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Oligodendrocyte Progenitor Programming and Reprogramming: 
Toward Myelin Regeneration

Alejandro Lopez Juarez*, Danyang He*, and Q. Richard Lu
Department of Pediatrics, Divisions of Experimental Hematology and Cancer Biology & 
Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, 
USA

Abstract

Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-

intensive neurological disorders. The loss of myelin in the central nervous system, produced by 

oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive 

deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm 

shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory 

microenvironment in MS lesions abrogates the expansion and differentiation of resident OL 

precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs 

display a highly plastic ability to differentiate into alternative cell lineages under certain 

circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and 

differentiation into mature OLs in a hostile, non-permissive lesion environment may open new 

opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs 

in terms of their developmental origins, distribution, and differentiation potentials in the normal 

and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule 

compounds that control OPC specification and differentiation; and 3) therapeutic potential for 

motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and 

their likely impacts on remyelination. OL-based therapies through activating regenerative 

potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to 

promote remyelination and neuroprotection in devastating demyelinating diseases like MS.
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Introduction

Diseases that result in demyelination in the central nervous system (CNS) such as multiple 

sclerosis (MS), leukodystrophies, and cerebral palsy are major causes of neurological 

mortality and morbidity (Fancy et al., 2011; Franklin and Ffrench-Constant, 2008). In MS 

lesions, the myelin sheaths that wrap axons are damaged, resulting in impaired axonal 

conduction and neurological dysfunctions. Although MS is thought to be an autoimmune-

mediated demyelinating disease, several immune-focused treatment methods for this disease 

show only partial benefits and do not result in lesion repair (Franklin and Ffrench-Constant, 

2008; Zawadzka and Franklin, 2007). Loss of oligodendrocytes (OLs) that produce myelin is 

a hallmark of MS. Although neural stem cells are able to produce OLs in the adult brain 

(Alvarez-Buylla et al., 2000; Dimou et al., 2008; Rivers et al., 2008), their capacity to 

replenish OLs is limited. This has sparked considerable interest in treating demyelinating 

diseases in the CNS by enhancing the production of OLs and their precursors, OL precursor 

cells (OPCs). During development and adulthood, OPCs reside throughout the CNS and 

could be an important cell source for myelin regeneration in multifocal demyelinating 

lesions in MS.

OPCs are characterized by expression of platelet-derived growth factor receptor alpha 

(PDGFRα) and the proteoglycan NG2 (Levison et al., 1999; Nishiyama et al., 2002; Rivers 

et al., 2008; Zhu et al., 2008). OPCs produce differentiating and mature OLs in the CNS 

throughout the lifespan of the animals (Dawson et al., 2003). Moreover, in their 

undifferentiated state, OPCs exhibit specific electrophysiological properties and integrate 

into the cellular network that modulates neuronal activity and responds to pathological 

insults (Bergles et al., 2010). Recent studies indicate that OPCs may become multipotent 

and capable of adopting different cell fates under certain circumstances. For instance, a 

misguided differentiation of OPCs into astrocytes may exhaust the reparative cell pool, 

which contributes to remyelination failure in MS (Kotter et al., 2011).

In this review, we will discuss recent advances in OPC programming and reprogramming, 

including their developmental origins, plasticity, and the factors that direct OL lineage 

progression. We will also evaluate recently described strategies of mobilizing endogenous 

neural progenitor cells and reprograming of differentiated cells into OPCs, and their 

respective effectiveness in remyelination. Finally, we discuss how to harness current 

knowledge to develop effective therapeutic strategies to replace OL loss and promote myelin 

repair in MS patients.

Distribution, developmental origins, and heterogeneity of OPCs

OPCs are found throughout the CNS and reside in both the gray and white matter. 

Approximately 5–8% of the cells in the brain are OPCs (Dawson et al., 2003; Levine et al., 

2001). OPCs represent a major proliferative population in the adult CNS of mammals, 

including humans (Alonso, 2000; Dawson et al., 2003; Geha et al., 2010; Peters, 2004; 

Smart, 1961; Tamura et al., 2007). Due to their distribution and abundance, it has been 

proposed that OPCs represent the fourth major glial cell classes in addition to astrocytes, 

OLs and microglia (Peters, 2004).
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Diverse developmental origins of OPCs have been proposed (Richardson et al., 2006); 

however, definitive cell sources in the specific region of the CNS have not been fully 

defined. In the early stages of spinal cord development, the precursors in the motor neuron 

progenitor domain of the ventral ventricular zone can give rise to motor neurons and OLs 

sequentially. These precursor cells are defined by the expression of the basic helix-loop-

helix transcription factor Olig2 (Lu et al., 2002; Takebayashi et al., 2002; Zhou and 

Anderson, 2002). Expression of Olig2 precedes that of OPC markers PDGFRα and NG2 

and defines a primitive OPC state (Pri-OPC) beginning at embryonic day 8.5 (Lu et al., 

2002; Takebayashi et al., 2002; Zhou and Anderson, 2002) (Figure 1). Cell fate mapping 

analyses suggest three waves of OL production in the developing forebrain (Kessaris et al., 

