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A B S T R A C T

Systematic analysis of the stable carbon isotopic composition of fossil land plants (δ13Cp) has the potential to
offer new insights regarding paleoclimate variation and plant-environment interactions in early terrestrial
ecosystems. δ13Cp was measured for 190 fossil plant specimens belonging to 10 genera of Early to Late
Devonian age (Archaeopteris, Drepanophycus, Haskinsia, Leclercqia, Pertica, Psilophyton, Rhacophyton, Sawdonia,
Tetraxylopteris, and Wattieza) and 2 genera of Early Carboniferous age (Genselia and Rhodeopteridium) collected
from sites located mainly in the Appalachian Basin (22–30°S paleolatitude). For the full carbon-isotopic dataset
(n=309), δ13Cp ranges from −20.3‰ to −30.5‰ with a mean of −25.5‰, similar to values for modern C3

land plants. In addition to a secular trend, δ13Cp exhibits both intra- and intergeneric variation. Intrageneric
variation is expressed as a small (mean 0.45‰) 13C-enrichment of leaves and spines relative to stems that may
reflect differential compound-specific compositions. Intergeneric variation is expressed as a much larger (to
~5‰) spread in the mean δ13Cp values of coeval plant genera that was probably controlled by taxon-specific
habitat preferences and local environmental humidity. Among Early Devonian taxa, Sawdonia yielded the most
13C-depleted values (−27.1 ± 1.7‰), reflecting lower water-use efficiency that was probably related to growth
in wetter habitats, and Leclercqia, Haskinsia, and Psilophyton yielded the most 13C-enriched values
(−23.0 ± 1.6‰, −22.3 ± 1.3‰, and −24.8 ± 1.6‰, respectively), reflecting higher water-use efficiency
probably related to growth in drier habitats.

1. Introduction

The Devonian was a period of revolutionary changes in terrestrial
floras, landscapes, and continental climates (Algeo et al., 1995, 2001;
Gibling and Davies, 2012; Gibling et al., 2014). Although bryophytes
(non-vascular plants) had appeared during the mid-Ordovician and
tracheophytes (vascular plants) by the late Silurian (Wellman et al.,

2003; Steemans et al., 2009), the continents remained sparsely vege-
tated until the Devonian. That period witnessed major morphological
adaptations and diversifications among vascular land plants as well as
order-of-magnitude increases in the complexity and geographic extent
of terrestrial ecosystems (Gensel and Edwards, 2001; Taylor et al.,
2009). Early Devonian land plants were mostly small (heights of no
more than a few tens of centimeters), shallowly rooted where known,
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and limited to moist lowland habitats (Xue et al., 2016). By the end-
Devonian, vascular land plants had evolved leaves, complex root sys-
tems, secondary supporting tissues (leading to tree stature), and de-
siccation-resistant reproductive propagules (seeds) that facilitated their
spread into drier upland habitats (Mosbrugger, 1990; Driese et al.,
1997; Gerrienne et al., 2004; Meyer-Berthaud et al., 2010; Hao and Xue,
2013a; Silvestro et al., 2015). [Note: “upland” is a general term sig-
nifying land lying above the level of local stream flow and flooding.]
These changes resulted in an increase in organic carbon burial, a rise of
O2 and a drawdown of CO2 in the atmosphere, and global climatic
cooling, setting the stage for the Late Paleozoic Ice Age that began in
the Early Carboniferous (Algeo et al., 1995, 2001; Berner, 1997; Le Hir
et al., 2011).

The stable carbon isotopic composition of plants (δ13Cp) differs from
that of their carbon source (atmospheric CO2) owing to photosynthetic
fractionation (Farquhar et al., 1982, 1989). Modern C3 plants fix carbon
via the Calvin-Benson cycle with an average fractionation of ca. –20‰,
yielding organic material with a δ13C value of −26 ± 5‰ (Raven
et al., 2004). Devonian vascular land plants are thought to have been
exclusively C3 plants (Taylor et al., 2009), and their carbon isotopic
compositions are therefore likely to have been controlled by the same
climatic and environmental factors as for modern C3 plants (e.g., tem-
perature, humidity, and atmospheric pCO2 and δ13CCO2). To date, the
carbon isotopic compositions of specific Devonian terrestrial plant
fossils (as opposed to bulk sedimentary organic carbon) have been in-
vestigated in only a few studies of fungi (Boyce et al., 2007), lichens
(Fletcher et al., 2004), liverworts (Graham et al., 2010), and vascular
plants (Beerling et al., 2002; Feng et al., 2014).

The present study is the first systematic investigation of carbon
isotopic variation among a large group of Devonian and Early
Carboniferous vascular land plants and represents by far the largest
such analytical dataset to date. We made 309 measurements of δ13Cp

(p=plant) on 190 unique specimens of fossil plants belonging to 12
widespread genera of Early Devonian to Early Carboniferous age (Table
S1). Our goals in this study were to (1) characterize δ13Cp variation for
each fossil plant taxon, (2) investigate time-independent δ13Cp varia-
tion within and among taxa that might reflect large-scale geographic
(e.g., paleolatitudinal) or local environmental influences, and (3) use
these patterns of variation to draw inferences concerning the ecology of
individual early land plant taxa. Here, we show that there are sig-
nificant differences in δ13Cp between the 12 genera of this study that
are probably of primary (in vivo) origin, and that were most likely
related to local humidity and habitat preferences among early vascular
land plants.

2. Fossil plant taxonomy and paleoecology

2.1. Fossil plant taxa

The fossil plants analyzed in this study belong to 12 different genera
of tracheophytes, representing early members of the lycophyte and
euphyllophyte lineages (Fig. 1A). All of the fossil plants in this study
have been the subject of at least partial morphological reconstructions
(Fig. 1B). Although many fossil specimens were identified to the species
level, we conducted our evaluation of δ13Cp variation at the genus level
owing to (1) lack of species assignments for about half of the individual
specimens, (2) uncertainty in some species-level assignments, and (3)
the impracticability of analyzing carbon-isotopic patterns in a dataset
with excessive splitting into species. Among the 12 genera analyzed, 10
have overlapping ranges extending through part or all of the Devonian
(Archaeopteris, Drepanophycus, Haskinsia, Leclercqia, Pertica, Psilophyton,
Rhacophyton, Sawdonia, Tetraxylopteris, and Wattieza) and two are en-
tirely of Early Carboniferous age (Genselia and Rhodeopteridium; Fig. 2).
A brief summary of the key anatomical features and paleoecologic/
geographic characteristics of each genus follows:

Sawdonia (Dawson) Hueber is one of the early zosterophyllopsids,

belonging to the Lycophyta. This plant is pseudomonopodially bran-
ched with circinate tips; reniform sporangia are borne along the sides of
some stems and anatomy consists of an exarch haplostele (Hueber,
1971; Rayner, 1983; Gensel et al., 1975; Taylor et al., 2009; Gensel and
Berry, 2016). It was widespread during the Early Devonian (Gensel,
1992; Kenrick and Crane, 1997; Gensel and Berry, 2016) but is also
found in the Late Devonian (Hueber and Grierson, 1961). Our dataset
includes both S. ornata and S. acanthotheca, although most specimens
were not distinguished at the species level.

Drepanophycus Göppert belongs to the Drepanophycaceae, sister to
other lineages of Lycopsida (Kenrick and Crane, 1997). Stems range
from several millimeters to centimeters in diameter and from several
centimeters to a meter in length. Leaves are unbranched falcate mi-
crophylls up to several millimeters long with a single prominent middle
vascular thread, and they were arranged spirally or randomly on the
stem. Reniform sporangia occur on short stalks between the leaves (Li
and Edwards, 1995; Li et al., 2000). However, this genus exhibits
considerable variation in leaf morphology and may be in need of re-
vision. This taxon had a creeping to erect and sometimes dichotomizing
rhizomatous growth habit. It existed through most of the Devonian
Period and is found in eastern Canada, northeastern USA, China, Russia,
and Europe (Stubblefield and Banks, 1978; Gensel and Berry, 2001; Xu
et al., 2013). About half of the specimens used in the present study
belong to D. spinaeformis, and the remainder were not distinguished at
the species level.

