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Abstract 
 
In this paper, we discuss some interesting applications of Dirac's delta function in Statistics. We 
have tried to extend some of the existing results to the more than one variable case. While doing 
that, we particularly concentrate on the bivariate case. 
 
Keywords:  Dirac's Delta function, Random Variables, Distributions, Densities, Taylor's Series 

Expansions, Moment generating functions. 
 
 
1.  Introduction 
 
Cauchy, in 1816, was the first (and independently, Poisson in 1815) gave a derivation of the 
Fourier integral theorem by means of an argument involving what we would now recognize as a 
sampling operation of the type associated with the delta function. And there are similar examples 
of the use of what are essentially delta functions by Kirchoff, Helmholtz and Heaviside. But 
Dirac was the first to use the notationδ . The Dirac delta function (δ -function) was introduced by 
Paul Dirac at the end of the 1920s in an effort to create the mathematical tools for the 
development of quantum filed theory. He referred to it as an “improper function” in Dirac 
(1930). Later, in 1947, Laurent Schwartz gave it a more rigorous mathematical definition as a 
linear functional on the space of test functions D  (the set of all real-valued infinitely 
differentiable functions with compact support) such that for a given function )(xf  in D , the 
value of the functional is given by the property (b) below. This is called the sifting or sampling 
property of the delta function. Since the delta function is not really a function in the classical 
sense, one should not consider the “value” of the delta function at x . Hence, the domain of the 
delta function is D  and its value, for Df ∈ and a given 0x  is ).( 0xf  Khuri (2004) studied some 
interesting applications of the delta function in statistics. He mainly studied univariate cases even 
though he did give some interesting examples for the multivariate case. We shall study some 
more applications in the multivariate scenario in this work. These might help future researchers 
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in statistics to develop more ideas. In sections 2 and 3, we discuss derivatives of the delta 
function in both univariate and multivariate case. Then, in section 4, we discuss some 
applications of the delta function in probability and statistics. In section 5, we discuss 
calculations of densities in both univariate and multivariate case using transformations of 
variables. In section 6, we use vector notations for delta functions in the multidimensional case. 
In section 7, we discuss very briefly the transformations of variables in the discrete case. Then, 
in section 8, we discuss the moment generating function in the multivariate set up. We conclude 
with few remarks in section 9. 
 

2.  Derivatives of the δ -function in the Univariate Case 

In the univariate case, some basic properties satisfied by Dirac's delta function are: 

               (a) ,1)( =∫
∞

∞−

dxxδ  

               (b) ∫ =−
b

a

xfdxxxxf )()()( 00δ  for all bxa << 0 , 

where )(xf  is any function continuous in a neighborhood of the point 0x . In particular, we 
have,  

                ∫
∞

∞−

=− ).()()( 00 xfdxxxxf δ  

This is the sifting property that we mentioned in the previous section. If )(xf  is any function 
with continuous derivatives up to the thn  order in some neighborhood of 0x , then 
 

                 ∫ −=−
b

a

nnn xfdxxxxf ),()1()()( 0
)(

0
)(δ  0≥n  for all bxa << 0 . 

In particular, we have, 

               ),()1()()( 0
)(

0
)( xfdxxxxf nnn∫

∞

∞−

−=−δ  0≥n  

for a given 0x . Here, )(nδ   is the generalized thn order derivative of δ . This derivative defines a 
linear functional which assigns the value )()1( 0

)( xf nn−  to )(xf .  
 

Now let us consider the Heaviside function H(x) unit step function defined by 
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0)( =xH  for 0<x  

          = 1 for 1≥x . 