2006): The first wave originates from Nkx2.1+ progenitors in the ventral telencephalon; the 

second wave originates from Gsx2+ precursors in the lateral ganglionic eminences (LGE) 

and/or caudal ganglionic eminences; and the third results from Emx1+ cortical progenitor 

cells (Figure 1). Interestingly, the experimental depletion of either the Nkx2.1+ or Gsx2+ 

OPC populations does not cause significant myelination defects, suggesting that remaining 

populations compensate each other (Kessaris et al., 2006). In fact, Nkx2.1 progenitors-

derived OPCs are almost completely eliminated under normal conditions during postnatal 

development (Kessaris et al., 2006). In contrast, genetic ablation of Olig2 in the dorsal 

progenitor cells of the developing cortex leads to myelination deficits; these defects cannot 

be fully compensated by ventrally-derived OPCs at postnatal stages (Yue et al., 2006), 

suggesting that the dorsal progenitors contribute significantly to cortical myelination. 

Consistently, genetic fate mapping analysis, combined with BrdU birth-dating labeling, 

indicates that the majority of myelinating OLs in the brain are derived from progenitors that 

originate in the neonatal subventricular zone (SVZ) (Tsoa et al., 2014). Overall, these studies 

indicate that OPCs arise from diverse spatiotemporally-restricted origins, and that 

subpopulations of OPCs from a particular niche may contribute to the regional diversity of 

OL myelination in the CNS (Bercury and Macklin, 2015).

Adult OPC generation and functions

A population of OPCs generated during development are maintained as an immature slowly 

proliferative or quiescent state in the adult CNS (Dawson et al., 2003). Studies have 

demonstrated that NG2+ OPCs in the adult brain display a very long cell cycle length with a 

prolonged G1-phase (Simon et al., 2011). In line with this, analysis of the integration of 

nuclear bomb test-derived C14 reveals that OLs in the white matter are remarkably stable 

during adult life of humans and have low turnover rates, which contribute minimally to 

myelin modulation or remodeling (Yeung et al., 2014). Adult NG2+ OPCs appear to 

maintain unique territories through self-avoidance. A balance between OPC expansion and 

self-repulsion likely controls the homeostasis of OPC cell density in the adult brain (Hughes 

et al., 2013). Strikingly, newly formed adult OLs appear to participate in myelin remodeling 

by either replacing dying OLs or adding new myelin sheaths along existing myelinating 

axons (Young et al., 2013). The adult-born OLs, although small in number, are required for 

acquiring motor learning skills (McKenzie et al., 2014), suggesting a critical role of newly 

formed adult OLs in learning acquisition. Upon injury, however, adult parenchymal NG2+ 

OPCs can become re-reactivated and re-enter cell cycle following demyelination (Hughes et 
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al., 2013; Simon et al., 2011) and contribute to OL regeneration and myelin repair (Xing et 

al., 2014).

Several lines of evidence indicate that OPCs exhibit regional and temporal differences in 

their frequency of differentiation into OLs. In adult mice, fate mapping analysis of 

PDGFRα+ cells suggests that OPCs generate 20% of myelinating OLs in the corpus 

callosum, but only around 5% in the cortex (Rivers et al., 2008). Similarly Olig2+ 

progenitors generate myelinating OLs in the adult white matter; however, only few Olig2+ 

fate-mapped cells generate OLs in the gray matter, even after 6 months (Dimou et al., 2008; 

Rivers et al., 2008; Tatsumi et al., 2008). Olig2+ adult neural progenitors (type C cells) 

generate a small population of OPCs destined for the corpus callosum and striatum (Menn et 

al., 2006). These studies established that, although OPCs continuously differentiate into OLs 

during development and in adulthood, the signals available in specific niches are critical for 

the control of the oligodendrogenesis rate. Recently, cell-type specific transcriptome 

profiling and single-cell transcriptome analyses revealed previously unrecognized cell 

subclasses of OL lineage cells in the brain (Zeisel et al., 2015; Zhang et al., 2014), indicating 

that OPC populations are spatially and temporally heterogeneous in the brain.

OPCs exhibit cell-fate plasticity

The developmental process of OPCs is highly plastic. OPCs have the potential to 

differentiate into astrocytes and even neurons depending on the signals available within a 

given niche. The ability of OPCs to form OLs and type 2 astrocytes in vitro has been well 

established (Raff et al., 1983); however, whether this plasticity of OPCs is a cell-culture 

artifact or actually occurs during normal development has been a matter of intense debate. 

Cultured OPCs can differentiate into astrocytes in response to certain factors in serum, such 

as bone morphogenetic proteins (BMPs), which activate OL differentiation inhibitors ID2 

and ID4 (Kondo and Raff, 2000a; Kondo and Raff, 2004; Raff et al., 1983; Samanta and 

Kessler, 2004). Lineage tracing of the fate of NG2+ OPCs with the use of NG2-CreBAC 

transgenic mice carrying a Cre reporter Z/EG suggests that OPCs produce protoplasmic 

astrocytes in a region-dependent manner, such as in the posterior-ventral cortex, in addition 

to OL lineage cells during development (Zhu et al., 2008). In contrast, low or no production 

of OPC-derived astrocytes was detected in the adult brain (Dimou et al., 2008; Rivers et al., 

2008).