Leclercqia Banks, Bonamo and Grierson is a member of the
Protolepidodendraceae (Lycophyta) (Gensel and Kasper, 2005; Gensel
and Albright, 2006). It is a slender, herbaceous plant, with distinctive
leaves that typically exhibit five divisions and that bear sporangia on
their upper surface. At least some species exhibit hook-shaped leaves
that may have allowed a vine-like climbing habit (Xu et al., 2011).
Leclercqia is distinguished in being a homosporous plant with a ligule;
ligules otherwise are found only in heterosporous taxa (Grierson and
Bonamo, 1979; Bonamo et al., 1988; Taylor et al., 2009; Benca et al.,
2014). It existed from the late Early to the Middle Devonian and has a
particularly wide distribution, being found in North America, Europe,
Africa, Australia, and China (Banks et al., 1972; Bonamo et al., 1988;
Meyer-Berthaud et al., 2003; Taylor et al., 2009; Xu et al., 2011;
Prestianni et al., 2012; Benca et al., 2014). It was present mainly in
warm, dry climates (Berry, 1994; Meyer-Berthaud et al., 2003), al-
though some studies have claimed a wider environmental range (Xu
and Wang, 2008). Our dataset includes both L. complexa and L. an-
drewsii, although half of the specimens were not distinguished at the
species level.

Haskinsia Grierson and Banks is a herbaceous lycopsid (Bonamo
et al., 1988; Xu et al., 2008; Yang et al., 2008; Taylor et al., 2009). It
was once regarded as a species of Drepanophycus but was later placed
with the Protolepidodendrales because of the presence of petiolate
deltoid-shaped sporophylls (Grierson and Banks, 1983; Berry and
Edwards, 1996; Xu and Berry, 2008). This taxon was widespread during
the Middle to early Late Devonian age, being known from North
America, South America, Russia, and China; it had wide environmental
tolerances, thriving in both warm tropical and cool temperate condi-
tions (Xu et al., 2008). The relatively small number of specimens in our
dataset includes H. hastata, H. sagittata, and specimens not identified at
the species level.

Psilophyton (Dawson) Hueber is one of the best-known members of
the trimerophyte grade of basal euphyllophytes (Andrews et al., 1968;
Banks et al., 1975; Doran et al., 1978; Trant and Gensel, 1985; Stein,
1993; Gerrienne, 1995, 1997). The plant consists of a main axis and
multiply divided lateral branches, some of which terminate in pairs of
fusiform sporangia. Stem anatomy, where known, is a centrarch hap-
lostele. Intrageneric variation in sporangial length and in the presence
and type of emergences is significant (Doran, 1980; Gerrienne, 1995;
Taylor et al., 2009). Psilophyton was widespread in the Early to earliest
Middle Devonian and has been found in the northeastern United States
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(Maine and New York), Canada (Quebec and New Brunswick), Belgium,
the Czech Republic, and Yunnan, China (Taylor et al., 2009; Gensel,
2017). The most common species in our dataset is P. princeps, although
specimens of P. crenulatum, P. dawsonsii, and P. forbesii are also present,
as well as some specimens not identified at the species level.

Pertica Kasper and Andrews is also a basal euphyllophyte (Kasper
and Andrews, 1972; Granoff et al., 1976). It exhibits a dominant main
stem with regularly arranged lateral branches, organized either in a
tight spiral or a four ranked/decussate pattern. Lateral branch mor-
phology varies from equally dichotomous to a more pseudomonopodial
pattern. These plants bore numerous fusiform sporangia in dense clus-
ters on ultimate branchlets (Kasper and Andrews, 1972; Granoff et al.,
1976; Taylor et al., 2009). Pertica existed from the Early to the Middle
Devonian, with occurrences known from northern Maine, New Bruns-
wick, and Quebec. Our dataset consists mainly of the species P. varia
along with some specimens not identified at the species level.

Wattieza refers to compression fossils belonging to the order
Pseudosporochnales within the class Cladoxylopsida (Leclercq and
Banks, 1962; Gensel et al., 2001; Berry and Fairon-Demaret, 2002).
Pseudosporochnaleans are all similar in their adult forms, consisting of
small to large trees with a main trunk bearing a dense crown of frond-
like branches. Instead of leaves, the branches bear densely ramified
ultimate appendages with either terminally erect (Pseudosporochnus) or
reflexed (Wattieza) sporangia. The specimens analyzed for this study,
which came from the West Cave Mountain and Steenberg/South
Mountain quarries in New York, possessed key characteristics of Pseu-
dosporochnaleans including distinctive clusters of sclerotic cells
(Leclercq and Banks, 1962; Gensel et al., 2001; Berry and Fairon-
Demaret, 2002) but lacked sporangia. However, a recent study of new
South Mountain specimens identified them asWattieza and linked them
to the fossil tree trunks known as Eospermatopteris (Stein et al., 2007).
Pseudosporochnaleans existed from the Middle to early Late Devonian
in Europe, Venezuela, North America, and possibly China (Gensel and
Andrews, 1984; Taylor et al., 2009).

Rhacophyton Crépin belongs to the order of Rhacophytales sensu
Taylor et al. (2009; n.b., assigned to Rhacophytaceae or Protopteridales
by others). According to Andrews and Phillips (1968), this plant grew to
~1-m-tall bushes, and its foliage consisted of a main axis bearing pairs
of lateral branches that fork twice basally. Two of the lateral branches
were multiply divided and terminated in elongate sporangia, and the
other two extended further and bore higher-order branches. In some
cases, the fertile branches were produced as second-order units on first-
order laterals. The stem anatomy of the lateral branches consisted of
clepsydroid primary xylem surrounded in some instances by a limited
amount of secondary xylem. Rhacophyton existed during the Late De-
vonian and has been found in North America, Europe, possibly Bear
Island (New Brunswick), and western Siberia (Andrews and Phillips,
1968; Cornet et al., 1977; Dittrich et al., 1983; Cressler III, 1999, 2006;
Taylor et al., 2009). Our dataset includes a few specimens identified as
R. ceratangium although the majority were not identified at the species
level.

Rhodeopteridium (Presl) Zimmermann (formerly Rhodea Presl) is a
genus based mainly on foliage compression/impression fossils that is
thought to represent an early seed plant (Jennings, 1976). Pinnately
compound leaves terminate in barely laminate ends (Read, 1955). Si-
milar fossil leaves with well-preserved petioles are known from early
seed ferns of Late Mississippian (Chesterian) age in Illinois (Jennings,

1976). Most specimens are of Early Carboniferous (Tournaisian-Na-
murian A) age, but it may extend into the basal late Carboniferous.
None of the small number of Rhodeopteridium specimens in our dataset
was identified at the species level.

Tetraxylopteris Beck is an aneurophytalean progymnosperm (Beck,
1957; Bonamo and Banks, 1967; Scheckler and Banks, 1971; Hammond
and Berry, 2005). It is characterized by a main stem with extensive
secondary xylem and bearing several orders of laterals in a decussate
pattern, each with a four-armed vascular strand. In fertile regions,
second-order laterals dichotomize twice, and each division bears pin-
nately arranged clusters of sporangia. Tetraxylopteris existed during the
Givetian and early Frasnian. To date, it is known from only two areas:
the Catskill Delta in New York, and the Campo Chico Formation in
northwestern Venezuela. A few of our specimens are assigned to T.
schmidtii but most were not identified at the species level.

Archaeopteris (Dawson) Stur belongs to the Archaeopteridalean
progymnosperms. It was a tall tree similar to some modern conifers, but
it had pseudomonopodial branching in the lateral branch system (Beck,
1962) and laminate leaves with helices or decussate patterns of leaf
attachment (Scheckler, 1978). Some ultimate clusters of leaves appear
cone-like, bearing sporangia on their adaxial surfaces, but all species
are thought to have been free-sporing and heterosporous. Archaeopteris
is usually preserved as impression and compression fossils, and its
fossilized trunks, named Callixylon when found separately, exhibit ex-
tensive secondary xylem. It ranged from the latest Middle to Late De-
vonian, with a number of different species being known from localities
in North America, Russia, Europe, Morocco, China, Australia, and Co-
lombia (Beck and Wight, 1988; Cressler III, 1999, 2006; Meyer-
Berthaud et al., 1999; Berry et al., 2000). By the middle of the late
Frasnian, monospecific archaeopterid forests had become the dominant
vegetation type in lowland areas and coastal settings over a vast geo-
graphic area (Algeo et al., 2001). About one third of the 51 specimens
in our dataset are assigned to various species, including A. fissilis, A.
halliana, A. jacksonii, A. macilenta, and A. rogersii, although most spe-
cimens were not identified at the species level.

Genselia Knaus may have been a seed fern (Knaus, 1995; Taylor
et al., 2009). This genus has bipinnate compound leaves, non-bifurcate
rachises, and in some, bifurcations at the tip of stems, terminating in
elongated sporangia (Knaus, 1994, 1995; Skog and Gensel, 1980;
Taylor et al., 2009). It is found in the Lower Carboniferous Pocono and
Price Formations of Pennsylvania, Maryland, West Virginia and Vir-
ginia, in the Appalachian Basin of North America. None of the Genselia
specimens in our dataset was identified at the species level.

