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Using Color Infrared Imagery
to Detect Sooty Mold and
Fungal Pathogens of
Glasshouse-propagated Plants
Kenneth R. Summy1

Department of Biology, The University of Texas–Pan American, Edinburg,
TX 78541

Christopher R. Little2,3

Department of Plant Pathology, Kansas State University, 4024
Throckmorton Plant Sciences Center, Manhattan, KS 66506-5502

Additional index words. spectroradiometer, color infrared (CIR) imagery, simple vegetation
index, citrus (Citrus spp.), sooty mold (Capnodium spp.), greasy spot (Mycosphaerella citri),
powdery mildew (Sphaerotheca fuliginea)

Abstract. Fungi are major biotic constraints for optimum production and quality of
glasshouse plants. When plants are infested with sooty mold (Capnodium spp.) or infected
with pathogens, the reflected wavelengths of the electromagnetic spectrum are altered.
Spectroradiometric measurements and color infrared (CIR) images of control, honey-
dew-coated, and sooty mold-infested saplings and individual leaves from trifoliate orange
(Poncirus trifoliata), sour orange (Citrus aurantium), ‘Valencia’ orange (C. sinensis), and
‘Bo’ tree (Ficus religiosa) were obtained. Grapefruit saplings and individual leaves
infected with Mycosphaerella citri (greasy spot) were imaged under glasshouse con-
ditions. Similarly, muskmelon foliage showing low and high levels of powdery mildew
(Sphaerotheca fuliginea) disease severity were analyzed. When examining individual
leaves, all fungal biotic stressors generally resulted in variable spectral reflectance data,
especially in the blue (450 nm) and green (550 nm) wavelengths; however, values in the
red (650 nm) tended to increase and values in the near-IR (850 nm) tended to decrease
with stress. Near-IR/red image ratios were significantly reduced (P < 0.05) in stressed
whole plant foliage and individual leaves relative to healthy controls. The accumulation
of insect honeydew (which occurs before sooty mold infestation) significantly increased
(P < 0.05) near-IR reflectance values and near-IR/red ratios in ‘Valencia’ orange and
near-IR/ratios in ‘Bo’ tree foliage and individual leaves. Image acquisition and
enhancement techniques may prove useful in large-scale production greenhouses where
existing infrastructure and high plant populations require high throughput data analysis
and identification of biotic stressors.

Remote sensing has been used for the last
several decades to detect both abiotic and
biotic stressors affecting agricultural crops.
Studies have traditionally focused on aerial
image acquisition using color infrared (CIR)
photography of plant stress, including salin-
ity problems (Everitt et al., 1981; Myers
et al., 1963), nutrient deficiencies (Thomas

and Oerther, 1977), insect predation
(Blazquez et al., 1988; Everitt et al., 1994;
Hart et al., 1973; Hart and Myers, 1968), and
pathogens (Brenchley, 1964; Colwell, 1956;
Norman and Fritz, 1965; Payne et al., 1971;
Toler et al., 1981; Yang et al., 2005). How-
ever, only recently have researchers begun to
consider the potential application of a tradi-
tionally ‘‘outdoor’’ technology for the indoor
glasshouse environment. In addition, because
CIR images can be subdivided into three
separate wavebands [green (500 to 600 nm),
red (600 to 700 nm), and near-IR (NIR; 700
to 1100 nm)], the use of image enhancement
techniques that rely on these, such as unsu-
pervised/supervised image classification and
image ratios [such as the simple vegetation
index (NIR/red)], have proven to be reliable
approaches for improving the data acquired
from CIR images and their subsequent inter-
pretation (Little et al., 2005; Summy and
Little, 2005; Summy et al., 2003, 2004, 2005;
Yousef et al., 2005).

Sooty mold (Figs. 1B and 1E) is a com-
mon problem in which excessive insect

feeding activities occur. The condition results
from honeydew deposition (Fig. 1D) by
insects such as whiteflies (Hemiptera: Aleyr-
odidae), aphids (Hemiptera: Aphididae), and
mealy bugs (Hemiptera: Pseudococcidae)
(Drees and Jackman, 1998). All of these
insect groups are common in the glasshouse;
however, specific examples differ depending
on plant host and geographic location. Ulti-
mately, all of these insects are capable of
producing large amounts of honeydew excre-
tions. These excretions are composed of
numerous sugars capable of supporting sooty
mold growth, which consists primarily of
Capnodium and related fungal species (Farr
et al., 1989; Reynolds, 1999).

