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Abstract: We study an analog of Bayes’ formula and the nonnegativity property of mutual
information for systems with one random variable. For single-qudit states, we present new entropic
inequalities in the form of the subadditivity and condition corresponding to hidden correlations
in quantum systems. We present qubit states in the quantum suprematism picture, where these
states are identified with three probability distributions, describing the states of three classical
coins, and illustrate the states by Triada of Malevich’s squares with areas satisfying the quantum
constraints. We consider arbitrary quantum states belonging to N-dimensional Hilbert space as
(N2 − 1) fair probability distributions describing the states of (N2 − 1) classical coins. We illustrate
the geometrical properties of the qudit states by a set of Triadas of Malevich’s squares. We obtain
new entropic inequalities for matrix elements of an arbitrary density N×N-matrix of qudit systems
using the constructed maps of the density matrix on a set of the probability distributions. In addition,
to construct the bijective map of the qudit state onto the set of probabilities describing the positions
of classical coins, we show that there exists a bijective map of any quantum observable onto
the set of dihotomic classical random variables with statistics determined by the above classical
probabilities. Finally, we discuss the physical meaning and possibility to check derived inequalities
in the experiments with superconducting circuits based on Josephson junction devices.

Keywords: entropy; correlations; qubits; probability representation; Bayes’ formula

1. Introduction

Generic states of quantum systems are identified with the density matrices [1,2] or the density
operators ρ̂ acting in a Hilbert space. The pure states of quantum systems are identified with the
state vectors | ψ〉 belonging to the Hilbert space [3] and complex wave functions [4,5] ψ(x) = 〈x | ψ〉,
where x is an observable, e.g., the continuous position of a particle. The physical meaning of the
wave function ψ(x) is related to measuring the observable x; in the state | ψ〉, the measurement of
the position of a particle yields the probability density |〈x | ψ〉|2 = |ψ(x)|2, which does not contain
information on the phase of the complex wave function.

For spin-s systems with discrete observables like spin projections m = −s,−s + 1, . . . , s− 1, s;
s = 0, 1/2, 1, 3/2, 2, . . ., the state vectors belong to the Hilbert space of finite dimension N = 2s + 1,
and the complex wave function ψ(m) = 〈m | ψ〉 determines the probability distribution
|〈m | ψ〉|2 = |ψ(m)|2 associated with the state | ψ〉. The phase of the wave function is not determined
by the probability distribution; in view of this fact, information on the state | ψ〉, contained in the
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probability density |ψ(x)|2 or in the probability distribution |ψ(m)|2, is not sufficient to describe the
particle’s pure state or the spin-s pure state.

The aim of this paper is to consider the old problem of looking for a such formulation of quantum
mechanics, where the system states can be identified with fair probability distributions of measurable
observables only. Such a possibility is based on quantum tomography methods of measuring [6]
quantum states, using the formalism of reconstructing [7,8] the state Wigner function by means of
Radon transform [9].

Wigner introduced the Wigner function [10] W(q, p) of the position q and momentum p that
is similar to the probability density f (q, p) describing the classical particle state in the presence of
fluctuations. The Wigner function can take negative values and, due to this circumstance, it is called
the quasidistribution function. The Wigner function is related to the density matrix ρ(x, x′) of the
quantum particle state by an invertible Fourier transform and contains the same information on the
state as the density matrix.

There exist other analogous quasidistributions like the Husimi–Kano Q-function [11,12] and
Glauber–Sudarshan function [13,14], which are functions on the phase space. The suggestion to
identify quantum states with fair probability densities was presented in [15], where the probability
density, called symplectic tomogram, was used. An analogous approach was elaborated for spin states
in [16,17], where the spin tomograms, being fair probability distributions of spin projections m on
an arbitrary direction in the space given by a unit vector ~n, were shown to determine the density
matrix ρ(m, m′).

In this paper, on the example of qubits, we show the bijective map of density operators of
spin-1/2 states onto the probability distributions. Since for probability distributions the notion of
Shannon entropy [18], relative entropy, and Tsallis entropy [19] is the standard tool to characterize the
statistical properties of the systems, we obtain, in view of the map introduced, some new relations like
entropic equalities and inequalities for quantum spin states. Other kinds of entropies also exist like
Rényi entropy [20], non-Shannonian and generalized (c, d) entropies; see, e.g., [21,22]. In this paper,
we consider new relations connected with Shannon and Tsallis entropies. In addition, we discuss new
geometric interpretation of spin-1/2 (qubit) states in terms of the Triada of Malevich’s squares [23,24]
and its relation to the Bloch sphere geometry of these states. Employing the identification of qubit
states with probability distributions, we present the construction of quantum observables (Hermitian
2 × 2-matrices) in terms of sets of classical-like variables and provide the bijective map of the qubit
states (density matrices) and observables onto classical-coin probability distributions and classical
observables associated with these coins.

We present the evolution equations for the density matrices of qubit states in the form of kinetic
equations for probability distributions determining the qubit states. We formulate the superposition
principle of qubit state vectors as a new addition rule for the probabilities determining the states.
In addition, we express the Born rule for calculating the probability |〈ψ1 | ψ2〉|2 = w12 as a function of
probabilities determining the pure states | ψ1〉 and | ψ2〉. Then, we extend the probability representation
of qubit states and express the matrix elements of an arbitrary density N×N-matrix in terms of
classical-coin probability distributions. We consider in detail examples of qutrit (spin-1), identifying the
qutrit state with a set of Triadas of Malevich’s squares. We present new relations of areas of Malevich’s
squares and the possibility of checking these relations in the experiments with superconducting circuits.

The other goal of this work is to study within the probability representation of quantum
states [15–17,25–28] (reviewed in [29]) the triangle geometry of qudit states and discuss Bayes’ formula
for systems without subsystems and correlations (called the hidden correlations) in such systems.
It is worth noting that the classical probability distributions were discussed within the framework of
state vectors for spin-1/2 systems by Khrennikov [30–32] and the superposition principle for spin-1/2
states was expressed as the nonlinear superposition of classical probability distributions in [33,34].
Malevich’s squares and the approach called the suprematism in art are described in [35].

