas phenotypic 
correlation was the strongest between BHB3 and BHB4 
(0.62).

Genetic and Phenotypic Correlations Among BHB, 
Milk Traits, and KET

Genetic correlations of predicted blood BHB traits 
with milk production traits from the same lactation 

Table 5. Heritabilities1 (bold, on diagonal), genetic correlations (above diagonal), and phenotypic correlations 
(below diagonal) with SE in parentheses for BHB predicted from milk spectra at 11 to 30 (BHB1), 31 to 60 
(BHB2), 61 to 90 (BHB3), and 91 to 120 (BHB4) from bivariate analyses of data set 1

Trait BHB1 BHB2 BHB3 BHB4

BHB1 0.248 (0.005) 0.922 (0.007) 0.830 (0.009) 0.763 (0.011)
BHB2 0.489 (0.003) 0.274 (0.004) 0.975 (0.003) 0.949 (0.004)
BHB3 0.451 (0.003) 0.574 (0.002) 0.322 (0.005) 0.977 (0.003)
BHB4 0.413 (0.003) 0.541 (0.002) 0.619 (0.002) 0.360 (0.005)
1Heritability estimate and the corresponding SE in parentheses were calculated as the average estimate from 
all bivariate analyses containing a particular trait.
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stage as BHB (Table 6) were slightly different from 
the correlation estimates with milk production traits 
across lactation stages (Table 7). For example, fat 
yield and fat and lactose contents at 11 to 30 DIM and 
protein content at 61 to 90 and 91 to 120 DIM from 
the same lactation stage as BHB had slightly stron-
ger genetic correlations with BHB than corresponding 
estimates for those milk traits across lactation stage 
with BHB traits. Predicted blood BHB at the first 
test-day (BHB1) was genetically moderately correlated 
with milk production traits both from the same lacta-
tion stage (Table 6) and across lactation stages (Table 
7), except for milk fat content that was weakly cor-
related (Table 7). All predicted blood BHB traits were 
moderately negatively correlated with milk protein 
and lactose contents (Tables 6 and 7). The remaining 
milk traits showed negligible genetic correlation with 
predicted blood BHB in later lactation stages (31–120 
DIM), except for milk and fat yields with BHB2 and 
protein yield with BHB3 and BHB4 (Tables 6 and 7). 
Similar to genetic correlations, phenotypic correlations 
of BHB traits with milk production traits decreased 
as DIM progressed. Predicted blood BHB traits had 
moderate negative phenotypic correlations with milk 
protein and lactose contents from the same lactation 
stage (Table 6) and across lactation stages (Table 7). 
Unlike the genetic correlations, phenotypic correlations 
of BHB traits with milk traits from the same lacta-
tion stage as BHB were stronger than estimates across 
lactation stages. Predicted blood BHB traits were more 
strongly phenotypically correlated with fat content 
from the same lactation stage (0.351–0.445; Table 6) 
than across lactation stages (0.175–0.403; Table 7).

To the best of our knowledge, estimates of genetic 
and environmental correlations between milk or blood 
BHB and milk production traits are not available in 
the literature, except the work of Koeck et al. (2014), 
who reported correlations between EBV for milk BHB 
traits and routinely evaluated traits including yields of 
milk, fat, and protein. In agreement with the current 
study, Koeck et al. (2014) found moderate correlations 
(0.13–0.22) between EBV of milk BHB and milk yields, 
but found insignificant (P > 0.05) correlations between 
EBV of milk BHB and yields of fat and protein. The 
present results indicate higher genetic merits for milk, 
fat, protein, and lactose yields associated with higher 
BHB in early lactation and, therefore, a greater sus-
ceptibility to risk of ketosis. Phenotypic associations 
between predicted blood BHB and milk traits are given 
in Figure 3. They show, for example, that cows that had 
high milk yield in early lactation (up to 60 DIM) had 
positive test for risk of ketosis (high BHB values; Figure 
3a). The opposite was true for cows with high milk pro-
tein content throughout all lactation stages considered T
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(Figure 3c). The genetic associations observed between 
yield traits and BHB concentrations were expected, as 
genetic selection for high milk production would result 
in larger negative energy balance and require larger fat 
mobilization in early lactation (Veerkamp et al., 2003; 
Coffey et al., 2004), and hence a higher risk of ketosis.

Estimates of genetic correlations of BHB traits with 
KET are also presented in Table 7. All BHB traits were 
genetically moderately correlated with KET, with cor-
relations between 0.18 and 0.47. Genetic relationship 
between KET and its indicator (predicted blood BHB) 
was reduced as DIM progressed. Estimates of genetic 
correlations between KET and its indicator at 11 to 30 
and 31 to 60 DIM were in the range of that reported 
in literature (Koeck et al., 2014; Koeck, 2015; Jamrozik 
et al., 2016). Koeck et al. (2014) found an estimate 

of genetic correlation between KET and milk BHB at 
5 to 40 DIM of 0.48, which is comparable with the 
0.47 estimate observed between KET and blood BHB 
at 11 to 30 DIM in the current study. Jamrozik et al. 
(2016) found a genetic correlation of KET with milk 
BHB, with correlations of 0.63 and 0.37 for first and 
later lactations, respectively, and with a correlation of 
0.25 for both KET and milk BHB in the later lacta-
tions. However, Koeck (2015) and Koeck et al. (2016) 
reported stronger genetic correlation between KET and 
milk BHB at 5 to 40 DIM, with correlations ranging 
from 0.70 to 0.75. Phenotypic correlations were low be-
tween KET and blood BHB traits, ranging from 0.023 
(between KET and BHB4) to 0.065 (between KET and 
BHB1; Table 7), which is much lower than estimates 
reported for phenotypic correlations between KET and 
milk BHB at 5 to 40 DIM (0.150 to 0.186; Koeck et al., 
2014, 2016).

Table 8 presents the estimates of genetic and pheno-
typic correlations between KET and milk productions. 
Ketosis was significantly positively correlated with 
milk (0.178), fat (0.157), and lactose (0.161) yields, but 
not genetically correlated with protein yield (0.002). 
Previous studies on genetic correlations between KET 
and milk production traits in early lactation are scarce. 
Koeck et al. (2013) found that genetic correlations be-
tween milk yield at 5 to 30 and 31 to 60 DIM with KET 
were not different from zero. In their comprehensive 
review, Pryce et al. (2016) indicated that mean genetic 
correlation between 305-d milk yield and KET was un-
favorable (positive), which is in line with the current 
study. In the same review, negative mean genetic cor-
relations between KET and 305-d fat and protein yields 

Table 8. Estimates of heritability1 (h2), genetic (rg), and phenotypic 
(rp) correlations of clinical ketosis (KET) with milk production traits 
from bivariate analysis based on data set 3

Trait h2

KET

rg rp

KET 0.002 (0.0002)    
Milk, kg 0.183 (0.003) 0.178 (0.047) −0.042
Fat, kg 0.103 (0.003) 0.157 (0.046) −0.010
Protein, kg 0.156 (0.004) 0.002 (0.048) −0.050
Lactose, kg 0.169 (0.004) 0.161 (0.048) −0.046
Fat, % 0.114 (0.003) −0.023 (0.049) 0.033
Protein, % 0.361 (0.003) −0.333 (0.039) −0.017
Lactose, % 0.412 (0.003) −0.043 (0.037) −0.025
1Heritability estimate for ketosis and the corresponding standard error 
in parentheses were calculated as the average estimate from all bivari-
ate analyses containing a particular trait.

