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Abstract 23 

Lichens as sessile and slow-growing symbiotic associations have evolved various carbon 24 

based secondary compounds (CBSCs) to mitigate effects of some stressors in their often 25 

extreme environments. The mat-forming lichen Cladonia stellaris – an important fodder for 26 

reindeer – produces usnic acid in the outermost layer and perlatolic acid in the medulla. Here, 27 

we studied effects of simulated global warming on these CBSCs in C. stellaris cultivated in 28 

climate chambers with: 1) ambient conditions as control or 2) ambient conditions +4°C. The 29 

chambers simulated, at an hourly resolution, an averaged 10-years growing season dynamics 30 

from a long-term monitored boreal mire in Northern Sweden. After two months of 31 

acclimation, +4°C warming in one simulated growing season increased the concentration of 32 

usnic acid by 31 % compared with ambient conditions. Whereas the warming decreased the 33 

concentration of perlatolic acid by 14 %. Because lichen CBSCs play important roles in 34 

ecosystem processes such as lichenivory and decomposition, these changes may profoundly 35 

affect lichen-dominated ecosystems. 36 

 37 
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Introduction 40 

As sessile and slow-growing symbiotic associations in extreme environments, lichens face 41 

various unpredictable threats. To be successful, lichen mycobionts have evolved carbon based 42 

secondary compounds (CBSCs) occurring as extrolites outside fungal hyphae. These 43 

compounds protect lichens from lichenivores and excess solar radiation (as reviewed by 44 

Solhaug & Gauslaa 2012). CBSCs may also protect lichens from other biotic and abiotic 45 

stressors and thus serve multiple functions (Lawrey 2009).  46 

 There has been a growing interest in how abiotic factors regulate CBSCs in lichens 47 

(Rundel 1969; Bjerke et al. 2003; McEvoy et al. 2006b; Nybakken et al. 2007; e.g. Asplund 48 

& Wardle 2014). UV-B induces CBSCs located in the upper cortex (e.g. usnic acid, atranorin 49 

and parietin) (Rundel 1969; Solhaug et al. 2003; McEvoy et al. 2006a), whereas medullary 50 

CBSCs are less responsive to light exposure (McEvoy et al. 2007; Nybakken et al. 2007). 51 

Nevertheless, both cortical and medullary CBSCs concentration peak in summer (Gauslaa & 52 

McEvoy 2005; Bjerke et al. 2005; Gauslaa et al. 2013).  53 

Few have investigated how temperature per se affects CBSCs. For instance, the 54 

widespread cortical compound, usnic acid has been found to decrease with increasing 55 

temperature (Bjerke et al. 2004; Nybakken et al. 2011). Meanwhile, Bjerke et al. (2003) 56 

found higher concentrations of the medullary gyrophoric acid and methyl gyrophorate in the 57 

cyanolichen Peltigera extenuata in open top chambers (OTCs) inducing e.g. warming. 58 

Likewise, the medullary salazinic acid had higher concentrations in Ramalina siliquosa 59 

collected at warmer sites (Hamada 1982). By contrast, CBSCs in many other species did not 60 

respond to increased temperature (Nybakken et al. 2011). However, because temperature 61 

affects water availability (Bjerke et al. 2004), we need experimental studies controlling for 62 

confounding factors that may interfere with the CBSC metabolism. Earlier studies on lichen 63 

CBSCs and temperature did not control important confounding factors, such as light and 64 
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humidity. For example, field-based experiments using open-top chambers (OTC) or infra-red 65 

lamps artificially decrease the water potential and the soil moisture (e.g. Allison & Treseder 66 

2008; Johnson et al. 2013).  67 

The relative humidity and the water potential influence lichen growth (Čabrajić et al. 68 

2010; Gauslaa 2014). Many lichens are designed to utilize dew rather than rain as a source of 69 

hydration (Gauslaa 2014). Climate models at all latitudes (Allen & Ingram 2002) assume that 70 

the relative humidity remains constant in the atmosphere over long time scales because the 71 

atmospheric water capacity increases with warming and nearby oceans function as water 72 

vapour pumps that can endlessly recharge the atmospheric water pool (Johnson et al. 2013). 73 

Also recent observations support this and suggest that increasing precipitation and total 74 

atmospheric water concur with the rise in temperature over the past two decades (Wentz et al. 75 

2007). In northern Sweden, the precipitation is predicted to increase by 11% until 2100 at a 76 

warming rate of 4°C (Lind & Kjellström 2008). 77 

 It is important to understand the regulation of lichen CBSCs because these compounds 78 

influence ecosystem processes such as lichenivory and decomposition, and thus carbon and 79 

nutrient cycling (Asplund & Wardle 2013; Asplund et al. 2013). The mat-forming terricolous 80 