The generalized derivative of )(xH  is )(xδ , i.e., 
dx

xdHx )()( =δ . As a result, we get a special 

case of the formula for the thn  order derivative mentioned above: 
 

0)()( =∫
∞

∞−

dxxx inδ  if ni ≠  

          !)1( nn−=  if ni =  

 
3. Derivatives of the delta function in the bivariate case 

Following Saichev and Woyczynski (1997), Khuri (2004) provided the extended definition of 
delta function to the n -dimensional Euclidean space. But we shall mainly concentrate on the 
bivariate case. As in the univariate case, we can write down similar properties for the bivariate 
case as well. In the bivariate case, )()(),( yxyx δδδ = . So, if we assume ),( yxf  to be a 
continuous function in some neighborhood of ),( 00 yx , then we can write 
 

∫∫
ℜ×ℜ

=−− ),(),(),( 0000 yxfdxdyyyxxyxf δ , 

where ℜ  is the real line. 

Now, for this function f , if all its partial derivatives up to the thn  order are continuous in the 
abovementioned neighborhood of ),( 00 yx , then, 
 

00 ,
0

00
)( |),()1(),(),( yyxxknk

n

k
nk

nnn

yx
yxfCdxdyyyxxyxf ==−

ℜ×ℜ ≤≤ ∂∂
∂

−=−−∫∫ ∑δ ……                    (1) 

where k
nC  is the number of combinations of k  out of n  objects, ),()( yxnδ  is the generalized 

thn  order derivative of ),( yxδ . In the general p-dimensional case, by using induction on n , it 
can be shown that  

∫ ∫
∞

∞−

∞

∞−

−− ppp
n

p dxdxxxxxxxf ...),...,(),...,(... 1
**

11
)(

1 δ  

*xx =
∂∂

∂
−= ∑ ∑

−−−−

|
...!!...

!...)1(
0

...

0 1

)(

1

11

1

n kkn

k
p

k

n

p

n
p

pxx
f

kk
n , 
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where ),...,( 1 ′= pxxx , ),...,( **

1 ′= pxx*x  and f  is a function of p variables, namely, 

pxxx ,,, 21  .  
 
 
4. Use of Delta Function to Obtain Discrete Probability Distributions 

If X  is a discrete random variable that assumes the values naa ,...,1 with probabilities npp ,...,1  
respectively such that ∑

≤≤

=
ni

ip
1

1, then, the probability mass function of X can be represented 

as ∑
≤≤

−=
ni

ii axpxp
1

).()( δ   

 
Now let us consider two discrete random variables X  and Y which assume the values naa ,...,1  
and nbb ,...,1 , respectively, and the joint probability ),( ji bYaXP ==  is given by ijp  for 

mi ,...,1=  and nj ,...,1=  so that the joint probability mass function ),( yxp  is given by 
)()(),(

1 1
ji

mi nj
ij byaxpyxp −−= ∑ ∑

≤≤ ≤≤

δδ . 

 
Similarly, one can write down the joint probability distribution of any finite number of random 
variables in terms delta functions as follows: 
 
Suppose we have k  random variables kXX ,...,1  with iX  taking values iij nja ,...,2,1, =  for 

ki ,...,2,1=  with probability
kiip ...1

.  Then, the joint probability mass function is  
 

)()(),...,(
11

1

1

11
11

11 kk

k

k

kikiii

n

i

n

i
kk axaxpxXxXP −−=== ∑∑

==

δδ 



 

 
As an example, we may consider the situation of multinomial distributions. Let 

kXXX ,..., 21 follow multinomial distribution with parameters kpppn ,...,,, 21 . Then, 
 

ki
k

i

k
kk pp

ii
niXiXP 





1
1

1
11 !!

!),,( ===  

 
where kii ,,1   add up to n  and kpp ,1  add up to 1. In terms of delta function, the joint 
probability mass function is 
  

1 1 2 2( , ,..., )k kP X x X x X x= = =  

1 2

1 2

1 2 1 1 2 2
1 2

!... ... ( ) ( )... ( )
! !... !

k

k

ii i
k k k

i i i k

n p p p x i x i x i
i i i

= δ − δ − δ −∑∑ ∑ . 
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We can also consider conditional probabilities and think of expressing them in terms of the δ -
function.  Let us go back to the example of the two discrete random variables X  and Y , where 
X  takes the values maaa ,,, 21   and Y  takes the values nbbb ,,, 21  . Then, the conditional 
probability of yY =  given xX =  is given by 
 

( , )( | ) ( | )
( )

P Y y X xp y x P Y y X x
P X x
= =

= = = =
=

 

1 1

1

( ) ( )
( , )
( ) ( )

ij i j
i m j n

i i
i n

p x a y b
p x y
p x p x a

≤ ≤ ≤ ≤

≤ ≤

δ − δ −
= =

δ −

∑ ∑
∑

. 

