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Abstract Interannual variations in marine net primary production (NPP) contribute to the variability
of available living marine resources, as well as influence critical carbon cycle processes. Here we provide a
global overview of near-term (1 to 10 years) potential predictability of marine NPP using a novel set of
initialized retrospective decadal forecasts from an Earth System Model. Interannual variations in marine
NPP are potentially predictable in many areas of the ocean 1 to 3 years in advance, from temperate waters
to the tropics, showing a substantial improvement over a simple persistence forecast. However, some
regions, such as the subpolar Southern Ocean, show low potential predictability. We analyze how
bottom-up drivers of marine NPP (nutrients, light, and temperature) contribute to its predictability.
Regions where NPP is primarily driven by the physical supply of nutrients (e.g., subtropics) retain higher
potential predictability than high-latitude regions where NPP is controlled by light and/or temperature
(e.g., the Southern Ocean). We further examine NPP predictability in the world's Large Marine Ecosystems.
With a few exceptions, we show that initialized forecasts improve potential predictability of NPP in Large
Marine Ecosystems over a persistence forecast and may aid to manage living marine resources.

Plain Language Summary Marine net primary production (NPP) is the base of the marine
food web, as well as an important component of the ocean carbon cycle. Year-to-year variations in NPP
can influence the availability of living marine resources, such as fish. In this study, we show that an Earth
System Model can be used to generate near-term (1 to 10 years) forecasts of marine NPP. Earth System
Model-based forecasts of NPP show an improvement over a persistence forecast, where NPP the following
year is assumed to be the same as the current year's NPP. Annual NPP variations can be predicted for 1 to
3 years in advance in many oceanic regions, from temperate waters to the tropics. NPP in colder regions,
however, is harder to predict. The main drivers of NPP influence its predictability. Places where nutrient
availability primarily drives variations in NPP are more predictable than regions of the ocean where light
and temperature are the main drivers (primarily high latitude regions). We further demonstrate NPP
predictability in coastal regions, the world's Large Marine Ecosystems. We show that NPP predictions could
be potentially useful in many Large Marine Ecosystems, and this may help to sustainably manage coastal
marine ecosystems.

1. Introduction

Net primary production (NPP) by ocean phytoplankton provides energy to marine ecosystems. Fluctua-
tions in oceanic NPP can therefore lead to variations in living marine resources (Pauly & Christensen,
1995). Not only is marine NPP ecologically important, but it is also a major component of the global
carbon cycle, as marine phytoplankton are responsible for roughly half of carbon fixed through photosyn-
thesis each year on a global scale (Falkowski, 2012). A portion of the carbon fixed through NPP in the
surface ocean sinks to depth, concentrating carbon in the deep ocean. NPP can vary significantly from
year to year, as bottom-up environmental factors controlling phytoplankton NPP (e.g., nutrients, light, and
temperature) are subject to long-term trends, as well as substantial interannual variability (Krumhardt
et al., 2017; Séférian et al., 2014). While NPP is the ultimate control on net ecosystem production, upper
trophic level biomass is not always related to NPP in a straightforward way (see, e.g., Friedland et al., 2012;
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Sherman et al., 2009; Stock et al., 2017). Nevertheless, making near-term (1 to 10 years) forecasts of marine
NPP could contribute to more effective management of living marine resources (e.g., Lotze et al., 2019; Payne
etal., 2017; Tommasi et al., 2017), improve conservation efforts in marine protected areas (Edgar et al., 2014),
and inform climate change adaptation strategies.

Recent progress has been made in generating near-term (“decadal”) predictions of physical and biogeochem-
ical quantities using Earth system models (ESMs; see, e.g., Meehl et al., 2014). Initialized ESM forecasts have
proven useful for predictions of ocean heat content (Yeager et al., 2012, 2018), sea surface temperature (SST)
and air surface temperature (Smith et al., 2007; Stock et al., 2015; Yeager et al., 2018), ocean carbon uptake
(Lietal., 2019; Lovenduski et al., 2019), precipitation (Yeager et al., 2018), and sea ice (Yeager et al., 2015) on
timescales ranging from 1 to 10 years in advance. Most recently, Park et al. (2019) described seasonal to 2-year
predictability of ocean chlorophyll concentration and demonstrate connections with annual fish catch data,
illustrating the feasibility and utility of ESM predictions for marine ecosystem quantities. While chlorophyll
concentration is subject to substantial variability from phytoplankton physiological changes that may not
be indicative of phytoplankton biomass (Behrenfeld et al., 2015), NPP quantifies the net rate of carbon fix-
ation by phytoplankton, an important quantity for marine ecosystem modeling (Lotze et al., 2019). Yet the
predictability of NPP on decadal timescales has been explored in relatively few studies. Séférian et al. (2014)
demonstrated 3-year predictability of NPP in the tropical Pacific Ocean, surpassing predictability of SST and
showing that nutrient advection plays an important role for multiyear prediction of NPP. Further, Yeager
et al. (2018) also showed that ESM-based decadal prediction system holds promise in predicting marine NPP
in numerous ocean regions, including the tropical and subtropical Atlantic and Pacific, and some eastern
boundary upwelling systems, leading to questions about what enables predictability in NPP.

