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Abstract 

A number of studies have directly compared measurements of polycrystals’ deformation to 

the solution of a crystal plasticity model of the same polycrystal. An accurate representation 

of the full 3D microstructure and the boundary conditions has been shown to be important to 

obtain a good correspondence between the behaviour of the real and the simulated 

polycrystal. However, much less is known about the relationship between the global and the 

local solutions of crystal plasticity models and the influence of material parameters on the 

local response of the polycrystal. To address these questions, uncertainty quantification and 

sensitivity analysis are performed on finite element models of oligocrystals with a crystal 

plasticity material model. The results show significant variations in the simulated stress and 

strain fields due to variations in the material parameters. Sensitivity analysis is used to 

quantify the contribution of crystal orientation, latent hardening and other material model 

parameters to the variability of the crystal plasticity finite element model solution. The 

uncertainty in the stress and strain fields and their sensitivities vary between the oligocrystals, 

but nevertheless, some distinct trends can be identified. The most prominent trend is that, in 

general, the solution is most sensitive to the variations of the latent hardening description and 

the crystallographic orientations of the constituent crystals.     

Keywords: crystal plasticity; finite element method; uncertainty quantification; sensitivity 

analysis; work-hardening. 

 

1. Introduction  

In the last decade, advances in both computational methods and experimental techniques 

have made it possible to create very detailed and precise finite element (FE) models of real 
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polycrystals and directly compare their simulated responses to experimental observations. 

Due to current computational limitations, the polycrystals studied are usually either very small 

[1-7], or their constituent grains are very big and few in number [8-14]. The small number of 

grains allows measuring and comparing the local strain fields on the surfaces of the specimens 

to the simulation results. Results from these kind of experimental studies may be used to 

calibrate single crystal plasticity (CP) models in a direct and consistent way, and are 

important for the modelling of localisation and fracture using crystal plasticity finite element 

methods (CP-FEM), which rely on the accuracy of the local solution of the stress and strain 

fields. Local measurements of strain fields in polycrystals may also reveal the influence of 

various microstructural features on the mechanical behaviour of the crystals, such as grain 

boundaries and inclusions.  

The numerical aspects of this type of studies are examined in [15]. The role of mesh 

resolution, grain boundary representation and boundary conditions (BCs) is studied using a 

microstructure generated with a phase-field model. In [3, 5], simulations with realistic 

(obtained from the in-situ measurements with e.g. digital image correlation) and simplified 

BCs were compared, and realistic BCs were shown to be important for the accuracy of the 

simulation results. Another factor relevant for the accuracy of the predictions of the CP-FEM 

model is the real 3D microstructure, lying beneath the surface of the specimen, on which the 

strain measurements are performed. In [3, 4, 16], it was demonstrated that it is not possible to 

accurately predict the strain field on the surface of a specimen with significant thickness 

without accounting for the whole structure.  

The role of the CP model parameters has only been studied briefly. In [7], the way the 

grain orientations are assigned to the elements of the CP-FEM model was studied. The most 

often used method is assigning the average orientation to all elements within one grain, which 

was compared to assigning a locally measured orientation to each corresponding element. The 

relative influence of work-hardening parameters and BCs was compared in [5]. Yet to the best 

of the authors’ knowledge, no extensive quantitative studies of the sensitivity of the local CP-

FEM solutions to the parameters of the constitutive model have been performed. The CP 

model parameters are usually obtained by comparing the simulated and experimental force-

displacement curves. In the fitting procedure, the material parameters are either chosen based 

on previous studies (usually the case with the latent hardening description), varied within 

some physically plausible range (as with the dislocation accumulation and annihilation terms 

in the Kocks-Mecking type models [17]), or varied more or less arbitrary (as for the 
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parameters of the Pierce-Asaro-Needleman model [18]). One caveat when using such 

methods is that different sets of parameters may result in similar global force-displacement 

responses but different local solutions [19]. To address this possibility, the investigation in [2] 

attempted to use both the local and global response of the polycrystal in the fitting procedure 

and found that obtaining a set of parameters that satisfies both the global force-displacement 

curve and the local strain field equally well was not possible. Given these limitations, it is 

desirable to assess the impact of the uncertainty in the CP model parameters through the 

mathematical framework of uncertainty quantification (UQ) and sensitivity analysis (SA). UQ 

can quantify the variability of model predictions for given uncertainty about model 

parameters, while SA evaluates how individual parameters contribute to this variability. 

The perspective of UQSA views a computational model as a function that relates inputs, 

z , to outputs or quantities of interest ( )y f= z . However, instead of treating z  as exactly 

known, the uncertainty about input values is accounted for by treating them as random 

variables with a probability distribution that represents the likelihood or plausibility of 

different values of the inputs, e.g. if an input is known only to be bounded between two values 

it may be represented as a uniform random variable. Thus the output of the model is not a 

single deterministic value but a random variable with a probability distribution that may be 

analysed to quantify the uncertainty and further the contribution of individual inputs to that 

uncertainty may be quantified by sensitivity analysis. 

Various UQ and SA tools have been applied in a wide range of scientific fields including 

structural analysis [20], hydrology [21], environmental engineering [22], biomechanics and 

many more. An overview and guide to the application of UQSA methods may be found in 

[23]. The methods themselves are not specific to any particular field and may be applied to 

analyse any kind of model relating uncertain inputs to uncertain outputs. For example a 

parametric study of the phenomenological plasticity and fracture models was performed in 

[24].  