2.2. Paleoclimate and paleoenvironments

The locales from which fossil plants in this study were collected
have a quasi-global distribution (Fig. 3A), although a large majority of
the analyses (n=289 of 309, or 93% of the total dataset) are of spe-
cimens from the Appalachian Basin or other areas in eastern North
America, at locales ranging from southwestern Virginia in the south to
the Gaspé Peninsula of Québec in the north (Fig. 3B). Laurentia (Pa-
leozoic North America) drifted northward during the Devonian Period
(416–359Ma), causing the Appalachian Basin to shift from ~40–35°S in
the Early Devonian to ~30–25°S in the Late Devonian (van der Voo,
1988, 1993). Thus, many of the present study locales moved from the

Fig. 1. Devonian plant taxa of the present study: (A) phylogenetic relationships, and (B) morphological reconstructions. Reconstructions show full shoot system of
plant except for Tetraxylopteris (lateral branch); open scale bars equal 10 cm and hachured scale bars equal 1m. Sources: (A) Kenrick and Crane (1997), Hilton and
Bateman (2006), and Taylor et al. (2009); (B) Sawdonia (http://www.ucmp.berkeley.edu/IB181/VPL/Lyco/Lyco1.html, Drepanophycus (Stewart and Rothwell,
1993), Leclercqia (Bonamo et al., 1988), Haskinsia (http://dinoera.com/tags/haskinsia), Psilophyton (https://openclipart.org/detail/231687/psilophyton-princeps),
Pertica (Kasper and Andrews, 1972), Wattieza (Stein et al., 2007) [note: reconstructions of European Pseudosporochnus are slightly different, e.g., Berry and Fairon-
Demaret, 2002], Rhacophyton (Cornet et al., 1977), Rhodeopteridium (Jennings, 1976), Tetraxylopteris (Bonamo and Banks, 1967), Archaeopteris (www.devoniantimes.
org), and Genselia (Knaus, 1995).
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humid temperate zone into the dry subtropical zone during this in-
terval. However, this shift occurred at tectonic timescales (i.e., over a
~50-Myr interval) and was monotonic in direction (i.e., did not re-
verse), so any regional climate changes induced by plate motion during
this interval are likely to have been slow and steady. More rapid climate
changes (i.e., at timescales of a few million years or less) are likely to
have had non-plate-tectonic causes. Most of the remaining fossil plant
specimens (n=20, 7% of total) are from a few sites in northwestern
China (Xu et al., 2015; Zheng et al., 2016) and Venezuela (Berry, 1994;
Berry and Edwards, 1996).

The depositional environments in which the 12 fossil plant taxa of
the present study grew ranged from coastal deltas to upper floodplains,
with the former being the most common environment. Coastal deltas
are represented, for example, by most of the fossil-plant-bearing strata
of the Emsian Battery Point Formation in Gaspé Bay, Quebec, and the
more western portions of the Emsian-lower Eifelian Campbellton
Formation in New Brunswick (Griffing et al., 2000; Hotton et al., 2001;
Kennedy et al., 2012, 2013). Especially at Gaspé Bay, paleocurrent data
document mainly seaward transport of sediment by rivers, and mul-
tistory sandstone bodies are interpreted as deposits of high-sinuosity
river channels (Griffing et al., 2000). Closer to the coastline, bidirec-
tional cross-bedding records tidal influence (Bridge, 2000; Griffing
et al., 2000) and some trace fossils (e.g., Diplocraterion) may represent
brackish conditions within estuaries (Lawrence, 1986). Deltaic pro-
cesses are evidenced by a complex stratigraphic architecture of levees
and crevasse splays, freshwater lakes and marshes, lacustrine deltas,
brackish marshes and interdistributary bays, and sandy and muddy
tidal flats (Griffing et al., 2000).

Coastal wetlands apparently developed frequently during the late
Givetian to early Frasnian, especially at times of relatively high sea
level, which resulted in marine incursions into generally terrestrial
environments (Baird and Brett, 2008). Multiple wetland subenviron-
ments are represented by stacked dark meter-thick sandstones at Riv-
erside Quarry, Gilboa (Stein et al., 2012), dark siltstones and shales at
Blenheim, Gilboa (Banks et al., 1972), and lighter gray to yellowish-
brown sandstones at Manorkill Falls, Gilboa (Driese et al., 1997). Si-
milar environments developed in the Late Devonian, as in the Fa-
mennian Hampshire Formation at Elkins, West Virginia (Scheckler,
1986a). In these settings, trees and understory plants appear to have
had limited root penetration. During the Late Devonian, wetland floral
diversity was relatively limited: Archaeopteris and Rhacophyton were
endemic, although other taxa (especially arborescent lycophytes) oc-
cupied peri-swamp habitats and were washed in during floods and
storms (Scheckler, 1986a). By the Tournaisian, coastal swamp habitats
were increasingly dominated by lycophytes (Scheckler, 1986b; Rygel
et al., 2006; Gensel and Pigg, 2010).

Upper floodplain settings are represented by fine-grained, multis-
tory sandstone bodies and red mudstones in fining-upward successions
lacking any evidence of marine influence. These deposits represent
wide, meandering upland river channels and overbank (floodplain)
deposits that were subject to frequent wet-dry cycles, e.g., through
seasonal flooding (Cressler III, 1999, 2006; Cressler III et al., 2010).
Examples of this type of environment are found in the Famennian
Duncannon Member of the Catskill Formation at Red Hill, Pennsyl-
vania. Taphonomic observations indicate that both fossil plants and
animals lived close to their sites of deposition. Fossil plant remains are
often found in reduced lenses of greenish-gray mudstone, probably

representing floodplain pond deposits related to major channel avulsion
events (Cressler III, 1999, 2006; Cressler III et al., 2010).

3. Methods

The study specimens consist of well-preserved compression fossils of
whole plants or parts of plants (i.e., stems, branches, and/or leaves)
that are intact or nearly so (Fig. 4). All specimens were inspected using
a binocular microscope to verify the state of fossil preservation, and a
subset was examined using scanning electron microscopy. We initially
bulk macerated each plant fossil in acid baths, yielding bulk organic
material that was undifferentiated by plant anatomical parts. These
specimens were digested successively in hydrochloric acid (HCl) and
hydrofluoric acid (HF), with three rinses in distilled water between
dissolution steps. We subsequently sampled the plant fossils by peeling
pieces of organic material from the surface of each compression fossil,
permitting us to analyze specific anatomical parts of each plant (e.g.,
stems, leaves, spines, and sporangia). These specimens were treated
individually with HCl and HF, as needed, to remove rock matrix ad-
hering to the organic material. Organic fragments were picked out of
the residue, rinsed in distilled water, dried, and inspected under a bi-
nocular microscope to verify the removal of all impurities.

Carbon isotopic analyses were performed using EA-IRMS systems at
the Stable Isotope Research Facility (SIRF) of the Department of Earth
and Atmospheric Sciences of Indiana University, Bloomington (IU) and
the Department of Earth and Environmental Sciences of the University
of Texas at Arlington (UTA). Analytical protocols were similar in the
two laboratories: powdered samples were weighed into silver capsules
that were acidified repeatedly with 6% sulfurous acid (H2SO3) in order
to remove carbonate phases. Samples were analyzed using a Costech
4010 elemental analyzer interfaced with a Thermo Finnigan Conflo III
device to a Thermo Finnigan Delta Plus XP isotope ratio mass spec-
trometer (IRMS). All isotopic results are reported in per mille (‰)
variation relative to VPDB. At UTA, the average standard deviation was
0.04‰ for both the USGS-24 standard (δ13C=−16.049‰) and un-
knowns. At IU, the average standard deviation was 0.06‰ for
Acetanilides #1, #2, and #3, and Corn starch #1 (Schimmelmann
et al., 2016) and unknowns. Interlaboratory calibration was undertaken
by analyzing a common set of 12 samples at both IU and UTA. The co-
analyzed samples yielded a correlation (r2) of 0.997 with an offset of
0.21‰ between the two labs, which was corrected for in the integrated
C-isotope dataset by averaging the difference (i.e., by reducing UTA
values by 0.10‰ and increasing IU values by 0.10‰).