Table 7. Estimates of heritability1 (h2), genetic correlations (rg), and phenotypic correlations (rp) of blood BHB predicted from milk spectra 
at 11 to 30 (BHB1), 31 to 60 (BHB2), 61 to 90 (BHB3), 91 to 120 (BHB4), and 11 to 120 DIM (BHBall) with clinical ketosis (KET) and milk 
production traits across lactation stage from bivariate analyses

Parameter   Trait h2 BHB1 BHB2 BHB3 BHB4 BHBall

 rg KET 0.002 (0.0002) 0.469 (0.050) 0.310 (0.049) 0.192 (0.049) 0.179 (0.048) 0.288 (0.043)
  Milk, kg 0.195 (0.003) 0.277 (0.016) 0.118 (0.014) 0.024 (0.013) −0.031 (0.013) 0.101 (0.010)
  Fat, kg 0.107 (0.002) 0.248 (0.016) 0.126 (0.015) 0.069 (0.015) −0.011 (0.014) 0.106 (0.011)

Protein, kg 0.165 (0.003) 0.107 (0.017) −0.047 (0.014) −0.124 (0.014) −0.166 (0.013) −0.052 (0.011)
  Lactose, kg 0.181 (0.003) 0.229 (0.016) 0.063 (0.013) −0.028 (0.013) −0.081 (0.016) 0.051 (0.010)
  Fat, % 0.116 (0.002) 0.033 (0.016) 0.054 (0.014) 0.084 (0.014) 0.042 (0.013) 0.035 (0.011)
  Protein, % 0.371 (0.003) −0.367 (0.011) −0.308 (0.009) −0.252 (0.009) −0.215 (0.009) −0.288 (0.007)
  Lactose, % 0.428 (0.003) −0.189 (0.012) −0.178 (0.009) −0.173 (0.009) −0.163 (0.009) −0.174 (0.007)
 rp KET   0.065 0.047 0.041 0.023 0.047
  Milk, kg   0.135 (0.002) 0.033 (0.002) −0.013 (0.002) −0.038 (0.002) 0.042 (0.002)
  Fat, kg   0.382 (0.002) 0.231 (0.002) 0.143 (0.002) 0.102 (0.002) 0.327 (0.001)

Protein, kg   0.024 (0.003) −0.065 (0.002) −0.091 (0.002) −0.107 (0.002) −0.073 (0.001)
  Lactose, kg   0.096 (0.003) 0.005 (0.002) −0.038 (0.002) −0.062 (0.002) 0.009 (0.002)
  Fat, %   0.403 (0.002) 0.281 (0.002) 0.202 (0.002) 0.175 (0.002) 0.403 (0.001)
  Protein, %   −0.285 (0.002) −0.238 (0.002) −0.186 (0.002) −0.165 (0.002) −0.292 (0.001)
  Lactose, %   −0.188 (0.003) −0.137 (0.002) −0.126 (0.002) −0.123 (0.002) −0.173 (0.002)
1Heritability estimate for ketosis and milk traits and the corresponding standard errors in parentheses were calculated as the average estimate 
from all bivariate analyses containing a particular trait.
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were reported (Pryce et al., 2016). In the current study, 
none of the genetic correlations of KET with milk fat 
(−0.023) or lactose (−0.043) content were significantly 
different from zero, but with milk protein content it 
was (−0.333). Contrary to the current finding, Koeck 
et al. (2013) reported a near zero genetic correlation of 
KET with milk protein content (−0.06 at 5–30 DIM 
and −0.09 at 31–60 DIM), but a medium positive ge-
netic correlation with milk fat content at 5 to 30 DIM 
(0.33). The genetic relationships between KET and 
milk production traits observed in the current study 
indicated that a higher milk, fat, and lactose yields and 
a lower milk protein content would be associated with 
an increased risk of developing ketosis. 

Phenotypic correlations between KET and milk pro-
duction traits were low and negative (except for fat 
content that had a low positive genetic correlation with 
KET). This is in agreement with the phenotypic cor-
relations of KET with milk yield and fat and protein 
contents reported by Koeck et al. (2013).

CONCLUSIONS

Blood BHB predicted from milk spectra at different 
DIM intervals or across lactation stages is heritable, 
with heritability estimates ranging from 0.250 to 0.365. 
It seems sufficient to consider only BHB1 and BHB2 as 
indicator traits in a routine genetic evaluation for resis-
tance to ketosis because BHB1 and BHB2 are available 
early in lactation and have higher genetic correlations 
with KET than later BHB traits (BHB3 and BHB4). 
Generally, predicted blood BHB was genetically moder-
ately correlated with KET and milk production traits, 
and those correlations decreased as DIM progressed. 
Similarly, KET had moderate genetic correlations with 
milk, fat, and lactose yields and protein content. The 
moderate genetic correlations observed between BHB 
traits and KET indicate that selective breeding for 
lower BHB may contribute to lower susceptibility of 
cows to ketosis in early lactation. A lower BHB was 
genetically associated with higher milk protein and 
lactose contents, but with lower milk, fat, lactose, and 
protein yields. Blood BHB predicted from milk spectra 
can be routinely obtained from test-day milk samples 
and provides a practical alternative for breeding cows 
to have lower susceptibility to ketosis, even though cor-
relations with KET are moderate. Before commencing 
genetic selection for a lower BHB in NRF dairy cattle, 
further studies are needed on genetic associations of 
BHB with health and fertility traits. The benefit of 
using FT-MIR predicted indicator trait (e.g., BHB) in 
addition to the directly observed ketosis also has to be 
studied.
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ABSTRACT 

Milk infrared spectra are routinely used for phenotyping traits of interest through links developed 

between the traits and spectra. Predicted individual traits are then used in genetic analyses for 

breeding value estimations (EBV) or for phenotypic predictions using a single-trait mixed model.  

This approach is referred to as indirect prediction (IP). An alternative approach (direct prediction 

– DP) is a direct genetic analysis of (a reduced dimension of) the spectra using a multi-trait model 

to predict multivariate EBV of the spectral components and ultimately also to predict the univariate 

EBV or phenotype for the traits of interest. In this study, we simulated three traits under different 

genetic (low: 0.10 to high: 0.90) and residual (zero to high: ± 0.90) correlation scenarios between 

the traits and assumed the first trait is a linear combination of the other two traits. The aim was to 

compare the IP and DP approaches for predictions of EBV and phenotypes under the different 

correlation scenarios. We also evaluated relationships between performances of the two 

approaches and the accuracy of calibration equations. Moreover, effect of using different 

regression coefficients estimated from simulated phenotypes (βp), true breeding values (βg) and 

residuals (βr) on performance of the two approaches were evaluated. The simulated data contained 
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2,100 parents (100 sires and 2000 ‘cows’) and 8,000 offspring (four offspring per ‘cow’). Of the 

8,000 observations, 2,000 were randomly selected and used to develop links between the first and 

the other two traits using partial least square (PLS) regression analysis. The different PLS 

regression coefficients such as βp, βg and βr were used in subsequent predictions following the IP 

and DP approaches. BLUP analyses were done on the remaining 6,000 observations using the 

‘true’ (co)variance components that had been used for the simulation. Accuracy of prediction (of 

EBV and phenotype) was calculated as a correlation between predicted and true values from the 

simulations. The result showed that accuracies of EBV prediction were higher in the DP than in 

the IP approach. The reverse was true for accuracy of phenotypic prediction (βp), but not when 

using βg and βr, where accuracy of phenotypic prediction in the DP was slightly higher than in the 

IP approach. Within the DP approach, accuracies of EBV when using βg were higher than when 

using βp, especially at the low genetic correlation scenario. However, there were no differences in 

EBV prediction accuracy between the βp and βg in the IP approach. Accuracy of the calibration 

models increased with increase in genetic and residual correlations between the traits. Performance 

of both approaches increased with increase in accuracy of the calibration models. In conclusion, 

the DP approach is a good strategy for EBV prediction, but not for phenotypic prediction, where 

the classical PLS regression based equations or the IP approach provided better results.    