5.  Densities of Transformations of Random Variables Using δ -function 

If X  is a continuous random variable with a density function )(xf  and if )(XgY =  is a 
function of X , then the density function of Y , namely, )(yh  is given by 
 

∫
∞

∞−

−= dxxgyxfyh ))(()()( δ . 

We can extend this to the two-dimensional case. If X  and Y  are two continuous random 
variables with joint density function ),( yxf  and if ),(1 YXZ φ=  and ),(2 YXW φ=  are two 
random variables obtained as transformations from ),( YX , then the bivariate density function 
for Z  and W is given by 
 

∫ ∫
∞

∞−

∞

∞−

−−= dxdyyxwyxzyxfwzh )),(()),((),(),( 21 φδφδ , 

where z  and w  are the variables corresponding to the transformations ),(1 YXφ and ),(2 YXφ . 
This has obvious extension to the general p-dimensional case. 
 
Khuri (2004) gave an example of two independent Gamma random variables X  and Y so that 
X  and Y are gamma random variables with distributions ),( 1αλΓ  and ),( 2αλΓ  respectively. If 
we denote the densities as 1f  and 2f  respectively, then we have, 
 

xexxf λα
α

α
λ −−

Γ
= 1

1
1

1
1

)(
)( ,   for  0>x  

= 0 ,                               for  0≤x . 

 



AAM: Intern, J., Vol. 3, Issue 1 (June 2008) [Previously, Vol. 3, No. 1]                                                           47 

  

yeyyf λα
α

α
λ −−

Γ
= 1

2
2

2
2

)(
)(  ,  for  0>y  

 = 0 ,                             for  0≤y . 

In that case, if we define 
YX

XZ
+

=  and YXW += , then, Z  is distributed as Beta with 

parameters 1α  , 2α  and W  is distributed as Gamma with parameter values 1 and 21 αα + . From 
now on, we shall use ),( baβ  to indicate a Beta random variable with positive parameters a ,  b  
and ),( kcΓ  to indicate a Gamma distribution with positive parameters c  and k . 
 
Now let us consider 3 random variables 321 ,, XXX  distributed independently so that iX  is 

distributed as gamma, i.e., ),
2
1( iαΓ  for i = 1, 2, 3, and if we define 

21

1
1 XX

XY
+

= , 

321

21
2 XXX

XXY
++

+
= , 

3213 XXXY ++= . 
 

Then, we have,  
1Y   distributed as ),( 21 ααβ , 

2Y   distributed as ),( 321 αααβ + , 

3Y   distributed as ),
2
1( 321 ααα ++Γ . 

 
This can be shown following exactly the same technique used in Khuri (2004) which is a one 
step generalization of the result proved by him. So, we define 
 

)()()(),,,,,( 33212
321

21
1

21

1
321321

* yxxxy
xxx

xxy
xx

xyyyxxx −++−
++

+
−

+
= δδδδ . 

 
The joint density of Y1, Y2 and Y3 is given by 
 

∫ ∫ ∫
∞ ∞ ∞

=
0 0 0

221321321
*

321321 ),,,,,(),,(),,( dxdxdxyyyxxxxxxfyyyg δ  

321321321
*

0 0 0

21
3

1
2

1
1

321

),,,,,(
)()()(2

1 321
321

321
dxdxdxyyyxxxexxx

xxx

δ
ααα

ααα
ααα ∫ ∫ ∫

∞ ∞ ∞ ++
−−−−

++ ΓΓΓ
=

 
Using properties of the delta function,  
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the innermost integral (integral with respect to 1x ) 

1321321
*

0

21
1 ),,,,,(

321
1 dxyyyxxxex

xxx

δα∫
∞ ++

−−=  

      132312
321

21
1

21

1

0

21
1 ))(()()(

321
1 dxxxyxy

xxx
xxy

xx
xex

xxx

−−−−
++

+
−

+
= ∫

∞ ++
−− δδδα  

    )()()( 2
3

33
1

33

32321
323

3

1 y
y

xy
y

xy
xxy

exxy
y

−
−

−
−
−−

−−=
−− δδα . 