In addition to sooty mold accumulation,
there are a myriad of fungal leaf spots that
occur on glasshouse plant foliage and it
would be impossible to investigate all of
them here. For reviews of leaf spot diseases
of ornamentals, flowering potted plants,
tomatoes, citrus, and cucurbits, see Chase
(1987), Daughtrey et al. (1995), Jones et al.
(1991), Timmer et al. (2000), and Zitter et al.
(1996), respectively. Most of the common
leaf spots will cause significant tissue chlo-
rosis that either surrounds the necrotic lesions
or extends throughout the affected foliage. In
the present study, citrus plants that were
propagated under glasshouse conditions were
infected by Mycosphaerella citri, an asco-
mycete causing ‘‘greasy spot’’ (Fig. 1G) (Farr
et al., 1989; Timmer et al., 2000). This
disease produces characteristic black fruiting
structures (pseudothecia) in leaf tissues,
whole leaves become chlorotic, and defo-
liation of saplings or plant grafts can be
common.

Powdery mildews are caused by cleisto-
thecial ascomycetes and are characterized by
the profuse production of conidia, conidio-
phores, and hyphae that appear white on the
upper surface of plant leaves (Fig. 1I). The
primary examples of fungal species causing
powdery mildews of dicot hosts in green-
houses include Erysiphe cichoracearum
(cucurbits and many flowers), E. polygonii
(numerous vegetables and hydrangeas), and
Sphaerotheca fuliginea (cucurbits; discussed
in this study) (Farr et al., 1989; Texas
Agricultural Experiment Station, 1988).

The purpose of this study was to acquire
spectral reflectance data and CIR imagery
from plants produced under glasshouse con-
ditions and affected by the following fungal
stressors: 1) sooty mold infestation, 2) a foliar
leaf spot disease accompanied by extensive
tissue chlorosis, and 3) a powdery mildew
disease. Additionally, CIR image wavebands
were used to construct NIR/red derivative
image ratios to facilitate interpretation of
treatment differences.

Materials and Methods

Plant propagation and fungal stressors.
Trifoliate orange (Poncirus trifoliata),
‘Valencia’ orange (Citrus sinensis), sour
orange (C. aurantium), grapefruit (C. para-
disi), and ‘Bo’ tree (Ficus religiosa) plants
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were grown at the Texas A&M University–
Kingsville Citrus Center (Weslaco, TX).
Muskmelon (Cucumis melo) plants were
grown at the Texas Agricultural Experiment
Station (Weslaco, TX). ‘‘Control’’ cohorts
were not infested with sooty mold, insects,
or infected with pathogens. ‘‘Treatment’’
groups were naturally infested with sooty
mold (Capnodium citri), insects, and infected
with pathogens (Sphaerotheca fuliginea or

Mycosphaerella citri) under routine glass-
house-growing conditions.

Acquisition of spectral reflectance data
and color infrared imagery. Spectral reflec-
tance data were acquired from incident radi-
ation reflected from foliage in a whole plant
context and from individual leaves (see
below) using a FieldSpec� VNIR spectro-
radiometer equipped with a remote cosine
receptor (Analytical Spectral Devices [ASD],

Boulder, CO). At the time of data collection,
the instrument was optimized for ambient
lighting conditions and a reflectance mea-
surement was obtained from a white Spec-
tralon� reference plate (ASD) to facilitate the
conversion of radiance measurements (watts/
m2) to percent reflectance. Reflectance mea-
surements were obtained using a target probe
fitted with an 18� instantaneous field of
view adapter and data were processed using
ViewSpecPro� software (ASD). CIR images
of whole plant foliage and individual leaves
were acquired using a conventional 35-mm
SLR camera (Nikon FE) (Nikon, Melville,
NY) employing Kodak Ektachrome Infrared
EIR film (Eastman Kodak, Rochester, NY)
fitted with a 55-mm lens and a Wratten 15
yellow filter (Tiffen, Hauppage, NY). Con-
ventional color (RGB) photographs were
obtained using a digital camera (Sony Mav-
ica� 400) (Sony Electronics, San Diego, CA).

