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1. INTRODUCTION AND PROBLEM STATEMENT  

Consider a single-item single-period supply chain consisting 

of a supplier, a vendor, and customers. Let T be duration of 

the period. At the beginning of the selling season the vendor 

facing uncertain demand purchases a lot size Q, and 

replenishment during the period is impossible. This classic 

model is known as the newsvendor problem, see, for 

example, Arrow, Harris, and Marschak (1951); Silver, Pyke, 

and Peterson (1998).   

Thus, two scenarios are possible during the selling season: 

the vendor runs short, i.e. there are lost sales, or there are 

leftovers at the end of the season and the vendor has to 

dispose of the remaining stock. To resolve this tradeoff 

between understocks and overstocks costs the vendor needs 

to know the demand distribution. However, usually the 

distribution is not known a priori and we need to relay on the 

historical sales data and use some statistical methods. 

In general, there are different approaches to the handling of 

demand uncertainty in the framework of the newsvendor 

problem; see Khouja (2000) and more recently Rossia et al. 

(2014). Most of the papers have focused on cases where the 

demand is fully observed, for example, this is the case when 

the demand in excess of inventory on hand is backordered. 

But if this demand is unobservable, that is often the case; the 

information on demand gets censored by inventory 

availability. Early approaches to dealing with the censored 

demand induced by lost sales were presented by Hill (1992), 

Nahmias (1994), Agrawal and Smith (1996), and Lau and 

Lau (1996). Most recent papers concerning censored demand 

focus on the Bayesian approach; for references see, for 

example, Jain, Rudi, and Wang (2015). Among others we 

want to mention papers by Huh and Rusmevichientong 

(2009) and Huh et al. (2009, 2011) taking nonparametric 

approach.  

In Kitaeva, Subbotina, and Stepanova (2015) we described 

the demand as a compound Poisson process with continuous 

batch size distribution. The model is rich enough to present 

the uncertainty of demand and seems to be suitable for many 

inventory control processes; see, for example, Kemp (1967) 

and Adelson (1966) for early papers; Monahan, Petruzzi, and 

Zhao (2002) and Babai, Jemai, and Dallery (2011) for more 

recent ones. The only drawback of the distribution is its 

complexity, which leads to expressions that are too complex 

to deal with analytically.  

In that paper, we have solved the problem by considering the 

diffusion approximation of the demand process for fast 

moving items, i.e. we assumed that the number of customers 

and lot size are sufficiently large. We used the approximation 

to obtain the asymptotic distribution of time required for the 

sale of a fixed lot size. The distribution is strongly connected 

with asymptotic demand distribution, so we can use the 

timing of stock out to estimate the demand distribution under 

lost sales, i.e. when there are lost sales and the actual demand 

during the period is unobserved, we use observations of the 

moments at which the vendor runs short. The diffusion 

approximation of a compound Poisson process was used 

without a rigorous proof there.  

In this paper we do not use the approximation and provide a 

proof of the result using Laplace transform method. We also 

model the demand as a two-state Markov-modulated Poisson 

process (MMPP), i.e. the intensity of a Poisson process of the 

customers arrivals is defined by the state of a Markov chain 

with two states: if at time t the Markov process has value i = 

1, 2 then the customers are arriving according to a Poisson 

process with intensity 0
i

  . The amounts required at each 

arrival are distributed according to probability density 

function (PDF) ( )p   and are independent of everything else. 

If the two intensities are equal, this model becomes an 

ordinary compound Poisson process.  
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1 ( )
F u

u X u


 
, 

and 
1

( ) ( ) ( ) ( )
k k k
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!
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1 ( )
k kk

k
F u k

u X u
 

 
., 
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exp!

2 1 ( )

c j

k kk

c j

uQk
Т Q du

j u X u

 

 


  

 . 

Let us consider the case 1.Q   If R e 0u   then ( ) 1X u   

and (0) 1X  , therefore the zeros of the denominator lie on 

the imaginary axis and in the left half-plane. All the residues, 

except for the residue at 0u  , contain exponentially 

decreasing factor, so the residue at 0u   gives the main 

contribution to ( )
к
Т Q  as 1Q  . 

Denote  ( ) 1 ( ) /Y u X u u   and the initial moments of 

purchase 
0

( )
k

k
a s p s ds



  , 1, 2...k  , then  

 
0

exp1
( ) lim

( )

k

k k k k
u

uQd
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du Y u

 
  

  
 

and as 1Q   

2

1 2 2

1 1

(0)
( )

(0) (0) 2

aQ Y Q
T Q

Y aY a


   

  
.  (4) 

Note that 
1
(0) 0T   because here  Q  is the time from the 

beginning of the sale period until the arrival of the first buyer 

who cannot make a purchase due to the zero inventories.  