 
Next, we use delta function properties to deal with the second integral (the integral with respect 
to 2x ) as 

∫
∞

−−− −
−
−−

−−
0

21
33

32321
323

1
2 )()(

3

12 dxy
xy

xxy
exxyx

y

δαα  

2
0

1332
2

33

1
3231

2 ))1)(((
)( 31

2 dxyxyxe
xy
xxy

x
y

∫
∞

−−
− −−−

−
−−

= δ
α

α  

21
1

1
1

1
33

3

2121 )1()(
y

eyyxy
−−−−+ −−= αααα  

Then, we use delta function properties for the outermost integral (without the constant terms) is 
 

∫
∞

−−−−+− −−−−
0

3
3

233
21

1
1

1
1

33
1

3
1))1(()1()(

3

21213 dx
y

yyxeyyxyx
y

δααααα  

21
3

1
2

1
2

1
1

1
1

3
32132121 )1()1(

y

eyyyyy
−−++−−+−− −−= αααααααα  

 
 
Finally, putting the constant terms together, we get 
 

      21
3

1
2

1
2

1
1

1
1

321
321

3
32132121

321
)1()1(

)()()(2
1),,(

y

eyyyyyyyyg
−−++−−+−−

++ −−
ΓΓΓ

= αααααααα
ααα ααα

. 

 

This completes the proof. 

 

6. Vector notations for delta functions in the multidimensional case 
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In the multidimensional case, if the transformation is linear, i.e., AXY =  where Y and X  are 
1×m  and 1×n  vectors respectively and A  is an nm×  matrix, then we can express )(yg , the 

density of Y , in vector notation in terms of )(xf , the density of X  as follows 
 

xAxyxy dfg ∫ ∫
∞

∞−

∞

∞−

−= )()(...)( δ ,                                                      (2) 

where  

)()...()( 1 myy δδδ =y .  

So,  

)()...()( 1 xaxaAxy T
m

T
1 −−=− myy δδδ ,  

where T
m

T
1 a,...,a  are the rows of the matrix A . Now, in the one-dimensional set up, if a  is a 

scalar, then )(axδ  is given by 
||
)()(

a
xax δδ = . Similarly, in the multidimensional set up, if 

AXY =  as above and A  is a nonsingular matrix so that nm = , then, we must have 
  

||
)()(

A
yAxAxy

1−−
=−
δδ .                                                                                   (3) 

 
This is because of the following: since the transformation is nonsingular, we have 

)(
||

1)( yA
A

y 1−= fg  

and therefore, from (2) 

xAxyAxyA 1 dff ∫ ∫
∞

∞−

∞

∞−

− −= )(||)(...)( δ . 

But we know that                     

)()()(... yAxyAxx 11 −
∞

∞−

∞

∞−

− =−∫ ∫ fdf δ .  

Therefore, (3) follows. Similarly, if bAXY +=  where A  is a nonsingular matrix and b  is a 
vector, then, we have 
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||
))())(

A
b(yAxb(AXy

1 −−
=+−

−δδ . 

 
Using this, one can conclude that if X  is multivariate normal with μ  as the mean vector and ∑  
as the covariance matrix, then, for a nonsingular transformation A  and a constant vector b , the 
transformed vector bAXY +=  follows multivariate normal with bAμ +  as the mean vector 
and TAA∑  as the variance-covariance matrix. 
 