4. Results

4.1. General results

In this study, we generated a total of 309 analyses of plant δ13C from
190 unique plant specimens (Table S1). The number of analyses per
taxon varied considerably: the four most analyzed taxa were
Archaeopteris (80 analyses of 51 unique specimens), Drepanophycus (40/
21), Rhacophyton (33/18), and Tetraxylopteris (31/21) (Table 1). About
half of the specimens were analyzed twice, mostly to generate paired
δ13C values for different anatomical parts (e.g., stems and leaves) but
sometimes to check on the reproducibility of results for the same ana-
tomical part of a single specimen. A handful of specimens were

Fig. 2. Stratigraphic ages of fossil plant locales and ranges of fossil plant taxa used in this study. Marine conodont and terrestrial palynomorph zonations are from
Richardson and McGregor (1986), Ziegler and Sandberg (1990), Streel et al. (2000), and Playford and Dino (2005); the timescale is from Gradstein et al. (2012).
Locales: Gaspe Peninsula, Quebec, 1=Haldimand Head, 2=Aiguillon, Cap-aux-Os, and L'Anse-a-brilliant, and 3= Seal Rock; New Brunswick, 1= south shore
Chaleur Bay (localities A, B, F), Dalhousie, Pin Sec Point, and Peuplier Point, and 2=Atholville and Restigouche; Hujiersite Fm (Xinjiang, China), 1=Gannaren,
2=Hwy 217, 3=251 Hill, and 4=Hujiersite. Specimens of the Oneonta, Sonyea, Escuminac, and Pocono formations (italicized) are from multiple locales, but all
fall within the narrow age ranges shown for each unit. For plant taxa, solid bars indicate peak abundance, open bars the full established biorange, and dashed bars
uncertain extensions of the biorange.
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analyzed three or more times. The full dataset of 309 analyses yielded a
mean δ13Cp of −25.5‰ with a standard deviation of 1.8‰ and a range
from −20.3‰ to −30.5‰. Individual taxa yielded mean δ13Cp ranging
from −22.3 ± 1.3‰ for Haskinsia to −27.3 ± 1.7‰ for Sawdonia
(Table 1).

The full δ13Cp dataset exhibits a distinct secular pattern (as reflected
in a LOWESS curve) that is dominated by a long-term shift toward
higher δ13Cp values through most of the Devonian and Early
Carboniferous (note: this secular pattern is not shown and will not be
considered here because it is the focus of a companion paper that is in
preparation). To determine the non-secular component of total δ13Cp

variation, we calculated the difference between each δ13Cp value and
the age-equivalent mean for the full δ13Cp dataset as given by the
LOWESS curve, i.e., Δ13Cp (Fig. 5). Thus, a fossil specimen with a Δ13Cp

of 0‰ has a carbon-isotopic composition identical to the LOWESS mean
for the δ13Cp dataset at a given time, and positive and negative Δ13Cp

values represent 13C enrichment and depletion of the specimen, re-
spectively, relative to the age-equivalent LOWESS mean value. In this
manner, the overall tendency of each fossil plant taxon toward 13C
enrichment or depletion can be evaluated independently of long-term
secular variation in the δ13Cp dataset (Fig. 6). The non-secular variance
in our δ13Cp dataset has two components: (1) variance among different
plant taxa (‘intergeneric variation’), and (2) variance within individual
taxa (‘intrageneric variation’). The proportion of total variance in the
Δ13Cp dataset represented by intrageneric variance (i.e., σ2intra / σ2total)
was calculated as:

=( )[ (X–µ ) /N ] /[ (X–µ ) /N ]
i 1

12
i

2
i t

2
t (1)

where X is the Δ13Cp for a given fossil specimen, μi is the mean Δ13Cp

for a given plant genus i, and μt is the mean Δ13Cp for all fossil speci-
mens. The numerator of the equation sums the variances of the 12 fossil
plant genera ( =i 1

12 ) calculated separately (i.e., [Σ(X–μi)2 / Ni]), and it is
divided by the total variance for all fossil specimens (i.e., [Σ(X–μt)2 /
Nt]) to yield the fraction of total variance attributable to intrageneric
variance (70%); the remainder (30%) represents intergeneric variance.
Below, we analyze intrageneric and intergeneric patterns of variation as
a function of possible taxonomic, anatomical, geographic, and en-
vironmental controls (Tables 2–3). Note that this analysis is conducted
on the basis of Δ13Cp values (Table S1), i.e., the deviations from the
long-term secular δ13CP trend (Fig. 6), and is thus independent of the
secular component of variance in the δ13Cp dataset.

We considered the possibility of a geographic gradient in Δ13Cp,
e.g., along a paleolatitudinal transect. Modern plants show a distinct
latitudinal gradient in δ13Cp that is a function of temperature and
precipitation influences (Diefendorf et al., 2010) and/or light levels
(Kohn, 2010). However, the high proportion (> 90%) of specimens
from the Appalachian Basin in this study (Figs. 2–3) leads to a clus-
tering of data within a relatively narrow range of paleolatitudes, re-
sulting in our inability to identify any significant paleolatitudinal
trends. A more robust test of geographic influences on Devonian fossil
plant δ13C will require a larger dataset covering a wider range of pa-
leolatitudes.

4.2. Intrageneric variation in plant δ13C

For a subset of specimens (n=32), we analyzed carbon from both
the stem and the leaf or spine (not interpreted as a leaf homologue) of
the fossil plant, allowing us to evaluate variation in δ13Cp as a function
of plant anatomy. The assessment of anatomical variation was made for
6 plant genera (Table 3). Among these genera, four showed higher
δ13Cp for leaves/spines than for stems, although the difference was
statistically significant (based on a Student's t-test) only for Sawdonia,
which yielded the largest Δ13C(spine-stem) value of any genus (1.6‰). The
relatively small number of analyses per genus was a factor limiting the
statistical significance of these results for individual plant taxa. All 6

genera together (n=32) yielded a mean leaf/spine-vs-stem difference
of 0.45‰, which is statistically significant (p(α)= 0.01; Table 3).
These results suggest that fossil plant leaves and spines are system-
atically slightly enriched in 13C relative to stems of the same fossil plant
specimen (as seen in 29 out of 32 of the paired analyses).

4.3. Intergeneric variation in plant δ13C

The 12 fossil plant genera of this study exhibit systematic differ-
ences in Δ13Cp (Fig. 7). Three taxa yielded mean Δ13Cp values that are
significantly higher than the age-equivalent LOWESS mean: Haskinsia
(+2.4 ± 1.5‰; n=4), Leclercqia (+1.8 ± 1.0‰; n=24), and Psi-
lophyton (+0.9 ± 1.5‰; n=25), and one taxon yielded a significantly
lower mean value: Sawdonia (−1.2 ± 1.8‰; n=28) (note: for all, p
(α) ≤0.01; Student's t-test; Table 2). The remaining eight taxa have
mean Δ13Cp values within±0.5‰ of the average for the dataset as a
whole, among which only Archaeopteris yielded a significantly different
mean (−0.4 ± 1.2‰; p(α)= 0.002), mainly as a result of the ex-
ceptionally large number of analyses of this taxon (n=80; Table 2).
However, the result for Archaeopteris must be viewed cautiously be-
cause there are relatively few coeval Late Devonian taxa in our dataset
from which to construct the LOWESS mean trend. Thus, we consider
only Haskinsia, Leclercqia, Psilophyton, and Sawdonia to deviate sig-
nificantly in Δ13Cp from age-equivalent LOWESS mean values.

The critical time interval of our dataset for evaluating interspecific
Δ13Cp variation is the late Early through late Middle Devonian
(~405–385Ma), during which 6 of the 12 plant taxa analyzed in this
study have largely overlapping stratigraphic ranges. The overlap in
stratigraphic ranges facilitates intergeneric comparisons, and, not co-
incidentally, all four of the taxa showing large deviations from mean
LOWESS δ13Cp values are present in this interval, with three taxa
showing 13C-enriched values (Haskinsia, Leclercqia, and Psilophyton) and
one showing 13C-depleted values (Sawdonia) (see above). Importantly,
the offsets in δ13Cp between these taxa are relatively constant despite an
overall increase in mean LOWESS δ13Cp of ~3‰ from the late Early
Devonian to the late Middle Devonian (Algeo et al., in preparation). We
attribute these taxon-specific differences in 13C enrichment to local
environmental controls (see Section 5.3). In contrast, the 6 plant genera
analyzed from the early Late Devonian to Early Carboniferous
(~385–345Ma) have only partially overlapping stratigraphic ranges,
with no more than 2 taxa present in any given time window. The more
limited dataset for this time interval renders uncertain evaluation of
deviations in Δ13Cp from the mean LOWESS trend (thus our caution
with regard to interpreting Archaeopteris Δ13Cp values).

5. Discussion

5.1. Robustness of plant δ13C proxy

The fossil plant specimens used in this project were preserved as
compressions of stems, branches, leaves and spines (Fig. 4A–B). During
the carbonization process, most water and volatile organic compounds
in the plant tissue were lost, and the remaining material was preserved
as a black organic film that consists largely of carbon (Guo et al., 2010).
Even though compressed as flat layers, many fossils show well-pre-
served cell-scale anatomical features such as tracheids (Fig. 4C) and
cuticle (Fig. 4D). These observations confirm that pre-burial bacterial
decay of these relatively resistant tissues was limited in the specimens
that were selected for carbon-isotopic analysis in this study.

