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Abstract: A covalent conjugate between an antibacterial ionic liquid and an antimicrobial
peptide was produced via “click” chemistry, and found to retain the parent peptide’s activity
against multidrug-resistant clinical isolates of Gram-negative bacteria, and antibiofilm action on a
resistant clinical isolate of Klebsiella pneumoniae, while exhibiting much improved stability towards
tyrosinase-mediated modifications. This unprecedented communication is a prelude for the promise
held by ionic liquids -based approaches as tools to improve the action of bioactive peptides.

Keywords: antibacterial; antibiofilm; ionic liquid; multidrug resistance; peptide; skin infections;
tyrosinase; wound healing

1. Introduction

Ionic Liquids (ILs), though mostly known for their potential role as “green solvents”, are
becoming increasingly attractive as easily customizable and tunable organic salts for diverse specific
purposes (task-specific ILs). There is an infinity of possibilities when combining organic cations
with organic or inorganic anions, enabling production of ILs with diverse structural, physical and
chemical properties [1] that can be adapted to the demands of areas as diverse as material sciences [2],
biotechnology [3], or biomedicine [4]. Moreover, by making use of bioactive ions, ILs displaying
relevant biological activities [5] can be produced, for instance, as anticancer [6], antimalarial [7], and
antimicrobial agents [8].

ILs showing broad-spectrum activity against both Gram-negative and Gram-positive bacteria
and antibiofilm activity have been reported [9]; as such, ILs are emerging as appealing alternatives to
counteract antimicrobial resistance, while the world is running out of effective antibiotics, especially
against Gram-negative bacteria. Moreover, many ILs have gained attention as dermal permeation
enhancers [10], making them particularly attractive for topical applications. ILs presenting both
antimicrobial activity and dermal permeation enhancement can be quite helpful to treat infected skin
lesions, as recently demonstrated in an in vivo biofilm-infected wound assay, where an IL was able to
kill 95% of the bacteria [11].

In view of the above, and based on our recent disclosure of a collagenesis-inducing peptide with
potent antibacterial and antibiofilm properties [12], we now investigated the effect of coupling an
antimicrobial methylimidazolium IL to the N-terminus of that peptide on antibacterial and antibiofilm
activities, as well as on stability. To this end, we opted to use the well-known copper(I)-catalyzed
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alkyne-azide cycloaddition (CuAAC) “click” reaction, given its chemoselectivity and mildness, and
the fact that it produces a stable triazole ring [13]. Moreover, CuAAC reactions have been previously
used to introduce the triazole moiety in peptides aiming at, e.g., (i) replacing unstable bonds like
disulfide bridges, (ii) improving peptide stability via cyclization, (iii) attaching distinct moieties and/or
functional groups to the peptide, and (iv) taking advantage of the biological properties of many
triazoles to improve overall bioactivity [14].