7. Transformation of Variables in the Discrete Case 

Transformation of variables can be applied to the discrete case as well. If X  is a discrete random 
variable taking the values naa ,,1   with probabilities npp ,,1   and if )(XgY =  is a 
transformed variable, then the corresponding probability mass function for Y  is given by 
 

∫ ∑
∞

∞−

−=−=
n

ii agypdxxgyxpyq
1

))(())(()()( δδ . 

In the two-dimensional case, if ),( yxp  is the joint probability mass function for the two 
variables X  and Y , then ),( wzq , the joint probability mass function for the transformed pair 

),(1 YXZ φ=  and ),(2 YXW φ=  is given by 
 

∫ ∫
∞

∞−

∞

∞−

−−= dxdyyxwyxzyxpwzq )),(()),((),(),( 21 φδφδ  

∑∑ −−=
m n

jijiij bawbazp
1 1

21 )),(()),(( φδφδ  

 
Where the pair ),( YX  is discrete having the values ),( ji ba  with probabilities ijp  for ni ,...,2,1=  
and mj ,...,2,1= . 
 
8. Moments and Moment Generating Functions  
 
In the univariate set up, the thk  non-central moment of X  is written as 
 

∫ ∑∑∫ ∫ ∑
∞

∞− ≤≤≤≤

∞

∞−

∞

∞− ≤≤

=−=−=
ni

k
iii

k

ni
ii

ni
i

kk apdxaxxpdxaxpxdxxpx
111

)()()( δδ . 

 
In the bivariate set up, the non-central moment of order (k,l) for (X,Y) is given by 
 

∫ ∫ ∑∑∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

−−= dxdybyaxpyxdxdyyxpyx
m n

jiij
lklk

1 1
)()(),( δδ  
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             ∑∑ ∫ ∫ ∑∑
= =

∞

∞−

∞

∞− = =

=−−=
m

i

n

j

m

i

n

j
ij

l
j

k
iji

lk
ij pbadxdybyaxyxp

1 1 1 1
),(δ . 

 
For example, if ),( YX follow trinomial distribution, then 

)()()1(
)!(!!

!),( 2121
0 0

lykxpppp
lknlk

nyxp lknlk
n

k

kn

l
−−−−

−−
= −−

=

−

=
∑∑ δδ . 

As a result, the corresponding non-central moment of order ),( sr  is given by 

∫ ∫ ∑∑
∞

∞−

∞

∞− =

−−−

=

−−
−−

=
n

k

s
l

r
k

lknkn

l

lksr bapppp
lknlk

ndxdyyxpyx
0 0

2121 )1(
)!(!!

!),( . 

The most interesting part in Khuri's article is the representation of the density function of a 
continuous random variable X  in terms of its non-central moments. Thus, if )(xf  is the density 
function for X , then )(xf  is represented as 
 

)(
!
)1()( )(

0
x

m
xf m

m

m

m
δµ−

= ∑
∞<≤

, 

 
where )()( xmδ  is the generalized thm  derivative of )(xδ  and mµ  is the thm  order non-central 
moment for the random variable X . One can see a proof of this result in Kanwal (1998). Let us 
briefly mention the technique used by him to derive the above expression. He showed that, for 
any real function ψ  defined and differentiable of all orders in a neighborhood of zero, 
 

〉
−

〈=〉〈 ∑ ∞<≤
ψδµψ ),(

!
)1(, )(

0
x

n
f n

n

n

n
, 

 
where 〉〈 ψ,f , the inner product between the functions f  and ψ , is defined as 
 

∫
∞

∞−

=〉〈 dxxxff )()(, ψψ . 

 
This leads us to conclude 
 

( )
0

( 1)( ) ( )....
!

n
n

nn
f x x

n≤ <∞

−
= µ δ∑        (4) 

 
The crucial step in the proof was to use the Taylor's expansion in one-dimension for the function 
ψ . Thus, we have,              

∑ ∞<≤
=

n

nn

n
xx

0

)(

!
)0()( ψψ  
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Then,  

∫
∞

∞−

〉〈−=−= )()()( ,)1()()()1()0( nnnnn dxxx δψδψψ .  

 
These two steps give us the relation (4). 
 