Vascular land plants exhibit internal carbon isotopic variation,
commonly with a > 5‰ range in δ13C among their constituent com-
pounds (O'Leary, 1988; Pate and Arthur, 1998). Although most types of
compounds decay rapidly in the burial environment, the surviving
compounds generally retain their characteristic carbon isotopic com-
positions (Benner et al., 1987). Cellulose and lignin are among the most
resistant compound types and commonly dominate the terrestrial
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Fig. 4. Representative study specimens: (A) Psilophyton forbesii stems and leaves, Emsian, Gaspé Peninsula, Québec; (B) Archaeopteris sp. stems and leaves, Frasnian,
West Virginia; (C) tracheids of Psilophyton charientos, Emsian, New Brunswick; (D) cuticle of Sawdonia sp., Emsian, Gaspé Peninsula, Québec. All specimens were
inspected using a binocular scope to verify the state of fossil preservation, and a subset was examined using scanning electron microscopy.

Table 1
Summary of carbon isotope analyses by taxon and plant part.

Number of specimens Number of carbon isotope analyses Mean δ13C (‰) Avg.

Stem Leaf Spine Indet. Total Stem Leaf Spine Indet.

Archaeopteris 51 36 17 27 80 −25.53 −25.32 −27.16 −26.04
Drepanophycus 21 23 7 10 40 −26.08 −25.52 −25.90 −25.94
Genselia 9 2 1 7 10 −22.66 −23.08 −23.72 −23.44
Haskinsia 4 2 2 4 −22.27 −22.31 −22.29
Leclercqia 13 16 3 5 24 −22.96 −23.91 −22.71 −23.02
Pertica 11 12 8 20 −25.55 −25.26 −25.43
Wattieza 8 6 5 11 −26.21 −26.74 −26.45
Psilophyton 17 13 12 25 −24.46 −25.27 −24.85
Rhacophyton 18 19 4 10 33 −24.51 −25.28 −25.82 −25.00
Rhodeopteridium 3 2 1 3 −23.71 −22.82 −23.41
Sawdonia 14 18 4 6 28 −27.46 −27.08 −25.85 −27.07
Tetraxylopteris 21 19 2 10 31 −25.56 −26.09 −27.01 −26.06
Total/average 190 168 25 14 102 309 −25.30 −25.18 −25.62 −25.87 −25.50

Notes: Indet. = indeterminate. Avg. = average (of stem + leaf + spine + indet. mean values).
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organic fraction preserved in sedimentary rocks (Arens et al., 2000),
especially in compression fossils of the type analyzed in this study.
Cellulose is up to ~3‰ heavier and lignin up to ~4‰ lighter than bulk
plant δ13C (Benner et al., 1987; O'Leary, 1988; Marino and McElroy,
1991; Badeck et al., 2005). Biomarker analysis of plant compression
fossils typically yields a range of alkanes, alkenes, benzenes, pristenes,
and polysaccharides derived in large part from decay of these primary

compounds (e.g., Gupta et al., 2007), so a part of the variance in the
Δδ13CP of an individual taxon in our dataset may reflect specimen-
specific variation in the proportions of cellulose versus lignin and their
derivatives (Arens et al., 2000).

Burial diagenesis can potentially modify the δ13C composition of
organic material through thermal cracking and release of methane at
high temperatures (i.e.,> 160 °C, or beyond the ‘oil window’; Faure
and Mensing, 2005). The released methane is depleted in 13C by
10–30‰, resulting in a small increase in the δ13C of the remaining
kerogen (generally< 1‰). The thermal maturity of Devonian sedi-
ments in the central Appalachian Basin exhibits a strong lateral

Time

Taxon A

Taxon B

Taxon C

(0 /
0
0
)

LOWESS
trend

13
C

δ

13Cp∆ =

Fig. 5. Model of Δδ13CP-X calculations. Relative to the LOWESS curve generated
from the full plant δ13C dataset, some fossil plant taxa exhibit systematically
higher or lower δ13C values. In this example, Taxon A exhibits higher-than-
average δ13C (positive Δδ13CP-X), Taxon B exhibits average δ13C (near-zero
Δδ13CP-X), and Taxon C exhibits lower-than-average δ13C (negative Δδ13CP-X).
The complete LOWESS curve for the δ13CP dataset will be published in a
companion study (Algeo et al., in review).
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Fig. 6. Deviations of δ13C of Devonian fossil plant specimens from the LOWESS reference curve (Δδ13CP-X) plotted as a function of specimen age. For each genus, the
regression of Δδ13CP-X against time is shown as a thin line; these regression lines are shown not to suggest that the Δδ13CP-X of a given taxon changes significantly with
time (for most taxa, there is not enough data to generate a statistically significant time-dependent trend) but, rather, to show which taxa yield Δδ13CP-X values that are
systematically higher or lower than the age-specific mean Δδ13CP-X values (0‰). Note that some taxa are systematically 13C-enriched and others are systematically
13C-depleted.

Table 2
Mean differences in Δ13Cp by taxon.

Number of
analyses

Mean (‰) St. dev.
(‰)

s.e. (‰) Student's t p(α)

Archaeopteris 80 −0.38 1.18 0.13 3.05 0.002
Drepanophycus 40 −0.26 1.08 0.17 1.32 0.189
Genselia 10 0.37 1.12 0.36 0.69 0.492
Haskinsia 4 2.41 1.48 0.74 3.31 0.001
Leclerqcia 24 1.81 1.02 0.21 6.57 0.001
Pertica 20 0.40 0.56 0.12 1.06 0.292
Wattieza 11 −0.51 0.49 0.15 1.28 0.201
Psilophyton 25 0.94 1.55 0.31 3.22 0.001
Rhacophyton 33 0.23 1.32 0.23 0.65 0.517
Rhodeopteridium 3 0.41 0.89 0.51 0.42 0.677
Sawdonia 28 −1.22 1.81 0.34 5.02 0.001
Tetraxylopteris 31 −0.05 1.35 0.24 0.37 0.714

Notes: bold type denotes significant values (= p(α) < 0.05); st. dev. = stan-
dard deviation; s.e. = standard error of the mean. Statistical software from
Zaiontz (2014).
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gradient: maturity is high on the eastern basin margin (Ro > 2.0;
T > 160 °C) but low to moderate on the western basin margin
(Ro < 1.0; T < 100 °C) (Obermajer et al., 1997; Milici and Swezey,
2006; Rowan, 2006; Repetski et al., 2008). In our study areas in eastern
New York and central West Virginia, the maximum burial depths of
Upper Devonian strata were from ~4 to 10 km, with peak burial tem-
peratures estimated to have been between ~150 and 170 °C (Friedman
and Sanders, 1982; Dorobek, 1989; Repetski et al., 2008). Thermal
maturity is also variable in New Brunswick and the Gaspé Peninsula of
Québec in eastern Canada. There, some Devonian strata have been
buried just a few kilometers (Heroux et al., 1979), whereas other units
have experienced maximum burial depths up to 12 km (Utting and
Hamblin, 1991), yielding peak burial temperature estimates ranging
from ~50 to 280 °C (Bertrand and Malo, 2001; Chi et al., 2001). We
tested the possibility of burial thermal effects on our dataset by plotting
δ13Cp against inferred maximum burial depths, but this yielded almost
no correlation (r=+0.03; n=309; p(α)> 0.5). We are cognizant that
the carbon isotopic compositions of our plant fossils may have been
influenced by bacterial and thermal decay. However, the δ13Cp values
of a single taxon at a specific outcrop tend to be relatively consistent in
our dataset (mostly showing< 1‰ variation), indicating a general lack
of random diagenetic effects on the plant fossils during burial.

5.2. Sources of anatomical variation in plant δ13C

Among modern plants, different plant parts exhibit systematic dif-
ferences in carbon isotopic compositions. Based on a compilation
of> 400 plant taxa, leaves are on average 0.96‰ and 1.91‰ more
depleted in 13C than roots and woody stems, respectively (Badeck et al.,
2005). This pattern is strong but not universal as ~10% of the taxa
examined in that study yielded leaf δ13C greater than stem δ13C. This
pattern appears to be independent of climatic conditions, as plants from
semi-arid habitats also exhibit leaf δ13C lower than stem δ13C (by an
average of 1.51 ± 0.42‰) (Nilsen and Sharifi, 1997). The origin of
these differences is not known with certainty: two leading ideas relate it
to carbon-isotopic fractionation in generating different types of organic
compounds (see Section 5.1), or preferential release of 13C-enriched
respiratory CO2 from leaves (Badeck et al., 2005).

In our dataset, leaves and spines are somewhat 13C-enriched relative
to stems (by 0.45‰ on average; Table 3; see Section 4.2). If the δ13C
values of leaves and spines were originally lower than that of stems by
~1–2‰ in Devonian plants, then burial decay must have caused a re-
lative shift of +1.5 to +2.5‰ in leaf/spine δ13C relative to stem δ13C.
Such a shift might have occurred owing to a greater loss of lipids and/or
increase in cellulose-derived compounds in the carbonized residue of
leaves and spines relative to stems during the fossilization process.
Further investigation will be needed to validate the existence and sig-
nificance of internal δ13C variation in Devonian and Carboniferous
fossil plants.