The main focus of the UQ studies in crystal plasticity has been the variability of the 

microstructure (grain morphology and crystallographic texture) and the material processing 

parameters and their influence on the global response of the polycrystalline materials. A 

number of studies have been performed by Zabaras and co-authors [25-27]. These studies 

develop a methodology, summarized in [28], which reduces the complexity of a polycrystals’ 

microstructure to a set of functions, which may be treated by the UQ methods. The 
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propagation of uncertainty from the microstructure to the global response of the material is a 

topic of several other studies [29-32]. A review of the UQSA methods applied in material 

science [33] suggests that this field is still in its nascent stage.   

Some attempts to assess the sensitivity of the CP-FEM solution to e.g. uncertainty in the 

latent hardening matrix were made in [34, 35]. In both studies, each independent component 

of the matrix was assigned a high value, while all others were held at unity. Then the response 

of the model for all cases was qualitatively compared. This is a local form of UQSA. Local 

methods examine the effect of a change around a reference value for one model input while 

keeping all other inputs fixed. In many cases the dependency of the output on the input 

parameters may be non-additive, non-monotonic, and non-linear, at least in some locations of 

the input space. Therefore the results obtained by local methods could be misleading as these 

effects will not be reflected by the local analysis. Global methods consider the whole input 

space and can account for non-additive, non-monotonic, and non-linear dependencies of the 

output on the input and are thus in general more reliable and informative than local methods. 

Global methods of UQSA can be categorized as intrusive or non-intrusive. Intrusive 

approaches require the uncertainty in the model inputs to be substituted into the model to 

derive new governing equations accounting for uncertainty. On the other hand, non-intrusive 

methods do not require modification of the existing models. Model outcomes are obtained 

using the usual (deterministic) solver for a set of different input samples. UQSA is then based 

on the outputs obtained for each input sample. This approach can be applied to any model 

with any numerical implementation, and it is therefore much better suited for the present 

study. In this work the polynomial chaos (PC) method [36] is used. The method consists of 

the following steps: 

1. Identification of the outputs of interest (in our case some way of representing the 

stress and strain fields as a convenient set of values is necessary), 

2. Identification and assessment of the distribution of the uncertain inputs (in our case the 

uncertain inputs are the material model parameters and their distribution should be 

chosen), 

3. Sampling of the input space to acquire samples (i.e., discrete sets of material 

parameters should be picked from the chosen distribution), 
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4. Evaluation of the deterministic model to obtain the outputs, corresponding to the 

inputs from the previous step (i.e., CP-FEM simulations with the sampled sets of 

material parameters are performed), 

5. Calculation of UQSA measures, 

6. Assessment of convergence of UQSA measures. 

A more detailed overview of the methods may be found in [23].  

As the appropriate values of material parameters for a given CP-FEM model are 

generally quite uncertain, this study investigates the resulting uncertainty of the stress and 

strain fields of a CP-FEM solution due to the uncertainty in the material parameters. 

Additionally, sensitivity analysis investigates the relative contributions of each material 

parameter. The subject of UQSA is a set of 2D and 3D oligocrystals subjected to uniaxial 

tensile loading. The UQSA method allows performing a global quantitative analysis of the 

said uncertainties and sensitivities, unlike the local qualitative studies previously performed 

with CP-FEM. In addition to improving understanding of the effects of material parameters in 

CP-FEM simulations, the article also aims more broadly to introduce the aforementioned 

UQSA methods and tools into CP-FEM.  

2. Uncertainty quantification and sensitivity analysis  

To account for the uncertainty about parameters they are treated as a random vector, Z , 

where the probability distribution of Z  represents the likelihood or plausibility of different 

values of the input. Thus the quantity of interest is a random variable defined by applying the 

function to the random variable Z , i.e., ( )Y f= Z .
†
 The uncertainty about the quantity of 

interest may be quantified by the expected value and variance of Y   

 ( ) ( ) ( ) ( ){ } ( )
2

E , Var EY YY y y dy Y y Y y dyρ ρ
∞ ∞

−∞ −∞

= = −∫ ∫   (1) 

where ( )Y yρ  is simply the probability density function of Y . 

Beyond accounting for the inherent uncertainty about the model prediction, sensitivity 

analysis (SA) can determine the contribution of particular components of Z , i.e., specific 

                                                 
†
 Note that deterministic or known values are traditionally denoted with lowercase letters, while uppercase letters 

represent random variables. Values realized from the random variable Z  or specific points within the range of 

Z  are denoted by z  as their values are known and have no uncertainty. 
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inputs, to the uncertainty of Y . Variance based sensitivity analysis decomposes the variance 

of the model output, ( )Var Y , into portions attributable to specific inputs or combinations of 

inputs. There are two widely used sensitivity indices based on this decomposition of variance. 

The first is called the first order or main sensitivity index of input 
i

Z  and is given by 

 
( ){ }
( ),

Var E |

Var

i

M i

Y Z
S

Y
= .  (2) 

This index measures the fraction of total variance that is attributable to variability of 
i

Z  

independent of the variability of all other inputs and if 
i

Z  were known exactly the ( )Var Y  

would be expected to decrease by that proportion. The main sensitivity index ,M i
S  is useful 

for prioritizing which parameters may be most influential on the model behaviour as a large 

value indicates that changes in 
i

Z  alone have significant impacts on the model output. The 

second index is called the total sensitivity index of input 
i

Z  and is defined as 

 
( ){ }

( ),

E Var |

Var

i

T i

Y
S

Y

¬
=

Z
  (3) 

where 
i¬Z  is the vector of all inputs except 

i
Z . This index measures the expected amount of 

variability remaining if all other variables except 
i

Z  were known exactly. It may be useful for 

identifying irrelevant parameters as a low value of ,T iS  suggests that 
i

Z  is not an influential 

input on the model output, and conversely measurements of Y  do not provide significant 

information about 
i

Z  in the context of parameter estimation and design of experiments, e.g. 