Color RGB and CIR images of whole
plant foliage were obtained in situ from
trifoliate orange, sour orange, ‘Valencia’
orange, and ‘Bo’ tree saplings within a glass-
house composed of yellow fiberglass (Figs.
1A–E). In situ reflectance data and images
of muskmelon foliage were obtained under
conventional frosted glass panels and grape-
fruit foliage was obtained under a plastic
mesh screenhouse (Figs. 1F–I). For whole
plant foliage data, a representative plant
for each treatment was selected from a
larger cohort of identically stressed plants
for imaging.

Individual leaves were excised from sap-
lings of each tree and immediately mounted
between glass plates. Representative leaves
exhibiting a range of infestations or symp-
toms were selected for comparison with
healthy (control) leaves of the species exam-
ined in this study with the exception of
C. melo (below). Spectral samples from each
treatment consisted of multiple spectroradi-
ometer readings (five) of 10 measurements
each to obtain a mean of means. For C. melo,
comparison was only made between healthy
(control) and powdery mildew infected
leaves in situ only. All photographs for a
particular species were completed on the
same day (26 Apr. 2005), under sunny con-
ditions, between 1100 and 1700 HR.

For imaging, individual leaves were
pressed between two glass plates (0.3 · 22
· 30 cm) to reduce the Gaussian curvature
that is often associated with normal leaf
structure and accentuated during stress (Nath
et al., 2003). This was done to normalize
reflectance values over the entire surface of
the leaf so that measured differences are due
to ‘‘treatment’’ and not leaf structure (Little
et al., 2005). Leaves pressed between glass
plates were mounted on a black, plastic plant
growth flat filled with distilled water to
absorb incident light and prevent background
reflection in CIR images. These are subse-
quently referred to as ‘‘template images’’ and
were obtained within a greenhouse composed
of yellow fiberglass. For more information
concerning the effect of different greenhouse
materials on spectral reflectance data and

Fig. 1. Examples of color RGB and color infrared photographs (insets) of foliage acquired in a whole plant
context and used to obtain near-infrared/red ratios. Sour orange: control (a) and sooty mold-infested (b;
arrow); ‘Bo’ tree leaves: control (c), honeydew spotting (d; arrow), and sooty mold infested (e; arrow);
grapefruit foliage: healthy control (f) and greasy spot disease (g; arrow); muskmelon leaves: low (h)
and high (i; arrow) levels of powdery mildew disease.
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CIR image acquisition, see Summy et al.
(2004).

Analysis of spectral reflectance data and
color infrared imagery. Reflectance meas-
urements obtained from spectral curves of
individual leaves [see previous use of the
spectroradiometer (above)] were displayed
and percent reflectance values at four wave-
lengths [blue (450 nm), green (550 nm), red
(650 nm), and NIR (850 nm)] were recorded.
The resulting reflectance data were analyzed
with analysis of variance (ANOVA) and com-
parisons made, if appropriate, with Tukey’s
least significant difference (LSD) (P < 0.05)
(Systat v.10; SPSS, 2000) (Table 1).

After processing, CIR images were con-
verted to tagged image format (.TIF) files
from slides; separated into green, red,
and NIR wavebands; and imported into
IDRISI32� (Clark Laboratories, Worchester,
MA). A simple vegetative index (NIR/red)
was used as an ‘‘image ratio’’ to analyze CIR
imagery. Approximately 20% of unrepresen-
tative wavelengths was eliminated from

derivative ratio images using contrast stretch-
ing. Contrast stretched derivative ratio
images were layered with a stratified spatial
sample of random points to compare healthy
(control) and infected or infested regions of
whole plant foliage or individual leaves.
‘‘Points’’ derived from derivative images
each represent a ratio of NIR to red at a
single pixel, which are generated by dividing
the entire NIR band of a CIR image by its red
band.

Twenty random points were chosen from
the top seven internodes (if possible) of citrus
plants examined for sooty mold development
(Figs. 2-I, 2-II, and 2-III). Image subsamples
were obtained from ‘Bo’ tree (Fig. 2-IV) and
grapefruit (Fig. 2-V) images; 20 random
points were selected from the outlined image
subsamples in Figure 2-IV-g–i and Fig. 2-V-j
and k (see also Table 2). Additionally, 20
random points were obtained from mature
muskmelon leaf ratio images (Fig. 2-VI-l and
m; Table 2). Therefore, n = 20 for each
individual plant within an image (Fig. 2-I-

III, VI-m and l) or each image subsample
(Fig. 2-IV-g–i and V-j and k).