2. Results and Discussion

2.1. Chemical Synthesis

To produce the target IL-peptide conjugate, hereafter termed MeIm-3.1-PP4, the synthetic route
shown in Scheme 1 was employed, starting with the synthesis of the alkyne-modified IL, by reacting
1-methylimidazole (MeIm) with propargyl bromide (step i), according to Hu et al. [15]; the structure of
the target propargyl-MeIm (Pr-MeIm) was confirmed by proton (1H) and carbon (13C) nuclear magnetic
resonance (NMR) and electrospray ionization-ion trap mass spectrometry (ESI-IT MS), as described in
detail in the Supplementary Materials (Figures S1–S3). In parallel, the amino acid sequence of 3.1-PP4
was assembled by solid-phase peptide synthesis (SPPS, steps ii and iii) as previously reported by us [12].
Cleavage of half of the peptidyl-resin (step iv) afforded the parent peptide 3.1-PP4. The other half was
coupled with azidoacetic acid (step v) to produce the azide-modified peptide; this was followed by
on-resin CuAAC with Pr-MeIm (step vi), applying the conditions previously described by Castro et
al. [16]. After cleavage and purification by reverse-phase high performance liquid chromatography
(RP-HPLC), the target MeIm-3.1-PP4 conjugate was obtained in high purity (Figure S4), and its structure
was confirmed by ESI-IT MS analysis (Figure S5). To the best of our knowledge, on-resin “clicking” of
an ionic liquid to a peptide via the CuAAC has never been reported before.
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C, 24 h; (ii) 5 eq of Fmoc-protected amino acid, 10 eq of
N-ethyl-N,N-diisopropylamine (DIEA) and 5 eq of O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium
hexafluorophosphate (HBTU) in N,N-dimethylformamide (DMF), 1 h, room temperature (r.t.); (iii) 20%
piperidine in DMF, 15 min, r.t.; (iv) trifluoroacetic acid (TFA)/triisopropylsilane (TIS)/distilled water
(95:2.5:2.5 v/v/v), 2 h, r.t.; (v) 5 eq of azido acetic acid, 10 eq of DIEA, and 5 eq of HBTU in DMF, 1 h, r.t.;
(vi) 1 eq sodium L- ascorbate, 10 eq of DIEA, 10 eq of 2,6-lutidine, 1 eq of Pr-MeIm, and 1 eq ofcopper(I)
bromide in DMF:acetonitrile (MeCN) (3:1 v/v).
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2.2. Antibacterial and Antibiofilm Activity

Both the conjugate MeIm-3.1-PP4 and its parent peptide 3.1-PP4 were next screened for their
antibacterial activity. Minimum inhibitory concentration (MIC) values were determined following the
Clinical and Laboratory Standards Institute (CLSI) protocol [17], against Gram-positive (Staphylococcus
aureus and Enterococcus faecalis), and Gram-negative (Pseudomonas aeruginosa, Escherichia coli and
Klebsiella pneumoniae) bacteria, including both reference strains (American Type Culture Collection,
ATCC), and multidrug-resistant (MDR) clinical isolates. Data thus obtained are shown in Table 1, and
clearly demonstrate that, with only very few exceptions, attachment of the IL to the N-terminus of
3.1-PP4 did not significantly alter the antibacterial activity of the parent peptide. Relevantly, in most
cases, MIC values matched the minimum bactericidal concentration (MBC) values, highlighting a
bactericidal action for both MeIm-3.1-PP4 and its parent peptide.

Table 1. Minimum inhibitory concentrations (MIC) of MeIm-3.1-PP4 and its parent peptide, 3.1-PP4,
against reference (American Type Culture Collection, ATCC) strains and multidrug-resistant (MDR)
clinical isolates of Gram-positive and Gram-negative bacteria.

Bacterial Species
Reference Strain or

MDR Isolate
MIC in µg/mL (in µM)

3.1-PP4 MeIm-3.1-PP4

P. aeruginosa

ATCC 27853 2.3 (1.2) 1.5 (0.7)
PA004 1.3 (0.7) 3.1 (1.4)

Pa3 1.3 (0.7) 1.5 (0.7)
Pa4 1.3 (0.7) 0.8 (0.4)

E. coli

ATCC 25922 1.3 (0.7) 0.8 (0.4)
Ec2 1.3 (0.7) 1.5 (0.7)

EC001 1.3 (0.7) 3.1 (1.4)
EC002 1.3 (0.7) 1.5 (0.7)
EC003 0.6 (0.3) 1.5 (0.7)

K. pneumoniae KP010 2.3 (1.2) 6.2 (2.9)
KP004 2.3 (1.2) 49.6 (23.1)

S. aureus
ATCC 25923 10.3 (5.3) a 24.8 (11.6) a

SA007 10.3 (5.3) 12.4 (5.8)

E. faecalis ATCC 29212 41.3 (21.3) 99.3 (46.3)
Ef1 2.3 (1.2) a 3.1 (1.4)

a Minimum bactericidal concentrations (MBC) were 2× the MIC; in all other cases, MBC equaled the MIC.