[37]. Thus sensitivity indices may also be used to identify the viability of estimating 

parameters from particular measurements.  

The case where the first order index is quite small while the total index is large indicates 

that the parameter has strong interactive effects. In other words, the parameter’s influence is 

largely dependent on the values of other parameters, thus the effect of changing its value 

alone may cause very different responses. For example, a parameter may be important in a 

component of the model that is activated only for certain levels of other parameters. 

A number of methods may be employed to characterize ( )Y f= Z  or its probability 

distribution such as Monte Carlo methods or modifying the governing equations to solve the 
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stochastic problem directly [23]. In this study we use a nonintrusive method
‡
 called 

polynomial chaos which represents the function ( )f z  as a series of orthogonal polynomials 

 ( ) ( )
( )( )

0

!
,

! !

k N

N i i

i

D N D N
f c k

N N D=

+ + 
= Φ = = 

 
∑z z   (4) 

where N  denotes the highest order polynomial, k  denotes the number of terms, and D  is the 

number of components in Z . The basis polynomials are chosen to be orthogonal with respect 

to the probability density ( )ρZ z  of Z such that   

 ( ) ( ) ( ) ( ) ( )( ) ( )E no sumi j i j i ijdρ γ δ
∞

−∞

Φ Φ = Φ Φ =∫ Zz z z z Z Z   (5) 

where E  is the expected value, 
i

γ  is a normalisation constant associated with 
i

Φ , and ij
δ  is 

the Kronecker delta. This orthogonality ensures that the probabilistic moments of ( )N NY f= Z  

are simply algebraic combinations of the coefficients, 
i

c , and thus once the coefficients are 

obtained the expected value, variance, and sensitivity indices are easily calculated. To 

evaluate the coefficients a linear least squares problem is formulated by evaluating the model 

at a number of different points in the parameter space sampled according to the probability 

distribution of Z  and the output values are regressed on the basis functions. The convergence 

rate of ( )N NY f= Z  with respect to the maximum order N  is dependent on the smoothness of 

( )f z , but typically only order 4 or 5 is sufficient to achieve converged and accurate 

estimates of expected value, variance and sensitivity indices. This must be checked by 

verifying that the estimates are consistent between successive orders of approximation. In this 

study, it was ensured that the UQSA measures calculated from ( )Nf Z  and ( )1Nf − Z  have a 

relative precision within 1%. 

In this study the Python package chaospy [38] is employed to sample from the 

distribution of Z , generate basis polynomials for specified orders of truncation, solve the 

regression problem and finally evaluate the variability and sensitivity indices. 

                                                 
‡
 Nonintrusive means that the underlying deterministic model does not need to be modified. 
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3. Numerical models 

3.1.  Single crystal plasticity model 

The single crystal plasticity model used in this work is formulated within a finite deformation 

framework. The total deformation gradient F  is multiplicatively decomposed as [18] 

 e p=F F F  (6) 

where eF  and pF  are the elastic and plastic part of F , respectively. The plastic part pF  

transforms the body from the initial to the intermediate configuration by plastic slip, whereas 

the elastic part eF  transforms the body from the intermediate to the current configuration by 

elastic deformation and rigid body rotation. The plastic velocity gradient pL  on the 

intermediate configuration is defined by 

 ( )
1

0 0

1

n
p p p α α α

α

γ
−

=

= = ⊗∑L F F m nɺ ɺ  (7) 

where the orthonormal vectors 0

α
m  and 0

α
n  are the slip direction and slip plane normal 

vectors, respectively, for a slip system α  in the initial and intermediate configurations, αγɺ  is 

the slip rate on slip system α , and n  is the total number of slip systems.  

The elastic Green strain tensor eE  defined with respect to the intermediate configuration 

is given by 

 ( ) ( )
1

,
2

T
e e e e e= − =E C I C F F  (8) 

where eC  is the elastic right Cauchy-Green deformation tensor and I  is the second-order 

unity tensor. The second Piola-Kirchhoff stress tensor S  on the intermediate configuration 

reads as 

 ( ) ( )
1 T

e eJ
− −

=S F σ F  (9) 

where σ  is the Cauchy stress tensor and detJ = F  is the Jacobian determinant. A linear 

hyperelastic relation for small elastic strains is defined by 

 :S e

el
=S C E  (10) 
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where S

el
C  is the fourth order tensor of elastic moduli. For the FCC lattice, on which this 

study focuses, this tensor has three independent components describing the elastic anisotropy 

of the crystal.  

The plastic flow is described by [39] 

 ( )

1

0 sgn

m

c

α

α α

α

τ
γ γ τ

τ

 
 =
 
 

ɺ ɺ  (11) 

where 0γɺ  is the reference slip rate, m  is the instantaneous strain rate sensitivity, c

ατ  is the 

yield strength of slip system α , and the resolved shear stress ατ  is obtained as 

 ( )0 0:
eα α ατ = ⊗C S m n  (12) 

The hardening is defined by  

 ( )
1

n

c
q

α β
αβ

β

τ θ γ
=

= Γ ∑ ɺɺ  (13) 

where ( )θ Γ  is the master hardening modulus, qαβ  is the matrix of self-hardening and latent-

hardening coefficients, and the accumulated slip Γ  is defined by the evolution equation 

 
1

n
α

α

γ
=

Γ =∑ɺ ɺ  (14) 

The master hardening modulus ( )θ Γ  is defined as [40] 

 0 1 0
1 0 1

1 1

( ) exp
θ θ θ

θ θ θ θ
τ τ

   
Γ = + − + Γ − Γ   

   
  (15) 

where 0θ , 1θ  and 1τ  are material parameters. The initial slip resistance 0τ  is assumed equal 

for all slip systems. 

