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ABSTRACT 

In the railroad industry, systematic health inspections of 
freight railcar bearings are required. Bearings are subjected to 
high loads and run at high speeds, so over time the bearings may 
develop a defect that can potentially cause a derailment if left in 
service operation. Current bearing condition monitoring systems 
include Hot-Box Detectors (HBDs) and Trackside Acoustic 
Detection Systems (TADS™). The commonly used HBDs use 
non-contact infrared sensors to detect abnormal temperatures of 
bearings as they pass over the detector. Bearing temperatures 
that are about 94°C above ambient conditions will trigger an 
alarm indicating that the bearing must be removed from field 
service and inspected for defects. However, HBDs can be 
inconsistent, where 138 severely defective bearings from 2010 to 
2019 were not detected. And from 2001 to 2007, Amsted Rail 
concluded that about 40% of presumably defective bearings 
detected by HBDs did not have any significant defects upon 
teardown and inspection. TADS™ use microphones to detect 
high-risk bearings by listening to their acoustic sound 
vibrations. Still, TADS™ are not very reliable since there are less 
than 30 active systems in the U.S. and Canada, and derailments 
may occur before bearings encounter any of these systems. 

Researchers from the University Transportation Center for 
Railway Safety (UTCRS) have developed an advanced algorithm 
that can accurately and reliably monitor the condition of the 
bearings via temperature and vibration measurements. This 
algorithm uses the vibration measurements collected from 
accelerometers on the bearing adapters to determine if there is 

a defect, where the defect is within the bearing, and the 
approximate size of the defect. Laboratory testing is performed 
on the single bearing and four bearing test rigs housed at the 
University of Texas Rio Grande Valley (UTRGV). The algorithm 
uses a four second sample window of the recorded vibration data 
and can reliably identify the defective component inside the 
bearing with up to a 100% confidence level. However, about 
20,000 data points are used for this analysis, which requires 
substantial computational power. This can limit the battery life 
of the wireless onboard condition monitoring system. So, 
reducing the vibration sample window to conduct an accurate 
analysis should result in a more optimal power-efficient 
algorithm. A wireless onboard condition monitoring module that 
collects one second of vibration data (5,200 samples) was 
manufactured and tested to compare its efficacy against a wired 
setup that uses a four second sample window. This study 
investigates the root-mean-square values of the bearing 
vibration and its power spectral density plots to create an 
optimized and accurate algorithm for wireless utilization. 

INTRODUCTION 

 A freight railcar’s cargo load is supported by its suspension 
system that consists of springs, dampers, axles, wheels and 
tapered-roller bearings. Due to the heavy cargo that railcars carry 
at relatively high speeds, the bearings are the most susceptible to 
catastrophic failure leading to journal burn-off. 

Tapered-roller bearings on freight railcars allow near-
frictionless operating conditions based on normal operation of 
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the three fundamental components: inner rings (cones), outer 
ring (cup), and rollers, shown in Figure 1. However, once one of 
these components develops a defect, the near-frictionless design 
is compromised, which can lead to increased frictional heating 
depending on the defect size and location. 

 

 
Figure 1. Tapered-Roller Bearing Components [1]. 

 
Bearing defect types can be categorized as a localized 

defect, distributed defect, or geometric defect. Pictured in Figure 
2, localized defects include pits, cracks, or spalls, while 
distributed defects can be found on multiple components with 
localized defects or a single component with multiple defects 
that are distributed throughout its surface, such as a water-etch 
defect. Geometrical defects usually result from faults in the 
manufacturing processes that cause one or multiple bearing 
components to be out of tolerance. 
 

 
Figure 2. Example of a localized defect (left) and distributed 
defect (right). 
 
Bearing Condition Monitoring Systems 

Current railway bearing condition monitoring systems 
include Hot-Box Detectors (HBDs) and Trackside Acoustic 
Detection Systems (TADSTM). These systems are considered 
wayside devices that are mounted adjacent to the rail tracks to 
monitor the health of freight railcar bearings as they pass by 
these devices. 