5.3. Sources of intergeneric variance in plant δ13C

5.3.1. Water-use efficiency
One mechanism that can lead to systematic differences in δ13C va-

lues between plant taxa is differences in water-use efficiency (WUE):
plants that grow in wet habitats do not need to limit water loss and,
hence, tend to open their stomata more widely in order to maximize
CO2 uptake at the cost of low water-use efficiency. This process leads to
maximum internal-leaf pCO2 and maximum carbon isotope dis-
crimination (i.e., lower δ13Cp) (Farquhar et al., 1989). In contrast,
plants that grow in drier habitats are forced to limit water loss through
their stomata (i.e., higher water-use efficiency), leading to less CO2

uptake, lower internal-leaf pCO2, and reduced carbon-isotope dis-
crimination (i.e., higher δ13Cp) as a result of a larger fraction of in-
ternal-leaf CO2 being utilized in photosynthesis (Farquhar et al., 1989).

The carbon isotopic composition of modern C3 land plants exhibits a
strong negative relationship to mean annual precipitation (MAP)
(Miller et al., 2001; Liu et al., 2005; Roden et al., 2005; Diefendorf
et al., 2010; Kohn, 2010). An increase in MAP from 0 to 1000mm yr−1

correlates with a ~4–5‰ depletion in δ13Cp, although this relationship
is non-linear because δ13Cp becomes less sensitive to changes in pre-
cipitation at high MAP (Diefendorf et al., 2010). This relationship exists
because land plants are more commonly water-limited than carbon-
limited and have a strong incentive to engage in greater water-use ef-
ficiency where water is scarce (Bacon, 2004; Macfarlane et al., 2004).
Plants tend to reduce stomatal conductance in arid regions in order to
conserve water, which causes a larger proportion of the CO2 that dif-
fuses into the leaf to be used in photosynthesis, resulting in reduced
fractionation (relative to the atmospheric carbon source) and heavier
δ13Cp values (Farquhar et al., 1989; Brugnoli and Lauteri, 1991; Poss
et al., 2000). The opposite pattern is found in humid regions, causing
δ13Cp values to become lighter. This relationship accounts for ~55% of
δ13C variance among modern C3 plants (Diefendorf et al., 2010).

A fundamental divide exists between species with high hydraulic
conductivity and low embolism resistance and those with low hydraulic
conductivity and high embolism resistance (Wilson, 2016). Mapping of
hydraulic ecospace shows that the high-conductivity/low-safety-margin
domain was occupied by many early vascular land plants, including
trimerophytes, lycophytes, cladoxylopsids, and sphenopsids, all of
which developed tracheids with scalariform pits that maximized hy-
draulic conductivity (Wilson and Knoll, 2010; Wilson and Fischer,
2011; Wilson, 2013, 2016). For some plants, this strategy was asso-
ciated with perennially wet habitats in which the danger of desiccation
was limited, e.g., as for arborescent lycophytes and other plants that
inhabited tropical lowland swamps during the Carboniferous Period.
For other plants, this hydraulic mechanism was associated with an
ecological strategy based on rapid growth and generational overturn
(known as ‘live fast, die young’), which possibly included all of the
zosterophyllophytes and basal euphyllophytes of the present study. For
example, Psilophyton dawsonii may have grown rapidly, as suggested by

Table 3
Differences in δ13CP between anatomical parts of individual specimens.

No. of pairs Stem δ13C (‰) Leaf/spine δ13C (‰) Difference Δ13C (‰) s.e. δ13C (‰) Student's t p(α)

Archaeopteris 13 −0.08 0.33 0.42 0.20 1.54 0.137
Drepanophycus 6 −0.81 −0.12 0.69 0.30 1.15 0.277
Leclerqcia 3 1.75 1.96 0.21 0.22 0.45 0.676
Rhacophyton 4 0.51 0.05 −0.46 0.23 1.54 0.173
Sawdonia 4 −2.77 −1.22 1.56 0.21 2.85 0.029
Tetraxylopteris 2 0.10 −0.06 −0.16 0.13 1.25 0.337
Total 32 −0.30 0.15 0.45 0.14 2.64 0.010

Notes: bold type denotes significant values (= p(α) < 0.05); s.e.= standard error of the mean.
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xylem with large pits similar to that of some modern small ferns whose
aerial vegetative structures rarely persist for more than a year (Wilson,
2016). An additional factor in the high conductivity of early vascular
plants was high atmospheric CO2 levels, which permitted smaller and
less numerous stomata (thus minimizing some types of cavitation ha-
zards) and generally higher water-use efficiency (Sperry, 2003).

It has been suggested that early land plants were mostly generalists,
occupying a wide range of habitats (Spicer, 1989; Meyer-Berthaud
et al., 2003). However, the systematic variation in Δ13Cp among De-
vonian plant taxa observed in this study (Fig. 7), if due to environ-
mental controls, implies that some early vascular land plants may have
been more specific in their habitat preferences than previously thought.
Wetter habitats may have been favored by most zosterophyllophytes,
which typically had small, shallow root systems (Gensel et al., 2001;
Xue, 2012). Sawdonia exhibits the relatively most 13C-depleted com-
positions among the 12 study taxa (Fig. 7). It occupied a wide range of
environments but was most common along the margins of inter-
distributary basins in lower delta plain settings (Griffing et al., 2000;
Hotton et al., 2001; Kennedy et al., 2012). Sedimentologic investiga-
tions have not established for certain whether these basins were in-
undated mainly with brackish (Hotton et al., 2001) or fresh waters
(Kennedy et al., 2012). The low Δ13Cp compositions of Sawdonia
documented in the present study are more consistent with fresh waters,
because C3 plants growing in coastal salt marshes or in areas of elevated
groundwater salinity tend to become 13C-enriched rather than 13C-de-
pleted (Brugnoli and Lauteri, 1991; Malamud-Roam and Ingram, 2001).

Drier habitats may have been occupied by some of the plant taxa
examined in this study. In particular, Leclercqia, Haskinsia, and, to a
lesser degree, Psilophyton exhibit 13C-enriched compositions consistent
with higher water-use efficiency (Fig. 7). This inference is supported by
the anatomical features of these plants. The morphologies of Leclercqia
and Haskinsia are similar to modern Lycopodium s.l., which often grows
in seasonally dry habitats (Fernandez et al., 2008). In these taxa, den-
sely crowded and overlapping leaves can create a boundary layer effect
that is effective at minimizing water loss during gas exchange, and
which is therefore favored in dry habitats. In addition, the leaves of
Leclercqia and Haskinsia partially enclosed the sporangia, protecting
them from drying out (Meyer-Berthaud et al., 2003; Gensel and Kasper,
2005; Gensel and Albright, 2006). Certain features in Psilophyton may
have adapted it to sunny, seasonally dry habitats, e.g., forked cylind-
rical lateral branchlets and a prominent outer cortex of axial fibers that

provided mechanical support (possibly against wilting) and UV pro-
tection (via the high lignin content of fibrous cell walls) (Trant and
Gensel, 1985; Gerrienne, 1995, 1997). These 13C-enriched taxa may
have grown where soils were better drained, e.g., on river levees or in
upper floodplain settings that were further inland and somewhat drier
than coastal environments, as proposed for Psilophyton (Hotton et al.,
2001).

In areas of limited precipitation, increases in soil salinity can exert a
strong influence on δ13Cp. Experimental and in-situ studies of modern
C3 plants have shown that δ13Cp increases by 2–5‰ with rising soil
salinity (Brugnoli and Lauteri, 1991; Poss et al., 2000; Winter and
Holtum, 2005). A similar effect is observed in coastal salt marshes,
where the δ13Cp of C3 marsh plants increases by several per mille with
rising watermass salinity (Malamud-Roam and Ingram, 2001; Cloern
et al., 2002). This effect is linked to the need to conserve water in more
saline environments, leading to reduced stomatal conductance and
photosynthetic fractionation and, thus, higher δ13Cp values (Farquhar
et al., 1989; Brugnoli and Lauteri, 1991; Poss et al., 2000). However,
there is no evidence that any early vascular land plant grew in saline
soils or brackish-water environments (Kennedy et al., 2012), and our
results are consistent with this inference. The apparent water-use effi-
ciencies of our fossil plant taxa suggested by their Δ13Cp values (Fig. 7)
correspond well with predictions of habitat preference based on pa-
leoecological analyses (see Section 5.4). Further carbon isotopic study
of early vascular land plants may prove invaluable in helping to define
their habitat preferences.