OPCs may exhibit neurogenic potential. It has been reported that OPCs isolated from CNP-

GFP+ reporter mice differentiate into functional neurons (Belachew et al., 2003). Fate-

mapping analysis of OPCs during development suggests that OPCs are the source of specific 

neuronal populations in vivo. Based on BrdU labeling analysis and immunodetection of 

NG2, a subpopulation of OPCs expresses the neuroblast markers, doublecortin and TUC-4, 

in the adult rat neocortex (Tamura et al., 2007). Fate-mapping analysis of PDGFRα+ cells, 

based on PDGFRα-creERT2/Rosa26-YFP double-transgenic mice, indicates that OPCs may 

also give rise to a population of projection neurons in the forebrain piriform cortex (Rivers et 

al., 2008). In addition, the progeny of Plp+ OPCs in the postnatal stage of a Plp-CreER 

transgenic line express doublecortin, Sox2, and Pax6, indicating that OPCs may generate 

pyramidal glutamatergic neurons in the adult piriform cortex (Guo et al., 2010). Similarly, a 
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subset of immature, but functional, neurons are derived from Sox2+/NG2+ OPCs in the 

hypothalamus (Robins et al., 2013). Moreover, a population of medial ganglion eminence-

derived OPCs appears to migrate tangentially and gives rise to interneurons in deep layers of 

the dorsal cerebral cortex (Tsoa et al., 2014).

In contrast to observed neurogenic potential of OL lineage cells in some studies, the fate 

mapping analysis of Olig2+ or NG2+ cells using Olig2-CreER knock-in and NG2CreER 

transgenic lines indicates no production of neurons from OPCs in the postnatal and adult 

brain (Dimou et al., 2008; Zhu et al., 2008). Recently, fate-mapping analysis of a new BAC 

transgenic line of PDGFRα-CreER mice in the developing and adult CNS show that 

PDGFRα/NG2+ OPCs develop into postnatal myelinating OLs but not astrocytes or neurons 

(Kang et al., 2010). The discrepancies in studies of the fates of PDGFRα+ or NG2+ cells are 

likely due to the intrinsic properties of different transgenic lines. In the NG2-Cre BAC 

transgenic line (Zhu et al., 2008), the constitutive NG2-promoter driven-Cre may be active 

in astrocyte lineage cells at a specific time-point during embryonic development. In the Plp-

CreER mice (Doerflinger et al., 2003), the 2.4 kb Plp promoter segment may not fully 

recapitulate endogenous Plp gene expression and the Plp-Cre transgene expression is not 

restricted to OL lineage cells but is also expressed in subpopulations of astrocytes and 

neurons, as observed in fate-mapping studies (Guo et al., 2010). Similarly, these PDGFRα-

CreER reporter-positive neurons are likely derived from direct expression of CreER in 

neurons, rather than through evolution or trans-differentiation of NG2+ cells (Kang et al., 

2010; Rivers et al., 2008). Currently, it is not clear whether chromosomal integration sites of 

CreER transgenes in different transgenic lines impact the outcome of fate-mapping 

experiments. Even though accumulating genetic fate mapping evidence supporting that 

OPCs might represent a disseminated pool of progenitor cells that can potentially be steered 

into a range of neural lineages, those results derived from Cre-mediated fate-mapping might 

have alternative interpretations. For example, OLs are able to secrete exosomes that can be 

internalized by neurons, raising the possibility that genetic information (e.g. Cre mRNA or 

protein) may be transferred from OLs to neurons by exosomes or microvesicles, and 

therefore leading to reporter expression in neurons due to Cre-mediated recombination 

(Fruhbeis et al., 2013; Ridder et al., 2014).

OPCs could potentially adopt alternative cell fates under pathological conditions or upon 

injury. Fate switch control is clinically significant, since most approaches for myelin repair 

in MS lesions do not take into consideration that OPCs can be directed towards alternative 

fates or lineages. For example, a misguided fate switch of OPCs into astrocytes may cause 

depletion of OPC cell pools, leading to remyelination failure in MS lesions, which consist of 

demyelinated axons surrounded by a dense astroglial milieu. Several studies, unfortunately 

lacking stringent fate-mapping data, suggest that OPCs give rise to astrocytes following 

injury. A population of Olig2+/GFAP+ cells with astrocyte identity is detected after cortical 

injury (Tatsumi et al., 2008). In experimental autoimmune encephalomyelitis, GFAP+ cells 

in lesions were co-labeled with Nkx2.2 and Olig2, suggestive of intermediate stages of OPC 

conversion into astrocyte-lineage cells (Cassiani-Ingoni et al., 2006). A proportion of OPCs 

appear to become committed to astrocyte differentiation based on cytoplasmic expression of 

Olig2 following cortical stab injury (Magnus et al., 2007).
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A recent study, however, showed that Olig2 is upregulated in the majority of GFAP+ cells 

after traumatic brain injury. The fate of OPCs traced by the PDGFRα-H2b-GFP reporter 

does not express GFAP, suggesting that reactive astrocytes are derived from astrocytes in 

which Olig2 is re-expressed or activated, but not from PDGFRα+ OPCs (Chen et al., 2008). 