Key words: indirect prediction, direct prediction, breeding value, phenotype   
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INTRODUCTION 

Fourier transform mid-infrared (FT-MIR) spectrometry is a potential tool for collection of data 

at population level for phenotypic and genetic analyses of milk components (or other derived 

traits). An individuals’ phenotype for a trait is predicted from the FT-MIR spectra. This prediction 

is dependent on availability of links between the trait of interest and milk spectra. The predicted 

trait together with pedigree information and variance component estimates are used to calculate 

breeding values (EBV) and other random components included in the model based on a single-

trait best linear unbiased prediction (BLUP) approach. Dagnachew et al. (2013b) referred to such 

an approach as indirect prediction (IP) because the multi-trait spectral information is not directly 

used in EBV prediction procedures. Alternatively, genetic analyses can be applied directly on the 

milk spectral variables or on their factor scores (latent traits). BLUP predictions of the random 

components of the model (EBV, herd-test*day, permanent environment and residual) for the traits 

of interest are then predicted as correlated traits to the corresponding random components of the 

spectra. Dagnachew et al. (2013b) referred to such an approach as direct prediction (DP). Given 

the strong correlations among milk FT-MIR spectral variables (Soyeurt et al., 2010;Dagnachew et 

al., 2013a), direct genetic analyses on such correlated spectral variables may result in better 

accuracy of genetic evaluations (Dagnachew et al., 2013b).  

The IP and DP approaches have been used to predict EBV for major milk contents (fat, protein 

and lactose) in goats (Dagnachew et al., 2013b) and for traits related to fine milk compositions and 

technological properties of milk in cows (Bonfatti et al., 2017a). The former authors showed that 

the DP approach performed better than the IP approach i.e. relative genetic gain was improved by 

3-5% in the DP compared to the IP approach. Dagnachew et al. (2013b) also reported high rank 

correlation coefficients (0.93 to 0.96) between EBV predicted using the IP and the DP.  However, 
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Bonfatti et al. (2017) reported rank correlations ranging from 0.07 to 0.96, but with < 0.5 rank 

correlations for most traits investigated in that study. Belay et al. (2017) adopted the two 

approaches to predict phenotype for β-hydroxybutyrate in blood from milk spectra and reported a 

slightly better phenotypic prediction by the IP than the DP approach.   

Based on studies done so far, it is difficult to make a conclusive remark on whether the DP 

approach is better than the IP approach for EBV or phenotype prediction. Each of the studies cited 

in the preceding paragraph has their limitation. For example, independent chemical analyses 

(reference values) for the milk contents were not available in the study of Dagnachew et al. (2013b) 

i.e. the study used phenotypes predicted from the same spectra as reference values for both model 

calibration and evaluation. Possibly for the reason above, the coefficients of determination (R2) 

were very high (> 0.96). Moreover, the accuracies of EBV were estimated based on coefficient 

matrices of the mixed model equations in that study. In the study of Bonfatti et al. (2017a) 

reference values measured independently of the spectra were used to develop prediction equations 

that had medium (0.35) to high (0.86) R2 values. However, it is difficult to distinguish the 

approaches that performed better based on that study because the IP and DP approaches were 

evaluated based on rank correlations. In an attempt to predict phenotypes with IP and DP (Belay 

et al., 2017), the R2 were low, and datasets used for the model validation as well as for evaluation 

of the two approaches were small.   

Furthermore, in the three studies, covariance components of the latent traits estimated by the 

DP approach were converted to variance components to be used in the IP approach using links 

(regression coefficients) estimated based on phenotypes (βp). Similarly, EBV of the latent traits 

were converted into single-trait EBV using phenotype based links. Utilization of a partial least 

square (PLS) regression coefficient estimated from phenotypes (βp), to convert EBV of latent traits 
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into EBV of trait of interest does not seem appropriate. This might have an impact on the 

performance of the approaches. Parameters estimated at one level (e.g. at phenotypic level) were 

used at another level (e.g. at genetic level). Therefore, the effect of using appropriate conversion 

parameters (e.g., βg: estimated from true breeding values) to convert multi-trait structures to single-

trait structures on performances of the two approaches is unknown and needs to be studied. 

Moreover, relationship between performance of the two approaches and accuracy of calibration 

models is unclear. 

Therefore, objectives of this study were: 1) to evaluate performance of the IP and DP approaches 

for prediction of EBV and phenotype under different genetic and residual structures between traits; 

2) to evaluate effect of using different PLS regression coefficients (e.g. βp, βg etc.) for converting 

covariance components or EBV of latent traits into univariate structure on performance of the two 

approaches; and 3) to study relationship between performance of the two approaches and accuracy 

of calibration models.  

 

MATERIALS AND METHODS 

 

Simulation 

A simulation program written in R (R Core Team, 2016) to make single- and multi-trait datasets 

based on pedigree was used. The R codes used for the simulation can be found here: 

https://github.com/soloboan/Multi-trait_simulations. A base population consisting of 100 sires and 

2,000 cows with three traits under different genetic and residual correlation scenarios were 

simulated. Then, subsequently, two generations of data were simulated, with 2,100 parents (100 

sires and 2,000 ‘cows’) in each generation. It was assumed that a ‘cow’ would have four offspring 

per generation, resulting in 8,000 offspring per generation, from which parents for the next 

https://github.com/soloboan/Multi-trait_simulations
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generation were selected. Sex ratio of offspring was fixed at 50%. Parents were randomly selected, 

and the selected animals were randomly mated by random union of gametes leading to pseudo-

overlapping generations as is mostly used in cattle breeding.   

Variance components and the corresponding heritabilities used for simulation of the three traits 

are given in Table 1, while the different genetic and residual correlation scenarios are presented in 

Table 2.  The first trait (hereafter referred to as the focal trait) was assumed to be milk protein 

content, and is a linear combination of the two other traits, which were assumed to be latent traits 

earlier derived from spectral variables. Mean, genetic variance and heritability of the focal trait 

were taken from a previous study (Belay et al., unpublished data) while those of the other two 

traits were based on estimates already reported (Belay et al., 2015). Residual variances for the 

three traits were calculated from the genetic variance and heritability of each trait. Twelve possible 

pairs of genetic (3 scenarios) and residual (4 scenarios) correlation scenarios were simulated. The 

genetic correlations between the three traits were assumed to be either low (0.10 to 0.25), medium 

(0.50 to 0.70) or high (0.80 to 0.90) while the residual correlations were grouped as zero, low, 

medium and high. Simulations were replicated 100 times for each scenario. The simulated data 

consisted of generation number, pedigree, sex, true breeding values (TBV), residuals and true 

phenotype values (TPV) for each trait.   

Multivariate Calibration Models  

The link between the focal trait (‘milk protein content’) and the other two traits were developed 

by PLS regression using the ‘pls package’ (Mevik and Wehrens, 2007) implemented in R (R Core 

Team, 2016). The PLS regression analyses were done on 2,000 observations randomly sampled 

without replacement from the 8,000 offspring population in the second generation. The 
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calibrations were done for each replication within a scenario, and average values of calibration 

outputs reported. The PLS regression analysis was undertaken using phenotypes (TBVs + errors), 

as well as the TBV and residuals of the focal trait as dependent variables. In these analyses, the 

two other traits were used as predictor variables. The PLS regression coefficients (β) from 

phenotype (β-phenotypic, βp), TBV (β-genetic, βg), and error (β-residual, βr) were used to convert 

multivariate structures into univariate in the subsequent predictions/calculations. Prediction of 

EBV and phenotypes were performed following the DP or IP approaches. The PLS coefficient of 

determinations (R2) for phenotype (Rp
2 ), and TBV (Rg

2) were plotted against prediction accuracy 

of IP and DP approaches to evaluate relationship between accuracy of calibration model and the 

two approaches. Figure 1 shows a schematic representation of the two prediction approaches.  