For individual leaves mounted using the
template system (described previously), 10
random points (n = 10) were selected from
each leaf within each derivative ratio image
(Figs. 3-I to 3-V). Random point means from
image ratios were compared using Student’s
t test (P < 0.05) or ANOVA and means
separations (Tukey’s LSD at P < 0.05) (Systat
v.10; SPSS, 2000) (Table 2). Only data from
the same image (e.g., Fig. 3-I-a-g) were
compared statistically.

Results and Discussion

The last Census of Horticultural Special-
ties (National Agricultural Statistics Service,
1998) indicated that �31.6 million ft2 of
greenhouse space was used to produce food
crops with a wholesale value of $184.2 mil-
lion and an investment into the agricultural
labor force of $3.6 billion in the United States
alone. In addition to this, much of the pro-
duction of horticultural and landscaping trans-
plants and vegetable and flower seeds occurs
in large-scale glasshouse facilities.

Many studies have evaluated the acquisi-
tion of multispectral imagery as a tool to
estimate yield responses and plant damage in
the field (Yang and Everitt, 2002; Yang et al.,
2005). However, very few have demonstrated
the technical feasibility of using multispec-
tral CIR imagery for detection of plant stress
in the glasshouse (Summy et al., 2003, 2004;
Summy and Little, 2005).

In this study, whole plant foliage and
individual leaves that were infested with
sooty mold and infected with fungal patho-
gens were imaged using conventional color
[RGB; Figs. 1 and 3 (upper rows)] and CIR
photography [CIR; Figs. 1 and 3 (middle
rows)]. The resulting images were processed
so that the NIR waveband of each CIR image
was divided by its red waveband to obtain a
simple vegetation index derivative image
where each pixel represents a ratio of NIR
to red [Figs. 2 and 3 (lower rows)]. High NIR
and low red reflectance values are typical of
healthy vegetation; thus, a ratio of these two
values can be used as an indicator of plant
status (Everitt et al., 1999). In addition, dif-
ferences between healthy and stressed foliage
can be accentuated and subtle differences
more easily identified and analyzed using
image ratios (Yousef et al., 2005).

Leaf age influences NIR/red ratio differ-
ences and this confounding factor may influ-
ence interpretation of whole plant foliage
data acquired at close distances. To test the
effect of leaf age on acquisition of NIR/red
ratio data from CIR images, leaves of varying
ages were compared using the template
images (described in ‘‘Materials and Meth-
ods’’). Twenty- and 35-d leaves from tri-
foliate orange did not differ in NIR (850 nm),
red (650 nm), blue (450 nm), or green (550
nm) reflectance values. In addition, there was
no difference between NIR/red ratios or
observable differences in the derivative ratio
images (Table 2; Fig. 3-I). However, sour

Table 1. Mean spectroradiometer reflectance data derived from individual leaves of greenhouse-reared
plants infested with sooty mold, common insect pests, or infected with fungal pathogens.

Treatment Figure

% reflectance

Mean blue
(450 nm)

Mean green
(550 nm)

Mean red
(650 nm)

Mean near-
infrared

(850 nm)

Trifoliate orange (Poncirus trifoliata)
Control (20 d)z 3-I-a 2.8 cy 6.3 a 2.9 c 25.9 a
Control (35 d) 3-I-b 2.7 c 5.5 a 3.0 c 24.6 ab
Sooty moldx (intermediate) 3-I-c 2.7 c 5.1 a 3.7 bc 21.0 ab
Sooty mold (heavy) 3-I-d 4.0 a 6.5 a 5.5 a 19.3 ab
Sooty mold + mealy bugw-infested 3-I-e 3.1 bc 5.0 a 3.9 bc 17.5 b
Leaf minerv-infested 3-I-f 3.4 abc 5.5 a 3.4 bc 17.5 b
Citrus miteu-infested 3-I-g 3.6 ab 6.1 a 4.0 b 18.1 ab