An important requirement for forecasting interannual variations in marine NPP is adequate prediction of its
drivers. Bottom-up drivers of NPP include temperature, nutrient availability, and light, while grazing con-
strains NPP in a top-down sense (Laufkotter et al., 2015). Each of these NPP drivers is influenced by internal
climate variability (Krumhardt et al., 2017); the extent to which NPP is predictable may depend on the pre-
dictability of its primary drivers. SST, which influences phytoplankton metabolic rates, has been shown to
be potentially predictable on wide spatial scales for up to 9 years, with the exception of the Southern Ocean
(Yeager et al., 2018). Though the persistence of nutrient anomalies in the tropical Pacific was shown by
Séférian et al. (2014) to be an important driver of NPP, the predictability of nutrient advection, a potentially
large driver of NPP in much of the ocean, has not been demonstrated using a dynamic ESM-based prediction
system.

While predictions of NPP in open ocean regions are ecologically and biogeochemically important, fluctua-
tions of NPP in coastal regions may be of higher interest for society. The world's Large Marine Ecosystems
(LMEs) comprise oceanic areas on which humans are most dependent; roughly 90% of living marine
resources are harvested within the LMEs (Pauly et al., 2008; Sherman, 2005). LMEs are characterized by dis-
tinct bathymetry, hydrography, productivity, and trophically dependent populations. As such, these regions
are seen as effective units for marine ecosystem management (Sherman, 2014). Additionally, LMEs con-
tain a majority of marine protected areas which are seen as primary management regions for mitigating
the threats of climate change and other human influences on marine biodiversity (Bruno et al., 2018). Pre-
dictions of NPP in these regions may aid to effectively manage LMEs with the goals of sustainability and
conservation (Edgar et al., 2014).

Forecasts of physical and ecological variables using dynamical prediction systems are commonly compared
to a null “persistence” forecast, which assumes that the following year will be same as the current year
(lagged autocorrelation; e.g., see Stock et al., 2015; Yeager et al., 2018). A persistence forecast therefore pro-
vides a baseline with which to describe the benefit of using a more complex prediction system. While a
persistence forecast may be adequate for certain variables or regions that show longer timescales of vari-
ability, those that have strong interannual fluctuations (like marine NPP in most regions) would potentially
benefit most from a dynamical prediction system.

In addition to comparing to persistence, there are also two different types of forecast predictability mea-
sures. “Skillful prediction” refers to the ability of a forecast to match observations. For instance, Park et al.
(2019) assess skillful prediction of chlorophyll by comparing to satellite-derived estimates of ocean chloro-
phyll content. In contrast, “potential predictability” assesses forecasts of ocean variables using a historical
reconstruction of the ocean state, generated by an ESM simulation forced by atmospheric observations.
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This allows full field initialization of the ESM for each forecast and evaluation of forecasts over the entirety
of the historical reconstruction, rather than being limited to the satellite era. Given the uncertainty and vari-
ation across satellite-derived NPP estimates (e.g., see Saba et al., 2011), we focus our analysis on potential
predictability of NPP in the global oceans in this study, comparing NPP forecasts to a ESM-based historical
reconstruction of marine NPP.

We use a large ensemble of initialized forecasts from the Community Earth System Model (CESM) to demon-
strate that interannual variations in NPP are potentially predictable for 1 to 3 years in many regions of
the ocean, showing an improvement over a simple persistence forecast. By using a large ensemble of fore-
casts (each ensemble member differs by round-off level differences in initialization; see section 2), we are
able to derive the most statistically probable forecast, the ensemble mean. We examine the main drivers
of marine NPP in the global ocean in order to understand why NPP is more predictable in some regions
than in others. We further focus on NPP predictability within the world's LMEs in order to assess poten-
tial predictability in societally relevant regions. We show that NPP forecasts in some coastal LMEs still offer
a substantial improvement over persistence. This study highlights the potential for dynamic ESM-based
prediction systems to forecast critical ecosystem metrics like marine NPP.

2. Materials and Methods
2.1. CESM Decadal Prediction System

We use the CESM Decadal Prediction Large Ensemble (CESM-DPLE Yeager et al., 2018) to explore potential
predictability of marine NPP. This prediction system is described in detail elsewhere (Lovenduski et al., 2019;
Yeager et al., 2018); we thus provide only a brief overview here. The CESM-DPLE consists of 40 forecasts
starting each year from 1955 to 2016. Forecasts are initialized in November of the preceding year and then
run for 10 full calendar years; therefore, a lead Year 1 forecast refers to the January through December
year following initialization. The ensemble of forecasts produced for each year only differ by round-off level
(10714°C) differences in the initial air temperature field, which is sufficient to rapidly generate spread across
the ensemble.