5.3.2. Forest understory δ13C gradient
A second environmental factor that can lead to systematic differ-

ences in δ13C values between plant taxa is vertical δ13CCO2 variation in
the forest understory atmosphere. Forests are characterized by a higher
rate of soil respiration than most other vegetation biomes (Raich and
Tufekciogul, 2000), as well as by more limited airmass exchange than
in open landscapes owing to the sheltering effects of a closed canopy
(Feigenwinter et al., 2004). This combination of factors results in ele-
vated pCO2 in the forest understory atmosphere along with a significant
vertical δ13CCO2 gradient (Jackson et al., 1993). At 0.5 m above the
forest floor, up to ~20% of CO2 is soil-derived (Da Silveira et al., 1989),
exposing low-growing plants to strongly 13C-depleted (−28 to −25‰)
soil-respired CO2 (Farquhar et al., 1989; Jackson et al., 1993). As a
consequence, CO2 in the forest understory atmosphere may be up to
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~3–5‰ depleted relative to CO2 in the open atmosphere, and this
isotopic signature can be transferred to understory plants (Schleser and
Jayasekera, 1985; Flanagan et al., 1996). In modern forests,> 50% of
δ13C variance in understory plants is linked to local variations in
δ13CCO2 (Da Silveira Lobo Sternberg et al., 1989).

‘Canopy effects’ are unlikely to have played any role in the inter-
generic differences in Δ13Cp of the present study. The largest differences
in Δ13Cp values are seen among Early and early Middle Devonian plants
that existed prior to the first forests (Fig. 6). These early plants grew in
patchy floral communities consisting largely of clonal vegetation whose
shoots would have lacked any capacity to limit airmass exchange
(Gensel and Edwards, 2001; Edwards and Richardson, 2004), and
whose limited productivity did not generate high excess soil pCO2

(Mora et al., 1996; Elick et al., 1998). The appearance of the first forests
during the late Givetian to early Frasnian (Decombeix et al., 2011; Stein
et al., 2012; Berry and Marshall, 2015), an event known as ‘afforesta-
tion’ (Scheckler, 2001), resulted in denser floral communities with
closed canopies formed by large leafy trees that, for the first time,
would have generated understory niches with varying environmental
characteristics. In our dataset, the only co-existing Late Devonian taxa
that have the potential to exhibit Δ13Cp differences due to a ‘canopy
effect’ are Archaeopteris, a canopy tree, and Rhacophyton, a much
smaller woody bush (Fig. 1). However, Rhacophyton yields Δ13Cp values
that are on average ~1.5‰ heavier than those of Archaeopteris (Fig. 6),
which is the opposite of the pattern expected for canopy-versus-un-
derstory plants. We infer that the higher Δ13Cp values of Rhacophyton
are more likely due to its preference for dry habitats, leading to en-
hanced water-use efficiency (see Section 5.3.1).

5.4. Relationship of δ13C to habitat preferences of early vascular plants

Although it has been proposed that early land plants were mostly
generalists (Spicer, 1989; Meyer-Berthaud et al., 2003), the carbon-
isotopic evidence of the present study suggests that Devonian and Early
Carboniferous plant taxa varied considerably in their habitat pre-
ferences. Systematic interspecific differences in Δ13Cp among the 12
taxa examined (Fig. 7) were probably controlled mainly by water-use
efficiency, related to humidity levels at their sites of growth (see
Section 5.3.1). To illustrate inferred differences in habitat, we have
generated reconstructions of Early, Middle, and Late Devonian terres-
trial ecosystems (Fig. 8A–C). These reconstructions focus on the dis-
tributions of the 12 plant genera of the present study, with the spatial
distribution of each taxon shown to conform to its relative water-use
efficiency as inferred from taxon-specific differences in Δ13Cp.

Our reconstructions of Devonian land-plant habitats were informed
by the findings of earlier studies of terrestrial ecosystems. One con-
sideration in habitat reconstruction is the in-situ versus transported
character of land plant fossils. Most plant fossils have been transported
prior to final deposition and burial (e.g., Pratt and van Heerde, 2017),
although fossils that consist of intact stems and leaves and are well-
preserved suggest limited transport distances (Hotton et al., 2001; Allen
and Gastaldo, 2006; Kennedy et al., 2012; Gastaldo, 2016). Nearly all of
the fossil plant specimens of the present study are well-preserved and
relatively intact, often consisting of complete stems, twigs or leaves,
and more rarely of dense intertangled mats of vegetation. Thus, it is
unlikely that they were transported long distances prior to burial (cf.
Berry and Edwards, 1996; Gastaldo, 2016; Pratt and van Heerde, 2017).
Such fossils are considered to be ‘parautochthonous’, i.e., transported to
only a limited degree and thus useful for environmental interpretations
of their growth habitat (Hotton et al., 2001; Allen and Gastaldo, 2006;
Kennedy et al., 2012).

During the Early to Middle Devonian, land plants were concentrated
in coastal delta and lower floodplain habitats (Hotton et al., 2001).
From the Middle Devonian, land plants began to penetrate more deeply
into continental interiors and increasingly occupied upper floodplain
settings (Algeo et al., 1995; Berry et al., 2000; Berry and Fairon-

Demaret, 2001; Cressler et al., 2010; Retallack and Huang, 2011).
However, the upland regions of continental interiors remained mostly
devoid of vegetation until the advent of seed plants in the latest De-
vonian to Early Carboniferous (Algeo and Scheckler, 1998; Decombeix
et al., 2011). Early to Middle Devonian plants appear to exhibit a wider
range of Δδ13Cp variation than Late Devonian to Early Carboniferous
plants. This pattern may reflect greater environmental variation in
Early-Middle Devonian terrestrial habitats. During this early stage of
landscape colonization, higher land plants had probably densely colo-
nized some areas (e.g., delta plains) and sparsely colonized others (e.g.,
upland floodplains), while leaving broad continental interiors largely
unvegetated. As a consequence of this mosaic floral distribution, land
areas may have exhibited substantial spatial variation in environmental
characteristics (e.g., humidity, soil development, albedo, etc.) (cf.
Edwards and Richardson, 2004).

Early Devonian terrestrial ecosystems (Fig. 8A) have been analyzed
in studies of the Emsian-age Battery Point Formation on the Gaspé
Peninsula of Québec and the Campbellton Formation in New Bruns-
wick. Facies A of the Cap-aux-Os Member of the Battery Point Forma-
tion contains unimodal paleocurrent indicators in coastal delta-plain
facies that have been interpreted as crevasse splay or storm washover
deposits (Hotton et al., 2001). The most common taxon in this setting is
Sawdonia, which is inferred to have lived close to the shoreline on the
margins of interdistributary basins that were subject to frequent
flooding. Hotton et al. (2001) inferred that flooding events introduced
brackish or marine waters, but Kennedy et al. (2012) inferred that si-
milar occurrences of Sawdonia in the Campbellton Formation existed in
fully freshwater habitats. Facies B of the Cap-aux-Os Member represents
prograding fluvial channel deposits, hence mainly freshwater condi-
tions, although some of the sandstones contain asymmetric bimodal
cross-bedding indicative of tidal influence (Hotton et al., 2001). This
facies contains abundant Pertica and Drepanophycus (as well as other
taxa not analyzed in this study) that are thought to have grown along
lower floodplain channel margins, whereas Psilophyton was inferred to
have occupied an equivalent habitat somewhat further upstream. Si-
milar assemblages containing Pertica, Drepanophycus, Psilophyton, and
Leclercqia have been reported from coastal delta plain and freshwater
fluvial deposits of the Campbellton Formation in New Brunswick
(Kennedy et al., 2012) and the Trout Valley Formation of Maine (Allen
and Gastaldo, 2006).

Early Devonian vascular plants were dominantly ground-hugging
rhizomatous lycophytes (Sawdonia, Drepanophycus, Leclercqia,
Haskinsia) and shrubby trimerophytes (Psilophyton, Pertica), mostly with
heights of< 1m (Fig. 1B; Algeo and Scheckler, 1998). Many Early
Devonian plants grew in dense monospecific stands, facilitated by
predominantly rhizomatous growth strategies, allowing local resource
domination (Fig. 8A; DiMichele and Hook, 1992; Xue, 2012). However,
mixtures of plant fossil debris in many formations imply that such
patchiness was relatively local, and that there was considerable taxo-
nomic heterogeneity in Early Devonian landscapes at a slightly larger
spatial scale (Allen and Gastaldo, 2006; Cressler III et al., 2010;
Gastaldo, 2016). This pattern may reflect habitat specialization (‘floral
partitioning’) on the basis of environmental variability in soil moisture,
nutrient levels, or environmental characteristics such as frequency of
flooding or other disturbances (Allen and Gastaldo, 2006; Greb et al.,
2006).