With over 6,000 in use in the United States and Canada, the 
HBDs are the most utilized bearing condition monitoring 
systems operating in North America. Depending on the amount 
of traffic on the rail lines, HBDs can be placed anywhere 
between 40 km (25 miles) to 64 km (40 miles) apart. HBDs 
measure the radiated temperatures from railcar bearings, wheels, 
axles, and brakes with non-contact infrared sensors. The railcar 
conductor would be alerted if the temperature of any bearing is 
detected to be greater than 94.4°C (170°F) above ambient 

conditions or if a bearing is running 58.3°C (105°F) hotter than 
its axle mate. A more conservative approach utilized by many 
railroads classifies bearings that are operating above the average 
temperature of all bearings on the same side of the train as “warm 
trending” bearings [2]. Warm-trending bearings are flagged 
without triggering any of the HBD alarms and are later removed 
from service for disassembly and inspection. 

TADSTM utilizes wayside microphones to detect high-risk 
defects in bearings and can alert the conductor as the train passes 
by the system. One example of a high-risk defect is a “growler”. 
Growlers are defective bearings in which spalls occupy about 
90% of the bearing component’s rolling surface area. Although 
TADSTM is very proficient in determining end-of-life bearings, 
there are only 30 systems that are in service in both the United 
States and Canada, and these are heavily concentrated in the 
East. In addition, even though TADSTM can identify high-risk 
defects in bearings, they cannot detect other defects that are 
much smaller in size [3]. Thus, not only will most bearings in 
service never pass through a TADSTM system in their lifespan, 
but those that do will go undetected if the defect size is small 
compared to a growler.  

The UTCRS research team completed a study in which the 
temperature profiles of healthy or defect-free bearings were 
compared to bearings with defects in either the inner (cone) or 
outer (cup) ring [4]. The study demonstrated that bearings with 
defective inner or outer rings operated at similar temperatures 
when compared to healthy bearings with no defects, thus, 
indicating that the operating temperature is not a good predictor 
of bearing health [4]. Thus, the research team focused on 
developing an advanced onboard condition monitoring device 
that captures the vibration signatures within the bearing using an 
accelerometer. This device utilizes the detected vibration levels 
to assess the health of the bearing and the stage of deterioration 
of the bearing’s raceways [5]. This study will combine new 
research findings that correlate defect size with bearing vibration 
levels and recently published data [6] to provide proof of concept 
validation for the wireless onboard condition monitoring device. 
 
EXPERIMENTAL SETUP & PROCEDURES 

The University Transportation Center for Railway Safety 
(UTCRS) owns a Single Bearing Test Rig (SBT), pictured in 
Figure 3, that was specifically designed and fabricated to 
simulate the operation conditions for a Class K (6½"×9"), Class 
F (6½"×12"), Class G (7"×12"), or Class E (6×11") tapered-roller 
bearing in field service. This test rig has the test bearing 
cantilevered at the end of the axle to closely mimic the loading 
conditions in a freight railcar. In a fully loaded railcar, each 
bearing experiences a load of 153 kN (34.4 kip) for Class F and 
K bearings. The SBT utilizes a hydraulic cylinder that can apply 
loads up to 150% of a fully loaded railcar. The experimental data 
presented in this paper were acquired from two loading 
conditions, namely, 17% of full load representing an empty 
railcar, and 100% of full load representing a fully loaded railcar. 
The SBT uses a 22 kW (30 hp) variable frequency motor that 
allows the bearing to replicate railway wheelset speeds up to 137 

Outer Ring 
(Cup) Inner Ring 

(Cone) 

Rollers 
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km/h (85 mph). Two industrial size fans are used to cool the 
bearings with an average air stream of 6 m/s (13.4 mph). 
Bearings containing a spall on the outer ring (cup) raceway are 
positioned so that the spall is located under the direct path of the 
applied load (i.e., the 90º position shown in Figure 4). This is 
done to induce a worst-case scenario operating condition where 
the defective area is subjected to the maximum load in order to 
cause the defect to propagate as fast as possible.  

 

 
Figure 3. Single Bearing Test Rig (SBT) [7]  
 

 
Figure 4. Bearing schematic and spall placement locations. 

 
A bearing adapter was specifically machined to 

accommodate mounting of three 70g accelerometers, one 500g 
accelerometer, as well as the developed wireless onboard 
condition monitoring module. As shown in Figure 5, on the 
inboard side of the bearing, two wired 70g accelerometers were 
mounted at the Smart Adapter (SA) and Mote (M) locations. On 
the outboard side of the bearing, one wired 70g accelerometer as 
well as the wireless module that utilizes a 100g accelerometer 
were mounted at the Smart Adapter (SA) location, whereas, the 
500g accelerometer was mounted at the Radial (R) location. The 
battery pack that powers the wireless module was mounted on 
the Mote (M) location on the outboard side of the bearing, as 
pictured in Figure 5. Additionally, four K-type bayonet 
thermocouples were affixed to the bearing adapter on the inboard 

and outboard sides to monitor the temperature of the bearing at 
each raceway.  