The code base for the CESM-DPLE is CESM version 1.1 with ocean biogeochemistry (Long et al., 2013;
Moore et al., 2004, 2013) run fully coupled at a nominal 1° resolution. Initial conditions for the land and
atmosphere were initialized using a single member of the CESM large ensemble (Kay et al., 2015) and, thus,
were not constrained by observations. The ocean and sea ice, however, were initialized using a CESM forced
ocean-sea ice (CESM-FOSI) simulation (including marine biogeochemistry) that was forced by historical
atmospheric state and flux fields based on the Coordinated Ocean-Ice Reference Experiment reanalysis data
set (Yeager et al., 2018); this setup allows full field initialization of physical and biogeochemistry ocean vari-
ables. In the section below, we evaluate this CESM-FOSI NPP reconstruction with respect to observationally
based, satellite-derived NPP estimates. The forecast ensembles drift from their initialized state; thus, the vari-
ables from the CESM-DPLE presented here are all drift corrected by removing a forecast lead year-dependent
model climatology from each variable, resulting in forecasted anomalies (see Yeager et al., 2018).

2.2. Data Processing and Statistics

We focus on the predictability of interannual anomalies in marine NPP integrated over the upper 150 m.
We removed a linear trend from the forecasts and CESM-FOSI reconstruction in order to focus on the inter-
annual variability apart from long-term trends over the study period. In this study, as in previous decadal
prediction studies (e.g., Lovenduski et al., 2019; Yeager et al., 2018), we use anomaly correlation coefficients
(ACC) between our observation-based initialization data set (here, the CESM-FOSI reconstruction) and the
corresponding “forecasted” year from the CESM-DPLE to evaluate the “potential predictability” of variables
in the Earth system. This comparison does not depend on model skill but rather evaluates the potential for
initialized forecasts to predict the evolution of the system. We also note that ACC does not provide informa-
tion on the magnitude of NPP anomalies but provides a measure of how variations in NPP match between
forecasts and the CESM-FOSI reconstruction. Here, we use ACC as a measure of the relative association of
the average forecast with the CESM-FOSI simulation. We compare NPP forecasts from the CESM-DPLE to
a simple persistence forecast, which assumes that the following forecast period will be same as the current
forecast period (i.e., autocorrelation). We use a z-test to evaluate the statistical difference in ACC at the 95%
level between the persistence forecast and the CESM-DPLE forecast.
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We assess the influence of bottom-up drivers on NPP using variables from the CESM-FOSI reconstruction.
These include the limitation terms for temperature, light, and nutrients, which modify the maximum growth
rates of the phytoplankton functional types (PFTs) in the model. Each of these limitation terms ranges from
0 to 1, with 0 being the most limiting and 1 indicating plentiful supply. We determined the most limiting
nutrient for each PFT for each grid cell in the top 150 m; therefore, the nutrient limitation term in this
analysis corresponds to the nutrient most limiting phytoplankton growth. We created biomass-weighted
limitation terms, weighting each limitation term by the biomass of the PFT experiencing the limitation over
the top 150 m of the water column. The limitation terms for temperature, light, and nutrients were then
detrended and correlated with depth-integrated NPP anomalies. We interpret the correlation coefficient
as a measure of the influence of each limitation term on NPP, noting that this does not directly take the
magnitude of the influence into account.

We also analyzed the CESM-DPLE potential predictability of various bottom-up drivers of NPP, including
SST, photosynthetically active radiation (PAR) at the surface, mixed layer depth, and the total phys-
ically mediated tendency (i.e., rate of change) of PO, in the upper 100 m, not including biological
uptake/remineralization. Though PO, is not always the nutrient that limits phytoplankton growth in the
model, we chose PO, rather than NO, to represent macronutrient flux because (1) unlike NO; it is not
complicated by NOx fluxes from the surface, (2) its influence on phytoplankton NPP is more straightfor-
ward than NO; (nitrogen fixation/ammonia supply influence N availability), and (3) NO, and PO, are
highly correlated (Figure S1 in the supporting information) so their physical fluxes are likely very similar in
most regions.

2.3. Evaluating the CESM-FOSI NPP Reconstruction

To assess the skill of CESM to simulate observed NPP, we compare the CESM-FOSI NPP reconstruction to
NPP derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) over the time period 2003
(first full year of MODIS) to 2015 (last year of the FOSI reconstruction). There exist numerous algorithms
for calculating NPP from ocean color data, which offer substantially different solutions for estimating ocean
NPP (Saba et al., 2011). Rather than selecting one of these algorithms, we opted to use the mean of three
prominent models: the Vertically Generalized Production Model (VGPM; Behrenfeld & Falkowski, 1997),
the Eppley-VGPM (Eppley; Behrenfeld & Falkowski, 1997; Eppley, 1972; Morel, 1991), and the Carbon-based
Productivity Model (CbPM; Behrenfeld et al., 2005; Westberry et al., 2008). To evaluate the CESM-FOSI
reconstruction in simulating marine NPP, we compare the mean annual NPP. We also interpolated CESM
NPP and satellite-derived NPP to a common 2° grid in order perform correlations of NPP variability and
compare standard deviation over the satellite period between the satellite-derived NPP and depth-integrated
NPP from the CESM-FOSI reconstruction.