Consistently, after stab wound injury, the progeny of OPCs remains positive for the 

proteoglycan NG2 (Dimou et al., 2008). In addition, the fate mapping analysis of OPCs in 

PDGFRα-creERT2:Rosa26-YFP mice found that OPCs produce, at most, a very small 

proportion of astrocytes following toxin-mediated demyelination (Zawadzka et al., 2010). In 

fact, a great majority of reactive astrocytes in the vicinity of the lesions are derived from 

preexisting FGFR3-expressing cells (Zawadzka et al., 2010). It should be noted that these 

experimental findings do not formally preclude the formation of astrocytes from OPCs in 

multiple sclerosis patients. The misguided adoption of astrocyte fates by OPCs or pri-OPCs 

may occur in the presence of certain genetic alterations. For instance, the loss of Olig2 (Zhu 

et al., 2012) or its upstream epigenetic regulators such as Hdac3 (X. He and R. Lu, 

unpublished) or certain chronic disease settings (Nishiyama et al., 2009) could convert OPCs 

into astrocytes in vivo. In addition, OPCs may adopt the neuronal fate following traumatic 

injury as well. Elevation of Sox2 alone, or in combination with Ascl1/Mash1, can induce the 

conversion of NG2 glia into doublecortin (DCX)+ neurons in the adult mouse cerebral cortex 

following stab wound injury (Heinrich et al., 2014). Intriguingly, such cell fate conversion 

requires prior injury, suggesting that unidentified signals present in the lesion contribute to 

the directed programing of OPCs into neurons.

Diverse extrinsic factors regulate OPC specification and plasticity

Distinct and opposing extrinsic factors modulate and balance OPC fate specification (Figure 

1). In the developing neural tube, OPCs originate in the ventral neural epithelium under the 

influence of extracellular ligands such as sonic hedgehog (Shh) and BMP, which exert 

opposing effects on OPC specification. Shh secreted from the ventral neural tube and floor 

plate induces OPC specification, whereas BMP signaling inhibits the process (Orentas et al., 

1999; Poncet et al., 1996; Pringle et al., 1996) (Figure 1). A recent study indicates that 

Indian Shh is also involved in the specification of OPCs in zebrafish (Chung et al., 2013). 

Studies using pharmacological blocking of FGF2 and Shh signaling suggest that the function 

of Shh on OPC specification is facilitated through the activation of FGF signaling (Kessaris 

et al., 2004). On the other hand, BMP signals from the dorsal neural tube inhibit OPC 

generation by activating negative regulators of OL differentiation, such as ID2 and ID4 

(Feigenson et al., 2011; Miller et al., 2004). Indeed, cultured OPCs treated with BMP2, 

BMP4, or BMP7 differentiate into type-2 astrocytes rather than OLs (Mabie et al., 1997).

Modulation of BMP signaling can regulate fate determination and plasticity of glial cells. In 
vitro, OPCs can be reprogramed into multipotent neural stem-like cells, capable of 

generating both neurons and glial cells in response to BMPs (Kondo and Raff, 2000b). 

Elevation of levels of endogenous BMPs, unmasked by noggin antagonism with a function-

blocking antibody (noggin-FbAb), appears to convert a population of OPCs to type 2 

astrocyte-like cells following adult CNS injury (Hampton et al., 2007). BMP4 signaling may 

activate histone acetylation to inhibit OPC differentiation and favor expression of astrocytic 

genes (Wu et al., 2012).
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In the adult CNS, Wnt/β-catenin signaling has been shown to have an instructive role in 

specification of neural stem cells from subependymal zone (SEZ) or SVZ into OPCs. 

Activation of canonical Wnt signaling using pharmacological GSK3β inhibitor 

ARA-014418 or by in vivo genetic approaches stimulates the generation and expansion of 

OPCs from the dorsal SVZ microdomain (Azim et al., 2014a; Azim et al., 2014b; Ortega et 

al., 2013a). Intriguingly, in the cuprizone-challenged demyelination model, adult OPCs 

specified from the SVZ could migrate into the demyelinated lesions and contribute 

significantly to OL regeneration and remyelination (Xing et al., 2014). These studies suggest 

that Wnt pathway activation contributes to oligodendrogenesis from the SEZ/SVZ 

progenitors in adult mice and subsequent OL regeneration in demyelinating lesions.

It has been proposed that there are two components of the intrinsic clock for OPC 

differentiation: a “mitogenic counting component” controlling cell proliferation, and an 

“effector component” controlling the differentiation process (Raff et al., 1983) (Figure 1). In 

the presence of mitogens and absence of thyroid hormone, glucocorticoids, or retinoic acid, 

OPCs appear to divide indefinitely and do not differentiate into mature OLs. Conversely, in 

the absence of the counting component, OPCs stop dividing and differentiate prematurely 

(Barres et al., 1994). Several mitogens involved in the proliferative response of OPCs have 

been identified in in vitro experiments; these include PDGF, bFGF, and EGF. bFGF and 