 

 
Figure 5. Modified bearing adapter showing sensor locations. 
 

In this study, all the data was collected and recorded using a 
National Instruments (NI) PXIe-1062Q data acquisition system 
(DAQ) which was programmed using LabVIEWTM. The 
thermocouple temperature data was collected using a NI TB-
2627 card in which a sampling rate of 128 Hz was used to 
acquire half a second of data every twenty-second interval. For 
the accelerometer data on the wired setup, an 8-channel Ni PXI-
4472B card was used in which a sampling rate of 5,120 Hz was 
utilized to collect sixteen seconds worth of data in ten-minute 
intervals. On the wireless setup, a Raspberry Pi 3 Model B+ was 
used to capture one second worth of accelerometer data via 
Bluetooth at a sampling rate of 5,200 Hz once every ten-minute 
interval. The data collected during a planned experiment is later 
analyzed using the mathematical software Matlab™ to acquire 
the root-mean-square (RMS) values of the accelerometer data as 
well as the frequency spectrums.   

The vibration levels within a bearing were closely tracked 
and monitored by the various installed accelerometers. If the 
RMS value for the bearing exceeded the typical threshold for a 
healthy bearing, the experiment was stopped, and the bearing 
was pressed off the axle and disassembled for a thorough 
inspection of all its components. If a spall was found one any of 
the bearing raceways, a casting of the defect was created by 
surrounding the defective area with sealant (tacky) tape having a 
melting point of 204°C (400°F). Then, a molten bismuth alloy 
with a melting temperature of 80°C (176°F) is poured into the 
cavity created by the tacky tape, as depicted in Figure 6. 

 

 
Figure 6. Casting procedure using Bismuth alloy; spalled 
surface outlined with tacky tape (left); Bismuth alloy cast (right). 
 

After hardening, the casting is removed from the mold 
(cavity) and the spalled region is painted to highlight the defect. 
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Creating a casting of the defect allows for further analysis and 
measurements without having to delay experimentation once the 
bearing has been reassembled and pressed on the axle. The 
casting is used to measure the defect area. To do so, an image of 
the painted spall region is obtained, and post-processed utilizing 
codes created in MATLAB™ which enhance the contrast of the 
darkened spall region. These images are then imported to Image 
Pro-Plus® where a digital analysis of the defect is performed 
through optical techniques to acquire accurate defect area 
parameters. 

 
RESULTS AND DISCUSSION 

A previous study performed by the UTCRS research team 
concluded that the bearing operating temperature is not a reliable 
metric to assess bearing health, especially in the early stages of 
defect initiation and propagation [6]. Results from that study 
demonstrated that an onboard vibration-based monitoring 
system would be more accurate for detecting bearing defects 
even in their early stages of initiation and propagation. Sixteen 
seconds of vibration data was collected at a sampling rate of 
5,120 Hz, but only the first four seconds of data were analyzed 
by the developed algorithm. Although the computational power 
required to analyze four seconds of vibration data (20,480 data 
points) is not an issue of concern in a wired system, it is an 
important factor to consider in a wireless, battery-operated 
onboard condition monitoring device. Reducing the amount of 
data necessary to perform an accurate and reliable assessment of 
the bearing health will have major implications on the power 
consumption and battery life of the developed wireless onboard 
condition monitoring device. This study uses a fabricated 
prototype wireless onboard condition monitoring module to 
investigate whether an accurate assessment of a bearing’s health 
can be carried with only a one-second sample window. The 
condition monitoring algorithm utilizes a three-step process. 
Step 1 determines if the bearing is healthy or defective (Level 1 
analysis); Step 2 determines the type of bearing defect (Level 2 
analysis); and Step 3 estimates the approximate size of the 
bearing defect (Level 3 analysis). However, only Level 1 and 
Level 2 analyses need to be optimized for wireless utilization. 