3. Results and Discussion

In this section we first provide an evaluation of the the CESM-FOSI NPP reconstruction with respect to
satellite-derived NPP. We then present a global overview of NPP predictability and evaluate how NPP drivers
may influence its predictability. Lastly, we examine NPP predictability in the world's LMEs.

3.1. Evaluation of the CESM-FOSI Reconstruction of NPP

Here, we evaluate the CESM-FOSI reconstruction of NPP as a surrogate for NPP observations. We focus on
the evaluation of NPP because other ocean variables in the CESM-FOSI reconstruction have been previously
evaluated in the literature (e.g., Lovenduski et al., 2019; Yeager et al., 2018). Marine NPP in the CESM-FOSI
reconstruction shows good correspondence to satellite-derived marine NPP, as both show similar geographic
patterns in marine NPP (Figures 1a and 1b). Many areas of the ocean show a significant positive correla-
tion between modeled NPP and the satellite-derived NPP over the satellite period (Figure 1c; red areas).
The CESM-FOSI reconstruction, however, tends to underestimate the overall magnitude of the coastal NPP
according to the satellite-derived observations, especially in Eastern Boundary Upwelling systems and in the
western Indian Ocean (Figures 1a and 1b). The relatively coarse resolution of the model likely contributes
to this bias. The model underestimates NPP variability in these same regions (pink regions on Figure 1d),
while overestimating NPP variability in the subpolar Southern Ocean and central equatorial Pacific (green
regions on Figure 1d). These are also the regions where we observe the highest mean absolute error in the
CESM-FOSI reconstruction referenced to satellite-derived NPP (Figure S2).
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Figure 1. A comparison of the CESM-FOSI NPP reconstruction and satellite-derived NPP (mean of VGPM, Eppley, and
CbPM,; see section 2) over the period 2003 to 2015. Panels (a) and (b) show annual average satellite-derived NPP and
NPP from the FOSI reconstruction, respectively. Panel (c) shows the correlation coefficients between annual mean
FOSI NPP reconstruction and satellite-derived annual mean NPP (mean of VGPM, Eppley, and CbPM,; see section 2);
only correlations at 90% significance are shown. The ratio in standard deviation (¢) of annual means between the FOSI
NPP reconstruction and satellite-derived NPP is plotted in panel (d). Large Marine Ecosystem (LME) boundaries are
shown by black lines.

3.2. Potential Predictability of Marine NPP: A Global Overview

For each year of the CESM-DPLE, 40 retrospective forecasts of annual marine NPP anomalies each pro-
vide a plausible trajectory for marine NPP, with the ensemble mean being the most probable forecast. In
Figure 2a, drift-corrected forecasts are shown for four example years to illustrate this concept (ensemble
members shown in light green with the ensemble mean in dark green). Globally integrated NPP anomalies
are predictable 1 year in advance, as a lead Year 1 forecast time series corresponds well to the CESM-FOSI
NPP reconstruction (Figure 2b). Indeed, the correlation between the two lines in Figure 2b is ~0.8, but this
rapidly decreases for subsequent lead years (Figure 2c, dark green line). Though the CESM-DPLE global
NPP anomaly forecast shows higher potential predictability than a persistence forecast for lead Years 1 and 2,
it is not significantly higher than a persistence forecast at the 95% level (Figure 2c, yellow line). A geo-
graphical view of potential predictability offers more insight into regions where NPP anomalies may show
a significant improvement over a persistence forecast.

In Figures 3a-3c, we present maps of the potential predictability (measured by ACC) of marine NPP for
forecast Years 1, 3, and 5 (see Figure S3 for maps of all forecast lead years). The improvement in potential
predictability over a simple persistence forecast is presented Figures 3d-3f, with stippling highlighting areas
where the CESM-DPLE NPP prediction shows a significant improvement over persistence. Potential pre-
dictability in marine NPP is high for most areas of the ocean 1 year in advance (Figure 3a). NPP is especially
predictable from temperate waters to the tropics. The subpolar and polar regions of the Southern Ocean
show low potential predictability in NPP, as do some equatorial regions (e.g., northern Indian Ocean, far west
equatorial Pacific). Areas where there is a significant improvement over persistence for a lead Year 1 NPP
forecast are mainly in the Southern Hemisphere, as well as some regions in the subtropical and temperate
regions of the North Atlantic and North Pacific (Figure 3d). However, there are areas where a persistence
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Figure 2. Predictability of globally integrated marine NPP anomalies in the CESM-DPLE: Panel (a) shows initialization
of 40 ensemble members (in light green) from the CESM-FOSI NPP reconstruction (in gray) for initialization years
1955, 1969, 1986, and 2001 (ensemble means are shown in dark green); panel (b) shows correspondence between NPP
anomalies over time for the FOSI NPP reconstruction and the lead Year 1 forecast; panel (c) shows anomaly correlation
coefficients (ACC) as a function of lead year for a persistence forecast and the CESM-DPLE forecast for global NPP
anomalies. Red circles indicate that the ACC is significant at 95%.

forecast performs better than the CESM-DPLE (brown areas in Figures 3d-3f), such as the upwelling regions
along the eastern boundary of the South Atlantic. As forecast lead time increases, potential predictability
of marine NPP tapers off quickly for many areas of the ocean (Figures 3b and 3c). Some regions, however,
show NPP potential predictability for lead times >1 year; those include the South Pacific, western Atlantic,
and southern Indian Ocean.