Analogously we receive as 1Q   

2 2

2 2 2 3 3 4

1 4 (0) 2 (0) 6 (0)
( )

(0) (0) (0) (0)

Q QY Y Y
T Q

Y Y Y Y

   
    

  
 

2

2

2 2 3

1 1

21 QaQ

a a

 
 

  
, 

and the variance of ( )Q  

    2

2 3

1

{ }
Q a

Var Q D Q
a

 


.               (5) 
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Consider the case 1Q   and 1w  . Zeros of the 

denominator, R e 0w  , lie on the imaginary axis and in the 

left half-plane because for R e 0u   function 
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has to be analytical. As 1Q  , the residue at zero gives the 

main contribution to ( , )w Q .  
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According to the expansion we get as 1w    

2 22

0 2 3

1 1

1
( )

2

a
u w w o w

a a
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By the residue theorem for 1Q   and 1w   
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Consider random variable    ( ) /V Q q q    , where 

1

Q
q

a



, 2

2

1

a

a
 


. It follows from (4) and (5) that 

{ } 0E V   and { } 1Var V   as 1Q  . As Q tends to infinity 

the moment generating function of V 

2

( , ) exp , ~ exp ,
2

V

w q w w
g w Q g Q

q

     
               

 

i.e. V convergences in distribution to the standard normal 

random variable.  

Thus, as 1Q   we can consider the selling time  Q  as the 

normal random variable with parameters    1 1
/T Q Q a   

and    2 3

2 1
/D Q Qa a  . The same asymptotic result has 

been obtained in Kitaeva, Subbotina, and Stepanova (2015), 

where the diffusion approximation of the demand process has 

been considered. 

For exponential batch size distribution the results of 

comparing the exact and approximate probability density 

functions of selling time are presented in Kitaeva, Subbotina, 

and Zhukovskiy (2015).
 

3. DISTRIBUTION OF THE SELLING TIME FOR MMPP 

DEMAND 

Denote 
11 11

22 22

p p
P

p p

 
  

 
 an infinitesimal generator of a 

two-state continuous-time Markov chain determining the 

customers’ arrival rate in a Poisson process, i.e. the arrival 

rate is 0
i

   when the Markov chain is in state i. Let 

 1 2
,    , 22 11

1 2

11 22 11 22

,
p p

p p p p
   

 
 be the steady 

state vector of the Markov chain and  Q
i

  be an amount of 

time it takes to sell a lot Q if at t = 0 the chain is in state i. All 

other assumptions and notations are the same. 

Using the same technique as previously we receive the 

system of equations for the Laplace transforms  ,
i

g Q  of 

PDF of  Q
i

  in the steady state  
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0
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n

i i ij j
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i i i
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g Q p g Q
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Conditional means  i
T Q  and second initial moments  i

V Q  

are defined by equations 

     
2

1 0

Q 1 Q ( ) ,

Q

i i ij j i j

j

T p T T Q x p x dx


        (6) 

       
2

1 0

Q 2 Q Q ( ) .

Q

i i i ij j i j

j

V T p V V Q x p x dx


        

Using the Laplace transform we get from (6) 
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Consider the asymptotic behaviour of the moment generating 

function      1 1 2 2
, , ,g Q g Q g Q       . Denote 
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     its Laplace transform. Then 
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1
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a
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, 

the moment generating function of 
   

 

Q T Q
z

D Q

 
  tends to 

the moment generating function of the standard normal 

distribution as Q   . 

4. PARAMETERS ESTIMATION AND SIMULATION 

In Kitaeva et al. (2016) it is shown that for stationary demand 

when the intensity of the arrival process is high and the 

duration of the period is sufficiently large we can consider 

demand X as a normal random variable with the mean 

1X T
m a m  and variance  2 2 2 2

2 1 1X T T
m a a a     , where 

T
m  and 2

T
  are the mean and variance of the number of 

arrivals during T. From, for example, Yoshihara, Kasahara, 

and Takahashi (2001) it follows that for a time-stationary 

MMPP  

1 0X
a T   , 

 
2

1 2 1 22 2

2 0 1

11 22

2
X

T a a
p p

     
    
 
 

. 

Suppose we have observed n periods, and in m cases we have 

had leftovers and in n m  cases we have had lost sales. 