By the late Middle Devonian (Givetian; Fig. 8B), the development of
secondary supporting tissues resulted in an increase in average plant
heights and the development of the earliest forests in coastal wetland
regions (DiMichele and Hook, 1992; Greb et al., 2006; Mintz et al.,
2010; Stein et al., 2012; Berry and Marshall, 2015). Shrubby stands of
aneurophytalean progymnosperms, lycopsids, cladoxylopsids, and zos-
terophyllophytes were widespread in lowland areas (Fig. 8B; Berry and
Fairon-Demaret, 2001; Xue et al., 2018). Early forests consisted of the
cladoxylopsid tree Eospermatoperis with an understory flora that in-
cluded lycopsids and aneurophytalean progymnosperm shrubs such as
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Tetraxylopteris (Driese et al., 1997; Stein et al., 2007, 2012; Mintz et al.,
2010; Xu et al., 2017). The rapid global spread of forests may have been
linked to archaeopteridalean progymnosperm trees with laminate
leaves and deep root systems. The appearance of early members of this
clade in the early Givetian is signaled by the microspore Geminospora
lemurata and the megaspore Contagisporites optivus (Marshall, 1996;
Turnau, 2014), and their widespread presence in mid to late Givetian
landscapes is attested by specimens of Svalbardia or proto-Archaeopteris
(Berry, 2008).

Late Devonian landscapes were dominated by dense monospecific
stands of Archaeopteris, with Rhacophyton and other shrubby plants

either occupying open terrain or present as understory elements in
forests (Fig. 8C). Archaeopterid progymnosperms formed extensive
forests in both lower and upper floodplain environments (Scheckler,
1986a; Beck and Wight, 1988; Meyer-Berthaud et al., 1999), and Ar-
chaeopteris is thought to have generally favored dry riparian habitats
(Cressler III, 1999, 2006; Retallack and Huang, 2011). Rhacophyton
grew as a bushy understory plant in forests subject to frequent ground
fires (Cressler III, 2001, 2006), although it also flourished in peat
wetlands (Greb et al., 2006). The earliest known seed plants became
established in the mid-Famennian as small bushy colonizers in dis-
turbed habitats, but they did not become important members of

Fig. 8. Reconstructions of the ecological distribution of the 10 Devonian vascular land plant taxa of the present study: (A) Early Devonian (Emsian), (B) Middle
Devonian (Givetian), and (C) Late Devonian (late Frasnian-early Famennian). Note that actual Devonian landscapes included other vascular and non-vascular plant
taxa not shown here; these reconstructions are intended to show only the relative habitat preferences of the 10 Devonian taxa of the present study. Note further that
the proposed paleo-environmental distributions of these taxa shown here are consistent with, but not proven by, the available isotopic data, and that alternative
models are possible. Further study of Devonian fossil plant taxa will be needed to accurately constrain their actual habitat preferences.
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terrestrial ecosystems until the Carboniferous (Scheckler, 1986b; Streel
et al., 2000; Decombeix et al., 2011).

5.5. Middle/Late Devonian floral turnover

Floral turnovers were a regular feature of early Devonian plant
communities owing to the rapid pace of evolutionary innovation at that
time (Cascales-Miñana et al., 2010). The rhyniophytes, which, as the
earliest tracheophyte clade, were morphologically simple, peaked in
dominance during the Late Silurian and earliest Devonian (Lochko-
vian). By the Early Devonian, the zosterophyllophytes had evolved
lateral sporangia, pseudomonopodial branching, and a rhizomatous
habit, establishing them as the most morphologically complex, diverse,
and abundant clade (Gensel, 1992; Edwards and Richardson, 2004;
Cascales-Miñana and Meyer-Berthaud, 2015). They peaked during the
mid to late Early Devonian (Pragian-Emsian) but gradually declined as
lycophytes and basal euphyllophytes gained in importance during the
early Middle Devonian (Eifelian) (Hao and Xue, 2013b; Cascales-
Miñana and Meyer-Berthaud, 2015). Among other innovations, basal
euphyllophytes developed planate or laminate lateral branched systems
resembling proto-leaves (Gerrienne et al., 2014). The turnovers among
these clades appear to have been competitive replacements that were
not clearly linked to any specific climatic or tectonic event (Cascales-
Miñana and Meyer-Berthaud, 2015).

The Givetian/Frasnian (Middle/Late Devonian) transition appears
to mark another major floral turnover (Raymond and Metz, 1995;
Silvestro et al., 2015). During this event, primitive spore-bearing plants
such as zosterophyllophytes experienced high extinction rates
(Cascales-Miñana and Meyer-Berthaud, 2014) and euphyllophytes, in-
cluding both lignophytes and non-lignophytes, underwent a major di-
versification (Xue et al., 2018). Among the taxa of the present study, the
euphyllophytes Psilophyton and Pertica declined in the Emsian-Eifelian,
and the zosterophyllophytes and lycopsids Drepanophycus, Sawdonia,
Leclercqia, and Haskinsia declined in the Givetian (Fig. 2). Although
some of these taxa (e.g., Drepanophycus) persisted through the Fa-
mennian, their relative importance in the Late Devonian was greatly
reduced. This floral turnover is even more apparent in palynomorph
assemblages, which exhibit a sharp decline in diversity and rapid
turnover at the Middle/Late Givetian boundary across Russia and
eastern Europe and, to a lesser degree, in France, although it has not
reported to date from North America (Obukhovskaya, 2000; Turnau,
2014).

One important aspect of the Givetian-Frasnian floral turnover was
the appearance and diversification of arborescent (tree-sized) lyco-
phytes and lignophytes (Wang et al., 2005; Galtier and Meyer-Berthaud,
2006; Meyer-Berthaud et al., 2010; Decombeix et al., 2011). In this
study, the Givetian/Frasnian transition is marked by short-lived ar-
borescent taxa such as Wattieza and Tetraxylopteris, after which longer-
ranging arborescent taxa such as Archaeopteris became dominant in the
Late Devonian (Fig. 2). The evolutionary development of trees led di-
rectly to the first forests, which were of Givetian (late Middle Devonian)
to earliest Frasnian (early Late Devonian) age. They were dominated by
tree-sized pseudosporochnalean cladoxylopsids such as Wattiezia/Eos-
permatoperis with an understory that included aneurophytaleans such as
Tetraxylopteris, as well as possibly herbaceous and arborescent lycopsids
(Driese et al., 1997; Stein et al., 2007, 2012; Mintz et al., 2010). The
known distribution of pseudosporochnalean forests is mostly limited to
the Euramerican continental block, but they were succeeded by ar-
chaeopterid-dominated forests on all continents during the later Fras-
nian to Famennian (Scheckler, 1986a, 2001). The advent of forests
probably generated selective pressures on terrestrial plants either to
evolve larger size or to adapt to a shaded understory. The near-si-
multaneous appearance of woody supporting tissues and tree-sized
stature among arborescent lycophytes, sphenopsids, and lignophytes
may imply the first strategy (Mosbrugger, 1990; Meyer-Berthaud et al.,
2010). Less certain, due to difficulties in sampling, is what might be

inferred about plant evolution in the understory. Nevertheless, the
spread of forests likely had multifaceted, profound and irreversible
consequences for both terrestrial floral communities and global climate
conditions.

6. Conclusions

Carbon-isotopic variation among 12 genera of Devonian-Early
Carboniferous vascular land plants provides insights into their habitat
preferences and water-use efficiencies. A total of 309 analyses of 190
unique specimens yielded δ13Cp values ranging from −20.3‰ to
−30.5‰ with a mean of −25.5‰, similar to the range and mean of
δ13C values for modern C3 land plants. Sawdonia yielded the most 13C-
depleted values (mean −27.1 ± 1.7‰; n=28), reflecting lower
water-use efficiency that was probably related to growth in wetter
habitats such as lower delta plains. Because salt-marsh vegetation is
typically 13C-enriched, the strongly 13C-depleted composition of
Sawdonia is suggestive of growth in freshwater habitats. In contrast,
Leclercqia, Haskinsia, and Psilophyton yielded relatively 13C-enriched
values (means −23.0 ± 1.6‰, −22.3 ± 1.3‰, and
−24.8 ± 1.6‰, respectively), reflecting higher water-use efficiency
related to growth in drier habitats such as upper floodplains. This in-
ference is supported by anatomical adaptations to drier conditions ex-
hibited by these taxa, e.g., related to leaf arrangement and structure. A
large majority of our specimens (> 90%) are from the Appalachian
Basin of eastern North America, precluding effective assessment of
large-scale geographic patterns of carbon-isotopic variation in these
fossil plant taxa. This study demonstrates that investigations of the
carbon-isotopic composition of well-preserved plant fossils have the
potential to yield insights regarding habitat preferences and ecosystem
structure in paleofloral communities.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.palaeo.2019.02.025.
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