Cladonia stellaris, with usnic acid in the outermost layer and perlatolic acid in its medulla. 81 

often dominates well-drained inland terrain at high latitudes (Kershaw 1977; Ahti & Oksanen 82 

1990). Such mat-forming lichens contribute to ecosystem processes by e.g. providing the 83 

main winter fodder for reindeer/caribou (Scotter 1967; Gaare & Skogland 1975; e.g. Danell et 84 

al. 1994; Storeheier et al. 2002).  85 

Here, we studied the effects of +4°C warming on CBSCs in C. stellaris cultivated in 86 

two climate chambers without confounding effects of the decreased relative humidity, 87 

hydration, and altered levels of UV-B. By compensating for the greater air-water holding 88 

capacity of warmed mesocosms and by keeping the relative humidity constant, the capacity of 89 
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the mesocosms to form dew was equal across treatments. By taking such precautions, we 90 

aimed to quantify the temperature effect per se on secondary metabolism.  91 

 92 

Material and methods 93 

On November 19, 2011, a homogeneous mat (approximately 4 dm2) of C. stellaris was 94 

collected on a Sphagnum fen in Lappmyran mire, 2.2 km from the Degerö mire experimental 95 

site, Vindeln, Sweden (64º09’54.91”N, 19º35’02.26”E). The mat was cleaned from debris and 96 

the partly senesced lowermost layer before it was air-dried for 72 h and stored at –18ºC until 97 

the start of experiment. A small portion was dried at 70°C to determine the dry bulk density. 98 

 On December 4 2011, we placed 12 Sphagnum fen mesocosms (monoliths), taken 99 

from a homogenous fen lawn at the same location as the lichen material, and placed in 100 

polypropylene boxes (54 cm x 36 cm x 25 cm) evenly distributed in two walk-in climate 101 

chambers (Karl Weiss, Giessen, Germany). Thirty 400 W metalhalogen lamps (Powerstar 102 

HQI-TS, OSRAM, Munich, Germany) were set 110 cm above the top of the mesocosms. The 103 

light spectrum comprised the wavelength range 315 (UV-A) - 800 nm. The Photosynthetic 104 

Active Radiation (PAR) was programmed to follow the PAR under natural conditions at an 105 

hourly time scale. Lamps could generate a PAR up to 1075 µmol m-2 s-1 at the surface of the 106 

mesocosms. With these light sources, 96.2% of the hourly settings could match the in-situ 107 

PAR levels of the entire growing season at Lappmyran. UV filters kept the UV radiation 108 

below the maximum permitted thresholds to IEC 61167. A linear AccuPAR probe model LP-109 

80 (Decagon, Pullman, USA) recorded PAR. The air temperature and relative humidity were 110 

monitored with a QFM3160 sensor (Simens, Munich, Germany), and the chambers were 111 

continuously controlled to meet the hourly ambient settings. Two fans ensured mixing of the 112 

conditioned or heated air inside the chambers with the spray nozzle humidified air. The mean 113 
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surface temperature of the substrate was 18.5 ± 0.3 °C and 20.9 ± 0.2 °C in the ambient and 114 

warming treatments, respectively (t = 6.5, P <0.001, t-test). 115 

 On February 1, we placed one 5 cm × 5 cm C. stellaris mat fragment (0.4 g) on top of 116 

each Sphagnum fen mesocosm. The lamps and filters were pre-burned for almost 2 months 117 

before placing the lichens in the chambers. During the experiment, all mesocosms 118 

experienced the conditions of a 10-year average growth season-simulation. Six randomly 119 

selected mesocosms experienced 4°C warming. This warming corresponds to the land 120 

temperature projection in Northern Sweden in summer for the year 2100 using SRES scenario 121 

A1FI (Randall et al. 2007; Lind & Kjellström 2008). Lichens experienced nearly two months 122 

acclimation in 12/12 h night/day cycles at the in situ seasonal average daylight PAR (538 123 

µmol m-2 s-1), 12° and 80% relative humidity. Then, we set the chambers on March 26 to 124 

simulate the 10-year-averaged hourly in-situ measurements of air temperature (0.3 to 21.0°C), 125 

relative humidity (35 to 99%), PAR (0 to 1384 µmol m-2 s-1), precipitation occurrence (0-1) 126 

and water level (-3.5 to -19.1 cm) in the mesocosms. We simulated all growing season days 127 

