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Following publication of our two articles [1, 2], a critique of
the methodology of Phenotype-Genotype Many-to-Many
Relations Analysis (PGMRA) [1, 3, 4] questioned the
validity of our results from the perspective of polygenic risk
scores (PRS) [5]. We appreciate the importance of these
questions, and here provide a concise discussion of the
assumptions and mathematical constraints of both approa-
ches. We thank this commentator and others who have
discussed our articles with us for their thoughtful questions
and critiques.

Complex phenotypes present several challenges for
genome-wide association studies including the presence
of epistasis, pleiotropy, and heterogeneity. We approa-
ched these problems in a data-driven fashion to test the
hypothesis that the heritability expected from twin studies
but unexplained by genetic studies is distributed in het-
erogeneous partitions of a complex trait, each with

distinct genotypic-phenotypic associations. We designed
a machine learning algorithm termed PGMRA [1, 3, 4] to
identify naturally occurring partitions in the data in an
unsupervised fashion. PGMRA first dissects genome-wide
data and uncovers a genotypic architecture composed of
sets of SNPs shared by subsets of individuals (i.e., SNP
sets [3, 6]). Next, phenotypic data are independently
organized into natural sets of features such as clinical
manifestations [4], voxels of neuroimages [7], or per-
sonality traits [1, 2] in a phenomic-like approach [8].
Cross-matching of the two types of sets reveals multiple
associations restricted to subgroups of individuals,
thereby uncovering the genotypic-phenotypic architecture
of a trait and accounting for its distributed genetic risk or
propensity.

Both approaches, PRS and PGMRA, rely on genome-
wide markers (Fig. 1). However, PRS treats these markers
as independent variables with additive effects, whereas
PGMRA searches for sets of structurally connected mar-
kers, which may have interactive effects (epistasis). PRS
assumes a global linear association model and relies on
increasing sample size to improve performance [9, 10]. In
contrast, PGMRA uncovers a family of models (i.e., SNP
sets), each of which computes in a local partition of the
data. Each model can be represented as either a linear
combination of data (as in regression trees) or as a non-
linear combination (as in some neural networks) [11].
Therefore, PGMRA uses a more complex model than PRS,
focusing on incorporating more phenotypic variables rather
than more individuals, but allows the use of smaller samples
by reducing multiple comparisons.

PRS algorithms must reduce phenotypes to a single
dependent variable because they use a linear supervised
model [12]. In contrast, PGMRA uses an unbiased and
unsupervised model to consider all possible phenotypic
patterns common to a subset of individuals, regardless of
their trait status (i.e., does not assign cases and controls a
priori). Distinct patterns of phenotypic features can thus be
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associated with different SNP sets, thereby uncovering
heterogeneous subtypes of the trait [1, 2, 4]. Finally,
PGMRA incorporates trait status a posteriori to calculate the
risk of such associations, and then independently tests the
significance of the associations by a SNP-set Kernel
Association Test [6, 13].

The validity of the replication procedure used by
PGMRA was questioned too [5]. The “gold standard”
approach used by PRS evaluates the reproducibility of an
association by building a linear classifier trained in a dis-
covery sample and testing it in a new sample assuming
sample homogeneity [9, 10]. Homogeneity is a strong
assumption that should be supported. By contrast, PGMRA
uncovers genotypic-phenotypic associations for sample
partitions and computes their corresponding risk or pro-
pensity post hoc; this process is blindly repeated indepen-
dently for each new sample without assuming homogeneity

within or across samples (Fig. 1). Then, similar genotypic-
phenotypic associations across samples with comparable
risk/propensity are uncovered using parsimonious models
that balance accuracy with model complexity, thereby
avoiding overfitting [11, 14, 15].

Inconsistent results obtained from applying PRS to het-
erogeneous samples [16, 17] has led to the suggestion of
averaging scores from multiple samples [18] ignoring, at
least in part, the phenotypic heterogeneity of the samples.
When there is complexity derived from genetic, cultural,
ethnic and environmental heterogeneity, the same global
linear model is unlikely to predict across samples, especially
when markers have relatively small effect [12, 16, 17].
Models learned independently in diverse samples allow
analysis of replication across potentially heterogeneous
samples, thereby providing a more stringent test of repro-
ducibility [19, 20].

Fig. 1 Flow chart describing the
common, as well as the
different, roads followed by
methods developed to build
polygenic scores and the
PGMRA method
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PRS calculates heritability as an adjusted R2 from a
global linear regression, which additively estimates variance
explained by the markers. In the absence of a validated
estimator of variance for “sets” of markers [6, 13], PGMRA
used a similar approach (Fig. 1). For example, the estimated
heritability of character, without controlling for outliers and
jackknife resampling, in the Finns sample [1] was 45.67%.
A criticism [5] questioned the lack of application of another
sampling technique such as cross-validation. As suggested,
we applied cross-validation within and across samples (e.g.,
R2 of 10 k-fold is 45.05% with SD 0.049) and confirmed the
observed results by bootstrapping (1,000 iterations, SE <
1.6%). We also found that the estimates of heritability for
character in our paper [1] are conservative: the aggregation
of the local variances explained by all SNP sets delivers a
higher estimation of heritability (R2 > 15%) than the 45.67%
described above (Fig. 1, unpublished results).

Some suggest that our sample size (2126+ 972+ 902
individuals from 3 cohorts, respectively [1, 2]) has insuffi-
cient power, even though others have calculated 80% power
at nominal significance to detect heritability with the same
sample size [12]. PGMRA computes genotypic-phenotypic
associations based on “sets” of genotypes and “sets” of
phenotypes, so the number of multiple comparisons are
significantly reduced, making PGMRA less greedy of
observations than PRS.

The nature of human beings embraces complex functions
where every expressed gene may affect the function of any cell
and their derived traits of our body in many different ways
(many-to-many relationships). Complex traits are expected and
known to be influenced by multiple genes acting in concert,
not independently [21]. Most of the heritability in gene
expression is determined by many genes far apart on the same
or different chromosomes [21–23], whose effects are difficult
to detect due to their small magnitude (e.g., trans eQTLs
effects), as well as co-expressed genes that are vulnerable to
decoherence in response to environmental perturbations [24].
PGMRA opens the door to develop new methods to explain
complex genotypic-phenotypic relationships, including epis-
tasis, pleiotropy and heterogeneous phenotypes, which present
problems for PRS due to its restrictive linear model and
doubtful assumption of homogeneity. Use of PGMRA would
allow more thorough study of moderate-sized samples by
efficient data-driven methods, which can help to bring meth-
ods of precision medicine into practice [1–3, 7, 20, 25].
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