Since this type of IL-AMP conjugate is being developed for its potential interest to address
infected skin lesions, a preliminary assessment of the toxicity of both the conjugate and
the parent peptide towards HaCaT human epidermal keratinocytes was carried out by the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, as previously described by
us [12]. Despite the IC50 (24 h) obtained was somewhat lower for the conjugate (19.4 ± 0.2 µM) than for
the parent peptide (34.2 ± 0.5 µM), the conjugate still exhibited selectivity indices ranging from ca. 14
to ca. 50 in most cases. In face of the excellent antibacterial properties exhibited by the MeIm-3.1-PP4
conjugate, especially against Gram-negative bacteria, we next evaluated its antibiofilm activity using the
K. pneumoniae MDR isolate, KP010, since the parent peptide, 3.1-PP4, had previously displayed a more
notable effect against this isolate [12]. This activity was assessed in two different ways: (i) inhibition of
biofilm formation, and (ii) effect on a preformed biofilm. For evaluation of the inhibition of biofilm
formation, both conjugate and parent peptide were tested at MIC and sub-inhibitory concentrations
( 1

2×MIC and at 1
4×MIC) following previously established procedures [12,18–20], and the mass of

biofilm formed at these concentrations was assessed through the crystal violet assay. Figure 1 shows
results obtained in absence (control) and in presence of the test compounds at the three different
concentrations. Relevantly, the absorbance measured for the control (absence of test compounds)
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provides confirmation that the bacterial strain used is a good biofilm producer [21]. As expected, only
a little amount of biofilm was formed at MIC in both cases, with a slightly higher antibiofilm effect
for the parent peptide. At sub-inhibitory concentrations ( 1

2×MIC and 1
4×MIC), the biofilm biomasses

formed remain lower than the control, in this case with a slightly stronger antibiofilm effect for the
MeIm-3.1-PP4 conjugate.
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quantification by crystal violet absorbance at 595 nm). Three independent experiments were performed
in triplicate and the bar errors represent the SD. Statistically significant differences between the biofilm
formed in absence and in presence of peptide are indicated: * means (p < 0.05) and ** means (p < 0.01).

To assess the effects on preformed biofilms, much higher peptide concentrations are needed,
hence biofilms of KP010 were allowed to grow for 48 h and then treated with the peptides at 20× the
MIC value for 24 h. Biofilm proliferation was determined by measuring the optical density (OD) of
the planktonic phase of the biofilms, both treated with the test compounds and the untreated control.
Results (Table S2 in Supplementary Materials) show that MeIm-3.1-PP4 and 3.1-PP4 caused a significant
reduction in biofilm proliferation of 67% and 52%, respectively. Overall, these results show that the
novel IL-peptide conjugate preserves not only the antibacterial but also the antibiofilm properties
of the parent peptide. This improvement, afforded by the insertion of the imidazolium motif, is in
line with previous reports of enhanced antibacterial activity when combining imidazolium ILs with
non-peptide antibiotics, like ampicillin, including against resistant bacterial strains [22].