When we move to the two-dimensional scenario, we shall have to use Taylor's series expansion 
for a two-dimensional analytic function ψ   about the point (0,0) which is given by 
 

∑ ∞<≤ ==∂
∂

+
∂
∂

=
n yx

n yx
y

y
x

x
n

yx
0 0,0|),(][

!
1),( ψψ  

  knk
yxknk

n

k
k

n

n
yxyx

yx
C

n
−

==−

∞

=

∞

= ∂∂
∂

= ∑∑ 0,0
00

|),(
!

1 ψ                                         (5) 

Now, here also, we follow the same technique and so we compute 〉〈 ψ,f  which is defined as 
 

∫ ∫
∞

∞−

∞

∞−

=〉〈 dxdyyxyxff ),(),(, ψψ  

 
Now using Taylor’s series expansion of ),( yxψ  about ),( 00 yx  from (5) and assuming that 
interchange of integrals with summations permissible, we get 
 

∫ ∫ ∑ ∑
∞

∞−

∞

∞−
∞<≤

−
==−≤≤ ∂∂

∂
=〉〈

n
knk

yxknk

n

knk
n dxdyyxyx

yx
C

n
yxff

0 0,00
]|),(

!
1)[,(, ψψ  

∑ ∑ ∫ ∫∞<≤ ≤≤

∞

∞−

∞

∞−

−
==−∂∂

∂
−

=
n nk

knk
yxknk

n

dxdyyxyxfyx
yxknk0 0 0,0 ),(|),(

)!(!
1 ψ  

∑ ∑∞<≤
−

==−≤≤
〉〈

∂∂
∂

−
=

n
knk

yxknk

n

nk
yxfyx

yxknk0 0,00
,|),(

)!(!
1 ψ . 

Now we define the th( , )r s  order non-central moment for the pair ),( YX  as 
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The last equality follows because of the following relation 
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Now, the non-central moment of order ),( sr  is given by 
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But, we also have 
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Therefore, the non-central moment of order ),( sr  reduces to sr ,µ . 
 
When we talk about the moment generating function in the one variable case, we have 
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In the two-variable case, the moment generating function is given by 
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In the general p -dimensional case, the moment generating function could be obtained exactly in 
the similar fashion so that, it is given by 
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9.   Concluding Remarks 

The study of generalized functions is now widely used in applied mathematics and engineering 
sciences. The δ -function approach provides us with a unified approach in treating discrete and 
continuous distributions. This approach has the potential to facilitate new ways of examining 
some classical concepts in mathematical statistics. However, some interesting applications can 
be found in the paper by Pazman and Pronzato (1996). In this paper, the authors use delta 
function approach for densities of nonlinear statistics and for marginal densities in nonlinear 
regression. We are also looking forward to obtain some interesting applications of the delta 
function in statistics. 
 
 
Acknowledgement:  
 
I am sincerely thankful to Professor Lokenath Debnath in the University of Texas-Pan American 
for bringing this problem to my notice. 
 

REFERENCES 
 
Dirac, P.A.M. (1930). The Principles of Quantum Mechanics, Oxford University Press.  
Hoskins, R.F. (1998). Generalized Functions, Ellis Horwood Limited, Chichester, Sussex, 

England. 
Kanwal, R.P. (1998).  Function Theory and Technique (2nd Edition), Boston, MA, Birkhauser. 
Khuri, A.I. (2004). Applications of Dirac's delta function in statistics, International Journal of 

Mathematical Education in Science and Technology, 35, no. 2, 185-195. 
Pazman, A and Pronzato, L. (1996).  A Dirac-function method for densities of nonlinear statistics 

and for marginal densities in nonlinear regression, Statistics & Probability Letters, 26, 159-
167.  

Saichev, A.I. and Woyczynski, W.A. (1997). Distributions in the Physical and Engineering 
Sciences, Boston, MA, Birkhauser. 


	Some Applications of Dirac's Delta Function in Statistics for More Than One Random Variable
	Recommended Citation

	Some applications of Dirac's delta function in Statistics for more than one random variable