This paper is organized as follows.
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We present the notion of random variables in Section 2 and study Bayes’ formula for systems
with one random variable in Section 3. We discuss qubit states in Section 4 and consider classical-coin
random variables for qubit systems in Section 5. Then, we review the notion of quantum suprematism
in Section 6 and study qutrit states in the probability representation in Section 7. We devote Section 8 to
the superposition principle for the probabilities, demonstrating this principle on the example of qutrits.
Within the framework of the probability representation, we formulate the superposition principle for
qudit states in Section 9. Finally, in Section 10, we provide the conclusions and perspectives.

2. Random Variables and Probabilities

In probability theory, the notion of random variables and probability distributions were discussed
using rigorous approaches presented, for example, in [36–39]. We employ here the following empiric
approach. We define the relation of random variables to sets of integer numbers following [40,41].
Given a set of N different events, these events are associated with integers j = 1, 2, . . . , N. We call
relative frequencies P(j) of the realization of these random events in a series of experiments
“the probabilities of the events” where 0 ≤ P(j) ≤ 1. The function P(j) is the probability distribution;
it is normalized ∑N

j=1 P(j) = 1.
The properties of the events are characterized by some functions f (j), which we call observables.

In this approach, random variables are mapped onto the integers j = 1, 2, . . . , N. The physical meaning
of the events can be different; for example, in the casino roulette, the event is the appearance of some
integer number j which is chosen from a set of integer numbers located between 1 and N. The event
may be also considered as positions “UP” and “DOWN” of two coins; in this case, the integer number
j is mapped onto a pair (a, b) of integer numbers labeling the position of each coin. In both cases,
the relative frequencies of the events can be associated with the integer j, but the interpretation of this
random variable is different. In the case of casino roulette, we say about one random variable, and in
the case of two coins, we have two random variables associated with labeling positions of two coins
by other two integer numbers (a, b). An analogous approach to random events can be employed in
quantum mechanics.

We extend the above approach to classical probabilities using in this case the identification of
random events with the integers 1 ≤ j, j′ ≤ N labeling the matrix elements of the density matrix ρjj′

determining the states, e.g., of qudit with spin s, where N = 2s+ 1, or of the N-level atom. The physical
observables are given by the Hermitian matrices f jj′ , where indices of rows and columns are identified
with the random variables 1 ≤ j, j′ ≤ N. It is important that we can interpret the described above
association of integers j analogously to the case of classical casino roulette and the case of two
classical coins considering numerically the same density matrices ρjj′ either as the density matrices of
noncomposite (nondivisible) systems (an analog of the casino roulette) or as the density matrices of
bipartite systems (an analog of the states of two coins).

In the next section, we consider Bayes’ formula, in view of the approach under discussion,
using it for one random variable and applying the map of integer numbers 1, 2, . . . , N onto pairs of
random numbers.

3. Bayes’ Formula for the Probability Distribution of One Random Variable

In this section, we discuss the application of Bayes’ formula available for probability distributions
of several random variables to the case of the probability distribution of one random variable.

First, we recall Bayes’ formula and the notion of conditional probability distribution for statistics
of two random variables. Given the function 1 ≥ P(j, k) ≥ 0, where j = 1, 2, . . . , n1, k = 1, 2, . . . , n2,
and n1n2 = N, with the normalization condition

n1

∑
j=1

n2

∑
k=1

P(j, k) = 1. (1)
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This function is identified with the probability distribution of two random variables j and k.
The marginal probability distributions

P1(j) =
n2

∑
k=1

P(j, k), P2(k) =
n1

∑
j=1

P(j, k) (2)

determine the statistical properties of each random variable.
The conditional probability distribution of the first random variable j for given k is presented by

the formula; see [36],

P(j | k) =
P(j, k)
P2(k)

, (3)

which means that
P(j, k) = P2(k)P(j | k). (4)

For the case of joint probability distributions of two random variables describing the statistics
of the bipartite system, these relations correspond to Bayes’ formula connecting marginal probability
distributions and conditional probability distributions of these random variables. In Appendix A,
we present an example of application of the above formulas for a particular case N = 4. In view of the
example from Appendix A, we are in the position to formulate the rule for introducing Bayes’ formula
for the probability distribution P(n); N = n1, n2 of one random variable. We apply the map of integers
n onto pairs of integers j and k, such that j = 1, 2, . . . , n1 and k = 1, 2, . . . , n2. Then, for marginal
probability distributions and conditional probability distributions, we use the known expression
for joint probability distribution of two variables and define these distributions, in view of the
invertible map of integers 1, 2, . . . , N ↔ (1, 1), (2, 1), . . . , (n1, 1)(1, 2), (2, 2), . . . , (n1, 2), . . . , (n1, n2),
where N = n1n2. This map can be described by the functions discussed in [42–44].

Following [44], we determine the functions y(x1, x2), x1(y), and x2(y), where 1 ≤ x1 ≤ X1,
1 ≤ x2 ≤ X2, and 1 ≤ y ≤ N = X1X2, as

y(x1, x2) = x1 + (x2 − 1)X1, (5)

x1(y) = y mod X1, 1 ≤ y ≤ N, (6)

x2(y)− 1 =
y− x1(y)

X1
mod X2, 1 ≤ y ≤ N. (7)

We use these functions for representing the probability distribution of one random variable as a
joint probability distribution of two random variables. To do this, we introduce in Equations (5)–(7)
the following notation: y ≡ n, x1 ≡ j, x2 ≡ k, X1 ≡ n1, X2 ≡ n2, N = n1n2 = X1X2, n = 1, 2, . . . , N,
P(j, k) ≡ y(x1, x2), and f (y) = P(n). In the case of N = 4 and n1 = n2 = 2, the map introduced
just provides the relations P(1) = P(1, 1), P(2) = P(2, 1), P(3) = P(1, 2), and P(4) = P(2, 2)
discussed above. Nevertheless, the functions introduced describe the invertible map of the probability
distribution of one random variable P(n); n = 1, 2, . . . , N onto the joint probability distribution P(j, k)
of two random variables j = 1, 2, . . . , n1 and k = 1, 2, . . . , n2, with N = n1n2, for arbitrary integers n1

and n2. In our new notation, n = n(j, k), j = j(n), and k = k(n). Taking into account this discussion,
we introduce Bayes’ formula for the probability distribution P(n) of one random variable; it reads

P
(

j(n) | k(n)
)
=

P
(
n(j, k)

)
∑n

j=1 P
(
n(j, k)

) , n = n1n2, (8)

where functions n(j, k), j(n), and k(n) are constructed in [44].
The relation of the joint probability distribution P(j, k) to the marginal probability distributions

corresponds to the presence of correlations in the system with two random variables. Since we
introduced an analog of two random variables and their marginal and conditional probability
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distributions, the relation of these distributions reflect correlations, which we called [45] the
hidden correlations for systems without subsystems. Such correlations exist for both classical and
quantum systems.