In order for predictions of marine NPP to be applied in a management sense, NPP must be accurately sim-
ulated in the ESM and predictable. Yeager et al. (2018) showed a global view of “skillfull predictability”
for a lead Year 1 NPP forecast using the CESM-DPLE (see their Figure 10d). Here, we evaluated the abil-
ity of CESM to simulate NPP when forced by an observational atmospheric forcing product (CESM-FOSI
reconstruction; see section 3.1), examining “potential predictability” separately. Some oceanic regions do
indeed show higher correspondence when compared to satellite-derived NPP than others. For example,
CESM-FOSI-reconstructed marine NPP in subtropical regions correlates well with satellite-derived NPP (red
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Figure 3. Potential predictability of marine NPP in the CESM-DPLE: Anomaly correlation coefficients (ACC) between
the CESM-FOSI NPP reconstruction and NPP predicted by the CESM-DPLE for lead Years 1 (a), 3 (b), and 5 (c). Only
significant correlations (95%) are shown; white areas denote nonsignificant correlations. Panels (d), (e), and (f) show
the CESM-DPLE potential predictability improvement over a persistence forecast (AACC), with stippled areas showing

where there is a significant improvement over persistence at the 95% level . Large Marine Ecosystem (LME) boundaries
are shown by black lines.

areas in Figure 1c) and shows similar levels of variability (Figure 1d). These subtropical regions also have
high potential predictability 1 year in advance (Figure 3a), demonstrating the potential applicability of sub-
tropical NPP predictions. Likewise, parts of the North Atlantic, Western Pacific, and Eastern Indian Ocean
show adequate model skill (as evaluated using the the CESM-FOSI simulation; section 3.1) and potential
predictability. However, some high-latitude regions, such as the subpolar and polar Southern Ocean, show
adequate correspondence to satellite-derived NPP but low potential predictability (Figures 1 and 3), suggest-
ing low ability to predict the evolution of NPP drivers. In the following section we explore why some regions
may have better potential predictability using the CESM-DPLE forecasting system than others.

3.3. Drivers of NPP Affect Its Predictability

We expect that interannual variations in NPP will be potentially predictable if the bottom-up drivers exhibit
high potential predictability. To understand which bottom-up drivers (temperature, nutrients, or light) have
the greatest influence on variations in marine NPP, we correlate biomass-weighted phytoplankton limitation
terms with depth-integrated marine NPP anomalies from the CESM-FOSI reconstruction (see section 2.2 for
more details). From this analysis, we interpret that marine NPP is most controlled by the limitation terms
that show the highest correlation with NPP in the CESM-FOSI reconstruction. We further classify regions
as being primarily controlled by a single bottom-up driver based on highest correlation to NPP anomalies.
Nutrient limitation appears to drive NPP variations in the low- to middle-latitude ocean regions (Figure 4a).
Light and temperature limitations show similar geographic patterns for driving marine NPP (see Figures 4b
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Figure 4. Correlations between annual mean NPP anomalies and biomass weighted limitation terms from the
CESM-FOSI reconstruction: (a) nutrient limitation (most limiting nutrient; see section 2), (b) temperature limitation,
and (c) light limitation (nonsignificant correlations are masked with white). All variables were annually averaged and
detrended prior to doing correlations. Panel (d) shows the limitation term with the highest correlation coefficient with
NPP (“main driver”), with white areas denoting places were none of the correlations were significant at 95%. Large
Marine Ecosystem (LME) boundaries are shown by black lines.
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Figure 5. Potential predictability (anomaly correlation coefficients, ACC, between CESM-DPLE ensemble mean and the CESM-FOSI reconstruction)

for lead Years 1, 3, and 5 for four NPP drivers: PO, physical supply (panels (a), (b), and (c)), sea surface temperature (SST; panels (d), (e), and(f)), surface
photosynthetically active radiation (PAR; panels (g), (h) and (i)), and mixed layer depth (panels (j), (k), and (1)). See supporting information for all lead years.
Only significant correlations (95%) are shown; white areas denote nonsignificant correlations. Large Marine Ecosystem (LME) boundaries are shown by
black lines.

and 4c): Variability in temperature and light explains most NPP variance in the high-latitude oceanic regions.
Interannual variability in NPP in the North Atlantic and most of the Southern Ocean appears to be primar-
ily driven by variations in light, while NPP in the Arctic, and some small regions in the subpolar Southern
Ocean south of Africa and parts of the North Pacific are primarily influenced by variations in temperature
(Figure 4d). Though increases in temperature, light, and nutrients all have a positive effect on NPP in CESM,
negative correlations also result from this analysis (blue areas on Figures 4a-4c). This is due to anticorre-
lations between the drivers. For instance, deeper mixed layer depths in the subtropics will result in more
available nutrients to fuel phytoplankton production, but this also leads to lower light levels and cooler sea
water temperatures. Likewise, the negative correlation between the nutrient limitation term and NPP in
the North Atlantic (Figure 4a) is explained by a strong positive correlation with the light limitation term;
nutrients are more limiting during high light conditions associated with increased stratification.