2.3. Enzymatic Stability

One of our main motivations to explore IL-peptide conjugates concerns improving the enzymatic
stability of the peptide moiety, as poor pharmacokinetics is a major obstacle towards clinical translation
of AMP and other bioactive peptides, even when topical applications are envisaged. For instance, in a
non-healing infected wound, peptides are vulnerable to modification by endogenous (e.g., tyrosinase,
elastase, metalloproteinases) and exogenous (produced by colonizing microbes) enzymes in the wound
site [23]. Peptide 3.1-PP4 and derivatives thereof are under investigation for topical applications
on infected skin lesions; thus, to evaluate how the conjugation of an IL to 3.1-PP4 could affect the
enzymatic stability of this peptide, we incubated both the conjugate and the parent peptide with
tyrosinase, due to its central role in melanin biosynthesis in the skin [24], and reported increased levels
in the course of wound healing [25]. The choice of this particular enzyme may seem odd at a first
glance, as the 3.1-PP4 sequence lacks tyrosine residues, whereas tyrosinase is best known for promoting
oxidation of phenols like, e.g., the side chain of tyrosine [25]. However, recent evidence of proteolytic
activity for tyrosinase, with an apparent preference for hydrophobic amino acids, e.g., isoleucine, at
the cleavage site [26], stimulated our interest in investigating whether our leucine-rich peptide would
be a substrate for this enzyme of undeniable relevance in skin and wound healing. Hence, both parent
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peptide and its ionic liquid conjugate were incubated at 37 ◦C and pH 6.8 in the presence of the enzyme,
and in its absence as a control. The samples were collected at different time points, for 24 h, and were
analyzed by HPLC. Results are presented in Figure 2, where the complete degradation, within 6 h, of
peptide 3.1-PP4 confirmed it as a substrate for tyrosinase, despite being devoid of tyrosine or any other
phenol or polyphenol moieties. Additionally, about 84% of the IL-peptide conjugate MeIm-3.1-PP4
remained unaltered after 24 h, demonstrating the remarkable gain in stability afforded by conjugation
of the IL to the N-terminus of the parent peptide. Both controls remained unchanged at the end of the
experiment (data not shown).
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Figure 2. Compared stability of MeIm-3.1-PP4 and its parent peptide, upon incubation with tyrosinase
(expressed as the variation of the % of starting compound over time) of three independent experiments
(n = 3). Values are expressed as mean ± SD. Statistical significance, between the two test compounds
for the same time point, was considered when p < 0.0001, and observed for all time points. Statistical
significance, between time points for the same compound, was considered when p < 0.05 and is
indicated by different letters.

The above findings are remarkable in two ways; (i) we confirm the recent observations by Biundo
et al. in that tyrosinase can display promiscuous proteolytic activity [26], and (ii) we demonstrate that
simple conjugation of an IL to the N-terminus of the peptide substrate prevents its degradation. Ongoing
studies with these and other analogues will allow us to establish the pathway of peptide degradation
by tyrosinase, and to ascertain how the peptide site at which the IL is conjugated (e.g., C-terminal
rather than N-terminal conjugation) may influence enzymatic stability. Additional assays to evaluate
conjugate’s stability in the presence of more common enzymes and enzyme mixtures (trypsin, pronase),
as well as other enzymes that are relevant in the context of chronic wounds (collagenase, elastase,
metalloproteinases), will be timely carried out.

3. Concluding Remarks

In conclusion, this exploratory work holds great promise for the future, by demonstrating that
“clicking” a classical imidazolium IL to the N-terminus of a bioactive peptide can preserve its potent
antibacterial and antibiofilm action, while significantly improving its stability towards an enzyme that
is relevant in the skin wound environment. To the best of our knowledge, despite previous reports that
have addressed both covalent [27] and non-covalent [28] combinations of IL with peptides, there is no
precedent in using click chemistry to create IL-AMP conjugates, nor in demonstrating the substantial
stabilization observed against tyrosinase-mediated modification upon conjugation of an IL to an AMP.
Ongoing studies will allow us to build a wider landscape of enzymatic stability for MeIm-3.1-PP4
and similar IL-peptide conjugates that are being produced, by including other analogues, and other
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enzymes relevant in the context of infected skin lesions and wound healing. Moreover, hemolysis
assays will be carried out in order to establish whether conjugation to the IL renders the final conjugate
more hemolytic than the parent peptide, at the light of previous literature reports [27,29]. Furthermore,
in vitro wound healing and dermal permeation assays are under way that will allow us to further
demonstrate the expected high value of this unprecedented approach. Finally, the potent action of the
compounds herein reported against Gram-negative bacteria is noteworthy, since despite peptide-based
structures with potent action against Gram-positive bacteria are being disclosed [30–33], the situation
is quite different regarding MDR Gram-negative bacteria, against which real alternatives to current
antibiotics remain elusive.