Bayes’ formula can also be considered for the probability distribution of one random variableP(n),
if the integer n = 1, 2, . . . , N and N = n1n2n3, where n1, n2, and n3 are integers of the joint
probability distribution of three random variables P(j, k, l), with j = 1, 2, . . . , n1, k = 1, 2, . . . , n2,
and l = 1, 2, . . . , n3. To do this, we use an analogous invertible map [44] of functions y(x1, x2, x3), x1(y),
x2(y), and x3(y), taking integer values y = 1, 2, . . . , N = X1X2X3; 1 ≤ xi ≤ Xi; i = 1, 2, 3, defined by
the relations

y(x1, x2, x3) = x1 + (x2 − 1)X1 + (x3 − 1)X1X2, (9)

x1(y) = y mod X1, (10)

x2(y)− 1 =
y− x1(y)

X1
mod X2, (11)

x3(y)− 1 =
y− x1(y)− x2(y)X1

X1X2
mod X3. (12)

After substitution x1 ≡ j, x2 ≡ k, x3 ≡ l, and y ≡ n, we arrive at an analog of Bayes’ formula for
one random variable

P
(

j(n) | k(n), l(n)
)
=

P
(

j(n), k(n), l(n)
)

∑n1
j=1 P

(
n(j, k, l)

) . (13)

To illustrate this formula, we consider the example of N = 8 = 2 · 2 · 2, i.e., n1 = n2 = n3 = 2;
the map of integers reads 1 ↔ (1, 1, 1), 2 ↔ (2, 1, 1), 3 ↔ (1, 2, 1), 4 ↔ (2, 2, 1), 5 ↔ (1, 1, 2),
6 ↔ (2, 1, 2), 7 ↔ (1, 2, 2), 8 ↔ (2, 2, 2). This means that the probability distribution P(n)
takes the values P(1) ≡ P(1, 1, 1), P(2) ≡ P(2, 1, 1), P(3) ≡ P(1, 2, 1), P(4) ≡ P(2, 2, 1),
P(5) ≡ P(1, 1, 2), P(6) ≡ P(2, 1, 2), P(7) ≡ P(1, 2, 2), and P(8) ≡ P(2, 2, 2). The joint probability
distribution P(j, k, l) has the values given by numbers P(n), and Bayes’ formula obtained provides,
e.g., the conditional probability

P
(

j(n) = 1 | k(n) = 1, l(n) = 1
)
=

P(1, 1, 1)
P(1, 1, 1) + P(2, 1, 1)

=
P(1)

P(1) + P(2) .

In the quantum case, the map of integers discussed provides a tool to consider the density matrix
of qudit state ρnn′ , where n, n′ = 1, 2, . . . , N, as the density matrix of a multipartite system. For example,
at N = 4, the ququart density matrix can be interpreted as the density matrix of two two-level atoms,
using the map discussed. In fact, if n, n′ = 1, 2, 3, 4, we consider the density matrix as ρnn′ ≡ ρjk,j′k′ ,
where j, j′, k, k′ = 1, 2. Formally, we obtain the density matrix of the two-qubit system, which has the
same numerical matrix elements that the 4×4-matrix ρnn′ ; this means that all numerical properties of
the density matrix of two-qubit state and ququart state are identical.

This fact provides the possibility to consider formal entanglement properties of ququart system.
For example, if we consider the pure state, (ρ2)nn′ = ρnn′ , then the properties of linear entropy
S = 1 − Tr

(
ρ2(1)

)
, with

(
ρ(1)

)
jj′ = ∑2

k=1 ρjk, j′k, where the indices j, k, j′ are determined by the
numbers n, n′ = 1, 2, 3, 4 according to the discussed map, characterize the entanglement degree in the
bipartite system.

For the four-level atom, one has the same numerical characteristics. From the viewpoint of the
matrix properties, the ququart state with the density matrix, having only different from zero matrix
elements ρ11 = ρ14 = ρ41 = ρ44 = 1/2, provides the linear entropy S = 1/2 corresponding to
maximum entangled state of two qubits. The interpretation of this phenomenon for systems without
subsystems is the presence of hidden correlations in the degrees of freedom of such systems, formally
analogous to quantum correlations associated with the entanglement phenomenon, e.g., in bipartite
systems of two qubits.
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4. Probability Representation of Spin-1/2 States

We start our introduction of the probability representation of quantum system states with the
consideration of spin-1/2 systems. These systems realize qubits and their states, as well as they are
realized by two-level atom systems. In standard formulation of quantum mechanics, the spin-1/2
pure states are described by Pauli spinors, which are complex vectors | ψ〉 with two components,

i.e., | ψ〉 =

(
ϕ1

ϕ2

)
. The vectors | ψ〉 belong to the two-dimensional Hilbert space H with the

scalar product
〈ψ(1) | ψ(2)〉 = ϕ

(1)∗
1 ϕ

(2)
1 + ϕ

(1)∗
2 ϕ

(2)
2 . (14)

The state vectors are normalized 〈ψ | ψ〉 = 1, and |ϕ1|2 + |ϕ2|2 = 1. The density operators [1,2]

of the pure states ρψ =| ψ〉〈ψ | in matrix form read ρψ =

(
ϕ∗1 ϕ1 ϕ∗1 ϕ2

ϕ∗2 ϕ1 ϕ∗2 ϕ2

)
. This matrix has the

properties of Hermiticity ρ†
ψ = ρψ and nonnegativity ρψ ≥ 0, as well as it has the unit trace Tr ρψ = 1.