>0°C (March 26 - September 26; 148 d in total). We kept the relative humidity equal between 128 

the two chambers. Thereby, the absolute humidity was always higher with the 4°C enhanced 129 

air treatment, as warmer air holds more water vapour at a given relative air humidity.  130 

 To simulate a natural precipitation regime, the mesocosms received variable amounts 131 

of water once during a watering day. To determine a watering day, we used the following 132 

watering criteria (WC) for each day (i): 133 

 134 

WCi = (1+MPi)2*MPOi for i= day of the year 122 to 270 135 

 136 

Here, MPi is the mean precipitation for dayi (mm d-1) averaged over 10 years, and MPOi is the 137 

mean precipitation occurrences (1 to 10) for dayi over 10 years. We watered the lichens on the 138 
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75 days with the highest WCi values. During these 75 days, corresponding in situ to the 139 

average number of daily precipitation occurrences during a mean season, we watered the 140 

mesocosms with a watering can fitted with a rose until the water level reached the foreseen 141 

10-year average water level for that day. The mesocosms always remained moist by watering 142 

every 1.97 days on average; but they received condensation water (dewfall) when the 143 

chamber temperature reached the dew point. The added water was a 9:1 mixture of 144 

deionized:tap-water to mimic nutrients, conductivity and pH recorded in the fen’s pore water. 145 

To avoid confounding effects of the within-chamber position, we swapped six times 146 

the position of the mesocosms within the chambers. To avoid confounding chamber effects, 147 

we swapped the mesocosms and the treatment settings from one chamber to the other twice 148 

during the experiment. We monitored air temperature and humidity simultaneously in the two 149 

chambers using additional device for cross-checking. 150 

After harvest, thalli were air-dried and weighed. The air-dry mass was converted to 151 

oven (at 70°C) dry mass by using the ratio between air-dry and oven-dry mass obtained from 152 

additional thalli. Growth was recorded as percent biomass change in relation to start weight. 153 

The upper 10 mm of each 50 mm tall lichen mat was finely ground with a ball mill. 154 

Approximately 35 mg of the powder was extracted for three 45 min periods. The combined 155 

extract was evaporated to dryness and dissolved in 1000-2000 µl acetone. The extracted 156 

compounds were then quantified on a 1100 Series HPLC (Agilent Technologies, Waldbronn, 157 

Germany) including a 1,040-M diode array detector (following Nybakken et al. 2007). 158 

Separation was achieved on an ODS Hypersil 50 × 4.6 mm column. The injection volume was 159 

10 µl and the flow rate was 2 ml min-1 Solvent A consisted of 0.25% orthophosphoric acid 160 

and 1.5% tetrahydrofuran in Millipore (Millipore, Billerica, Massachusetts, USA) water and 161 

solvent B was 100% methanol. The run started with 30 % B. Within 15 min, solvent B was 162 

increased to 70 % and further to 100 % the next 15 min, and then isocratically in 100 % B for 163 
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a further 5 min. At the end of the run, solvent B was reduced to 30 % within 1 min, and the 164 

column was flushed with 30 % B for 5 min before the next run. The detection wavelength was 165 

245 nm. Usnic acid was quantified against the response curve of a commercial standard of 166 

(+)-usnic acid (Sigma Chemical Co, St. Louis, MO, U.S.A.). Different isomers of usnic acid 167 

were not separated. Because no standard was available for perlatolic acid, we reported it in 168 

absorbance units mg-1. Perlatolic acid was identified comparing our spectra by the UV-spectra 169 

reported by Huneck & Yoshimura (1996). Start concentration of both compounds was 170 

quantified from one composite sample of the start material. This value represent the 171 

concentration on the collection date. 172 

 173 

Numerical analysis 174 

The effect of warming on lichen growth rates, usnic and perlatolic acid concentrations was 175 

tested with help of a Welch’s t-test. One lichen mat fragmented during the experiment was 176 

excluded for growth measurements. Thus n = 6 for controls and n = 5 for the warming 177 

treatment. In order to test whether concentrations of CBSCs changed during the cultivation 178 

we calculated change in CBSCs relative to the bulk start value and performed one sample t-179 

tests on these values. All analyses were performed using the R 3.2.5 software (R Core Team 180 