4. Materials and Methods

4.1. Synthesis of 1-Methyl-3-Propargyl Imidazolium Bromide

To a round-bottom flask containing 1-methylimidazole (0.78 mL; 9.89 mmol), 80% propargyl
bromide in toluene (1 mL; 8.99 mmol) was slowly added, and the deep yellow oily mixture formed
was kept under stirring for 24 h at 40 ◦C. The mixture was then cooled down to r.t., and sequentially
washed with dichloromethane (DCM, 10 mL) and diethyl ether (10 mL) [15]. The resulting yellow
oil was dried in a vacuum oven overnight, at 50 ◦C and 0.1 bar, to afford the final product in 77%
yield. 1H, 13C NMR and ESI-IT MS analyses allowed to confirm the product as being the desired
1-methyl-3-propargyl imidazolium bromide, according to spectral data below (spectra obtained are
displayed in the Supplementary Materials—Figures S1–S3). NMR spectra were acquired on a Bruker
Avance III400 spectrometer from solutions of the compound in hexadeuterated dimethyl sulfoxide
(DMSO-d6), containing tetramethylsilane (TMS) as internal reference. Multiplicity of proton NMR
signals is given as: s, singlet; d, doublet; t, triplet.

δH (400 MHz, DMSO-d6) 9.27 (s, 1H), 7.80 (t, 1H, J = 1.8 Hz), 7.76 (t, 1H, J = 1.8 Hz), 5.22 (d, 2H,
J = 2.6 Hz), 3.88 (s, 3H), 3.84 (t, 1H, J = 2.6 Hz). δC (100 MHz, DMSO-d6) 136.3, 124.1, 122.1, 79.0, 76.1,
38.5, 36.0 (ESI+) m/z calculated for C7H9N2

+, 121.08; found, 121.20.

4.2. Peptide Synthesis

The amino acid sequence of 3.1-PP4 (KKLLKWLLKLLKTTKS, C-terminal amide) was assembled
by SPPS, using the standard Fmoc/tBu orthogonal protection scheme [34]. Briefly, Fmoc-Rink-amide
MBHA resin (100–200 mesh, 0.52 mmol/g) was swelled in DMF for 30 min, next treated with an excess
of 20% piperidine in DMF for 15 min (r.t.); after several washing steps using DMF (3 × 10 mL) and
DCM (3 × 10 mL), the Fmoc-protected C-terminal amino acid (5 eq) was coupled to the resin in the
presence of the in situ coupling agent HBTU (5 eq) and the non-nucleophilic base DIEA (10 eq) in DMF,
for 1 h at r.t., under stirring. After a few quick washing steps as before, the Fmoc group was removed
with piperidine as above, and the coupling→ deprotection cycle was repeated until the full amino
acid sequence was assembled. At this stage, the peptidyl-resin was split in two equal portions, one of
which was reserved for the subsequent stage (synthesis of MeIm-3.1-PP4, see Section 4.3). Peptide
3.1-PP4 was cleaved off the other portion of the peptidyl-resin via acidolytic cleavage with a cocktail
containing 95% TFA, 2.5% TIS and 2.5% distilled water, for 2 h under stirring at r.t.. The crude peptide
was then purified by preparative RP-HPLC, on a Hitachi-Merck LaPrep Sigma system using a C18
column (250 × 25 mm ID, 5 µm pore size). The elution gradient of 1 to 100% of MeCN, used 0.05%
aqueous TFA as solvent A and MeCN as solvent B, and was run for 60 min at 15 mL/min. Fractions
containing pure peptide were pooled, and an aliquot was taken to assess final purity degree by HPLC
and confirm the expected molecular weight by ESI-IT MS, as previously described [17]. The final
peptide solution was freeze-dried and stored at −20 ◦C until further use.
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4.3. Synthesis of MeIm-3.1-PP4