The crystal plasticity material model was implemented as a user-material subroutine, 

using the explicit integration scheme by Grujicic and Batchu [41].  
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3.2.  CP-FEM models 

Investigating the effects of uncertainty about CP model parameters requires considering 

microstructure models that satisfy several constraints. The models should be generic enough 

such that the results obtained are representative of a range of similar models. Further, the 

models should be small enough to make running a multitude of simulations feasible. The 

models should also include enough grains to provide a wide range of interactions between the 

grains and the resulting inhomogeneous stress and strain fields. Finally, the meshes must be 

fine enough to resolve these fields in detail yet coarse enough for a fast and efficient 

simulation.  

Therefore the morphology chosen for the study was a generic Voronoi tessellation type 

structure with ten approximately equiaxed convex grains representing oligocrystals. Both a 

2D structure with plane-strain conditions and a 3D structure were used. The structures are 

shown in Figure 1. The model was subjected to tension by applying a velocity along the x-axis 

to its right edge (or face in case of 3D model) which smoothly ramps up to a constant value. 

The left edge (or face) of the model is constrained in displacement in the x-direction and the 

other edges (faces) are free. The effect of BCs on the local stress and strain fields in 

polycrystals was studied elsewhere [3, 5]. To explore different configurations and interactions 

of hard/soft orientations, 5 different sets of 10 random crystallographic orientations were 

assigned to the 10 grains of the 2D and 3D models. This provided 5 models with markedly 

different stress and strain fields on which the sensitivities could be calculated and compared.  

The mesh of the 2D CP-FEM model consists of 3004 two-dimensional plane-strain 

elements, and that of the 3D model consists of 8000 brick elements. Reduced integration and 

the Flanagan-Belytschko stiffness-based hourglass control [42] were used in both cases. The 

explicit solver of the nonlinear FEM code LS-DYNA [43] was used in the calculations. Mass-

scaling was applied to reduce the computation time and the kinetic energy was controlled at 

every step to ensure that it was very small compared to the total energy and that the 

simulation remained quasi-static. 

3.3.  Distribution of material parameters  

In this study, aluminium is used as a model material. The material parameters are therefore 

based on the parameters of Al alloys studied previously in [44]. The baseline values and 

ranges of the material parameters are summarized in Table 1. 
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The elastic constants depend on the interatomic potentials, are similar in all Al alloys, 

and may be measured with high accuracy. Thus, the elastic constants were excluded from the 

sensitivity study. Crystal plasticity simulations and experiments are often limited to quasi-

static cases (very low strain rates), for which rate-independent and rate-dependent single 

crystal plasticity models produce identical results [45, 46]. The choice of the reference slip 

rate 0γɺ  and the rate sensitivity m  does not affect the solution as long as m  is sufficiently 

small to preserve rate-insensitivity. Thus these parameters were also excluded from the 

sensitivity study. The values used for the elasticity constants and the constants governing rate 

dependence are summarized in Table 2. 

The Euler angles describing the orientation of the crystal are parameters that do not 

appear explicitly in the material model, but are nevertheless crucial. In this work, the Euler 

angles are defined following the conventions established in [47]. The crystal orientations are 

usually measured by EBSD on a grid covering a patch of a polycrystal. Errors in the 

measurements may introduce various sources of random and systematic errors to the 

orientation. In CP-FEM models, orientations are most often assigned by finding the average 

of the orientations measured within a crystalline grain and assigning the resulting orientation 

to all elements within this grain. An alternative approach uses the grid points of the EBSD 

scan as the centroids of the elements of the CP-FEM model and assigns the orientation 

measured in each point to the corresponding element. The first approach is the most 

widespread in CP-FEM models, thus it is utilized in this study. The first Euler angle 1ϕ  (i.e., 

the rotation around the z-axis according to the coordinate system defined in Figure 1) is 

assumed to vary around the base value within a ±2° range for all the grains in the model. This 

may be e.g. representing the error of the specimen positioning in the electronic microscope, or 

other systematic error.  

The next group of parameters includes the initial slip resistance 0τ  and the hardening 

parameters 0θ , 1θ  and 1τ . These parameters do not have a direct physical connection to the 

microstructure of the material and can only be derived indirectly from the force-displacement 

curve and the deformation of the specimen. Considering all the errors associated with 

experimental and numerical procedures, these parameters are highly uncertain. In this work, 

we use two different baseline sets of the initial slip resistance and the hardening parameters. 

One represents a ductile alloy reinforced mainly by solid solution of the alloying elements, 

with values corresponding to AA6063-T4, and the other represents a stronger but less ductile 
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alloy reinforced mainly by precipitate particles, with values corresponding to AA6063-T7 

[44]. The material parameters are assumed to vary within a range of ±30% of the baseline 

value.  

The next parameter is the latent hardening coefficient q . This parameter is very difficult 

to evaluate experimentally, so its value is based on the estimations provided by e.g. [48, 49] 

or some geometrical arguments [50]. Quite often, it is assumed for simplicity to be unity (i.e., 

latent hardening equals self-hardening), as in [51]. The most common value used in CP-FEM 

simulations is 1.4q = , though 1.6q =  was also proposed by [48]. In this work, it is assumed 

that the latent hardening of the crystal can be described by the latent hardening matrix with 

one independent parameter, and that the most correct value of this parameter is within the 

range [ ]1,2q ∈  with 1.5q =  as the baseline value.  