The physical meaning of the state-vector components ϕ1 and ϕ2 and matrix elements of the
density matrix ρ(ψ) is determined by the relation of these values to operators of physical observables
associated with spin projection operators h̄σx/2, h̄σy/2, and h̄σz/2 onto the axes x, y, and z, respectively.
Here, the Pauli matrices σx, σy, and σz are

σx =

(
1 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (15)

and h̄ is the Planck constant. In this paper, we use dimensionless units and assume h̄ = 1. Three
normalized eigenstates of the matrices σx/2, σy/2, and σz/2 with eigenvalues +1/2 have the form

| ψx〉 =
1√
2

(
1
1

)
, | ψy〉 =

1√
2

(
1
i

)
, | ψz〉 =

(
1
0

)
. (16)

The vectors are identified with spin-1/2 states, in which the spin projections on the axes x, y,
and z are equal to +1/2. The corresponding density matrices read

| ψx〉〈ψx |=
(

1/2 1/2
1/2 1/2

)
, | ψy〉〈ψy |=

(
1/2 −i/2
i/2 1/2

)
, | ψz〉〈ψz |=

(
1 0
0 0

)
. (17)

Any density matrix describing mixed state of the spin-1/2 system ρ =

(
ρ11 ρ12

ρ21 ρ22

)
, such that

ρ† = ρ, Tr ρ = 1, and ρ ≥ 0 (i.e., the matrix has nonnegative eigenvalues), is determined by three
real parameters. The physical meaning of these parameters can be clarified, if one considers the
probabilities to obtain in the state with the density matrix ρ the spin projections +1/2 on the axes x, y,
z, which we denote as p1, p2, and p3, respectively. The probabilities p1, p2, and p3 play a fundamental
role in describing the spin-1/2 states and, as we show, they determine the density matrix of this system.
These probabilities are given by the Born rule as follows:

p1 = Tr (ρ | ψx〉〈ψx |) , p2 = Tr
(
ρ | ψy〉〈ψy |

)
, p3 = Tr (ρ | ψz〉〈ψz |) . (18)

The spin tomogram w(m|~n) introduced in [16,17], being equal to the conditional probability of
spin projection m = ±1/2 onto the direction given by the unit vector~n, is expressed in terms of the
probability vector ~p = (p1, p2, p3) [23], i.e.,

w(m|~n) = (1/2) + m(~p− ~p0)~n, ~p0 =
(
1/2, 1/2, 1/2

)
. (19)
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In view of relations (18) employed as the equations for matrix elements of ρ, it is not difficult
to rewrite the density matrix ρ in the form where its matrix elements are expressed in terms of the
probabilities p1, p2, and p3 [23,24,46,47]; we have

ρ =

(
p3 p1 − (1/2)− i(p2 − 1/2)

p1 − (1/2) + i(p2 − 1/2) 1− p3

)
. (20)

The standard parameters of the Bloch sphere of qibit states x1, x2, and x3 are connected with the
probabilities through the bijective map xk = 2pk − 1; k = 1, 2, 3.

If the spin-1/2 state is the pure state, its density matrix satisfies the constraint ρ2 = ρ that provides
the condition for probabilities

(p1 − 1/2)2 + (p2 − 1/2)2 = p3(1− p3). (21)

In this case, the Pauli spinor of the pure state | ψ〉 can also be expressed in terms of the three probabilities
satisfying condition (21), i.e.,

| ψ〉 =


√

p3

p1 − 1/2
√

p3
+ i

p2 − 1/2
√

p3

 . (22)

For mixed states, the nonnegativity condition of the density matrix (nonnegativity condition for
its eigenvalues) yields the inequality for the probabilities p1, p2, and p3; it reads

(p1 − 1/2)2 + (p2 − 1/2)2 + (p3 − 1/2)2 ≤ 1/4. (23)

As we see, all information on the spin-1/2 state density matrix (and its Pauli spinor describing the
pure state | ψ〉) is identified with three probabilities 0 ≤ p1, p2, p3 ≤ 1 satisfying inequality (23).

This observation provides the possibility to consider again very old problem of quantum
mechanics, namely: Is it possible to formulate the notion of quantum states employing only ingredients
of classical probability theory of systems with fluctuations, such as the probability distributions?

We observed that for spin-1/2 systems it is enough to have three probability distributions given

by the probability vectors ~P1 =

(
p1

1− p1

)
, ~P2 =

(
p2

1− p2

)
, and ~P3 =

(
p3

1− p3

)
. Inequality (23)

is the only one quantum condition which should be respected by the probabilities. Thus, instead of
vectors | ψ〉 and density matrices ρ, we can introduce the notion of spin-1/2 states, employing the set

of three probability distributions or identify the state with the vector ~P =

 p1

p2

p3

. This means

that all quantum phenomena like, e.g., quantum interference, can be described in terms of the
probabilities. Here, it worth noting that the interference of classical probabilities was discussed
in [30–32]. For example, the superposition principle of quantum states, expressed in terms of
normalized and orthogonal state vectors | ψ1〉 and | ψ2〉 by the equality

| ψ〉 =
√

Π3 | ψ1〉+
√

1−Π3 eiξ | ψ2〉, (24)

where | ψ〉 is again the state vector, can be formulated as “superposition” of probabilities.
We present the result in the form of a nonlinear addition of two vectors

~P (1) ⊕ ~P (2) = ~P (3), (25)
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where components of the vectors are the probabilities p(k)1 , p(k)2 , and p(k)3 ; k = 1, 2, 3, satisfying
equality (21) for each value of k. The notation of addition ⊕ is also associated with the probability

vector ~Π =

 Π1

Π2

Π3

, where the components 0 ≤ Π1, Π2, Π3 ≤ 1 satisfy equality (21). These three

probabilities are related to the superposition parameters as follows:

cos ξ =
Π1 − 1/2√
Π3(1−Π3)

, sin ξ =
Π2 − 1/2√
Π3(1−Π3)

. (26)

The three components of the vector ~P (3) are functions of the three probability vectors ~P1, ~P2,
and ~Π; they read [23,24,48]

p(3)3 = Π3 p(1)3 + (1−Π3)p(2)3 + 2
√

p(2)3 p(2)3 (Π1 − 1/2) , (27)

p(3)1 − 1/2 = Π3(p(1)1 − 1/2) + (p(2)1 − 1/2)(1−Π3)

+
[
(Π1 − 1/2)(p(1)1 − 1/2) + (Π2 − 1/2)(p(1)2 − 1/2)

]√
p(2)3 /p(1)3

+
[
(Π1 − 1/2)(p(2)1 − 1/2)− (Π2 − 1/2)(p(2)2 − 1/2)

]√
p(1)3 /p(2)3 , (28)

and the third one p(3)2 is determined in view of Equation (21).