Sour orange (Citrus aurantium)
Control (10 d) 3-II-h 2.5 c 12.7 a 3.7 b 29.0 a
Control (20 d) 3-II-i 2.8 bc 6.9 b 3.0 c 32.1 a
Control (35 d) 3-II-j 3.0 bc 5.6 b 3.3 bc 24.9 ab
Sooty mold (light) 3-II-k 3.3 b 5.4 b 4.2 bc 19.9 bc
Sooty mold (intermediate) 3-II-l 3.2 bc 5.1 bc 4.5 b 14.3 cd
Sooty mold (heavy, dark) 3-II-m 2.4 c 3.6 c 3.6 bc 9.0 d
Sooty mold (heavy, tan) 3-II-n 4.5 a 6.5 b 6.7 a 13.9 cd

Valencia orange (C. sinensis)
Control (20 d) 3-III-o 3.2 c 11.0 a 4.0 b 33.9 b
Honeydew 3-III-p 3.9 b 8.6 b 4.5 b 40.8 c
Sooty mold 3-III-q 6.2 a 9.4 b 10.0 a 16.7 a

Bo tree (Ficus religiosa)
Control 3-IV-r 3.5 a 6.5 a 3.6 a 33.9 a
Honeydew 3-IV-s 3.6 a 6.1 a 3.3 b 34.5 a
Sooty mold 3-IV-t 3.8 a 5.6 a 4.1 a 26.1 b

Grapefruit (C. paradisi)
Healthy control 3-V-u 2.7 c 15.6 c 4.4 d 41.3 ab
Low greasy spott severity 3-V-v 4.1 bc 21.5 b 9.2 c 38.3 b
Intermediate greasy spot severity 3-V-w 5.5 b 22.9 b 11.5 b 41.3 ab
High greasy spot severity 3-V-x 10.3 a 33.0 a 29.9 a 43.2 a

Muskmelon (Cucumis melo)
Control 2-VI-l 4.4 11.7 4.0 52.1
Powdery mildews 2-VI-m 5.6* 10.5 5.5* 38.9*

zLeaf age (in days).
yEach mean value is the average of spectral samples from each treatment consisted of multiple
spectroradiometer readings (five) of 10 measurements each to obtain a mean of means. Values that are
followed by different letters (within the same column for each plant species) differ significantly according
to Tukey’s least significant difference (P < 0.05); values followed by an asterisk differ significantly (P <
0.05) from their respective control according to the Student’s t test.
xSooty mold [Capnodium spp. of fungi (and others spp.)].
wMealy bug (Planococcus citri).
vLeaf miner (Phyllocnistis citrella).
uCitrus mite (Eutetranuchus citri).
tGreasy spot (Mycosphaerella citri).
sPowdery mildew (Sphaerotheca fuliginea).
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orange leaves that differed in ages from 10 to
35 d did not exhibit significantly different red
or blue reflectance values, but the NIR/red
ratio values and the resultant derivative im-
ages were significantly different (Table 2;
Fig. 3-II).

This study showed that honeydew accu-
mulation on ‘Valencia’ and ‘Bo’ tree leaves
resulted in significant increases in NIR/red
ratios (Table 2). In addition, the increased
overall reflectance patterns are observable in
derivative images (Figs. 3-III and 3-IV).

‘Valencia’ orange leaves were coated very
evenly with insect honeydew (Fig. 3-III-p),
whereas honeydew deposits on ‘Bo’ leaves
were very spotty (Fig. 3-IV-s). This differ-
ence in distribution along the leaf surface
may have contributed to differences in