To the reserved portion of peptidyl-resin having the 3.1-PP4 sequence fully assembled (see
Section 4.2), a solution containing azidoacetic acid (18.7 mL; 5 eq), DIEA (85 mL; 10 eq), and HBTU
(64 mg; 5 eq) in DMF was added, and the slurry kept under stirring for 1 h at r.t. After quick washing
steps with DMF and DCM, as described in Section 4.2, a solution containing sodium L-ascorbate (10 mg;
1 eq), DIEA (85 mL; 10 eq), 2,6-lutidine (58 mL; 10 eq), and 1-methyl-3-propargyl imidazolium bromide
(10 mg; 1 eq) in DMF (3 mL) was added, followed by addition of a solution of copper(I) bromide
(7 mg; 1 eq) in MeCN (1 mL). The reaction was allowed to proceed at r.t. for 24 h, under stirring.
Then, the resin was thoroughly washed with 1 M aqueous ethylenediaminetetraacetic acid (EDTA,
5 × 10 mL), followed by DMF and DCM as before. The crude product was cleaved from the resin via
acidolysis, as in 4.2, and found (LC-MS) to be a mixture of the target conjugate (ca. 97%) and unreacted
azido-peptide (ca. 2%), amongst other minor unidentified components, probably corresponding to
truncated peptides (data not shown). The crude product was purified by preparative RP-HPLC, as
done before for the parent 3.1-PP4 peptide (see Section 4.2). The pure conjugate was analyzed by
HPLC (Figure S4) and ESI-IT MS (Figure S5), freeze-dried and stored at −20 ◦C until further use.

4.4. Peptide Quantitation

Peptide 3.1-PP4 and conjugate MeIm-3.1-PP4 stock solutions were prepared in distilled water at
ca. 10 mg/mL. Concentration was then accurately determined on a Thermo Scientific™NanoDrop™
One microvolume UV-Vis Spectrophotometer, using method 31 that assumes an extinction coefficient
ε205 of 31 mLmg−1cm−1 and an A280/A205 correction for the absorbance due to tryptophan (Trp) and
tyrosine (Tyr) residues eventually present (only Trp was present in this case) [35].

4.5. Antibacterial Activity Assays

The MIC of the test compounds was determined according to the CLSI guidelines [17]. Briefly, the
compounds were tested in the 1–1024 µg/mL concentration range, using the microdilution method in
cation-adjusted Mueller-Hinton broth (MHB II) against reference strains of P. aeruginosa ATCC 27853,
E. coli ATCC 25922, S. aureus ATCC 25923, and Enterococcus faecalis ATCC 29212. MIC values were
also determined against MDR clinical isolates (antibiotic resistance patterns given in Supplementary
Materials, Table S1) of P. aeruginosa (PA004, Pa3, Pa4), E. coli (Ec2, EC001, EC002, EC003), K. pneumoniae
(KP004, KP010), S. aureus (SA007), and Enterococcus faecalis (Ef1). Along with the MIC values, MBC
values were also determined as previously reported [12].

4.6. Toxicity to Human Keratinocytes

The cytotoxicity of peptides to HaCat cells was evaluated using the standard MTT assay. Briefly,
cells were seeded at a density of 4 × 104 cells/mL, respectively, in 96-well plates and incubated at 37
◦C in a 5% CO2 atmosphere. Cells were allowed to grow for 24 h, and serially diluted compound
solutions (6.3–100 µM) were added to the wells. Then, cells were incubated for 24 h at 37 ◦C, after which
wells were washed once with phosphate buffered saline (PBS, Sigma-Aldrich), followed by addition
of a 0.45 mg/mL MTT solution to each well. Crystals were allowed to form for 1.5 h. Reaction was
stopped by rejecting the medium followed by addition of dimethylsulfoxide (DMSO, Sigma-Aldrich).
Absorbance was read at 570 nm in FlexStation®3 Multi-Mode Microplate Reader (Molecular Devices,
San Jose, CA, USA).