Direct Prediction (DP) 

In this approach, procedures were similar to those described in previous studies for prediction 

of EBV (Dagnachew et al., 2013b; Bonfatti et al., 2017) or phenotypes (Belay et al., 2017). In the 

current study, however, the steps for dimension reduction of spectral information into few latent 

variables and variance component estimation for those latent variables were bypassed. Trait 2 and 

3 in our simulations were assumed to be the latent variables obtained after dimensional reduction 

of spectral information. The genetic variances and heritabilities used in simulating trait 2 and 3 

were based on our previous study (Belay et al., 2015). BLUP estimates (e.g., EBV) for trait 2 and 

3 were obtained by fitting bivariate animal models using Wombat (Meyer, 2007). True 

(co)variance components were used to predict EBV and other model components including 

predicted values for trait 2 and 3. The model in matrix notation was as follows:  
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𝐭 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 

Here, t is a vector of simulated phenotypes of trait 2 and 3; b is a mean (fixed effect); a is a vector 

of random additive genetic effects; e is a vector of random residual effects; X is a column of ones 

and Z is a design matrix that relates records to the corresponding effects.  

The following (co)variance structure for the latent traits was assumed:   

var [
𝐚
𝐞

] = [
𝐆⨂𝐀

𝟎
 

𝟎
𝐑⨂𝐈

], 

where G is genetic (co)variance matrix for trait 2 and 3, and R is the residual (co)variance 

matrix. All (co)variance matrices were 2×2.  I and A are identity and additive relationship 

matrices, respectively, and  is the Kronecker product.  

EBV of Focal Trait from EBV of Trait 2 and 3. The predicted EBV (𝑎̂2𝑥2) of trait 2 and 3 

were directly transformed into EBV of focal trait (𝐸𝐵𝑉̂𝐷𝑃) through either βp or βg i.e. 𝐸𝐵𝑉̂𝐷𝑃 =

𝐚̂2x2β̂
i(2x1)

, where i=p: phenotypic beta (βp) or i=g: genetic beta (βg).  

Phenotypes for Focal Trait from Predicted Trait 2 and 3.  In addition to prediction of the 

random effects (𝐚̂2x2 and 𝐞̂nx2), predicted phenotypes for trait 2 and 3 (𝐓̂nx2) were also computed 

in the BLUP analysis. Predicted phenotypes not adding the residual term (𝐞̂nx2) for the focal trait 

(PNÊDP) were computed from the predicted phenotypes of trait 2 and 3 (𝐓̂nx2). The 𝐓̂nx2 were 

converted into predicted focal trait (PNÊDP) either through βp or βg. Mathematically PNÊDP =

𝐓̂nx2β̂i(2x1) where i is as defined above and n is number of observations. This predicted focal trait 

PNÊDP did not contain residual effects (𝐞̂nx2). Alternatively, the residual effects (𝐞̂nx2) were 

transformed into univariate form through βr, and then added to the PNÊDP to obtain phenotypes 

that contained residual effects (PWÊDP). Mathematically PWÊDP = 𝐓̂nx2β̂i(2x1) + 𝐞̂nx2β̂r(2x1).  

 


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Indirect Prediction (IP)  

 In this approach, the focal trait was predicted from the other two simulated traits by classical 

PLS regression using the βp estimated above (P̂PLS = 𝐓𝐏𝐕nx2β̂p(2x1)), and then genetic analysis 

(BLUP) was conducted on the predicted phenotypes (P̂PLS). The true (co)variance components 

(those used in the simulation) of the two other traits were converted into variance components 

through βp or βg (𝜎𝑎
2 = β′̂i(1x2)𝐆2x2β̂i(2x1) and 𝜎𝑒

2 = β′̂i(1x2)𝐑2x2β̂i(2x1)), where i is as defined 

above, σa
2  is additive genetic variance, and 𝜎𝑒

2 is residual variance.  These variance components 

were then used in single-trait BLUP analysis. The same animal models as in the DP, but with a 

single-trait were fitted. In this case, we assumed var(a) = 𝐀σa
2, and var(e) = 𝐈σe

2 , where σa
2  , 

𝜎𝑒
2, I and A were as defined above.  

Predicted focal trait without residual effects (PNÊIP) and EBV (EBV̂IP) and solutions for random 

residuals (𝐞̂) were directly obtained from the BLUP analysis. BLUP analysis of PLS predicted 

traits (P̂PLS) for prediction of itself (the same phenotype) may be superfluous, but done to conform 

to the phenotype predicted in the DP (PNÊDP).  Similar to the DP, the residual effects (𝐞̂) from 

BLUP were added to the PNÊIP to obtain a phenotype that contained error (i.e., PWÊIP =

PNÊDP + ê). So, in addition to the P̂PLS, we got two vectors of the predicted focal trait under the 

IP approach: PNÊIP  and PWÊIP.  

Evaluation of the IP and DP Approaches 

Performance of the two approaches were evaluated based on accuracy of EBV or phenotype 

prediction. Accuracy of EBV prediction was defined as the correlation between TBV and EBV. 

Pearson’s correlation coefficients between DP predicted EBV and TBV of the focal trait were 

computed and compared with correlation between the IP predicted EBV and TBV. In a similar 
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manner, accuracy of phenotypic prediction was defined as the correlation between predicted 

phenotypes and simulated phenotypes. The predicted phenotypes such as PNÊDP and PWÊDP  from 

the DP approach, PNÊIP  and PWÊIP from the IP approach, and P̂PLS from classical PLS, are 

different predictions of the same trait (e.g. milk protein content). Pearson’s correlations between 

those predicted phenotypes and the simulated phenotypes of the focal trait (TPV) were also 

computed and compared.  

RESULTS AND DISCUSSION 

Accuracy of EBV Prediction under the DP and IP Approaches 

Accuracy of EBV prediction for sires as well as for all animals with records were computed. 

However, only sire evaluations are presented here, because the trends for the IP and DP approaches 

were similar. Accuracy of sire EBV predicted using the DP and IP approaches are presented in 

Table 3. In the DP approach, EBV of trait 2 and 3 were converted into EBV of the focal trait (‘milk 

protein content’) using PLS regression coefficients estimated based on TBV (βg) or TPV – true 

phenotypic values – (βp). In the IP approach, the covariance components of trait 2 and 3 were 

converted into variance of the focal trait using the βg or βp. Those variances were used in univariate 

BLUP analyses for EBV or phenotype prediction. In both DP and IP approaches, the accuracy of 

sire EBV predictions increased as the genetic correlations between all the traits increased 

regardless of residual correlations. At a given genetic correlation scenario, EBV accuracy also 

increased with increase in residual correlation, except at low genetic correlation scenario where no 

clear trend was observed. Increasing in residual correlations should not increase accuracy of EBVs 

except that residual correlations between traits could lead to artificial resemblance between EBV 

because the phenotypes are correlated.  
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In all possible combination of genetic and residual correlation scenarios, regardless of the types of 

βs used, accuracies of EBV prediction using the DP approach were higher than the corresponding 

predictions in the IP approach. The exception was at zero residual correlations, where there was 

little to no difference in accuracy between the two approaches (Table 3).  In agreement with the 

current study, Dagnachew et al. (2013b) reported reduction in prediction error variance (and hence 

increase in accuracy) for using DP approach instead of IP approach. We have also evaluated 

performance of the two approaches when there was no or little correlations between trait 2 and 3, 

but with varying correlations between the focal trait and the other two traits, and found similar 

EBV accuracy prediction in both IP and DP approaches (results not shown). This indicates that 

there should be some correlations between the other two traits, in addition to the correlations to 

the focal trait for the DP to perform better than the IP approach. This is because the DP approach 

utilizes covariance structure between the other two traits to predict EBV for the focal trait. If there 

is no covariance between the other two traits, there is no mathematical explanation to expect better 

performance for the DP than the IP approach. For better EBV accuracy prediction in the DP 

approach, existence of correlations between focal trait and the other two traits as well as between 

the other two traits are a prerequisite.  