As an example of the superposition of vectors
1√
2

(
1
1

)
=| ψ1〉 and

1√
2

(
1
−1

)
=| ψ2〉

given by (24) and described by the probabilities (1, 1/2, 1/2) and (0, 1/2, 1/2), respectively, we obtain
p(3)3 = Π1 and p(3)1 = Π3.

One can check that the obtained numbers p(3)1 , p(3)2 , and p(3)3 are nonnegative; they satisfy

equality (21), which determines the probabilities p(3)2 and (1− p(3)2 ). The unitary evolution of the
probabilities p1, p2, and p3 is described by the following transform of the matrix ρ (20)

ρ→ uρu†, (29)

where the unitary 2×2 matrix u is such that u† = u−1 and

u(t) = e−iHt =

(
u11(t) u12(t)

u21(t) u22(t)

)
, (30)

with the Hamiltonian H =

(
H11 H12

H21 H22

)
. From this evolution, which corresponds to the

von Neumann equation
∂ρ

∂t
+ i [H, ρ] = 0, (31)

the evolution formula for the probabilities follows; it reads
p3(t)

p1(t)− (1/2)− i(p2(t)− 1/2)
p1(t)− (1/2) + i(p2(t)− 1/2)

1− p3(t)

 = [u(t)⊗ u∗(t)]


p3

p1 − (1/2)− i(p2 − 1/2)
p1 − (1/2) + i(p2 − 1/2)

1− p3

 . (32)
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This result is the solution of Equation (31) written as the kinetic equation for probabilities p1(t),
p2(t), and p3(t). Equation (32) describes the temporal evolution of the initial probabilities p1, p2, and
p3, which convert at time t to probabilities p1(t), p2(t), and p3(t) satisfying relation (23).

5. Quantum Observables and Classical-Coin Random Variables for Qubit Systems

The quantum observable for spin-1/2 system is described by the Hermitian matrices

A =

(
A11 A12

A21 A22

)
. It is possible [34] to consider quantum statistical properties of this observable in

the probability representation associating the matrix elements Ajk with classical-like random variables.
Introducing the notation A12 = x− iy, A11 = z1, and A22 = z2, we can rewrite the mean value of the
observable 〈A〉 in the form

〈A〉 = Tr ρA = 〈x〉cl + 〈y〉cl + 〈z〉cl, (33)

where

〈x〉cl = p1x + (1− p1)(−x), 〈y〉cl = p2y + (1− p2)(−y), 〈z〉cl = p3z1 + (1− p3)z2. (34)

This form shows that the mean values of the observable A calculated using the standard formalism
of quantum mechanics provide the connection with classical-like means of three dichotomic random
variables xcl, ycl, and zcl, employing the values (x,−x), (y,−y), and (z1, z2), respectively.

The probability distributions for these values are given as ~P1 = (p1, 1− p1), ~P2 = (p2, 1− p2),
and ~P3 = (p3, 1− p3), which determine the density matrix ρ of the qubit state. The quantum observable
in the quantum suprematism representation has a classical analog.

We point out that the highest moments of the observable A given as 〈An〉 = Tr ρAn, n = 2, 3, . . .
are also expressed in terms of classical random variables xcl, ycl, and zcl, and the expressions reflect
quantum correlations of classical-like random observables due to the nonnegativity condition of the
density matrix (23). One can also associate the matrix elements of arbitrary qudit observables with
artificial-coin random variables.

6. Quantum Suprematism Representation

The relations described in the previous section can be illustrated in the quantum suprematism
picture [23,24,48], where the probabilities p1, p2, and p3 determine the Triada of Malevich’s squares.
We construct a triangle with vertices A1, A2, and A3, which are located on three simplexes—sides
of equilateral triangle with the side length equal to

√
2, and three squares (black, red, and white)

determined by the sides of the triangle (Figure 1).
We call these squares the Triada of Malevich’s squares following [23,24,34,46,47]. The areas of the

squares SA1,A2 , SA2,A3 , and SA3,A1 are

SA1,A2 = 2 + 2p2
2 − 4p2 − 2p3 + 2p2

3 + 2p2 p3,

SA2,A3 = 2 + 2p2
3 − 4p3 − 2p1 + 2p2

1 + 2p3 p1, (35)

SA3,A1 = 2 + 2p2
1 − 4p1 − 2p2 + 2p2

2 + 2p1 p2.

The sum of the areas of Malevich’s squares, being the function of probabilities p1, p2, and p3, reads

S = 2
[
3 + 2

(
p2

1 + p2
2 + p2

3

)
− 3 (p1 + p2 + p3) + p1 p2 + p2 p3 + p3 p1

]
. (36)

The map of the Bloch sphere parameters xk; k = 1, 2, 3, onto the probabilities pk = (xk + 1)/2 can
be used to express the area S in terms of the parameters xk.
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Figure 1. The equilateral triangle with a side length equal to
√

2. Each of three sides is simplex
corresponding to the coin probabilities pk and (1 − pk) satisfying the relation pk + (1 − pk) = 1;
k = 1, 2, 3. Here, the points on simplexes with probabilities p1, p2, and p3 determine the triangle
A1 A2 A3 (on the left). The three squares (black, red, and white) called Triada of Malevich’s squares,
which are constructed using the sides of the triangle A1 A2 A3. The squares are in the one-to-one
correspondence with the density matrix of qubit (spin-1/2) states (on the right).

For quantum states, the sum satisfies the inequality S ≤ 3 [47]. For classical-coin states, the sum
can take maximum value Scl = 6. In view of this fact, the quantization condition (23) provides the
possibility to clarify the difference of classical and quantum properties of the systems, which states are
illustrated in the quantum suprematism representation by Triadas of Malevich’s squares.

The quantum states of spin-1/2 systems are described by spin tomogram w(m | ~n) [16], and the
spin tomogram determines the density matrix of the spin state [17]. The spin tomogram can be
expressed by the probabilities p1, p2, and p3; the tomogram is the probability to obtain the spin
projection m onto the direction in space determined by the unit vector~n = (sin θ cos ϕ, sin θ sin ϕ, cos θ).

For spin-1/2, the spin projection m takes two values ±1/2, and the tomogram (19) provides

w(m = +1/2 | ~n) = ~n(~p − ~p0)) + 1/2, where ~p =

 p1

p2

p3

 and ~p0 =

 1/2
1/2
1/2

. The tomogram

w(m | ~n) can be interpreted as the conditional probability distribution and, in view of this fact, one can
obtain a new entropic inequality associated with this distribution. For example, the relative Tsallis
entropy for two distributions w(m | ~n1) and w(m | ~n2) satisfies the inequality, which yields the new
condition for probabilities,

(1− q)−1
{
[~n1(~p− ~p0) + 1/2]q [~n2(~p− ~p0) + 1/2]1−q

+ [(1/2)−~n1(~p− ~p0)]
q [(1/2)−~n2(~p− ~p0)]

1−q − 1
}
≥ 0.