PDGF cooperate to promote rapid division of OPCs, but inhibit their differentiation and 

maturation (Wolswijk and Noble, 1992). Overexpression of PDGF increases the 

proliferation of OPCs (Calver et al., 1998; Woodruff et al., 2004); however, OPCs generated 

in excess undergo cell death, suggesting that multiple survival and differentiation signals 

determine the final number of mature OLs. Consistently, in the developing optic nerve, 

approximately 50% of OLs die, possibly in response to the absence of neuron-derived 

factors such as the ciliary neurotrophic factor or insulin-like growth factor I (Barres et al., 

1992; Barres et al., 1993). The response of OPCs to PDGF may also depend on 

spatiotemporal cues. Studies with ex vivo transplant and explant culture models indicate that 

OPCs from the postnatal white matter region exhibit greater proliferative responses to PDGF 

than OPCs from the gray matter region (Hill et al., 2013). A recent in vivo transplantation 

study shows that white matter-derived adult OPCs differentiate into mature OLs in gray and 

white matter regions with equal efficiency; however, OPCs derived from the gray matter 

differentiate with lower efficiency, especially in the gray matter niches (Vigano et al., 2013). 

These observations suggest an intrinsic difference among regionally-specific adult OPCs, 

which could be due to extended residency in different environmental niches, factors 

expressed in these niches, or the presence of the early phase of OPCs in the white matter 

niche.

Specification, proliferation, and differentiation of OPCs in the adult injured brain seem to be 

influenced by signals similar to those active during development; for example, Shh, FGF, 

EGF, and PDGF are expressed during development and post injury (Figure 1). FGF 

receptors FGFR1/2 are enriched in the dorsal SVZ, from which OLs are largely derived, and 

the administration of FGF2 into the lateral ventricle increases the specification and 

proliferation of OPCs and disrupts myelination in the adjacent white matter and cortex 

(Azim et al., 2012). Additionally, it has been described that, upon EGF stimulation, a 

subpopulation of type-B cells are converted into OPCs, and, upon removal of EGF, these 
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cells differentiate into myelinating OLs in the corpus callosum, fimbria fornix, and striatum 

(Gonzalez-Perez and Alvarez-Buylla, 2011).

Shh signaling is upregulated in the oligodendroglial lineage in a model of focal 

demyelination, and adenovirus-mediated expression Shh in the injured brain results in an 

increase of the number of OPCs (Ferent et al., 2013). However, inhibition of endogenous 

Shh did not reduce the density of Olig2+ cells, suggesting an additional Shh-independent 

mechanism for OL generation (Ortega et al., 2013b). Currently, it is not known whether 

extrinsic factors impact OPC development and regeneration in regional- or stage-specific 

manners.

It is worth noting that OPC proliferation can be also regulated by neuronal activity. Blockade 

of axonal activity by axotomy or tetrodotoxin reduces OPC proliferation in the developing 

optic nerve (Barres and Raff, 1993). Similarly, stimulation of neuronal activity via an 

optogenetic approach induces a mitogenic response of neural progenitor cells and OPCs, 

promotes oligodendrogenesis, and increases adaptive myelination within the premotor cortex 

and subcortical white matter (Gibson et al., 2014). Conversely, blocking new OL production 

through Myrf deletion in OPCs in adult mice resulted in a deficit in motor learning 

(McKenzie et al., 2014), suggesting that generation of new OLs and myelin is critical for 

neuronal activity and function. To what extent neuronal activity contributes to OPC 

proliferation and differentiation in vivo, or vice versa, remains to be determined.

Control of OPC specification and plasticity by intrinsic factors

OPC fate specification and their lineage plasticity are coordinated and fine-tuned by a series 

of cell-intrinsic regulators (Figure 1). During development, the basic helix-loop-helix 

transcription factor Olig2 is not only necessary for OPC specification and their 

differentiation, but also, in some contexts, sufficient for OPC generation (Liu et al., 2007; Lu 

et al., 2002; Takebayashi et al., 2002; Zhou et al., 2001; Zhou and Anderson, 2002). Olig2 
deletion leads to a loss of the majority of OL lineage cells in Olig2 null mice (Lu et al., 

2002; Takebayashi et al., 2002), deletion of both Olig2 and Olig1 causes complete absence 

of OPCs in the CNS, suggesting that Olig2 and Olig1 cooperate for OPC specification (Lu et 

al., 2002; Zhou et al., 2001; Zhou and Anderson, 2002). Olig2 can interact with 

transcriptional co-regulators Nkx2.2 or Zfp448 to further promote OPC differentiation in 

ovo (Wang et al., 2006; Zhou et al., 2001). The initial analysis of the function of Olig1, a 

close homolog of Olig2, indicates a developmental delay in OL differentiation in the spinal 

cord of an Olig1-null mouse strain (Lu et al., 2002), while a recent study of the mutant line 

indicates persistent impairment of OPC commitment and OL differentiation in the corpus 

callosum from early postnatal stages to adulthood (Dai et al., 2015). This observation 

indicates a primary role of Olig1 in OL development and subsequent myelination in brain, 

but not spinal cord, suggesting a region-specific Olig1 function OL development in the CNS. 