Fig. 2. Near-infrared/red ratio derivative images of whole trifoliate orange (I; Poncirus trifoliata), sour orange (II; Citrus aurantium), ‘Valencia’ orange (III; C.
sinensis), ‘Bo’ tree (IV; F. religiosa), grapefruit (V; C. paradisi), and muskmelon (VI; Cucumis melo) plants. (I) Trifoliate orange saplings: uninfested control
(a), infested with sooty mold (Capnodium citri spp. and other fungi), mealy bugs (Planococcus citri), leaf miners (Phyllocnistis citrella), and citrus mite
(Eutetranuchus citri) (b); (II) sour orange saplings: uninfested control (c) and sooty mold infested (d); (III) ‘Valencia’ orange saplings: uninfested control (e)
and sooty mold infested (f); (IV) ‘Bo’ saplings: uninfested leaf subsample (g), honeydew coated leaf subsample (h), and sooty mold infested leaf subsample (i)
(see also Table 1 for data); (V) grapefruit saplings: subsample of noninfected leaves (j; see also Fig. 1F) and a subsample of leaves showing various levels of
greasy spot (Mycosphaerella citri) severity (k; see also Fig. 1G); cantaloupe foliage: healthy mature leaf (l; see also Fig. 1H) and mature leaf infected with
powdery mildew (Sphaerotheca fuliginea) hyphae and conidia (m; see also Fig. 1I). Images were contrast stretched (see lower right hand corner of each image)
where necessary to eliminate unnecessary wavelengths. See also Tables 1 and 2 for spectrophotometric data and near-infrared/red ratios derived from
derivative images of foliage in a whole plant context.
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percent reflectance values in the NIR and red
for the two tree species (Table 1).

Insect honeydew consists of a number of
unique sugars that may not only contribute to
sooty mold growth, but also the observed
increase of NIR reflectance of honeydew-
coated leaves in this study. The honeydew of
scale insects and aphids is composed of large
amounts of fructomaltose (Gray and Fraen-
kel, 1953). In addition, scale insect honeydew
also contains several novel oligosaccharides
that have tentatively been labeled as ‘‘stig-
matriose,’’ ‘‘stigmatetrose,’’ and ‘‘stigma-
pentose’’ (Bogo, 2003). Whitefly (Bemesia
spp.) honeydew is composed of bemisiose (a
trisaccharide), trehalulose (a disaccharide),
and a large portion of glucose (Byrne and
Miller, 1990; Hendrix and Wei, 1994; Isaacs
et al., 1998). Although sugar solutions tend to
reflect greater amounts of NIR overall and
only absorb light in limited portions of the
NIR spectrum (800 to 1100 nm) (Dull and
Giangiacamo, 1984; Slaughter and Crisosto,
1998), it is not known if this is the underlying
mechanism that accounts for greater NIR
reflectance and subsequently increased NIR/
red ratios from honeydew-coated leaves.

Imagery of whole plant foliage infested
with sooty mold consistently showed signif-
icant decreases in NIR/red ratio values when
compared with healthy controls (Student’s t,
P < 0.05; Table 2). Individual leaves covered
with sooty mold absorbed a considerable
amount of light compared with control leaves
of the same age. For example, NIR reflec-
tance (850 nm) from trifoliate orange leaves
covered with intermediate and heavy levels
of sooty mold reflected 85.4% and 78.5%
of the 35 d control, respectively (Table 1),
whereas sour orange leaves covered with
light, intermediate, and heavy (dark and tan)
levels of sooty mold reflected 79.9%, 57.4%,
36.1%, and 55.8% of NIR as the 35-d con-
trol, respectively. Similar results were
observed when comparing NIR reflectance
of sooty molded ‘Valencia’ and ‘Bo’ tree
leaves with their respective controls (Table
1). These consistent decreases in NIR led to
consistent decreases in NIR/red ratio values
because red reflectance values (650 nm) did
not always decrease as sooty mold infestation
increased (Table 2). In some cases, red reflec-
tance actually increased significantly, as in
the case of heavy sooty molds on trifoliate and
sour orange leaves (Table 1). However, in all
of these examples, derivative images of sooty
molded leaves showed trends toward lower
image ratio values as mold infestations man-
ifested themselves (Figs. 3-I–IV).

The melanin content of dematiaceous
fungal cell walls, which characterize sooty
mold fungi, may be partially responsible for
the large amounts of NIR absorption. Mela-
nin is composed of indoles and tyrosine
intermediates that normally function to ab-
sorb light and lend protection to irradiative
damage in both fungi and animals (Riley,
1998). Bell and Wheeler (1986) and Babit-
skaya and Shcherba (2002) found that melanins
extracted from dematiaceous ascomycetes and
deuteromycetes exhibit absorption maxima in

Table 2. Mean near-infrared (NIR)/red ratios derived from color infrared derivative images from whole
plant foliage and individual leaves of greenhouse-reared plants infested with sooty mold, common
insect pests, or infected with fungal pathogens.