These correlations between the phytoplankton limitation terms and NPP anomalies help to explain why
NPP is potentially predictable in some oceanic regions and not in others. Regions where NPP is driven by
nutrient availability, in general, have especially high potential predictability (Figures 3 and 4d). This is in
agreement with Séférian et al. (2014), who found that nutrient advection plays an important role in predict-
ing NPP in the tropical Pacific. One obvious exception is the northern Indian Ocean, where NPP is controlled
by nutrient input, but predictability is low. Interestingly, chlorophyll is predictable in the northern Indian
Ocean (Figure S4), highlighting the differences between chlorophyll and NPP potential predictability in
the CESM-DPLE. Areas of the ocean in which variability in NPP is driven predominantly by temperature
are more limited in spatial extent; these have moderate to low potential predictability 1 year in advance
(CESM-DPLE NPP predictions in primarily temperature-driven regions do not show a significant improve-
ment over a persistence forecast; Figures 3 and 4). While we do observe a few light-driven regions with high
potential predictability (e.g., western subpolar North Atlantic), most areas where variability in NPP is driven
by light (e.g., subpolar Southern Ocean) are not predictable even 1 year in advance. Indeed, interannual
variations in PAR at the surface are not predictable in most regions (Figures 5g, 5h, and S5) and mixed layer
depth is predictable for one lead year in many oceanic regions but not in the Southern Ocean (Figures 5j-51
and S6). This explains why we observe low potential predictability in the light-controlled Southern Ocean;
we hypothesize that variations in cloud cover or sea ice may be contributing to the unpredictability in sur-
face PAR. In contrast, the potential predictability of the physical flux of PO, (as a representative nutrient;
see section 2) is high 1 year in advance for many areas of the ocean (Figures 5a-5c and S7). SST also shows
high potential predictability for lead times of several years (Figures 5d-5f), especially in the North Atlantic,
where SST ACC is high for forecast lead times >9 years (Figure S8; Yeager et al., 2018). The parts of the
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North Atlantic where temperature is the primary driver are therefore quite predictable (e.g., the region
north of Iceland). In contrast, the areas of the North Atlantic where there was no dominant driver show
lower predictability (white areas on Figure 4d). There are, however, some patches of predictable NPP in the
light-driven regions of the North Atlantic subpolar gyre (yellow areas on Figure 4d), indicating that mixed
layer depth (which does show high ACC in this region; Figures 5j-51 and S7) may be the primary driver of
light variations in this region.

Interestingly, there are some regions where NPP is potentially predictable even though the potential pre-
dictability of bottom-up drivers is quite low. This includes parts of the western Atlantic and southeast Pacific
for lead times >1 year (Figures 3 and 5). This points to another potential driver of NPP: the persistence of
phytoplankton biomass from 1 year to the next within a region. In low productivity regions where nutrients
are efficiently recycled in the upper ocean, initialization of biomass anomalies in the CESM-DPLE forecasts
may be contributing to predictability by initializing how much biomass (and the nutrients contained therein)
is in a region. Places and forecast lead times where NPP is potentially predictable despite low predictabil-
ity of bottom-up drivers are typically oligotrophic systems, and we speculate that biomass initialization is
enabling this predictability. To assess how much biomass persistence could contribute to predicting NPP, we
calculated a persistence forecast for phytoplankton biomass using the CESM-FOSI reconstruction; phyto-
plankton biomass indeed has high persistence in the above-mentioned regions (Figure S9). Though we did
not assess the potential predictability of phytoplankton biomass using the CESM-DPLE, chlorophyll pre-
dictability in these regions is high for several lead years (Figure S4), suggesting that biomass could also gain
additional predictability over persistence using the CESM-DPLE forecasting system. This helps to explain
why NPP may maintain predictability even though its physical drivers do not. Another specific example of
this phenomenon can be seen in the Gulf of Mexico LME, where marine NPP is primarily controlled by
nutrient availability (Figure 4). However, neither physical supply of nutrients nor SST is predictable here,
while light has low to moderate predictability (Figure 5), and yet NPP has fairly consistent potential pre-
dictability out to forecast lead Year 10 (Figures 3 and S3). Here persistence of phytoplankton biomass and
efficient nutrient recycling may be helping maintain long-term predictability. In the following section we
further explore the predictability of marine NPP in the world's LMEs.