Intriguingly, a modified Olig1 deletion mouse line with neomycin targeting cassette removal 

develops a more severe hypomyelination defect in both brain and spinal cord than the 

original line (Xin et al., 2005). In contrast, two additional Olig1-deficient mouse lines 

exhibit only mild developmental delay in myelination in the spinal cord (de Faria et al., 

2014). The phenotypic discrepancy of Olig1 mutant mice has not yet fully understood, 
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perhaps in part due to different strain backgrounds and the impact of the neomycin cassette 

on expression of neighboring genes, Cre or noncoding RNAs.

The proneural factor Ascl1 is detected in neural progenitors and OPCs, and is required for 

oligodendrogenesis in the developing CNS (Nakatani et al., 2013; Parras et al., 2007). Ascl1 

interacts with Olig2 and regulates the specification, proliferation, and differentiation of 

OPCs. In remyelinating lesions, Ascl1 is upregulated and promotes the production of new 

OLs, suggesting that Ascl1 modulates normal development and regeneration of OPCs 

(Nakatani et al., 2013; Parras et al., 2007).

SoxE family transcription factors (e.g. Sox10) regulate in OL lineage differentiation. 

Elevated Olig2 levels induce the expression of Sox10 and Nkx2.2, leading to OL 

differentiation in the chick neural tube (Figure 1) (Liu et al., 2007). Sox10 is expressed in 

OPCs, persists in mature OLs, and promotes OPC differentiation (Stolt et al., 2004). Sox9 

shares a similar function in normal OPC development, but not OL differentiation. The SoxD 

family (Sox5 and Sox6) are highly expressed in OPCs and down-regulated in differentiating 

OLs, resembling the Sox9 expression pattern; Sox9 and the SoxD factors have repressive 

roles in OL differentiation (Stolt et al., 2006).

Expression of neurogenic homeodomain transcription factors modulates the neuronal versus 

oligodendroglial cell fate choice in the ventral telencephalon. In the ventral telencephalon, 

progenitors in the LGE and medial ganglion eminence can generate GABAergic neurons and 

OLs. Transcription factors like Dlx1/Dlx2 control neuronal versus oligodendroglial cell fate 

acquisition by repressing Olig2-dependent OPC formation in the developing forebrain 

(Petryniak et al., 2007). Similarly, the absence of Gsx2 in the LGE leads to an increase of 

OPCs in the dorsal LGE, whereas overexpression of Gsx2 decreases the number of OPCs, 

suggesting a repressive role of Gsx2 in OPC specification (Chapman et al., 2013).

In the developing cortex, Olig2 plays a key role in OL specification and differentiation from 

dorsal cortical progenitor cells (Yue et al., 2006). Constitutive or conditional deletion of 

Olig2 in NG2+ cells in the developing neocortex also results in astrocyte generation from 

neocortical NG2+ glia (Zhu et al., 2012), suggesting that Olig2 controls the switch of glial 

subtypes. Transcription factors could also serve as nexus that connect extracellular signaling 

pathways to intracellular transcriptional programs for OL differentiation. For example, a 

Smad-interacting protein-1 (Sip1/Zeb2) was found to antagonize BMP signaling to repress 

differentiation inhibitory signals, while activating I-Smad, Smad7, further blocked BMP 

receptor signaling to promote OL differentiation (Weng et al., 2012).

Several lines of evidence indicate that chromatin modifications, such as histone 

modifications and ATP-dependent chromatin remodeling, control oligodendrocyte 

specification and mediate developmental plasticity. In vitro, treatment with pan histone 

deacetylase (HDAC) inhibitors induces programming of OPCs to acquire neural progenitor 

properties. HDAC inhibitor treatment activates Sox2 and other stem cell associated genes 

while suppressing OL lineage-specific genes (Lyssiotis et al., 2007). Consistently, genetic 

ablation of both HDAC1/2, but not either of the single genes alone, in the OL lineage cells 

blocks OPC proliferation and differentiation, at least in part by inhibiting Wnt signaling 
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activation in the progenitor cells (Ye et al., 2009). HDAC1/2-deficient OPCs do not appear 

to adopt alternative cell fates, suggesting that other HDAC family members inhibited by pan 

HDAC inhibitors may also contribute to directed programming of OPCs and their 

developmental plasticity.

Expression of three transcription factors – Sox10, Olig2, and either Zfp536 or Nkx6.2 – 

induces rat fibroblasts or mouse embryonic or lung fibroblasts to reprogram into OPCs 

(Najm et al., 2013; Yang et al., 2013). The cell morphologies and gene expression profiles of 

these transcription factor-induced OPCs (iOPCs) are similar to those of primary OPCs. 

Importantly, iOPCs generate myelinating OLs and compact myelin sheaths around axons 

when transplanted into myelin-deficit Shiverer mice, which lack expression of MBP (Najm 

et al., 2013; Yang et al., 2013). SoxE transcription factors induce neural precursor cells from 

the early postnatal SVZ to become OPCs. Sox10 can restrict differentiation of neural 

precursor cells into the OL lineage, in part by regulating the expression of the Shh signaling 

pathway (Pozniak et al., 2010). Overexpression of Sox10 alone is sufficient to promote the 

commitment of neural precursor cells toward the OL lineage to form mature OLs (Wang et 

al., 2014).