Comparison between the effects of using βp and βg on accuracy of EBV were made within each 

approach. In the DP approach, accuracy of EBV when using βg were higher than the corresponding 

predictions using βp, especially in the low genetic scenario. This suggested that if the genetic 

correlations between the three traits are low, an appropriate regression coefficient (e.g. βg) should 

be used for better EBV accuracy in the DP approach. However, there were no difference in EBV 

accuracy between using the βp and βg in the IP approach. This is interesting as the IP approach is 
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the commonly used method in genetic analyses of traits predicted from milk FT-MIR spectra. It 

might be difficult to estimate βg from real data, so that it is a challenge.   

Both in the current study that depends on simulated data and a previous study that used real 

data (Dagnachew et al., 2013b), the DP approach has improved accuracy of EBV prediction. In 

the DP approach, EBV are predicted once for latent variables derived from spectra and later 

combined into EBV of focal traits without a need of first predicting phenotypes for the focal traits 

from milk spectra. This is particularly important when FT-MIR calibration equations are available 

for a high number of traits (Bonfatti et al., 2017).  Such use of the DP approach for spectra would 

be possible when the spectral dimension is reduced by principal component analysis (PCA), and 

not as feasible with PLS. Parameter estimates for the latent variables from PCA are population 

parameters that characterize any information available in the milk spectra. This is not the case, for 

example, for factor scores from the PLS regression as they mainly contain information related to 

the particular trait used in the calibration.  However, the retained latent variables from PCA might 

not contain all information about the focal trait (Soyeurt et al., 2010; Dagnachew et al., 2013b; 

Belay et al., 2015; Bonfatti et al., 2017).  

Relationships between Accuracy of EBV Prediction and Calibration Equations 

Coefficient of determinations in calibration models estimated from simulated phenotypes (Rp
2 ) 

ranged from 0.004 (for low genetic and low residual correlation scenario) to 0.787 (for high genetic 

and high residual correlation scenario).  The Rp
2  increased with the increase in either genetic or 

residual or both correlations (Figures 2, 4 and 6). The corresponding estimates from true breeding 

values (Rg
2) ranged from 0.070 (for low genetic correlation) to 0.814 (for high genetic correlation). 

The Rg
2 increased with increase in genetic correlations, but did not change as residual correlations 
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increased (Figures 3, 5 and 7). At most of the correlation scenarios considered, estimates for the 

Rg
2 were higher the corresponding values for the Rp

2 .  

The relationships between performance of the IP and DP approaches in predicting individual 

EBV and predictive ability of calibration models (R2) are depicted in Figure 2 for βp and Rp
2  and 

in Figure 3 for βg and Rg
2. When using the βp, prediction accuracy of the IP and DP approaches 

increased with increase in predictive ability of the calibration models (Rp
2 ). The exception was at 

low genetic correlation (with zero to high residual correlation scenarios), where EBV accuracy 

generally decreased as the Rp
2  increased. This indicated that improvement in residual structure for 

lowly genetically correlated traits has no contribution in improving their EBV prediction accuracy. 

In other words, calibration models with higher R2 do not necessarily result in better EBV prediction 

accuracies when genetic correlations between traits are low. What really matters for better 

accuracy of EBV prediction is the genetic correlation compared to residual correlation. For 

example, at zero (Figure 2a) or low (Figure 2b) residual structure, Rp
2  of the calibration models 

slightly increased with increase in genetic correlations (low to high), but EBV accuracy greatly 

improved compared to the Rp
2 . At high residual correlation (Figure 2d) as well as at low residual 

correlation (Figure 2b) with medium to high genetic correlation scenarios, the difference in 

prediction accuracy between the IP and DP approaches were more visible than at either zero 

(Figure 2a) or medium (Figure 2c) residual correlations. This was more clear for EBV of all 

animals with records than for EBV of sires i.e. as the predictive ability of the calibration models 

increased the difference in prediction accuracy between the IP and DP approaches became more 

apparent (results not shown).  
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Similar to when using the βp, prediction accuracy of the IP and DP approaches in using the βg 

increased with increase in predictive ability (Rg
2) of the calibration equations (Figure 3). As 

expected, the residual structure (Figure 3a-d) in this case had no effect on predictive ability of the 

calibration models, but on accuracy of EBV prediction, as the predicted EBV was derived from a 

phenotype that contained both residual and genetic information. Increase in genetic correlations 

between traits increased both accuracy of the two approaches (IP and DP) and predictive ability of 

the calibration models regardless of the residual structures. Except at zero residual correlation 

(Figure 3a), difference in performance of the two approaches became visible as the residual 

correlations increased (Figure 3b-d), especially at low genetic scenarios. However, such clear 

differences were not observed when using βp (Figure 2), indicating that performance of the DP 

approach is sensitive to the type of PLS regression coefficients used.  

The better performance of DP when using βg, especially at low genetic correlation might be 

due to the simultaneous increase in genetic correlations between the focal trait and the other two 

traits (trait 2 and 3) as well as between trait 2 and 3. As the genetic correlation between the traits 

increases, their information content becomes similar (i.e. one trait provides more information about 

the other traits) and hence simultaneous analysis of such traits would be slightly different from 

analyzing them separately. The better performance of DP in using βg at low genetic correlation 

scenario might also be related to predictive ability of calibration models from which βg was 

estimated. At low genetic correlation, predictive ability of calibration models was low (<0.10) and 

βg captures little information about the intended trait. Hence, EBV of trait 2 and 3 were predicted 

more accurately due to utilization of covariance between them (DP). However, the corresponding 

EBV prediction in IP was relatively inaccurate as the phenotypes from which the EBV derived 

were poorly predicted through a βg that contained little information. At high predictive ability of 
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calibration models, the IP approach gives accurate prediction and not much gain from the DP that 

utilizes little extra information not utilized by the IP approach, resulting in small difference in 

performance between the approaches. That means performance of the IP approach is approaching 

that of the DP approach as accuracy of the calibration models increased.  

In our previous study, we have suggested that predictive ability of calibration model could affect 

performance of the two approaches. The suggestion was made based on the work of Dagnachew 

et al. (2013b) where high R2 was associated with better performance in DP than in IP and Belay et 

al. (2017) where low R2 was associated with inferior performance in the DP compared to the IP 

approach. However, Bonfatti et al. (2017) reported absence of relationships between rank 

correlations (between EBV obtained by the IP and the DP approach) and predictive ability of 

calibration equations. In the current study, we have shown that performance of the two approaches 

increased with increase in predictive ability of calibration models, but it is not necessary to have 

calibration equation with high R2 for the DP approach to perform better the IP approach for EBV 

prediction.  This might not be the case for phenotypic prediction (details in next sections).  

Accuracy of Phenotypic Prediction (𝑷𝑵𝑬̂𝑰𝑷 and 𝑷𝑵𝑬̂𝑫𝑷) 

Similar to accuracies of EBV, accuracies of predicted phenotypes generally increased with 

increase in correlations (genetic and residual) between the focal trait and the other two traits. 