4.7. Antibiofilm Activity Assays

The ability of the test compounds to inhibit the biofilm formation by KP010 (a MDR clinical isolate
of K. pneumoniae) was assessed at the respective MIC, 1/2×MIC and 1/4×MIC values in tryptic soy broth
(TSB) using the crystal violet assay as previously reported [36,37]. Three independent experiments
were performed in triplicate for each condition.
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To assess the effects of test compounds on 48 h preformed biofilms of KP010, the biofilms were
first grown in TSB from a starting inoculum of 1 × 106 CFU/mL in 96-well microtiter plates. After 48 h
of incubation at 37 ◦C, the planktonic cells were removed, and the wells were rinsed and filled with
the test compound at a 20×MIC concentration. The optical density at 600 nm was measured at time
0 and after incubation for 24 h at 37 ◦C. The reduction in the biofilm proliferation was calculated in
comparison to the respective non-treated biofilms. Three independent experiments were performed
in triplicate.

4.8. Enzymatic Stability Assays

The IL-peptide conjugate and the parent peptide were both incubated at a final concentration of
10 mM in phosphate buffer (pH 6.8), with the enzyme tyrosinase (CAS:9002-10-2; T3824-250KU) at
18 U/mL, for 24 h at 37 ◦C. Then, 150-µL samples were collected after 0, 1, 3, 6, 8 and 24 h of incubation,
and 150 µL of methanol were added to each of them to precipitate the enzyme. The mixtures were
centrifuged at 1.05 × 104 RPM for 2 min with an Eppendorf miniSpin centrifuge (rotor F-45-12-11).
The supernatant was then analyzed by HPLC, using a Hitachi-Merck LaChrom Elite system with a
reverse-phase C18 column (125 × 40 mm ID and 5 µm pore size). The analyses were run, in triplicates,
at a flow rate of 1mL/min with a solvent gradient of 1 to 100% of B in A, using 0.05% aqueous TFA as
solvent A and MeCN as solvent B, for 30 min, with a 220 nm detection wavelength.

4.9. Statistical Analysis

The results regarding the biofilm formation and preformed biofilms were expressed as mean
values ± standard deviation (mean ± SD). The statistical significance of differences between controls
and experimental groups was evaluated using the Student’s t-test. p-values of < 0.05 were considered
statistically significant.

Results from peptide stability were expressed as the variation of the % of starting compound over
time (mean ± SD). Data were analyzed in GraphPad Prism 8.0.1 Software using two-way analysis
of variance (ANOVA) followed by Tukey’s multiple comparison test. Statistical significance was
considered when p < 0.05.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/17/
6174/s1. Figures S1–S5, and Tables S1–S2.
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Abbreviations

AMP Antimicrobial peptide
ATCC American Type Culture Collection
CFU Colony-forming units
CLSI Clinical and Laboratory Standards Institute
CuAAC Copper(I)-catalyzed azide alkyne cycloaddition
DCM Dichloromethane
DIEA N-ethyl-N,N-diisopropylamine
DMF Dimethylformamide
DMSO Dimethylsulfoxide
DMSO-d6 Hexadeuterated dimethylsulfoxide
EDTA Ethylenediaminetetraacetic acid
eq Molar equivalent
ESI-IT MS Electrospray ionization—ion trap mass spectrometry
Fmoc 9-fluorenylmethoxycarbonyl
HaCaT Human epidermal keratinocytes
HBTU O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate
HPLC High performance liquid chromatography
IL Ionic Liquid
MBC Minimum bactericidal concentration
MDR Multidrug-resistant
MeCN Acetonitrile
MeIm 1-methylimidazole
MHB II Cation-adjusted Mueller-Hinton broth
MIC Minimum inhibitory concentration
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NMR Nuclear magnetic resonance
OD Optical density
PBS Phosphate buffered saline
Pr-MeIm Propargyl-1-methylimidazole
RP-HPLC Reverse-phase high performance liquid chromatography
r.t. Room temperature
SD Standard deviation
TFA Trifluoroacetic acid
TIS Triisopropylsilane
TMS Tetramethylsilane
TSB Tryptic soy broth

References

1. Egorova, K.S.; Ananikov, V.P. Fundamental importance of ionic interactions in the liquid phase: A review of
recent studies of ionic liquids in biomedical and pharmaceutical applications. J. Mol. Liq. 2018, 272, 271–300.
[CrossRef]