Treatment Figure Mean NIR/redz

Trifoliate orange (Poncirus trifoliata)
Whole plant

Control 2-I-a 5.78
Sooty moldy + insect infestations 2-I-b 4.21*

Individual leaves
Control (20 d)x 3-I-a 10.20 a
Control (35 d) 3-I-b 9.50 ab
Sooty mold (intermediate) 3-I-c 7.79 b
Sooty mold (heavy) 3-I-d 4.64 d
Sooty mold + mealy bugw-infested 3-I-e 6.20 cd
Leaf minerv-infested 3-I-f 7.58 c
Citrus miteu-infested 3-I-g 5.74 d

Sour orange (Citrus aurantium)
Whole plant

Control 2-II-c 4.63
Sooty mold 2-II-d 4.19*

Individual leaves
Control (10 d) 3-II-h 6.44 c
Control (20 d) 3-II-i 10.40 a
Control (35 d) 3-II-j 8.85 b
Sooty mold (light) 3-II-k 7.54 bc
Sooty mold (intermediate) 3-II-l 6.11 c
Sooty mold (heavy, dark) 3-II-m 3.05 d
Sooty mold (heavy, tan) 3-II-n 2.69 e

Valencia orange (C. sinensis)
Whole plant

Control 2-III-e 6.27
Sooty mold 2-III-f 3.49*

Individual leaves
Control (20 d) 3-III-o 7.22 b
Honeydew 3-III-p 8.72 c
Sooty mold 3-III-q 2.40 a

Bo tree (Ficus religiosa)
Whole plant

Control 2-IV-g 4.56 b
Honeydew 2-IV-h 5.54 a
Sooty mold 2-IV-i 2.76 c

Individual leaves
Control 3-IV-r 6.26 b
Honeydew 3-IV-s 7.90 a
Sooty mold 3-IV-t 5.21 b

Grapefruit (C. paradisi)
Whole plant

Control 2-V-j 6.38
Greasy spott 2-V-k 2.70*

Individual leaves
Healthy control 3-V-u 6.43 a
Low greasy spot severity 3-V-v 4.01 b
Intermediate greasy spot severity 3-V-w 2.89 c
High greasy spot severity 3-V-x 1.56 d

Cantaloupe (Cucumis melo)
Whole plant

Control 2-V-l 5.34
Powdery mildews 2-V-m 3.90*

zContrast stretched near-infrared/red ratio derivative images were layered with a stratified spatial sample of
random points to compare ‘‘control’’ and ‘‘treatment’’ regions of plant foliage or individual leaves. For
whole plant foliage near-infrared/red ratio data, 20 random points were chosen from the top seven
internodes (if possible) of P. trifoliata, C. aurantium, and C. sinensis plants examined for sooty mold
development; image subsamples were used for F. religiosa (Fig. 2-IV-g–i) and C. paradisi (Fig. 2-V-j and
k). For C. melo, ‘‘control’’ and ‘‘treatment’’ regions (Fig. 2-V-l and 2-V-m, respectively) of plant foliage or
individual leaves were compared. Values in columns followed by an asterisk differ significantly (P < 0.05)
from their respective control according to the Student’s t test. For individual leaves (see Fig. 3), 10 points
were randomly chosen from the stratified spatial sample. Values that are followed by different letters
(within the same column for each plant species) differ significantly at P < 0.05 using Tukey’s least
significant difference.
ySooty mold [Capnodium spp. of fungi (and others spp.)].
xLeaf age (in days).
wMealy bug (Planococcus citri).
vLeaf miner (Phyllocnistis citrella).
uCitrus mite (Eutetranuchus citri).
tGreasy spot (Mycosphaerella citri).
sPowdery mildew (Sphaerotheca fuliginea).
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wavelength ranges of 300 to 400 nm (ultra-
violet), 600 to 700 nm (red), and 700 to 900
nm (NIR).