However, no clear trend was observed for DP compared to IP performance when the residual 

correlation increased at low genetic scenario when using βg (Table 4). Accuracies of predicted 

phenotypes in IP approach were higher than the corresponding estimates in the DP approach both 

when using βg and βp. This is in agreement with our previous study (Belay et al., 2017) where 

slightly better prediction of blood BHB was found in the IP than in the DP approach. However, it 

is in contrast with EBV accuracy observed in the current (Table 3 or Figures 2 and 3) and previous 
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(Dagnachew et al., 2013b) studies. Performance of the IP over the DP increased with increase both 

in genetic and residual correlations among traits, except at the zero residual correlation scenario 

where performance of the two approaches were similar. The differences in performance between 

the two approaches were larger especially at medium or high residual correlation scenarios. For 

the DP approach, no or little difference in performance was observed in using βg or βp, except at 

low genetic scenario where using βp generally gave higher accuracies (Table 4).  However, within 

the IP approach, accuracies of predicted phenotypes were generally slightly higher when using βg 

than when using βp. This is contrary to the EBV accuracy comparison made between using the βg 

and βp within either the DP or IP approach. Similarly, at low genetic correlation, accuracy of 

phenotypic prediction was higher when using βp in DP, but accuracy of EBV prediction was higher 

in using the βg in the DP approach.  

Accuracy of the 𝑷𝑵𝑬̂𝑰𝑷 and 𝑷𝑵𝑬̂𝑫𝑷 versus Accuracy of Calibration Equations 

 The relationships between phenotype prediction accuracy of the IP and DP approaches with 

the predictive ability of calibration models (R2) were evaluated and are depicted in Figure 4 when 

using βp and Rp
2  and in Figure 5 in using βg and Rg

2. Similar to the accuracy of EBV, phenotypic 

prediction accuracy increased with increase in predictive ability of calibration models. Both at zero 

(Figure 4a) and low (Figure 4b) residual correlation scenarios, predictive ability of calibration 

model was very low (Rp
2  <0.1) and most increment in accuracy of phenotypic prediction in the two 

approaches were due to increase in genetic correlations. At medium residual correlation scenario 

(Figure 4c), the Rp
2  increased to a maximum of 0.56 while the corresponding values at high residual 

correlation scenario (Figure 4d) was 0.79. The corresponding maximum value in accuracy of 

phenotype was 0.55 for DP or 0.65 for IP at the medium residual correlation scenario and was 0.56 

for DP or 0.74 at the high residual correlation scenario. As indicated above, the IP approaches 
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perform better than the DP for predicting the phenotypes, and the difference in prediction accuracy 

between the two approaches become clearer as predictive ability of calibration models (Rp
2 ) 

increased (Figure 4).  

In using the βg, phenotypic prediction accuracy of the IP and DP approaches also increased 

with increase in predictive ability of the calibration models (Rg
2). Increase in genetic correlations 

between traits increased both performance of the two approaches and the calibration models 

regardless of the residual structures (Figure 5). At zero residual correlation (Figure 5a), there was 

no difference in performance between the two approaches. However, at the remaining residual 

correlation scenarios (Figure 5b-d), the IP approach outperformed the DP approach with increase 

in Rg
2 of calibration models, and the highest difference in performance between the two approaches 

was observed at high residual correlation scenario (Figure 5d). Unlike when using βp, it is possible 

to distinguish between performance of the two approaches when using βg at low Rg
2 (< 0.1), where 

genetic and residual correlations between traits were low.  

Accuracy of Predicted Phenotypes (𝑷𝑾𝑬̂𝑰𝑷 and 𝑷𝑾𝑬̂𝑫𝑷)  

In this study, phenotype for the focal trait was predicted in two ways: 1) phenotypic prediction 

obtained directly from BLUP when such phenotypes did not contain residual effects, and 2) those 

phenotypes from BLUP + residual effects from BLUP. The former was described in the preceding 

section while the latter phenotypes are presented in this section. In the DP approach, BLUP 

solutions for residuals of trait 2 and 3 were converted into residual of focal trait using βr that were 

estimates from residual part of simulated phenotypes. This was done assuming that use of 

appropriate PLS regression coefficients for the different model components would result in better 

prediction than using only regression coefficient estimated from phenotype. Accordingly, 
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predicted phenotypes of trait 2 and 3 were converted into single-trait predicted phenotypes 

(PNÊDP) using either βp or βg (as described above), whereas βr was used to convert predicted 

residual of trait 2 and 3 into single-trait residual (𝑒̂). This single-trait residual (𝑒̂) was later added 

to the PNÊDP to obtain predicted phenotypes for the focal trait (PWÊDP = PNÊDP + 𝑒̂). In the IP 

approach, predicted phenotypes (i.e., phenotypes corrected for residual effects:PNÊIP) and residual 

effects directly obtained from BLUP were added together to generate new predicted phenotypes 

for the focal trait (PWÊIP = PNÊIP + 𝑒̂). In addition to the DP and IP predicted phenotypes 

(PWÊIP and PWÊDP), phenotypes predicted by classical PLS (P̂PLS) were also computed and 

compared with the PWÊIP and PWÊDP.  

Similar to accuracies of phenotypes corrected for residual effects (i.e. PNÊIP and PNÊDP,), 

accuracies of phenotypes that contained residual effects (i.e. PWÊIP and PWÊDP) increased with 

increase in genetic and residual correlations (Table 5). In using βp, accuracy of phenotypic 

prediction in the IP approach was generally similar to the accuracy in the DP approach. This is 

contrary to accuracy of the PNÊIP and PNÊDP reported in the current (Table 4) and previous (Belay 

et al., 2017) studies. The exceptions were at zero residual correlation with medium and high genetic 

correlation scenarios, where the DP performed better than the IP approach, but with relatively high 

standard errors. At low residual correlation with medium and high genetic correlation scenarios, 

however, IP performed better than the DP approach. In using βg, however, accuracy of phenotypic 

prediction in the DP approach was slightly higher than accuracy in the IP approach. In addition, 

accuracy of phenotypic prediction in the DP approach was higher when using βg than using βp, 

especially at zero and low residual correlations. This gives a clue to the importance of using 

appropriate regression coefficients (βg and βr) in the DP approach for converting the multi-trait 

into single-trait structure. Within the IP approach, accuracy of phenotypic prediction using βp was 
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equal to the one predicted in using βg. These phenotypic prediction accuracies were also equal to 

the ones predicted by PLS (results not shown in table); indicating unnecessity of doing single-trait 

BLUP (IP) on PLS predicted traits for ultimate prediction of phenotypes.  

Accuracy of 𝑷𝑾𝑬̂𝑰𝑷 and 𝑷𝑾𝑬̂𝑫𝑷 Prediction versus Accuracy of Calibration Equations 

The relationships between accuracy of the PWÊIP or PWÊDP and the predictive ability of 

calibration models (R2) are depicted in Figure 6 for βp and Rp
2  and in Figure 7 for βg and Rg

2. When 

using the βp, accuracy of phenotypic prediction increased with increase in Rp
2  (Figure 6). This is 

similar to accuracy of EBV and PNÊIP or PNÊDP described above in the current study. Differences 

in performance between the two approaches were clearer at low Rp
2  (<0.1; Figure 6a-b) than at 

medium to high Rp
2  (0.277-0.787; Figure 6c-d). This is contrary to performance of the two 

approaches for predicting accuracy of EBV and PNÊIP or PNÊDP, where performance of the two 

approaches overlap at low Rp
2  (< 0.1; Figures 2 and 4).  