(37)

In the limit q → 1, this inequality provides the nonnegativity condition for the von Neumann
relative entropy

[~n1 (~p− ~p0) + 1/2] ln
{
[~n1 (~p− ~p0) + 1/2] [~n2(~p− ~p0) + 1/2]−1

}
+ [(1/2)−~n1(~p− ~p0)] ln

{
[(1/2)−~n1(~p− ~p0)] [(1/2)−~n2(~p− ~p0)]

−1 − 1
}
≥ 0.

(38)
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The obtained new entropic inequalities for probabilities p1, p2, and p3 can be checked in the
experiments with superconducting qubits, as well as the maximum value S = 3 for the sum of areas of
Malevich’s squares.

7. Qutrit States in the Probability Representation

One can extend the consideration of suprematism representation to the case of any qudits,

for example, qutrit states with the density matrix ρ =

 ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

. Using the tool [23,24,47]

of embedding this matrix into 4×4-matrix R =

(
ρ 0
0 0

)
, one can obtain three qubit-state density

matrices applying the partial tracing procedure. These three-qubit density matrices are

ρ(1) =

(
ρ11 + ρ22 ρ13

ρ31 ρ33

)
, ρ(2) =

(
ρ11 + ρ33 ρ12

ρ21 ρ22

)
, ρ(3) =

(
ρ22 ρ23

ρ32 ρ11 + ρ33

)
. (39)

Since these matrices can be expressed in terms of probabilities

ρ(k) =

(
p(k)3 p(k)1 − (1/2)− i(p(k)2 − 1/2)

p(k)1 − (1/2) + i(p(k)2 − 1/2) 1− p(k)3

)
; k = 1, 2, 3, (40)

the qutrit density matrix elements can also be expressed in terms of these probabilities p(k)1,2,3. In fact,
we arrive at

ρ =

 p(1)3 + p(2)3 − 1 p(2)1 − (1/2)− i(p(2)2 − 1/2) p(1)1 − (1/2)− i(p(1)2 − 1/2)

p(2)1 − (1/2) + i(p(2)2 − 1/2) 1− p(2)3 p(3)1 − (1/2)− i(p(3)2 − 1/2)

p(1)1 − (1/2) + i(p(1)2 − 1/2) p(3)1 − (1/2) + i(p(3)2 − 1/2) 1− p(1)3

 ; (41)

in other notation, Equation (41) is given in Appendix B. The probabilities p(k)1,2,3 satisfy inequality (23)
for k = 1, 2, 3 and also the nonnegativity condition for det ρ ≥ 0. The expression of matrix elements of
the qutrit density matrix in terms of the probability distributions follows a new entropic inequality for
the matrix elements:

1
1−q

{[
1
2 (ρ13 + ρ31 + 1)

]q [ 1
2 (ρ13 + ρ31 + 1)

]1−q

+
[

1
2 (−ρ13 − ρ31 + 1)

]q [ 1
2 (1− ρ23 − ρ32)

]1−q
− 1
}
≥ 0.

(42)

This new inequality for the qutrit state comes from applying the nonnegativity condition of
the Tsallis entropy expressed in terms the qubit-state tomogram by Equations (37) and (38) to the
qutrit-state density matrix.

Now, we derive the other inequality for the probabilities determining the qutrit state (41).
First, we construct the qubit density matrices following [49]

ρ(2) =

(
p(2)3 p(2)1 − (1/2)− i(p(2)2 − 1/2)

p(2)1 − (1/2) + i(p(2)2 − 1/2) 1− p(2)3

)
, (43)

ρ(2) =

(
p(1)3 p(1)1 − (1/2)− i(p(1)2 − 1/2)

p(1)1 − (1/2) + i(p(1)2 − 1/2) 1− p(1)3

)
. (44)
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The subadditivity condition provides the inequality for the probabilities p(k)1,2,3, k = 1, 2, 3; it reads

− Tr ρ(1) ln ρ(1)− Tr ρ(2) ln ρ(2) ≥ −Tr (ρ ln ρ), (45)

where ρ, being given by (41), is determined by the probabilities.
In addition, the probabilities determining the qutrit states satisfy the Tsallis entropic inequality

for the distance between the states

1
1− q

(
Tr ρ(1)qρ(2)1−q − 1

)
≥ 0. (46)

Inequalities (42), (45), and (46) are compatible with the nonnegativity condition of the qutrit
density matrix.

Since the qubit density matrices (43) and (44) are obtained from the same qutrit density matrix,
the distance between these qubit states characterizes the hidden correlations between the artificial
qubits associated with the qutrit density matrix (41). The inequality can be checked in the experiments
where the tomography of qutrit states is performed, e.g., in the experiments with superconducting
circuits based on Josephson junction devices [50,51].

Since the qutrit states are described by the probabilities determining the states of three artificial
qubits, the density matrix (39) can be mapped onto the set of three Triadas of Malevich’s squares.

8. Pure Qutrit States and Their Superposition in the Probability Representation

In [52,53], the superposition principle of quantum states was formulated as a nonlinear addition
rule of the pure-state density operators. Namely, given two density operators ρ̂1 =| ψ1〉〈ψ1 | and
ρ̂2 =| ψ2〉〈ψ2 | satisfying the conditions ρ̂2

1 = ρ̂1, ρ̂2
2 = ρ̂2, Tr ρ̂1 = Tr ρ̂2 = 1, and ρ̂1ρ̂2 = 0. Then,

for arbitrary real numbers 0 ≤ λ1, λ2 ≤ 1; λ1 + λ2 = 1 and the density operator ρ̂0 =| ψ0〉〈ψ0 |;
ρ̂2

0 = ρ̂0, the state with the density operator ρ̂ψ of the form

ρ̂ψ = λ1ρ̂1 + λ2ρ̂2 +
√

λ1λ2
ρ̂1ρ̂0ρ̂2 + ρ̂2ρ̂0ρ̂1√

Tr (ρ̂1ρ̂0ρ̂2ρ̂0)
(47)

satisfies the conditions ρ̂†
ψ = ρ̂ψ, ρ̂2

ψ = ρ̂ψ, and Tr ρ̂ψ = 1.
The nonlinear addition rule (47) corresponds to the interference formula of two orthogonal pure

states | ψ1〉 and | ψ2〉 of the form | ψ〉 =
√

λ1 | ψ1〉+ eiϕ√λ2 | ψ2〉, where the phase ϕ is coded by an
artificial density operator ρ̂0.