 
Experiment 202 

In Experiment 202, a class K bearing with a spalled cone 
(inner ring) raceway at the inboard side of the bearing was run 
on the single bearing tester (SBT). During the experiment, the 
cone spall grew to a total area of 10.51 cm2 (1.63 in2). A picture 
of the spall is presented in Figure 7. Ten different speeds at two 
different loading conditions simulating an empty and a fully 
loaded railcar were utilized for this experiment.  

The temperature and vibration signatures of the test bearing 
during Experiment 202 are provided in Figure 8. The root-mean-
square (RMS) vibration values plotted in Figure 8 were 
calculated from four seconds of data acquired at a sampling rate 
of 5,120 Hz every ten-minute interval from four wired 70g 
accelerometers. It is apparent from the vibration signatures 
captured by all four accelerometers that the bearing is defective 

since the RMS values are greater than the maximum RMS 
threshold for healthy bearings indicated by the solid red line in 
Figure 8. The inboard smart adapter (IB-SA) accelerometer 
recorded the highest RMS values, which is not surprising given 
that the spalled cone resides in the inboard side of the bearing. 
Interestingly, looking at the temperature profile for this test 
bearing, it can be seen that the operating temperature of this 
bearing is consistently lower than the threshold temperature for 
healthy (control) bearings indicated by the solid red line. The 
only times the bearing operating temperature exceeded the 
threshold value is immediately after sudden changes in operating 
conditions that require some settling time before the bearing 
operating temperature reaches steady-state conditions. At steady 
state, the operating temperature of the bearing remains lower 
than the threshold temperature. This reinforces the conclusion 
that bearing operating temperature is not a reliable metric for 
assessing bearing health.  

 

 
Figure 7. Post-experiment cone spall defect (ruler is in inches). 
 

 
Figure 8. Vibration (4 seconds of data) and temperature profiles 
for Experiment 202. 
 

Once Level 1 analysis concluded that the bearing is 
defective, the type of defect was determined by analyzing the 
power spectral density (PSD) plots of the raw acceleration data. 
Level 2 analysis uses three fundamentally derived defect 
frequencies (i.e., fcup, fcone, and froller) and their harmonics to 
identify the defect type. The defect frequency with the highest 
total frequency and harmonics magnitude within a certain 
frequency range determines the defect type [8]. Specifically, the 
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percentage of the highest total defect frequency and harmonics 
magnitude over the sum of magnitudes of all defect frequencies 
and their harmonics over a definite frequency range must be at 
least 50% for the algorithm to identify the defect type. In order 
for Level 2 analysis to yield reliable results, it is necessary to 
enhance the frequency resolution of the acquired data. To do so, 
the acquired vibration data (20,480 samples) was zero-padded to 
the next 2n value, which resulted in 32,768 total data points 
providing a satisfactory frequency resolution that is sufficient to 
produce accurate results. A suitable hunting range is utilized to 
identify all the defect frequencies and their harmonics. Detailed 
information regarding this process can be found elsewhere [8]. 
Table 1 summarizes the results of the Level 2 analysis performed 
on the data acquired from the inboard smart adapter (IB-SA) 
accelerometer at three different operating speeds and a fully 
loaded railcar. Utilizing a four-second sample window, the 
condition monitoring algorithm is proven to accurately and 
reliably identify the defect type within the bearing.  
 
Table 1. Level 2 analysis results for a 4-second sample window 
acquired by the IB-SA accelerometer in Experiment 202. 

Applied Load 
[%] 

Speed 
[km/h]/[mph] 

Max/Sum 
[%] 

Highest 
Magnitude 

100 72/45 98 Cone 
100 85/53 99 Cone 
100 97/60 99 Cone 

 
Figure 9 is a re-plot of Figure 8 with the sole difference 

being that the vibration signatures were generated using only one 
second of accelerometer data (5,120 samples). Comparing the 
vibration profiles of Figure 8 and Figure 9, it can be observed 
that the RMS values are very similar in both cases, which implies 
that Level 1 analysis is not compromised by using 1-second 
sample windows as opposed to 4-second sample windows. In 
both cases, the bearing is determined to be defective since the 
RMS values are greater than the maximum threshold.   
 

 
Figure 9. Vibration (1 second of data) and temperature profiles 
for Experiment 202. 
 

In Level 2 analysis, it was already established that having an 
appropriate frequency resolution is essential to conduct an 

accurate and reliable analysis. In order to determine the optimal 
frequency resolution needed to achieve a positive identification 
of the defect type, the one-second accelerometer raw data (5,120 
samples) was zero-padded to 2n of 8,192, 16,384, and 32,768 
data points. Table 2 summarizes the Level 2 analysis results 
obtained from the three different zero-padded data sets.  
 