In using the βg, the prediction accuracy of the IP and DP approaches also increased with 

increase in Rg
2 of calibration models (Figure 7). Similar to accuracy of EBV, PNÊIP, or PNÊDP, the 

residual structures had no effect on the Rg
2 of calibration models, but on the accuracy of phenotypic 

prediction by the two approaches (Figure 7). Increase in genetic correlations between traits 

increased both performance of the two approaches and Rg
2 of calibration models regardless of the 

residual structures. At zero (Figure 7a) and low (Figure 7b) residual correlation scenarios, 

differences in performances between the two approaches increased with increase in Rg
2 of 

calibration models or with increase in genetic correlations.  At medium (Figure 7c) and high 

(Figure 7d) residual correlation scenarios, however, performance of the two approaches were 

similar regardless of increase in Rg
2 or in genetic correlations. These results are contrary to 
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performance of the two approaches in predicting accuracy for the PNÊIP and PNÊDP phenotypes 

(Figures 4 and 5). This indicated that for traits with low link to predictor variables better 

phenotypic prediction would be found with the DP in using both βg and βr together.   

 

CONCLUSIONS 

In this study, performance of the IP and DP approaches under different genetic and residual 

correlation scenarios were evaluated. In addition, effects of using different regression coefficients 

(βg, βp or βr) on accuracy of prediction (EBV and phenotype) were investigated. The relationships 

between performance of the IP and DP approaches and accuracy of calibration models (for 

phenotype, genetic and residual values of the focal trait) also studied. Accuracies of EBV were 

higher in the DP approach than in the IP approach, whereas the reverse was true for accuracy of 

phenotypic prediction (i.e. accuracy of PNÊIP > PNÊDP). The exception was when using βg and βr, 

where accuracy of phenotypic prediction in the DP approach was slightly higher than that in the 

IP approach, especially at the zero and low residual correlation scenarios (i.e. accuracy of PWÊIP 

< PWÊDP). Predictive ability of the calibration models increased with improvement in genetic and 

residual structures between traits. Performance of both IP and DP increased with increase in 

predictive ability of the calibration models. The exceptions were when using βg (where 

performance of the two approaches were not affected by predictive ability of the calibration models 

at a given genetic scenario) and at low genetic correlation scenario (where accuracy of EBV 

prediction of the two approaches slightly decreases as the Rp
2  was increased). Therefore, it is not a 

good strategy to use the DP approach for phenotypic prediction, except when the βg and βr that are 

difficult to estimate using real data would be available. Use of the DP approach for prediction of 

EBV seems useful while the IP or PLS based prediction equations are a method of choice for 

phenotypic prediction.  
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FIGURES 

Figure 1. Schematic representation of the indirect (IP) and direct (DP) prediction approaches. For 

the IP method, phenotype for focal trait was predicted (P̂PLS ) from trait 2 and 3 using regression 

coefficient (βp) estimated from true phenotype values (TPV). Then, BLUP was applied to this 

predicted trait using the true genetic and residual covariance of trait 2 and 3 after converting into 

respective variances through βp or βg (regression coefficient from true breeding values-TBV) for 

EBV ( 𝐸𝐵𝑉̂𝐼𝑃) and phenotypic (𝑃𝑁𝐸̂𝐼𝑃) prediction. The 𝑃𝑁𝐸̂𝐼𝑃that obtained directly from BLUP 

do not contain residual effects (ê) whose addition to the 𝑃𝑁𝐸̂𝐼𝑃  resulted in phenotype that 

contained error (𝑃𝑊𝐸̂𝐼𝑃).   For the DP method, trait 2 and 3 were analyzed multivariately with a 

genetic model before predicted model components are combined through the βp or βg to eventually 

predict phenotype (𝑃𝑁𝐸̂𝐷𝑃) and EBVDP. Residual part of predicted trait 2 and 3 (𝑒̂𝑡) was converted 

into single-trait residual (ê) through the βr (regression coefficient estimated from the residual part 

of simulated phenotypes) and the ê  added to the 𝑃𝑁𝐸̂𝐷𝑃 to obtain predicted phenotype that 

contained residual effects (𝑃𝑊𝐸̂𝐷𝑃).  

Figure 2. Determination coefficients of calibration models estimated based on phenotype (Rp
2 ) and 

mean EBV accuracy of sire predicted using the direct (DP; black circle) and indirect (IP; black 

triangle) prediction approaches. The mean EBV accuracy predicted under low (LG), medium 

(MG) and high (HG) genetic correlations with zero (a), low (b), medium (c) and high (d) residual 

correlation scenarios.  The gray shades indicate genetic correlation scenarios. The βp was used to 

convert covariance components of trait 2 and 3 into variance components in IP or EBV of trait 2 

and 3 into EBV of the intended trait in DP.  
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Figure 3. Determination coefficients of calibration models estimated based on true breeding values 

(Rg
2) and mean EBV accuracy of sire predicted using the direct (DP; black circle) and indirect (IP; 

black triangle) prediction approaches. The mean EBV accuracy predicted under low (LG), medium 

(MG) and high (HG) genetic correlations with zero (a), low (b), medium (c) and high (d) residual 

correlation scenarios.  The gray shades indicate genetic correlation scenarios. The βg was used to 

convert covariance components of trait 2 and 3 into variance components in IP or EBV of trait 2 

and 3 into EBV of the intended trait in DP.  

 

Figure 4. Determination coefficients of calibration models estimated based on phenotype (Rp
2 ) and 

mean accuracy of predicted phenotypes (without residual effects) using the direct (DP; black 

circle) and indirect (IP; black triangle) prediction approaches. The mean phenotypic accuracy 

predicted under low (LG), medium (MG) and high (HG) genetic correlations with zero (a), low 

(b), medium (c) and high (d) residual correlation scenarios.  The gray shades indicate genetic 

correlation scenarios. The βp was used to convert covariance components of trait 2 and 3 into 

variance components to be used in IP or predicted phenotypes of trait 2 and 3 into predicted 

phenotypes of the intended trait in DP.  

Figure 5. Determination coefficients of calibration models estimated based on true breeding values 

(Rg
2) and mean accuracy of predicted phenotypes (without residual effects) using the direct (DP; 

black circle) and indirect (IP; black triangle) prediction approaches. The mean phenotypic 

accuracy predicted under low (LG), medium (MG) and high (HG) genetic correlations with zero 

(a), low (b), medium (c) and high (d) residual correlation scenarios.  The gray shades indicate 

genetic correlation scenarios. The βg was used to convert covariance components of trait 2 and 3 

into variance components to be used in IP or predicted phenotypes of trait 2 and 3 into predicted 

phenotypes of the intended trait in DP.  
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Figure 6. Determination coefficients of calibration models estimated based on phenotypes (Rp
2 ) 

and mean accuracy of predicted phenotypes (including residual effects) using the direct (DP; black 

circle) and indirect (IP; black triangle) prediction approaches. The mean phenotypic accuracy 

predicted under low (LG), medium (MG) and high (HG) genetic correlations with zero (a), low 

(b), medium (c) and high (d) residual correlation scenarios.  The gray shades indicate genetic 

correlation scenarios. The βp was used to convert covariance components of trait 2 and 3 into 

variance components to be used in IP or predicted phenotypes of trait 2 and 3 into predicted 

phenotypes of the intended trait in DP. 