3.4.  Identification of the outputs of interest 

Simulations with material parameters lying in the centre of the respective ranges (see Table 1) 

are used as a baseline to which all other simulations are compared by computing the 

normalized root mean squared deviation (RMSD) of the scalar field variable φ , defined by 

 

2

0

1 0

1
RMSD( )

eN

n n

neN

φ φ
φ

φ φ=

 
= − 

 
∑ ɶ ɶ

  (16) 

where the local value nφ  of the variable φ  is obtained in the n
th

 element of the eN  elements of 

the model, φɶ  is a normalization factor calculated from the field φ . Further, 0φ  represents the 

baseline field and 
0

φɶ  the corresponding normalization factor. The particular normalization 

values φɶ  and 
0

φɶ  used for each scalar field are discussed below. Note that RMSD is identical 

to root mean squared error, but in this case there is no error per se rather just a metric of the 

average deviation over the mesh. 

The first scalar field variable is the equivalent plastic strain field, pε , conjugate with the 

von Mises norm of the stress field. The value of the equivalent plastic strain pε  is calculated 

in each element of the model at different points of the deformation history (at approximately 

5%, 10% and 15% global strain). Then, the field produced by the model with varied material 

parameters is compared to the field produced by the baseline simulation. In this case, φ  is the 

equivalent plastic strain pε ; nφ  and 0nφ  are the equivalent plastic strains in the n
th

 element of 
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the current and the baseline simulation, respectively; φɶ  and 
0

φɶ  are both the global strain 

(which should be equal to the average of the strain for all elements in this case and also 

identical for all simulations including the baseline). The RMSD( )pε  is a non-negative scalar 

that shows how much the normalized strain field in the current simulation with the current set 

of material parameters differs from the normalized strain field in the baseline case. 

Minimization of this or a similar function may be used in a material parameters identification 

procedure, as e.g. in [2]. 

The second field is the equivalent (von Mises) stress field, here denoted σ . Whereas the 

average plastic strain in all simulations was identical, the average stress varied greatly and 

depends strongly on the yield strength and work-hardening. In this case, φ  is the equivalent 

stress σ ; nφ  and φɶ  are the equivalent stress in the th
n  element and average equivalent stress 

in the current simulation; 0nφ  and 
0

φɶ  are the corresponding quantities for the baseline 

simulation. The third and fourth scalar fields applied in the sensitivity study are the 

hydrostatic pressure field P  and the stress triaxiality field /T P σ= − . The RMSD of these 

fields is calculated in the same manner as for the equivalent stress field. 

The final target of the sensitivity study is the global force-displacement curve. This curve 

is often used for the material parameter fitting, and as mentioned before, it was used alongside 

the local strain field for this purpose in [2] with little success. A typical fitting procedure 

would minimize the squared error between the experimental and the simulated force-

displacement curve by varying the material parameters. Here the same type of measure is 

applied. The baseline curve is again used as reference (or provisional “experimental” curve) 

and the RMSD is defined by  

 
( ) ( )

( )

2

0

1 0

1
RMSD ( )

dN
i i

id i

F d F d
F

N F d=

 −
=   

 
∑   (17) 

where ( )F d  is the total force at displacement d  in the current simulation, 0 ( )F d  is the 

corresponding force in the baseline simulation, dN  is the number of simulation history points 

where the force and displacement are obtained,  and 
dN

d  is the maximum displacement.  
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3.5.  Evaluation of polynomial chaos expansions and UQSA measures 

To understand how much the variability of the parameters, denoted by the vector 

( )1 0 1 0 1 qϕ τ τ θ θ= ∆Z , influences CP-FEM simulations, UQSA of the outputs of 

interests was performed for each of the configurations discussed in Section 3.2. As no 

statistical evidence was available to characterize the distribution of the parameters considered, 

each parameter was described as an independent uniform random variable with ranges given 

in Table 1, i.e., all values in the range are treated as equally valid.  

UQSA for each configuration was performed by employing the chaospy software 

package [38] to generate samples in the input space and basis polynomials, to estimate 

coefficients of the expansion based on a linear regression of the output value, and finally to 

estimate measures of uncertainty and sensitivity indices.  

For each material type (T4 and T7), a set of sample values was generated according to 

the Hammersley quasi-random sequence [52], as this sequence is nested and allows for 

successively increasing the number of points in the quasi-random sequence by only evaluating 

the number of additional samples required. The maximum polynomial order was 5N = , 

which requires estimating 462k =  coefficients, and thus 924 samples (simulations) for the 

chosen regression method. This order was chosen to ensure that the estimates of sensitivity 

indices agreed within 1% between successive orders of polynomials. 

Evaluation of the CP-FEM models for each input sample was performed as described in 

Section 3.2, followed by post processing of each simulation to calculate the outputs of interest 

(see Section 3.4) corresponding to each input sample. For each post-processed output, the 

coefficients of a truncated polynomial expansion were estimated by the regression method, 

and subsequently the expected value, variance, standard deviation, and sensitivity indices 

were calculated from the coefficients.  

3.6.  Averaging of results across orientations 

As discussed in Section 3.1, this analysis considered CP-FEM models based on two generic 

structures (one 2D and the other 3D as shown in Figure 1). Applying 5 unique combinations 

of crystallographic orientations to each of these generic structures generated 5 CP-FEM 

models for both 2D and 3D simulations. For each of these 5 models, uncertainty 

quantification and sensitivity analysis were conducted once over the range of T4 material 

parameters and again over the range of T7 material parameters. Thus, uncertainty and 
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sensitivity measures were estimated for 20 distinct cases, i.e., 5 cases for each of 2D-T4, 2D-

T7, 3D-T4, and 3D-T7 models.  