Table 2. Level 2 analysis results for a 1-second sample window 
acquired by the IB-SA accelerometer in Experiment 202. 

Applied Load 
[%] 

Speed 
[km/h]/[mph] 

Max/Sum 
[%] 

Highest 
Magnitude 

Case I: 8,192 Data Points 
100 72/45 65 Cone 
100 85/53 74 Cone 
100 97/60 87 Cone 

Case II: 16,384 Data Points 
100 72/45 65 Cone 
100 85/53 95 Cone 
100 97/60 86 Cone 

Case III: 32,768 Data Points 
100 72/45 93 Cone 
100 85/53 98 Cone 
100 97/60 94 Cone 

 
Examining Table 2, the condition monitoring algorithm was 

successful in correctly identifying the defect type in all three 
zero-padding cases. However, looking at the results more 
closely, it is apparent that Case II gives slightly better results than 
Case I, and Case III generates better results than Case II based 
on the percentage of maximum defect frequency magnitude over 
the sum of all the defect frequency magnitudes. Comparing the 
results of Case II and Case III, one can argue that Case II 
provides the best results with reasonable zero-padding which is 
a good balance between accuracy and efficiency. This means that 
the improved accuracy attained by zero-padding to 32,768 data 
points (Case III) does not meaningfully warrant the additional 
computation time associated with the larger data set. Hence, it 
was concluded that zero-padding the one-second sample window 
(5,120 samples) to 16,384 data points offers the most optimal 
results for Level 2 analysis in terms of accuracy and efficiency.       
 
Experiment 221 

Now that parameters have been established for analyzing the 
one-second sample window of accelerometer data, an 
experiment was carried out to assess the efficacy of the wireless 
onboard condition monitoring device in accurately and reliably 
identifying a defective bearing as well as the defect type.  

In Experiment 221, a class F bearing with a cup (outer ring) 
spall located at the inboard raceway of the bearing was run on 
the single bearing test rig. Prior to testing, the cup spall size was 
initially 3.76 cm2 (0.58 in2), as pictured in Figure 10. The main 
objective of this experiment was to evaluate the performance of 
the wireless onboard condition monitoring module as compared 
to the wired accelerometers. The wireless module was affixed on 
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the outboard smart adapter (OB-SA) location, whereas, the three 
wired 70g accelerometers were positioned on the inboard smart 
adapter (IB-SA), inboard mote (IB-M), and outboard smart 
adapter (OB-SA) locations. This setup allowed for a direct 
comparison between the wireless module versus the wired 
accelerometer that was placed at the same location (i.e., OB-SA). 
Data was collected for two different speeds at two loading 
conditions simulating an empty and a full freight railcar. 

 

 
Figure 10. Initial cup spall on the bearing inboard raceway. 

 
Figure 11 presents the temperature and vibration signatures 

acquired during Experiment 221. As demonstrated earlier, the 
operating temperature of the bearing remained below the 
threshold value (red line) throughout the experiment exhibiting 
no abnormal operation or bearing defect. Note that the RMS 
values plotted in the figure were calculated from 4-second 
sample windows acquired by the three wired accelerometers, 
whereas, the RMS values for the wireless modules were 
calculated from 1-second sample windows. The results shown 
are very promising as RMS values for both wired accelerometers 
placed in the smart adapter (SA) locations are very comparable 
to the RMS values for the wireless module. Moreover, both 
wired and wireless devices indicate that the bearing is possibly 
defective (Level 1 analysis) since the RMS values are above the 
maximum threshold represented by the solid red line.    

 

 
Figure 11. Vibration and temperature profiles for Experiment 
221. 

 

Table 3 and Table 4 summarize, respectively, the Level 2 
analyses performed on the 4-second sample windows acquired 
from the three wired accelerometers and the 1-second sample 
windows collected by the wireless onboard module. 
 
Table 3. Level 2 analysis of 4-second sample windows for the 
three wired accelerometers used in Experiment 221. 