3.4. NPP Predictability in LMEs

Assessing potential predictability of marine NPP in LMEs could be useful to societies dependent on liv-
ing marine resources. LMEs are primarily coastal regions, and thus, the physical dynamics that influence
the drivers of marine NPP could be difficult to adequately simulate given the coarse (nominal 1°) resolu-
tion of CESM. However, we do observe predominately positive correlations between modeled NPP from
the CESM-FOSI reconstruction and satellite-derived NPP over the MODIS satellite record, yet variability
in these regions is generally underestimated (Figure S10). Therefore, despite the model's coarse resolution
and an underestimation of NPP variability, NPP prediction using the CESM-DPLE may help to inform the
direction of interannual anomalies of marine NPP in LMEs. Potential predictability for all LMEs is pre-
sented in Table S1 for forecast lead Years 1 through 5. In this section, we invoke NPP correspondence
with satellite-derived NPP (which admittedly contains its own uncertainties) in combination with potential
predictability to assess how useful NPP forecasts may be for various LMEs.

In general, as with open ocean regions, LMESs in oceanic regions where NPP is driven by variations in nutri-
ent availability have higher potential predictability than those driven by light/temperature (Figure 6, top
half of LMEs in panel (m)). One of these is the California Current LME (Figures 6a and 6g), an economi-
cally important region for fisheries. Here, wind-driven upwelling brings nutrients to the surface, stimulating
production by phytoplankton (Rykaczewski & Checkley, 2008); NPP is simulated well by the CESM in the
California Current (Figure S10), and potential predictability of NPP is significantly higher than a persistence
forecast for a lead Year 1 forecast (Figures 6a, 6g, and S11), indicating that CESM-DPLE NPP predictions may
be useful here. Likewise, NPP in two other nutrient-driven LMESs, the Insular Pacific-Hawaiian LME and the
Agulhas Current, has good correspondence to satellite-derived NPP (Figure S10), and forecasts show partic-
ularly good improvement over a persistence forecast (Figures 6b, 6h, 6m, and S11). Also noteworthy, NPP
in the northeast and east central Australian Shelf regions has high potential predictability (Figure 6m) and
moderate correspondence to satellite-derived NPP. These two Australian LMEs contain the Great Barrier
Reef, and therefore, high NPP predictability could be relevant to conservation efforts. Other nutrient-driven
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Figure 6. Potential predictability of marine NPP in Large Marine Ecosystems (LMEs). Panels (a)-(f) show time series of NPP anomalies from the CESM-FOSI
NPP reconstruction (black), the lead Year 1 forecast (red), and the satellite-derived NPP (blue) for six example LMEs; red and blue r values in the upper right of
each plot refer to the correlation between the CESM-FOSI reconstruction and a LY1 forecast and the CESM-FOSI reconstruction and the satellite-derived NPP,
respectively. Note that the right y axis in panel (f) is on a different scale and used to plot the satellite-derived NPP. Panels (g)-(1) show potential predictability
(ACC) as a function of forecast lead year for the CESM-DPLE initialized forecast (red) and a persistence forecast (turquoise) for the same example LMEs as in

the first column. Panel (m) shows

the potential predictability (ACC) for all LMEs for forecast lead Years (LY) 1, LY2, and LY3, ordered with nutrient-driven

regions on the top and temperature/light-driven regions on the bottom half. Black dots in the second column of plots and stars in panel (m) indicate a
significant improvement in ACC over persistence.

LMEs (e.g, Gulf of California, southeast U.S. Shelf, and the Kuroshio current) have high potential predictabil-
ity for at least 1 year in advance, but NPP in these regions from the CESM-FOSI reconstruction does not
correlate highly with satellite-derived NPP (Figures S10 and S11).

Some temperature and light-driven LMEs have significantly higher potential predictability than persistence
for at least one lead year, though these generally have lower ACC than nutrient-driven regions (Figures 6
and S11). One of these is the Gulf of Alaska, where an ACC of ~0.5 denotes a large improvement over a
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persistence (Figures 6d, 6j, and S11); a persistence forecast for NPP appears to be particularly inadequate in
this variable region. Potential predictability of mixed layer depth in the Gulf of Alaska (Figures 5j-51) may
be enabling this improvement over persistence. Other similar LMEs include the southeast Australian Shelf,
New Zealand shelf, Yellow Sea, Beaufort Sea, Patagonian Shelf, and the North Sea (Figure 6m, bottom half
of LMEs). NPP anomalies from the CESM-FOSI reconstruction show positive correlations with both light
and temperature in these regions (Figure 4), but since surface PAR is not particularly predictable in these
regions, we attribute most the potential predictability in these LMEs to temperature-driven variations in
NPP and mixed layer depth anomalies. However, NPP variations from the CESM-FOSI reconstruction in
most of these high-latitude LMEs do not correlate highly with satellite-derived NPP observations, limiting
their applicability.