2016). 181 

 182 

Results  183 

The lichens had an average mass growth of 6.1 ± 0.9 % (pooled mean ± 1 S.E.), with no 184 

significant difference between treatments (t = 0.86, P = 0.423). Warming increased the 185 

concentration of usnic acid by 31 % compared to thalli kept under ambient conditions (Fig. 1; 186 

t = 2.92, P = 0.021). As such, thalli kept in the warming treatment significantly increased their 187 

usnic acid concentration compared with the start values (t = 5.87, P = 0.002) Meanwhile, 188 
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thalli kept at ambient temperatures did not change their usnic acid concentration during 189 

cultivation (t = 0.48, P = 0.659). The concentration of perlatolic acid fell significantly during 190 

cultivation at both temperature regimes (Fig. 1; warming: t = 5.69, P = 0.002; ambient: t = 191 

6.40, P = 0.003). Nevertheless, by the end of the experiment, lichens subjected to warming 192 

had 14 % lower concentration of perlatolic acid as compared to those kept under ambient 193 

conditions (Fig.1; t = 2.32, P = 0.049). 194 

 195 

Discussion 196 

The usnic acid concentration increased during the warming regime, but stayed constant in the 197 

ambient regime. Because of the net biomass gain, usnic acid was synthesized in both 198 

temperature regimes. Meanwhile, at the end of cultivation, the concentration of perlatolic acid 199 

was just 70-80 % of the initial concentration. This could be consistent with dilution due to 200 

biomass growth and low or absent perlatolic acid synthesis under the growth chamber 201 

conditions. A low synthesis of perlatolic acid could also explain why we only found weak 202 

differences between the treatments for this compound. 203 

In contrast to our findings, field studies report constant or lower concentrations of 204 

usnic acid at the higher temperature inside OTC (Nybakken et al. 2011). For example, C. 205 

arbuscula inside OTCs (raising air temperature by 1.5 ºC) had lower usnic acid concentration 206 

than thalli outside, whereas usnic acid in Flavocetraria nivalis was indifferent to this 207 

temperature treatment (Nybakken et al. 2011). However, OTCs screen UV-B levels and 208 

modify relative humidity and dewfall strongly influencing poikilohydric organisms. Such 209 

concurring effects may question the ecological relevance of OTC-data for lichens. In studies 210 

along natural environmental gradients, F. nivalis had higher concentration of usnic acid in the 211 

coldest, but also the most humid site (Bjerke et al. 2004). Because lichens need hydration for 212 

metabolic activity, and because photosynthates boost usnic acid synthesis (McEvoy et al. 213 
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2006a), improved water availability could drive usnic acid synthesis (Bjerke et al. 2003). 214 

Thereby, earlier reported increases in usnic acid with decreased temperatures (Bjerke et al. 215 

2004; Nybakken et al. 2011) may have been driven by the confounding factor relative 216 

humidity. Northern latitudes, where C. stellaris is common, are predicted to be warmer and 217 

wetter (Kirtman et al. 2013). Here, we kept all other factors constant, meaning that the 218 

observed increase in usnic acid and decrease in perlatolic acid is attributed to increased 219 

temperature only. 220 

Opposite responses in cortical vs medullary compounds, as those in Fig. 1, have also 221 

been reported in Parmotrema hypotropum showing increased concentration of the cortical 222 

atranorin and decreased medullary norstictic acid with increasing temperature-to-water-223 

potential ratio (T/Ψ) driven by sun exposure in the field (Armaleo et al. 2008). The authors 224 

argued that high versus low T/Ψ would activate cortex-specific polyketide synthases and 225 

medulla-specific polyketide synthases, respectively, causing such contrasting responses. Our 226 

results could be consistent with such a hypothesis, because the water potential should be 227 

similar across our treatments at constant water levels and relative humidity, resulting in higher 228 

T/Ψ in the warming treatment. 229 

 Mat-forming terricolous lichens with usnic acid dominate continental low alpine soils 230 

and forest floor on well drained, nutrient-poor terrain at high latitudes (Kershaw 1977; Ahti & 231 

Oksanen 1990). In Canada alone, there is 4.4 ×106 km2 of lichen woodland (Auclair & Rencz 232 

1982). Given the large biomass of usnic acid lichens at high latitudes, climate-driven changes 233 

in the usnic acid concentration will result in large quantitative changes in usnic acid at the 234 

ecosystem level. Because lichen CBSCs play important roles in ecosystem processes, e.g. 235 

lichenivory and decomposition, such changes may profoundly affect lichen-dominated 236 

ecosystems (Asplund & Wardle 2013, 2016).  237 

 238 
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Figure 1. Concentrations (mean + 1 S.E.) of usnic acid and perlatolic acid in Cladonia 355 

stellaris grown under ambient or increased (+4°C) temperature conditions. The white bars 356 

represent start value from a bulk sample. Asterisks denotes signficant difference between the 357 

two treatments at P < 0.05. 358 
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