In this study, symptoms and signs of two
foliar fungal pathogens were imaged under
glasshouse conditions, including a common
powdery mildew of cucurbits (Sphaerotheca
fuliginea) and the greasy spot pathogen of
citrus (Mycosphaerella citri). M. citri is a
foliar pathogen of citrus that causes signifi-
cant amounts of chlorosis in leaves as part of
the disease process. Chlorosis discolors citrus
leaves as large numbers of fungal pseudothe-
cia are produced (Mondal and Timmer,
2006). In this disease, as severity increases,
red reflectance from the chlorotic portions of
affected leaves increases appreciably, but
NIR reflectance does not change significantly
(Table 1). Because of the relatively steady
NIR values, there is a concomitant decrease
in the NIR/red ratios (Table 2). Thus, in
Fig. 3-V-x, the average NIR/red ratio
(1.56), for high greasy spot severity, was
coded as black in the derivative image
because the image was contrast stretched

(less than 2.26) to remove background noise
(e.g., unnecessary wavelengths; see ‘‘Materi-
als and Methods’’).

In the case of the powdery mildew fungus,
S. fuliginea, leaves are not discolored by
chlorosis, but the adaxial surfaces are cov-
ered with hyphal growth and numerous con-
idia. This gives the surface of the leaf a
‘‘powdery’’ appearance (Little, 2004). In
some ways, this situation is comparable to
the sooty mold examples discussed earlier
with the exception that the fungal growth on
the surface of the leaf appears white instead
of tan, brown, or black. In the case of the
cucurbit powdery mildew, NIR/red ratios
were significantly reduced as a result of
decreased levels of NIR reflectance and
increased red reflectance (Tables 1 and 2;
Fig. 2-VI). It is hypothesized that incident
radiation coming into contact with the hya-
line fungal structures on the surface of the
leaf is both scattered and absorbed. The
random growth of conidiophores on the leaf
surface produces an infinite number of an-
gles, which reflect light, thus causing scatter-

ing. In addition, the numerous water droplets
that are trapped between hyphae and conidio-
phores covering the leaf will act to absorb light.

In this study, changes in NIR and red
reflectance, and a CIR image enhancement
technique, the NIR/red ratio (simple vegeta-
tion index), have provided a mechanism to
differentiate between healthy and stressed
plants. Although similar trends have been
observed using field-level airborne remote
sensing, this is the first study, to our knowl-
edge, which differentiates plant stress result-
ing from sooty mold and fungal pathogens
using such image analysis techniques under a
glasshouse setting. Additionally, the compar-
ison of whole plant foliage with individual
leaves mounted on a template has proven to
be a valuable experimental tool to differen-
tiate component reflectances that contribute
to the identification of overall differences
between healthy and stressed hosts.

Practical uses and the adoption of such
image analysis technology in the large-scale
greenhouse setting will depend on several
factors. The application must be: 1) effective

Fig. 3. Color RGB (top row of each figure), color infrared (middle row of each figure), near-infrared/red ratio derivative images (bottom row or each figure) of
single plant leaves from trifoliate orange (I; P. trifoliata), sour orange (II; C. aurantium), ‘Valencia’ orange (III; C. sinensis), ‘Bo’ tree (IV; F. religiosa), and
grapefruit (V; C. paradisi). (I) Trifoliate orange: 20-d control (a), 35-d control (b), sooty molded (c), sooty mold + mealy bug (P. citri) infested (d–e), leaf
miner (P. citrella) infested (f), and citrus mite (E. citri) infested (g); (II) sour orange: 10-d control (h), 20-d control (i), 35-d control (j), sooty mold (light) (k),
sooty mold (intermediate) (l), sooty mold (heavy, dark) (m), and sooty mold (heavy, tan) (n); (III) ‘Valencia’ orange: greater than 15-d control (o), honeydew
(p), and sooty mold (q); (IV) ‘Bo’ tree: control (r), honeydew (s), and sooty mold (t); grapefruit: control (healthy) (u), greasy spot (M. citri) [low (v),
intermediate (w), and high disease severity (x)]. Image backgrounds were masked for purposes of visual clarity; data were acquired before masking. Images
were contrast stretched (see lower right hand corner of each image) where necessary to eliminate unnecessary wavelengths. See also Tables 1 and 2 for
spectrophotometric data and near-infrared/red ratios derived from derivative images of individual leaves.
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(the technology must accurately differentiate
between healthy and stressed plants under
diverse conditions), 2) inexpensive (acquisi-
tion of CIR images must be performed with
inexpensive CIR cameras with digital charge
coupled devices), and (3) user-friendly
(on-site software processing with an easily
interpreted interface). Our results suggest a
considerable potential for identification of
honeydew, sooty mold (and concurrent feed-
ing insect infestations) as well as fungal foliar
diseases.
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