Many LMEs show modestly improved potential predictability over a persistence forecast during the first
several forecast lead years (Figure 6m, regions without stars). The Gulf of Thailand LME shows the high-
est ACC of all the LMEs (ACC = 0.94), but surprisingly, the CESM-DPLE forecast is not significantly better
than persistence for a lead Year 1 forecast (see Figures 6¢ and 6i). In this region the interannual variability
in marine NPP is quite low compared to decadal variability (Figure 6¢) and therefore initialized forecasts
only show only a slight advantage over persistence for a lead Year 1 forecast, although this advantage widens
for subsequent forecast lead years (Figure 6i). As mentioned above, the Gulf of Mexico shows persistence
in phytoplankton biomass which, along with efficient nutrient recycling, may help drive NPP potential pre-
dictability. Though we see only a small improvement using a CESM-DPLE NPP forecast over persistence
in this region, we do note that CESM-FOSI-simulated NPP in the Gulf of Mexico (as well as the Caribbean
LME) corresponds well to satellite-derived NPP (Figure S10) suggesting that forecasts here may still be some-
what useful. Lastly, though overall NPP variability in the Canary Current LME is underestimated (Figures 6f
and S10b), interannual variations correlate quite well with satellite-derived NPP (Figures 6 and S10a) mean-
ing that predictions could help inform the direction of NPP anomalies in this region. Potential predictability
of NPP in the Canary Current is higher than a persistence forecast, but the improvement is only significant
for forecast lead Year 2 (Figures 6f and 61).

Finally, while the CESM-DPLE offers improved forecasts (over persistence) in many LMEs, there are regions
where potential predictability using the CESM-DPLE is always low. These include the Benguela Current
LME, the northwest Indian Ocean LMEs, and Antarctic and Arctic LMEs. In a few regions a persistence
forecast is simply superior. In fact, the Benguela Current is the only LME where a persistence forecast has sig-
nificantly better ACC than the CESM-DPLE forecast (Figure 3). There are also places where NPP is difficult
to predict whether using an initialized forecast system, such as the CESM-DPLE, or a persistence forecast.
Predicting NPP in high-latitude LMEs (e.g., Arctic LMESs), where temperature and light are controlling fac-
tors on NPP, is difficult; ACC is usually somewhat higher using the CESM-DPLE than persistence but still
too low to be useful. These regions highlight the limitations of ESM-based prediction systems for forecasting
interannual anomalies of NPP in the oceans.

4. Conclusions

Here we have demonstrated that initialized Earth system prediction is capable of forecasting interannual
variations in marine NPP for many regions of the ocean. We show that the principle drivers of marine NPP
variability influence its potential predictability and that nutrient-driven regions are, in general, more pre-
dictable than light- and temperature-driven regions. As marine NPP quantifies converted energy that is
available to the rest of marine ecosystems, including living marine resources, we demonstrate NPP poten-
tial predictability in society-relevant regions, the world's LMEs. We find that initialized prediction using
the CESM-DPLE offers an improvement over persistence in some LMEs and many open ocean regions for
predicting NPP anomalies at least 1 year in advance.

Making decadal forecasts of NPP using a ESM prediction system, such as the CESM-DPLE, carries sev-
eral caveats. The coarse resolution of the model lacks the simulation of mesoscale currents which can be
important for variations of NPP in some regions (Harrison et al., 2018), as well as coastal upwelling pro-
cesses (Brady et al., 2019; Siedlecki et al., 2016; Small et al., 2015). Additionally, marine ecosystems in CESM
are represented in a simplified way, simulating only three PFTs and one zooplankton, while lacking upper
trophic levels (Moore et al., 2013). This simplification could make translating NPP predictions to predictions
of living marine resource availability more challenging.
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One future direction of this research would be to link NPP with fishery yields as Park et al. (2019) have
done with chlorophyll and SST prediction. While we showed NPP predictability in LMEs, the link between
NPP and productivity of living marine resources is not always straightforward (see, e.g., Friedland et al.,
2012), complicated by uncertainties around fish catch estimates, variable fishing technology and effort, and
diverse marine food web dynamics. For instance, Stock et al. (2017) developed an energy-based model that
combined NPP with other ecosystem and management characteristics (e.g., benthic versus pelagic energy
pathways and fishing effort) to explain fish catch in LMEs better than a model that uses NPP alone. In any
case, NPP, as the base of the marine food web, remains an important metric for fishery management and
the basis for most fish biomass models (Lotze et al., 2019). Therefore, improving the simulation of marine
NPP in ESMs would add utility to NPP forecasts. Such efforts could entail the incorporation of river nutrient
inputs into coastal regions or refinement of atmospheric forcing.

This study contributes to a growing body of research using marine ecological forecast products. While ocean
physics forecasts are more widespread (e.g., Stock et al., 2015; Yeager et al., 2012), marine ecological fore-
casting is still in the early stages (Park et al., 2019; Payne et al., 2017; Tommasi et al., 2017). NPP is a complex
variable to predict, requiring the adequate simulation and parameterization of physical drivers, as well as
ecological processes. We build on regional predictability studies (e.g., Séférian et al., 2014) by evaluating NPP
prediction across the open oceans, as well as in coastal LMEs. This study provides a benchmark of using
an initialized Earth system prediction system in forecasting interannual fluctuations of NPP in the world's
oceans.
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