One can use generic Equation (47) to formulate the superposition rule of qudit states expressed
in terms of the probabilities; we obtain such a formula for two qutrit states. For this, we introduce
three probability vectors, i.e., three probability distributions ~Π1 = (Π1, 1−Π1), ~Π2 = (Π2, 1−Π2),
and ~Π3 = (Π3, 1−Π3), where 0 ≤ Π1, Π2, Π3 ≤ 1, and the phase ϕ is defined by the relations (26),

cos ϕ =
Π1 − 1/2√
Π3(1−Π3)

, sin ϕ =
Π2 − 1/2√
Π3(1−Π3)

. (48)

This means that we arrive at the condition (Π1 − 1/2)2 + (Π2 − 1/2)2 + (Π3 − 1/2)2 = 1/4
equivalent to the condition (21). To obtain the superposition rule for qutrit states in the probability
representation, we employ the expression of density matrix (41), introduce three 8-vectors ~P1, ~P2,
and ~P0 of the form (see Appendix B):

~P1 =
(

p(I)1 , p(I)2 , p(I)3 , p(I)4 , p(I)5 , p(I)6 , p(I)7 , p(I)8

)
,

~P2 =
(

p(II)1 , p(II)2 , p(II)3 , p(II)4 , p(II)5 , p(II)6 , p(II)7 , p(II)8

)
, (49)

~P0 =
(

p(III)1 , p(III)2 , p(III)3 , p(III)4 , p(III)5 , p(III)6 , p(III)7 , p(III)8

)
,
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and identify three qutrit states ρ̂1, ρ̂2, and ρ̂3 with these vectors ~P1, ~P2, and ~P0, since the density
matrices are determined by their components. Formula (47) provides the dependence of the probability
vector ~Pψ, which determines the state ρ̂ψ, on the probabilities ~P1, ~P2, ~P0, and ~Π1,2,3. The density
matrix (41) of the qutrit pure state satisfies the condition ρ2 = ρ, which provides the formula for the
probabilities following from the equality of the matrix elements ∑k ρjkρkm = ρjm written in terms
of probabilities.

Thus, we formulated the result for qutrits. We rewrite Equation (47) expressing the matrices ρ̂ψ,
ρ̂1, ρ̂2, and ρ̂0 in terms of probabilities. The equality of matrix elements provides the expression of the
probability vectors ~Pψ as functions of the probability vectors ~P1, ~P2, ~P0, and Π1,2,3. The approach can
be extended to other qudit states.

9. Probability Representation of the Density N×N-Matrix of the Qudit State

We generalize Equation (41) and write the matrix element ρjk for an arbitrary qudit state (N-level
atom state) in the form [48]:

ρjk = p(jk)
1 − (1/2)− i(p(jk)

2 − 1/2), k > j,

ρjj = 1− p(jj)
3 , j ≥ 2, (50)

ρ22 = 1−
N

∑
j=2

ρjj,

where p(jk)
1 and p(jk)

2 are the probabilities for artificial qubits (spin-1/2 states) to have spin projections
m = +1/2 onto the x and y axes, respectively. The diagonal matrix elements ρjj depend on

probabilities p(jj)
3 , which are probabilities of artificial spin projections m = +1/2 on the z-axis. Thus,

all the matrix elements of the qudit density matrix are expressed in terms of probabilities for (N2 − 1)
classical coins to have positions “UP” or “DOWN.” The new inequality (42) is also valid for the qudit
density matrix (50) as well as the entropic inequalities for the matrix elements where 1→ j and 3→ k.

The superposition principle of pure states given by relation (47) for the density matrices provides
the connection of the probabilities determining two orthogonal pure states ρ̂1 and ρ̂2 and the density
matrix ρ̂0 with the probabilities determining the pure superposition state ρ̂ψ. In spite of the fact
that the formulas are cumbersome, their existence demonstrates that such quantum phenomenon as
interference of quantum states for arbitrary N-level atoms can be formulated as nonlinear superposition
of classical probabilities (cf. [30–32]). Thus, for any qudit state, one has relationships connecting the
probability distributions determining the qudit states in view of generic formula (47).

10. Conclusions

To conclude, we point out the main results of our study.
We introduced the notion of hidden correlations for systems without subsystems, using the

explicitly written functions (5)–(7) and (9)–(12) providing the invertible map of the integers in both
classical and quantum domains. This approach provides the possibility to write Bayes’ formula and
introduce the conditional probability distribution for given probability distribution of one random
variable (22). Using the probability description of qubit states, we presented the solution of the von
Neumann equation for the two-level atom as the transform of probabilities determining the state
density matrix (35).

We obtained new inequality for the qubit-state probabilities, which can be checked experimentally
as the nonnegativity condition of classical relative Tsallis entropy—Equation (38). The properties
of generalized entropies discussed and employed in [21,22] can be also studied in view of the
probability distributions determining the matrix elements of the density matrix. We will do this
in future publications.
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The tomographic reconstruction of the density matrix, e.g., in the experiments with
superconductive circuits [50,51], provides the possibility to find the probabilities that should satisfy
the inequalities.

In view of a generic form of the superposition principle formulated in terms of density
matrices (47), we presented the general approach to get the addition rule for classical probabilities
determining the qutrit pure state. In this sense, we considered two related problems. One problem
is to reformulate the standard description of quantum mechanics by means of wave functions and
density matrices, using the Hilbert space formalism, in terms of classical probabilities; this can be
done within the framework of quantum tomography [15–17,29]. The inverse approach is to consider
classical probabilities associated with quantumlike objects in Hilbert spaces [30–32]. In this paper,
we concentrate on the presentation of the first problem and show that the quantum formalism of
Hilbert spaces can be mapped bijectively onto the classical-like formalism of the probability theory
and geometry of simplexes. New results obtained in this approach are the nonlinear addition rules of
probabilities, giving the probabilities. Such rules correspond either to Born rules of quantum mechanics
or the superposition principle of pure states of qudits.