 

Figure 7. Determination coefficients of calibration models estimated based on true breeding values 

(Rg
2) and mean accuracy of predicted phenotypes (including residual effects) using the direct (DP; 

black circle) and indirect (IP; black triangle) prediction approaches. The mean phenotypic 

accuracy predicted under low (LG), medium (MG) and high (HG) genetic correlations with zero 

(a), low (b), medium (c) and high (d) residual correlation scenarios.  The gray shades indicate 

genetic correlation scenarios. The βg was used to convert covariance components of trait 2 and 3 

into variance components to be used in IP or predicted phenotypes of trait 2 and 3 into predicted 

phenotypes of the intended trait in DP. 
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𝑐𝑜𝑟(𝑃𝑊𝐸̂𝐼𝑃 , 𝑇𝑃𝑉) 

 

Vs 

  𝑃𝑁𝐸̂𝐼𝑃 𝑐𝑜𝑟(𝑃𝑁𝐸̂𝐼𝑃 , 𝑇𝑃𝑉) 

  𝐸𝐵𝑉̂𝐼𝑃 

Vs 

Vs 

‘True’ genetic & 

residual covariance 

Trait 2 and 3 Phenotypes 

(for 6,000 observations) 



28 
 

 

Belay et al. Figure 2 
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Belay et al. Figure 4 
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Belay et al. Figure 6 
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Tables 
 

Table 1.  Overall means, genetic and residual variances and heritabilities of the simulated traits* 

Trait  Mean  Genetic variance Residual variance Heritability  

Trait1  3.450 0.027 0.044 0.377 

Trait2 -0.030 0.089 0.839 0.096 

Trait3 -0.050 0.158 0.686 0.187 

*Except residual variance, all other parameters were estimates from previous studies (estimates 

for trait1 that represent protein percent are from Belay et al., unpublished data) while estimates for 

the other two traits (trait2 and trait3) represent latent traits derived from milk spectra in Belay et 

al. (2015). Residual variance was calculated given the heritability and genetic variance of each 

trait.  

Table 2. Scenarios for genetic and residual correlations between the three traits used in 

simulations 

 
Scenarios 

Genetic  Residual 

Correlation(r)* High Medium Low  High Medium  Low  Zero 

r12  0.80 0.50  0.25  -0.80 -0.50 -0.25 0 

r13  0.90 0.70  0.10   0.90  0.70  0.10 0 

r23  0.85 0.65  0.15  -0.85 -0.60 -0.15 0 

*r12, r13, and r23 are correlations between traits 1 and 2, 1 and 3, and 2 and 3, respectively. Trait 1 

is the focal trait (‘protein percent’) and trait 2 and 3 are assumed to be latent traits after 

dimensionality reduction of spectra information. 



32 

Table 3. Mean accuracy*(SE) of predicted breeding values of sires using the direct (DP) and 

indirect (IP) prediction approaches under different correlation scenarios using regression 

coefficients estimated based on true breeding values (βg) and true phenotype (βp) 

Correlation DP IP 

Genetic Residual βp βg βp βg 

Low: Zero  0.179 (0.123) 0.199 (0.115) 0.182 (0.125) 0.182 (0.125) 

Low 0.099 (0.105) 0.236 (0.108) 0.117 (0.105) 0.117 (0.105) 

Medium 0.118 (0.110) 0.233 (0.101) 0.074 (0.111) 0.073 (0.112) 

High 0.100 (0.103) 0.227 (0.096) 0.040 (0.106) 0.040 (0.106) 

Medium: Zero  0.607 (0.072) 0.612 (0.070) 0.608 (0.072) 0.608 (0.072) 

Low 0.596 (0.077) 0.617 (0.074) 0.528 (0.089) 0.528 (0.088) 

Medium 0.650 (0.057) 0.650 (0.057) 0.619 (0.061) 0.619 (0.061) 

High 0.665 (0.064) 0.666 (0.064) 0.618 (0.070) 0.617 (0.070) 

High: Zero  0.796 (0.035) 0.798 (0.035) 0.796 (0.035) 0.796 (0.035) 

Low 0.809 (0.036) 0.811 (0.035) 0.759 (0.049) 0.758 (0.049) 

Medium 0.846 (0.029) 0.846 (0.029) 0.813 (0.033) 0.813 (0.033) 

High 0.855 (0.033) 0.855 (0.033) 0.810 (0.041) 0.810 (0.041) 

*Accuracy was defined as a correlation between predicted EBV and simulated ‘true’ breeding

values (TBV). Average of 100 replicates per scenario is reported and the SE were calculated as the 

standard deviation of the 100 accuracies for each scenario. 
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Table 4. Mean accuracy*(SE) of predicted phenotypes (corrected for residual effects) using the 

direct (DP) and indirect (IP) prediction approaches under different correlation scenarios using 

regression coefficients that estimated based on true breeding values (βg) and true phenotype (βp) 

Correlation  DP  IP 

Genetic  Residual  βp βg βp βg 

Low  Zero    0.069 (0.038) 0.079 (0.034)  0.072 (0.039) 0.072 (0.040) 

 Low   0.055 (0.032) 0.022 (0.036)  0.053 (0.033) 0.061 (0.035) 

 Medium   0.290 (0.028) 0.140 (0.050)  0.314 (0.034) 0.312 (0.057) 

 High   0.314 (0.024) 0.102 (0.051)  0.372 (0.035) 0.426 (0.073) 

Medium Zero    0.265 (0.024) 0.266 (0.023)  0.265 (0.024) 0.264 (0.025) 

 Low   0.267 (0.028) 0.256 (0.027)  0.280 (0.032) 0.295 (0.028) 

 Medium   0.474 (0.016) 0.471 (0.016)  0.557 (0.016) 0.569 (0.019) 

 High   0.483 (0.015) 0.479 (0.016)  0.640 (0.017) 0.667 (0.024) 

High  Zero    0.345 (0.020) 0.346 (0.020)  0.345 (0.020) 0.344 (0.020) 

 Low   0.339 (0.022) 0.336 (0.022)  0.366 (0.023) 0.372 (0.022) 

 Medium   0.553 (0.012) 0.553 (0.012)  0.648 (0.010) 0.646 (0.015) 

 High   0.565 (0.011) 0.565 (0.011)  0.739 (0.011) 0.742 (0.020) 

*Accuracy was defined as a correlation between predicted phenotype and simulated ‘true’ 

phenotype values (TPV). Average of 100 replicates per scenario is reported and the SE were 

calculated as the standard deviation of the 100 phenotypic accuracies for each scenario. 
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Table 5. Mean accuracy* (SE) of predicted phenotypic values (including residual effect in the 

prediction) of animals with records using the direct (DP) and indirect (IP) approaches when PLS 

regression coefficients based on true breeding values (βg) and true phenotypic values (βp) were 

used  

Correlation DP IP 

Genetic Residual βp βg βp βg 

Low: Zero  0.032 (0.042) 0.069 (0.035) 0.048 (0.010) 0.048 (0.010) 

Low 0.160 (0.014) 0.176 (0.014) 0.160 (0.015) 0.160 (0.015) 

Medium 0.529 (0.011) 0.533 (0.009) 0.527 (0.012) 0.527 (0.012) 

High 0.677 (0.008) 0.680 (0.007) 0.675 (0.009) 0.675 (0.009) 

Medium: Zero  0.235 (0.050) 0.263 (0.025) 0.203 (0.015) 0.203 (0.015) 

Low 0.225 (0.022) 0.303 (0.021) 0.268 (0.014) 0.268 (0.014) 

Medium 0.681 (0.008) 0.679 (0.008) 0.684 (0.007) 0.684 (0.007) 

High 0.824 (0.005) 0.818 (0.005) 0.827 (0.005) 0.827 (0.005) 

High: Zero  0.327 (0.031) 0.344 (0.020) 0.268 (0.015) 0.268 (0.015) 

Low 0.252 (0.025) 0.365 (0.020) 0.311 (0.014) 0.311 (0.014) 

Medium 0.740 (0.007) 0.740 (0.007) 0.746 (0.007) 0.746 (0.007) 

High 0.882 (0.003) 0.872 (0.003) 0.887 (0.003) 0.887 (0.003) 

*Accuracy was defined as a correlation between predicted phenotype and simulated ‘true’

phenotype values (TPV). Average of 100 replicates per scenario is reported and the SE were 

calculated as the standard deviation of the 100 phenotypic accuracies for each scenario. 
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