As the exact sensitivities and uncertainties generally depend on the specific CP-FEM 

model, the goals of this UQSA were to investigate: (1) how much the quantities outlined in 

Section 3.2 vary on average over the range of material parameters, (2) if model sensitivities 

are consistent over the range of crystallographic orientations and structures, and (3) which, if 

any, parameters are consistently more influential on these quantities. As such, it was 

necessary to combine and summarize the UQSA results by averaging the results from each of 

the individual analyses conducted as well as calculating meaningful measures of the 

variability of these quantities across crystallographic orientations. 

In this analysis RMSDs quantified the deviation of global force, equivalent plastic strain, 

equivalent stress, hydrostatic pressure, and stress triaxiality from a reference value calculated 

based on the average value of all parameters. This measure provides a convenient measure of 

the deviation of the model solution from the baseline solution at nominal parameter values. 

The UQ estimates the expected value and standard deviation of the RMSDs for a given set of 

crystallographic orientations. The expected values of the RMSDs measure how much the 

quantities of interest differ on average from the reference values. The standard deviation of 

the RMSDs quantifies the spread of these deviations over the possible parameter values, i.e., a 

low standard deviation suggests that most possible parameter sets produce values deviating 

from the reference values to a similar extent, whereas a large standard deviation of the 

RMSDs suggests that there are quite different levels of deviation for distinct points in the 

parameter space. To compare both of these aspects across sets of crystallographic 

orientations, the average value of the expected RMSDs as well as the average value of the 

standard deviation of RMSDs across all orientation sets within each group (2D-T4, 2D-T7, 

3D-T4, and 3D-T7) were calculated. For each quantity of interest (see Section 3.2), the 

average RMSD and its associated average standard deviation are reported as 

 ( ) ( ) ( ) ( )
1 1

1 1
std std

n n

i i

i i

E X X E X X
n n= =

± = ±∑ ∑   (18) 

where n  is the number of sets of crystallographic orientations, X  denotes the RMSD of one 

of the mechanical fields analysed, and iX  denotes the RMSD of the same field calculated for 

the i
th

 set of crystallographic orientations. 
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To summarize the sensitivity analyses for various sets of crystallographic orientations, 

the average value, jS , and sample standard deviation, ( )
j

s S , of each sensitivity index over all 

sets of crystallographic orientations for a given material and geometry were calculated as 

 ( )
2

, ,

1 1

1 1
, ( )

n n

j j i j j i j

i i

S S s S S S
n n= =

= = −∑ ∑   (19) 

where j  indicates a specific parameter and i  indexes the sets of crystallographic orientations. 

4. Results and discussion 

The UQ results for the RMSDs are presented in Figure 2 against the global strain level. 

The RMSD for most of the fields naturally tends to increase with strain, though in some 

models it remains almost constant.  

The RMSD of the global force is almost constant and independent of the strain level. For 

both the 2D and 3D models and for both materials, the average is around 12% with an average 

standard deviation of 6%. The maximum variation in the force is illustrated by the 

engineering stress-strain plots for one orientation set for each model type in Figure 3. The 

plots show the baseline simulation curve as well as the curves with the highest ( )RMSD F , 

i.e., the engineering stress-strain curves for all other simulations lie within the area bounded 

by these two curves. The plot may be compared to the results of the uniaxial tension tests in 

[44]. The material in [44] is extruded and possesses a strong crystallographic texture, 

therefore its response cannot be directly compared to the response of the model olygocrystals. 

Nevertheless, the yielding and work-hardening behaviour of the oligocrystals is still quite 

similar to the results in [44].    

In the 2D models, the highest average value and average standard deviation are found for 

RMSD( )pε . In particular, the average value of RMSD( )pε  reaches 15% for the T4 material 

and over 40% for the T7 material, meaning that choosing arbitrary values of material 

parameters from the nominal ranges results in the level of strain in each element on average 

differing by  15% and 40%, respectively, from the baseline value in the two cases. The 

variability of RMSD( )pε  for the T7 material is also high, reaching 15% at higher strains, 

indicating that the plastic strain fields obtained from different material parameter sets are not 

only different from the baseline, but also from each other. The high RMSD( )pε  for the T7 

material is most likely due to its low work-hardening and tendency to localize. The exact 
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position of localization may change, creating large differences between the current and the 

baseline plastic strain fields. For the T4 material, the plastic strain field is more homogeneous, 

giving a lower RMSD( )pε .  

For the 3D models, RMSD( )pε  is much smaller, just below 5% for the T4 material and 

just above 5% for the T7 material. The average variabilities for the 3D models are also small, 

on the order of 2-3%.  Considering that the material model is the same, the difference stems 

from the plane-strain condition and more constrained plastic flow in the 2D model, which 

makes it more prone to plastic instability and localization. To illustrate the described trends, a 

collection of equivalent plastic strain contour plots are presented in Figure 4 on the deformed 

configuration. The equivalent strain contour plots show the baseline simulation and the 

simulation with the highest RMSD( )pε  for one of the orientation sets.  

The equivalent stress field is very stable, with both low average RMSD ( )σ  and low 

average variability, independent of the model and material type. The average RMSD ( )σ  is 

less than or equal to around 5%. The RMSDs for the hydrostatic pressure field and the stress 

triaxiality field show very similar average values and variabilities. This is not surprising when 

considering the definition of the stress triaxiality and the low RMSD of the von Mises stress. 