In addition, we obtained an explicit form of the unitary evolution for probabilities determining
the probabilities in terms of their transform by means of unitary matrices for two-level atoms.

To illustrate the map of Bloch sphere parametrization of qubit states onto the probability
representation of the states, where the probabilities satisfy the quantum constraint inequalities,
we employed the geometric representation of the probabilities, in view of the suprematism picture of
Triadas of Malevich’ squares. The approach developed and its properties in the case of generic qudit
states will be elaborated in the future publication.

In addition, we point out that the tomographic-probability approach was applied in signal
analysis [54,55] due to the descriptions of the signals by an analog of the Wigner function proposed by
Ville [56]. The probability properties considered above can be used in the signal theory as well.
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Appendix A

We consider a simple example of N = 4 and n1 = n2 = 2. We have the distribution P(j, k) of
four numbers 1 ≥ P(1, 1), P(1, 2), P(2, 1), P(2, 2) ≥ 0. In view of Equations (2) and (3), we have the
conditional probabilities:

P(1 | 1) =
P(1, 1)

P(1, 1) + P(2, 1)
, P(2 | 1) =

P(2, 1)
P(1, 1) + P(2, 1)

,

P(1 | 2) =
P(1, 2)

P(1, 2) + P(2, 2)
, P(2 | 2) =

P(2, 2)
P(1, 2) + P(2, 2)

.

Numbers P(1 | 1), P(2 | 1), P(1 | 2), and P(2 | 2) are nonnegative and normalized,
∑2

j=1 P(j | k) = 1.
Now, we consider the example of the same four nonnegative numbers, which we denote as P(n),

with n = 1, 2, 3, 4, and define the numbers as P(1) = P(1, 1), P(2) = P(2, 1), P(3) = P(1, 2),
and P(4) = P(2, 2). The set of numbers P(n) can be interpreted as the probability distribution
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of one random variable n. Since Bayes’ formula is determined through only the numbers P(j, k),
we can apply it using the invertible map of integers 1 ↔ 1, 1, 2 ↔ 2, 1, 3 ↔ 1, 2, 4 ↔ 2, 2
and introducing two “marginal probability distributions” P1(1) = P(1, 1) + P(1, 2) = P(1) + P(3),
P1(2) = P(2, 1) + P(2, 2) = P(2) + P(4) and P2(1) = P(1, 1) + P(2, 1) = P(1) + P(2),
P2(2) = P(1, 2) + P(2, 2) = P(3) + P(4). After this, we can introduce the “conditional probability
distributions” in view of the definition given by the same relations (3) and (4) but rewritten in terms of
numbers P(n), with n = 1, 2, 3, 4. We define the conditional probabilities

P(1 | 1) =
P(1)

P(1) + P(3) , P(2 | 1) =
P(2)

P(1) + P(3) ,

P(1 | 2) =
P(3)

P(2) + P(4) , P(2 | 2) =
P(4)

P(2) + P(4) .

Appendix B

To express the qutrit density matrix ρ in the probability representation, we employ the 8-vector
~P = (p1, p2, p3, p4, p5, px6, p7, p8) and obtain

ρ =

 p3 + p6 − 1 p4 − (1/2)− i(p5 − 1/2) p1 − (1/2)− i(p2 − 1/2)
p4 − (1/2) + i(p5 − (1/2) 1− p6 p7 − (1/2)− i(p8 − (1/2)
p1 − (1/2) + i(p2 − 1/2) p7 − (1/2) + i(p8 − 1/2) 1− p3

 . (A1)

We have the probability p9 = 1 − p6, and nine probability distributions, corresponding to
classical-coin positions, read ~pj = (pj, 1− pj); j = 1, 2, . . . , 8 and ~p9 = (p9, 1− p9) = (1− p6, p6).
Thus, the density matrix of qutrit state formally corresponds to the probability distributions describing
positions "UP" and "DOWN" of nine classical coins. In our notation, the ninth coin probability
distribution is completely correlated with the sixth coin position, i.e., it is determined by the probability
distribution of the sixth coin. The other correlations are described by nonnegativity conditions for
the density-matrix eigenvalues. The density matrices ρ1, ρ2, and ρ0 have the form (A1) with the
replacement pj → p(I)j , p(II)j , p(III)j ; j = 1, 2, . . . , 8.

The matrix ρ0 is determined by the probability vector ~P0 =
{

p(0)j

}
; j = 1, 2, . . . , 8. All of the

8-vectors ~P0, ~P1, and ~P2 satisfy the condition that the corresponding density matrices satisfy the
equality Tr ρ̂2

1 = Tr ρ̂2
2 = Tr ρ̂2

0 = 1 and the property Tr ρ̂2
ψ = 1 follows relation (47).

References

1. Landau, L. Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. (In German)
[CrossRef]

2. Von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 1,
245–272. (In German)

3. Dirac, P.A.M. The Principles of Quantum Mechanics; Clarendon Press: Oxford, UK, 1981; ISBN 9780198520115.
4. Schrödinger, E. Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 1926, 79, 361–376.

(In German) [CrossRef]
5. Schrödinger, E. Quantisierung als Eigenwertproblem (Zweite Mitteilung). Ann. Phys. 1926, 80, 489–527.

(In German) [CrossRef]
6. Smithey, D.T.; Beck, M.; Raymer, M.G.; Faridani, A. Measurement of the Wigner distribution and the density

matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum.
Phys. Rev. Lett. 1993, 70, 1244–1247. [CrossRef] [PubMed]

7. Bertrand, J.; Bertrand, P. A tomographic approach to Wigner’s function. Found. Phys. 1987, 17, 397–405.
[CrossRef]

8. Vogel, K.; Risken, H. Determination of quasiprobability distributions in terms of probability distributions for
the rotated quadrature phase. Phys. Rev. A 1989, 40, 2847–2849. [CrossRef]

http://dx.doi.org/10.1007/BF01343064
http://dx.doi.org/10.1002/andp.19263840404
http://dx.doi.org/10.1002/andp.19263840602
http://dx.doi.org/10.1103/PhysRevLett.70.1244
http://www.ncbi.nlm.nih.gov/pubmed/10054327
http://dx.doi.org/10.1007/BF00733376
http://dx.doi.org/10.1103/PhysRevA.40.2847


Entropy 2018, 20, 692 16 of 17
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