Chromatin remodeling regulated by ATP-dependent remodelers is critical for programming 

of transcriptional states required for lineage specification during development. ATP-

dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 is activated at the onset 

of OPC differentiation (Yu et al., 2013). Deletion of Brg1 alleles in neural progenitors or 

Olig1+ early OL progenitors leads to severe defects in OPC differentiation, indicating that 

Brg1 is necessary and sufficient to initiate and promote OL lineage progression (Bischof et 

al., 2015; Yu et al., 2013). Olig2 can recruit the SWI-SNF chromatin remodeling complex 

Brg1 to the enhancers of OL-specification genes such as Sox10, Zfp191, and Myrf, the key 

regulators of OL differentiation (Emery, 2010), to activate their expression (Figure 1) (Yu et 

al., 2013). How chromatin remodelers, transcription factors, and histone-modifying enzymes 

coordinate to control OPC specification and developmental plasticity remains to be further 

elucidated.

Repair of myelin damage by OPC programming and reprogramming

At least two main approaches have been proposed to enhance the production of mature OLs 

(Vishwakarma et al., 2014). The first is through the transplantation of OPCs, and the second 

involves mobilization of endogenous OPCs to form mature myelinating OLs (Figure 2). 

Transplantation of OPCs into lesions in the injured or diseased CNS is a promising 

therapeutic strategy; however, generation of OPCs from stem cells or from other somatic 

sources has proven challenging. A series of strategies have been employed to induce human 

embryonic stem cells (ESC) to differentiate into OPCs (iOPC) by sequential exposures to 

hESC growth media, bFGF- and EGF-containing glial restriction media, and all-trans 

retinoic acid (Erceg et al., 2010; Keirstead et al., 2005). iOPCs transplanted into rats with 

spinal cord transection, can differentiate into mature OLs and improve motor function of 

animals (Erceg et al., 2010; Keirstead et al., 2005). Similarly, OPCs derived from Olig2-

positive mouse ESCs can differentiate into myelinating OLs after transplanted into rats with 

spinal cord injury induced by irradiation an (Sun et al., 2013). Furthermore, human CNS 
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stem cells (hNSC) expanded from the fetal brain have been used to treat patients with the 

leukodystrophy Pelizaeus-Merzbacher disease (Gupta et al., 2012). Transplantation of 

HuCNS-SC into the human frontal lobe resulted in durable cell engraftment, signs of 

myelination, and modest gains in neurological function with no obvious adverse effects upon 

immunosuppression (Gupta et al., 2012).

Direct programming of OPCs has the potential to provide enormous benefits to patients with 

demyelinating diseases and spinal cord injury; however, a number of challenges remain for 

cell-replacement based therapies. Some of the main concerns of using allogenic ESCs or 

NSCs are possible immune responses, genomic alterations due to prolonged protocols of in 
vitro OPC generation, the intrinsic capability of embryonic stem cells to form teratomas 

after implantation, and non-targeted lineage differentiation that might be induced by 

environmental signals at the site of implantation. The use of autologous cell sources of 

induced pluripotent stem cells (iPSCs) for the generation of implantable OPCs would help to 

overcome the immune responses. Engraftment of human iPSC-iOPCs into neonatal myelin-

deficient Shiverer mice resulted in brain myelination without evident generation of tumors 

up to 9 months after transplant (Wang et al., 2013). Since the engraftment of iPSC-iOPCs 

has been performed in the corpus callosum of neonatal mice, a region where the endogenous 

signals for oligodendrogenesis are highly enriched, it will be of interest to analyze graft 

efficiency in the injured adult CNS such as a spinal cord transection model. Factors such as 

genomic instability/epigenetic memory and the impact of cell propagation in culture 

represent significant concerns derived from reprogramming technologies (de Lazaro et al., 

2014). In addition, whether endogenous or induced OPCs produce non-OL cell types has not 

been fully investigated.

Adult SVZ neural progenitors are an important source for remyelinating OLs (Xing et al., 

2014). Activation of EGF receptor signaling by EGF stimulates generation and expansion of 

OPCs from endogenous SVZ progenitors, and promotes new myelinating OL formation and 

behavioral recovery in the developing brain with diffuse white matter injury (Scafidi et al., 

2014). Similarly, mobilization of endogenous neural progenitors e.g. by genetic deletion and 

pharmacological inhibition through GANT61 of Gli1, a transcriptional effector of the Shh 

pathway, also promotes neural progenitor differentiation into OPCs (Samanta et al., 2015). 

This process promotes subsequent myelination in demyelinated lesions and improves the 

functional recovery in demyelinating animal model of experimental autoimmune 

encephalomyelitis (Samanta et al., 2015). Recently, a series of bioactive small molecules 

have been identified through high-throughput screening that promote differentiation and 

maturation of rat OPCs (Deshmukh et al., 2013; Mei et al., 2014) and mouse epiblast stem 

cell-derived OPCs (Najm et al., 2015). These small molecule compounds such as 

benztropine, clemastine, miconazole, and clobetasol promote precocious myelination in 

early postnatal mouse pups, and enhance remyelination in mouse models of demyelination 

induced by lysolecithin-mediated injury and experimental autoimmune encephalomyelitis. 