The average values of RMSD ( )P  and RMSD ( )T  for the 2D models are 10% for the T4 

material and 15% for the T7 material. Notably, the dependence of the RMSDs on material 

type is reversed for the 3D model, where the average is almost 20% for the T4 material and 

15% for the T7. The variability of the RMSDs for the hydrostatic pressure and stress 

triaxiality is also fairly consistent for all models and is around 5%. These trends may have 

some consequences in the CP-FEM modelling of ductile fracture. The low variability of the 

stress field shows that it is possible to obtain a good estimate of the equivalent stress 

distribution in the oligocrystal even when the material parameters are not known precisely. 

On the other hand, the stress triaxiality estimation requires a higher accuracy of the estimation 

of the material parameters.  

Calibrating material model parameters based on force-displacement curves raises the question 

of whether there is a correlation between the RMSD of the force and the plastic strain field. If 

these quantities vary independently of each other, the correlation will be negligible, and the 

best fit for the force-displacement curve does not necessarily produce the best fit for the 

plastic strain field. On the other hand, if there is a correlation, then a better fit of the force-
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displacement curve should produce a model with better predictions of the local strain field. 

The correlations of RMSD( )F  and RMSD ( )pε  for each set of crystallographic orientations 

were calculated by 

 1

2 2

1 1

( )( )

corr( , )

( ) ( )

n

i i

i

n n

i i

i i

x x y y

x y

x x y y

=

= =

− −

=

− −

∑

∑ ∑
  (20) 

with RMSD( )x F=  and RMSD ( )py ε= , x  and y  denote the average values of the RMSD

for the 928n =  simulations of the given set of crystallographic orientations. For each material 

type the average correlations and their associated standard deviations were also calculated in 

the same manner as those of the sensitivity indices (19). The resulting values are presented in 

Figure 5. The correlation coefficients are small in all cases, although they are higher for the 

3D models than for the 2D models. Even the highest values are just around 30%. Thus, in the 

case of the models and orientation sets tested, the force and the strain field varied mostly 

independently of each other. 

The sensitivity indices for the global force are presented in Figure 6. Both 2D and 3D 

models demonstrate similar trends. In all cases, RMSD ( )F  is most sensitive to the initial slip 

resistance 0τ . The main sensitivity indices for all other material parameters are negligible. On 

the other hand, the total sensitivity indices for the T4 material for both the 2D and 3D models 

are increasing with strain and become significant for q , 1τ  and 0θ . For the T7 material, the 

total sensitivities are still negligible for these parameters. Both the main and total sensitivity 

indices of 1θ  and 1ϕ∆  are negligible for all models and material types. The trend seen for the 

total sensitivities is likely the result of the different work-hardening of the T4 and T7 

materials. The T4 material has significant work-hardening so the force level has more room 

for variation, in contrast to the T7 material for which the force level can only moderately 

deviate from the force at yielding. The work-hardening parameters primarily affect 

RMSD ( )F  only in interaction with each other, as only their total sensitivity indices are 

significant, while their main sensitivity indices remain negligible. In other words, the effect of 

the work-hardening parameters is highly dependent on the values of the other parameters. For 

some values of other parameters they may have high influence, but on average they have no 

strong independent effect. If the force-displacement curve is used for the material model 

calibration, then for the T7 material only the initial slip resistance may be determined with 
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certainty, the other parameters do not affect it noticeably within the given ranges. On the other 

hand, the local fields show very different sensitivities. A conclusion can be made, that for low 

work-hardening alloys it is not possible to establish the local material parameters of the CP 

model, based on the global stress-strain curve. In contrast, the calibration of the material 

model to the force-displacement curve of T4 material allows adjusting the initial slip 

resistance as well as the hardening parameters, particularly for larger displacements. 

The sensitivity indices for RMSD( )pε  are shown in Figure 7. The plots of main and 

total indices both show that RMSD( )pε  is most sensitive to the parameters q  and 1ϕ∆ . 

Generally, the sensitivity to q  starts from a lower value and rises with increasing strain, while 

sensitivity to 1ϕ∆  starts at a higher value and decreases for both T4 and T7 tempers. The most 

probable explanation is that as deformation develops and crystals rotate, activating multiple 

distinct slip systems, the interaction between slip systems becomes more important, while the 

small variation in the initial orientation and possible initial slip system activation becomes 

less important with increasing deformation.  For the T4 temper at 15% strain, the sensitivity to 

q  overtakes the sensitivity to 1ϕ∆ . In contrast, for the T7 material the sensitivity to 1ϕ∆  is so 

high initially that it is still dominating even at 15% global strain, while the sensitivity to q  at 

this strain level is still relatively small in comparison. The third most important material 

parameter is 1τ , which almost always has a significantly smaller sensitivity index than the 

first two. The total sensitivity indices of the other parameters are much higher than their main 

indices, meaning that their effects on the plastic strain field depend on the values of other 

parameters. The previous study on the latent hardening [19] indicates that if a more advanced 

latent hardening description was used, the variability of the stress-strain fields and their 

sensitivity to latent hardening could be even higher. 

The main and total sensitivity indices for RMSD ( )σ , RMSD ( )P  and RMSD ( )T  

exhibit the same trends as RMSD( )pε  and are not shown here. The parameters 1ϕ∆  and q  

dominate, with 1ϕ∆  more important at small strains and for the T7 material. The initial slip 

resistance 0τ  is usually the third most important, except for the T7 material in the 2D model, 

where the parameter 1τ  sometimes takes its place.  

Considering the mesh resolution influence on the uncertainty and sensitivity of the model 

response, the following argument can be made. The presented CPFEM model type was used 
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extensively in the literature. The convergence studies universally show that increasing mesh 

density improves the resolution of the mechanical fields but does not change the field “shape” 

significantly. An example of this may be found in [44]. The field gradients will become 

sharper, which should in principle increase RMSD of the corresponding fields.  