We consider three types of parameters 
X

m and 
X

  

estimators: estimators using only leftovers periods ˆ
x  and 

ˆ
x ; estimators using only lost sales periods 

( )
ˆ

t

x  and 
( )

ˆ
t

x ; 

and weighted estimators  

( )
ˆ ˆ ˆ ,

t

x x

m n m

n n


      ( )

ˆ ˆ ˆ
t

x x

m n m

n n


     . 

We estimate the parameters given two samples: the selling 

durations, i.e. the moments of time at which the vendor runs 

short, t1, t2,…, 
n mt  , 1, ...,

i
i n m t T    , if there are lost 

sales; and the sizes of sales during T x1, x2,…, xm, 

1, ...,
i

i m x Q   , if there are leftovers at the end of the 

period. In Jain, Rudi, and Wang (2015) it is shown that for 

Poisson and normal demand distributions in the case of 

stock-out all the information contained in the timing of sales 

occurrences is captured by the timing of stock-out.  

We assume that the customer satisfy the demand as far as 

possible when the amount required is more than the 

remainder; and the lot sizes are the same for each period.  

The first equation for the estimators ˆ
x  and ˆ

x  

ˆ ˆ ( )
x x

h Q      we derive from equation ,
X

X

Q
h

  
   

 
 

where 

2
1

( ) exp
22

x
t

x dt



 
   

  
 ,   1

( )
     , h m n . 

By equating the theoretical and empirical conditional means, 

we obtain the second equation 
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1

1
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 ; ̂  and ŝ  are the corresponding 

estimators. 

Thus, taking into account the connection between the 

parameters 
X

 , 
2

X
  and  E  ,  Var  ; see Kitaeva 

et al. (2016), we get 

( ) (1 ) (1 )
ˆ

(1 ) (1 )

t

x

h F h
Q

h F h

   
 

   
, 

 
 

( )

3

(1 ) (1 )
ˆ 1 .

(1 ) (1 )
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h F h
Q

h F h

   
   

   
 

The numerical study is designed in the following manner. 

First, we consider uniform at [2, 8] batch size distribution. It 

follows that a1 = 5 and a2 = 28. Intensities 
1

1  , 
2

2  , 

11
0.5p  , 

22
2p   and period 200T  . Second, batch size 

is assumed to be exponentially distributed with a1 = 4. It 

follows that a2 = 32. Intensities 
1

2  , 
2

3  , 
11

0.3p  , 

22
0.7p  , and period 250T  . 

We replicate the procedures ten times for n = 100 and 

n = 300. Tables 1 and 2 report the mean absolute percent 

errors (MAPE) of corresponding estimates in percentages, for 

example,  
( )

10

1

ˆ1
ˆM APE 100%

10

i

x X

x

i X

  
 


 . 

Table 1. Uniform distribution, xμ = 1200 ,
 

.xσ 85 79  

MAPE(∙)% 

Q 
ˆ

x  ( )
ˆ

t

x  ̂
 

ˆ
x  ( )

ˆ
t

x  ̂
 

n = 300 

1100 0.98 0.48 0.54 13.57 5.15 6.22 

1200 0.41 0.43 0.42 5.11 6.20 5.56 

1300 0.46 1.75 0.59 3.79 10.33 4.54 

n = 100 

1100 1.50 0.72 0.82 14.97 9.10 9.73 

1200 0.62 0.56 0.58 9.32 7.12 8.17 

1300 0.59 2.33 0.74 7.23 14.68 8.16 

Table 2. Exponential distribution, xμ = 2300 ,
 

.xσ 141 7  

MAPE(∙)% 

Q 
ˆ

x  ( )
ˆ

t

x  ̂
 

ˆ
x  ( )

ˆ
t

x  ̂
 

n = 300 

2200 0.62 0.27 0.35 8.84 3.89 5.11 

2300 0.29 0.29 0.29 4.31 5.43 4.79 

2400 0.28 0.70 0.37 3.55 8.97 4.80 

n = 100 

2200 0.83 0.50 0.58 10.96 9.50 9.77 

2300 0.66 0.77 0.70 8.29 8.91 8.59 

2400 0.55 0.82 0.61 8.51 9.92 8.62 

 

 

Fig. 1. Exponential distribution, Q = 2400, n = 100. 

 

Fig. 2. Exponential distribution, Q = 2300, n = 100. 
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Fig. 3. Exponential distribution, Q = 2200, n = 100. 

In Figures 1−3 the numerical results for exponential batch 

size distribution are represented for n = 100, Q = 2400 > 
X

 , 

Q = 2300 = 
X

 , and Q = 2200 < 
X

 .  
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