Benztropine and clemastine appear to act through muscarinic acetylcholine receptor 

signaling (Deshmukh et al., 2013; Mei et al., 2014), whereas miconazole and clobetasol may 

activate mitogen-activated protein kinase and glucocorticoid receptor signaling, respectively 

(Najm et al., 2015). In addition to small molecule drugs that promote OL differentiation, 

targeted inhibition with an antibody against a Nogo receptor-interacting protein Lingo-1, 
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which negatively regulates OL myelination (Mi et al., 2005), has been shown to promote OL 

remyelination and functional recovery in animal models of MS (Mi et al., 2007). Currently, 

several small molecules and Lingo-1 antagonists are in clinical trials in MS. The exciting 

preclinical evidence of these OL-promoting compounds and reagents presents novel 

therapeutic strategies for treating patients with demyelinating diseases or other 

neurodegenerative diseases in the CNS.

Challenges and future directions

The limited self-repair potential of the brain has encouraged the exploration of strategies to 

replace OLs lost to demyelinating diseases. Direct programming or reprogramming of 

diverse cell types (from autologous and even endogenous cell sources) toward OPC fate is a 

promising therapeutic strategy. OPC differentiation and reprogramming are dynamic 

processes, and the interplay of sustained and transient expression of key regulators controls 

the ultimate cell fate. During OL lineage progression, the expression and subsequent 

repression of specific genes or networks are critical for continuity of the differentiation 

process. Although the sustained expression of transcriptional regulators such as Sox10 and 

Olig2, together with other factors, induces reprograming of differentiated cells toward OPC 

identity, how the transcriptional regulators selectively activate expression of the 

differentiation network while simultaneously repressing inhibitory genes is not fully 

understood.

A better grasp of the differentiation process of OPCs is critical as misguided OPC 

differentiation into alternative fates may block myelination and remyelination, and OPCs can 

be source of gliomas upon genetic alterations such as p53 and NF1 mutations (Liu et al., 

2011). The understanding of possible repercussion of the OPC fate switch will be essential 

before cell replacement or endogenous activation therapies can be used to treat 

neurodegenerative diseases such as MS. Small non-coding microRNAs and long noncoding 

RNAs may play critical roles in regulating OPC plasticity and differentiation (Dugas et al., 

2010; Zhao et al., 2010); however, their roles in re/myelination remain unknown. 

Transcriptome profiling analysis at the single cell level in different brain regions, 

developmental stages, and disease conditions will offer new targets and avenues to design 

strategies of OPC differentiation and reprograming. Currently, the potential therapeutic 

agents including small molecule compounds and anti-Lingo antibody, which promote OPC 

differentiation, have been entered (or are about to enter) clinical trials aiming at promoting 

remyelination (Kremer et al., 2015). As reflected by the high efficiency and long-term 

myelination effects observed in animal models, programming and reprograming toward OPC 

production by intrinsic or extrinsic factors or small-molecule compounds has enormous 

potential for the treatment of demyelinating diseases.
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Distribution, developmental origins, and heterogeneity of OPCs

OPCs exhibit cell-fate plasticity

Diverse extrinsic factors regulate OPC specification and plasticity

Control of OPC specification and plasticity by intrinsic factors

Repair of myelin damage by OPC programming and reprogramming
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Figure 1. Molecular and signaling control of OL lineage progression and astrocyte differentiation
The interplay of a series of extrinsic factors and intrinsic transcriptional regulators and their 

targets controls each transition steps during OL lineage progression. Neural precursor cells 

are specified toward the OL lineage (red arrows) or toward type 1 astrocytes (green arrows) 

upon activation of defined factors. The potential plasticity of OPCs is depicted by the 

production of type 2 astrocytes induced under certain circumstances, including activation of 

BMP signaling or Jak-Stat3 activity, or loss of Olig2, or injury conditions, or chronic 

diseases like MS. NP, neural precursors; pri-OPC, primitive OPC (Olig2+, PDGFRα−/

NG2−); iOL, immature OL; mOL, mature OL; TH, thyroid hormone.
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Figure 2. Summary of CNS remyelination strategies
Diverse strategies have been employed to enhance the regeneration of myelinating 

oligodendrocytes in acquired or demyelinating animal models including hNSCs, ESCs, 

iPSCs, and specific drugs that act on endogenous neural progenitors. Specific signals or 

transcription factors that direct the reprograming toward iOPCs are shown. Myelination, 

remyelination, and behavioral improvement have been reported upon the transplantation of 

iOPCs into the injured spinal cord or the hypomyelinated brain. Systemic delivery of small 

molecule drugs enhances remyelination in animal models of MS. Transplantation of 

expanded hNSCs (left bottom) into the human temporal lobe has been associated with 

increased myelination (dashed arrows). GRM, glial promoting media; hESC, human ESCs; 

hNSCs, fetal human neural stem cells; iOPCs; induced oligodendrocyte progenitor cells; 

iPSCs, induced pluripotent stem cells; Olig2+ mESC, Olig2-positive ESCs, HuCNS-SC, 

human CNS stem cells; NPs, neural precursors.
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