5. Conclusions 

UQSA methods were applied to study the variability and sensitivity of global and local 

solutions of a CP-FEM model to the variations in material model parameters. Both a 2D 

plane-strain model and a 3D model (using Voronoi tessellation) with 10 grains each were 

created, representing oligocrystals. Five sets of 10 random grain orientations were assigned to 

each oligocrystal. Two baseline material types were tested: a high work-hardening material 

based on the AA6063-T4 alloy, and a low work-hardening, high yield stress material based on 

the AA6063-T7 alloy. To investigate the effects of parameter variability on the predictions of 

model simulations, polynomial chaos expansions for outputs of interest representing the strain 

and stress fields and the global force were estimated. UQ measures and sensitivity indices 

were calculated from the polynomial chaos expansion. The generated stress and strain fields 

and the global force were analysed by normalizing them and comparing to the baseline fields 

and force. The results show that the equivalent plastic strain field may have significant 

variation, mostly due to early onset of strain localization. If the material work-hardening rate 

is high and the plastic flow is not constrained, then the variation of the plastic strain is quite 

low. The variation in the von Mises equivalent stress field is typically low, which means that 

it is possible to obtain a good estimate of the equivalent stress distribution in the oligocrystal 

even with uncertain values of the material parameters. On the other hand, the variations in the 

hydrostatic stress and stress triaxiality fields are significant, compared to the equivalent stress 

field and in some cases also the equivalent plastic strain field. The sensitivity study shows that 

the mechanical fields are most sensitive to the uncertainty in the crystallographic orientation 

and the latent hardening. The other parameters are mostly important in combination with each 

other. For the global force, in contrast, the strongest sensitivity index was obtained for the 

initial slip resistance. In the case of the low work-hardening material, the other parameters are 

almost irrelevant, while for the high work-hardening material they become somewhat more 

prominent for higher strains and in combination with each other. The correlation between the 

global force variation and the plastic strain field variation is very low, showing that the 

relationship between local and global solutions depends heavily on the material parameters. 



21 

 

Thus it is, in general, impossible to infer the local behaviour from global measurements 

without accurate knowledge of the material parameters. 

The application of the UQSA to the CP-FEM models is challenging, because of the high 

computational cost of the CP-FEM models. Therefore, only five sets of orientations and 

models of oligocrystals were used in this study. Nevertheless, the results show consistent 

trends for all tested sets of crystallographic orientations, despite the fact that the orientations 

were all picked randomly from the whole orientation space. The CP-FEM solutions for the 

mechanical fields, such as the equivalent plastic strain field (which may be calculated by 

means of digital image correlation and used in various applications, e.g. material model 

calibration or fracture studies) and the hydrostatic pressure and stress triaxiality fields (which 

are crucial for advanced fracture predictions) show significant variability, due to uncertainty 

in the material parameters. The solution is most sensitive to the uncertainty in the Euler 

orientation angle and the latent hardening description. A similar UQSA study could be 

performed for specific polycrystal configurations and BCs tailored to a particular problem. 

Such a study would highlight and evaluate quantitatively the more particular trends relevant 

for that exact model. 
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Tables 

Table 1: Ranges of the material model parameters for the 2D and 3D structures. 

Parameter AA6063-T4 AA6063-T7 

1ϕ∆  (°)  -2…0…2 -2…0…2 

0τ  (MPa)  20…30…40 40…60…80 

1τ  (MPa)   17…26…35 6…9…12 

0θ  (MPa)   163…244…325 129…194…257 

1θ  (MPa)   8…12…16 1…2…3 

q   1…1.5…2 1…1.5…2 

 

Table 2: Elastic and rate sensitivity parameters of the crystal plasticity model. 
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Figures 

     

                      

Figure 1: Illustrations of the 2D plane-strain and 3D microstructures. 
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Figure 2: Root Mean Squared Deviation (see Equations (16) and (17)) for the outputs of 

interest. Bars represent the average expected value of RMSD across the 5 sets of 

crystallographic orientations considered, and the black error bars represent plus/minus the 

average standard deviation of RMSD across the orientations. 
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Figure 3:  The engineering stress-strain curves of the baseline simulation (middle curve) and 

the simulations with the highest RMSD(F)  (top and bottom curves) for one of the orientation 

sets.    
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a)  

b)  

c)  

d)  

Figure 4: Equivalent plastic strain in the baseline simulation (left) and a simulation with the 

highest RMSD( )pε  (right) for the a) 2D-T4, b) 2D-T7, c) 3D-T4  and d) 3D-T7 models. 
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Figure 5: Sample correlation coefficient as defined in Equation (20) of the global force and 

plastic strain for the 5 models for each case between RMSD( )F  and RMSD( )pε . The points 

are the average value of the correlations and the error bars represent plus/minus one sample 

standard deviation of the correlation coefficients. The averages and standard deviations are 

determined according to Equation (20). 
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Figure 6: Main and total sensitivity indices MS  and TS  of the global force. Circles represent 

the average value of the sensitivity indices across the 5 sets of crystallographic orientations 

considered, and the error bars indicate plus/minus one standard deviation of the sensitivities 

across the orientations. For ease of viewing the x-position of the points is shifted by a small 

amount such that the sensitivities may be differentiated. 



34 

 

 

Figure 7: Main and total sensitivity indices MS and TS  of the normalized equivalent plastic 

strain. Circles represent the average value of the sensitivity indices across the 5 sets of 

crystallographic orientations considered, and the error bars indicate plus/minus one standard 

deviation of the sensitivities across the orientations. For ease of viewing the x-position of the 

points is shifted by a small amount such that the sensitivities may be differentiated. 

 

 

 