Applied Load 
[%] 

Speed 
[km/h]/[mph] 

Max/Sum 
[%] 

Highest 
Magnitude 

Outboard Smart Adapter (OB-SA) 
17 85/53 100 Cup 
17 97/60 100 Cup 

100 85/53 98 Cup 
100 97/60 100 Cup 

Inboard Smart Adapter (IB-SA) 
17 85/53 100 Cup 
17 97/60 100 Cup 

100 85/53 99 Cup 
100 97/60 100 Cup 

Inboard Mote (IB-M) 
17 85/53 100 Cup 
17 97/60 100 Cup 

100 85/53 96 Cup 
100 97/60 100 Cup 

 
Table 4. Level 2 analysis of 1-second sample windows for the 
wireless onboard module used in Experiment 221. 

Applied Load 
[%] 

Speed 
[km/h]/[mph] 

Max/Sum 
[%] 

Highest 
Magnitude 

Case I: 8,192 Data Points 
17 85/53 47 Cup 
17 97/60 51 Cup 

100 85/53 61 Cup 
100 97/60 96 Cup 

Case II: 16,384 Data Points 
17 85/53 61 Cup 
17 97/60 64 Cup 

100 85/53 68 Cup 
100 97/60 97 Cup 

Case III: 32,768 Data Points 
17 85/53 75 Cup 
17 97/60 77 Cup 

100 85/53 69 Cup 
100 97/60 96 Cup 

 
Examining the results presented in Table 3 and Table 4, it is 

apparent that all four accelerometers (three wired and one 
wireless) have correctly identified the defect type (fourth column 
in each table). However, inspecting the results more closely, one 
can notice that the 4-second sample windows collected by the 
three wired accelerometers detect the defect type with more 
certainty than the 1-second sample windows acquired by the 
wireless onboard module based on the “Max/Sum [%]” 
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percentages given in third column of both tables. Nevertheless, 
it is rational to state that the 1-second sample windows collected 
by the wireless onboard module and zero-padded to 16,384 data 
points adequately identify the defect type albeit with less 
certainty than the 4-second sample windows. More importantly, 
it is evident that the detection certainty for the 1-second sample 
windows improves markedly for a full railcar at higher speeds, 
which are the more critical operating conditions in rail service.  
 
CONCLUSIONS 

One major drawback of the current wayside condition 
monitoring systems in use today is that they are reactive in 
nature. This means that they normally only detect defective 
bearings as they are nearing the end of their lifecycle. Relying 
solely on temperature, Hot-Box Detectors (HBDs) are not 
effective in identifying bearing defects at an early stage as the 
operating temperatures of defective bearings do not usually 
exhibit abnormal behavior until the defects have reached a 
critical size and catastrophic failure is imminent. Similarly, 
TADSTM are programmed to detect “growlers”, which are 
bearings that have defects that cover 90% of the contact raceway 
surface area, and there are only 30 of these systems in use in 
North America.  

To address the shortcomings of the current condition 
monitoring systems, the UTCRS research team has developed a 
vibration-based bearing condition monitoring system that can 
effectively assess the health of bearings and detect defects at an 
early stage of formation and propagation to allow for proactive 
maintenance to be performed. The wired version of the condition 
monitoring system has been validated through rigorous 
laboratory testing as well as a field test carried out at TTCI. 
Currently, the wired system utilizes four second sample windows 
(20,480 samples) that are zero-padded to 32,768 data points to 
accurately and reliably assess the bearing health and identify the 
type of defect (if any). The power consumption associated with 
the analyses will limit the battery life in the developed wireless 
version of the onboard condition monitoring module. Hence, this 
study focused on two aspects; first, it was important to 
investigate whether the analyses can produce accurate and 
reliable data utilizing only one second worth of data as opposed 
to four seconds, thus, reducing power consumption; and second, 
provide proof of concept validation for the wireless onboard 
module by directly comparing its performance to the wired 
version of the system.   

The results of this study clearly demonstrate that the 
wireless onboard condition monitoring module that utilizes one-
second sample windows can accurately assess the bearing health 
and identify the correct defect type, albeit with a lower certainty 
level than the wired system that uses four-second sample 
windows. Three different zero-padding cases for the Level 2 
algorithm analysis were examined. Results indicate that 
collecting one-second of data that is zero-padded to 16,384 data 
points is the most efficient and effective method to assess the 
bearing health and identify the defect type (if any) using the 
wireless onboard module. However, further improvements to the 

condition monitoring algorithm will be sought in order to 
achieve better certainty in identifying the defect type at lower 
speeds and railcar loads. 
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