2. Torimoto, T.; Tsuda, T.; Okazaki, K.-I.; Kuwabata, S. New Frontiers in Materials Science Opened by Ionic
Liquids. Adv. Mater. 2010, 22, 1196–1221. [CrossRef] [PubMed]

3. Roosen, C.; Müller, P.; Greiner, L. Ionic liquids in biotechnology: Applications and perspectives for
biotransformations. Appl. Microbiol. Biotechnol. 2008, 81, 607–614. [CrossRef] [PubMed]

4. Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in
Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [CrossRef] [PubMed]

5. Ferraz, R.; Branco, L.C.; Prudêncio, C.; Noronha, J.P.; Petrovski, Z. Ionic liquids as active pharmaceutical
ingredients. ChemMedChem 2011, 6, 975–985. [CrossRef]

6. Dias, A.R.; Costa-Rodrigues, J.; Fernandes, M.H.; Ferraz, R.; Prudêncio, C. The Anticancer Potential of Ionic
Liquids. ChemMedChem 2017, 12, 11–18. [CrossRef]

http://dx.doi.org/10.1016/j.molliq.2018.09.025
http://dx.doi.org/10.1002/adma.200902184
http://www.ncbi.nlm.nih.gov/pubmed/20437507
http://dx.doi.org/10.1007/s00253-008-1730-9
http://www.ncbi.nlm.nih.gov/pubmed/18979095
http://dx.doi.org/10.1021/acs.chemrev.6b00562
http://www.ncbi.nlm.nih.gov/pubmed/28125212
http://dx.doi.org/10.1002/cmdc.201100082
http://dx.doi.org/10.1002/cmdc.201600480


Int. J. Mol. Sci. 2020, 21, 6174 10 of 11

7. Ferraz, R.; Pinheiro, M.; Gomes, A.; Teixeira, C.; Prudêncio, C.; Reis, S.; Gomes, P. Effects of novel triple-stage
antimalarial ionic liquids on lipid membrane models. Bioorg. Med. Chem. Lett. 2017, 27, 4190–4193. [CrossRef]

8. Pendleton, J.N.; Gilmore, B.F. The antimicrobial potential of ionic liquids: A source of chemical diversity for
infection and biofilm control. Int. J. Antimicrob. Agents 2015, 46, 131–139. [CrossRef]

9. Venkata Nancharaiah, Y.; Reddy, G.K.; Lalithamanasa, P.; Venugopalan, V.P. The ionic liquid
1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic
surfactant. Biofouling 2012, 28, 1141–1149. [CrossRef]

10. Sidat, Z.; Marimuthu, T.; Kumar, P.; du Toit, L.C.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Ionic Liquids as
Potential and Synergistic Permeation Enhancers for Transdermal Drug Delivery. Pharmaceutics 2019, 11, 96.
[CrossRef]

11. Zakrewsky, M.; Lovejoy, K.S.; Kern, T.L.; Miller, T.E.; Le, V.; Nagy, A.; Goumas, A.M.; Iyer, R.S.; Del Sesto, R.E.;
Koppisch, A.T.; et al. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization.
Proc. Natl. Acad. Sci. USA 2014, 111, 13313–13318. [CrossRef] [PubMed]

12. Gomes, A.; Bessa, L.J.; Fernandes, I.; Ferraz, R.; Mateus, N.; Gameiro, P.; Teixeira, C.; Gomes, P. Turning a
Collagenesis-Inducing Peptide Into a Potent Antibacterial and Antibiofilm Agent Against Multidrug-Resistant
Gram-Negative Bacteria. Front. Microbiol. 2019, 10. [CrossRef] [PubMed]

13. Ahmad Fuaad, A.; Azmi, F.; Skwarczynski, M.; Toth, I. Peptide Conjugation via CuAAC ‘Click’ Chemistry.
Molecules 2013, 18, 13148–13174. [CrossRef] [PubMed]

14. Li, H.; Aneja, R.; Chaiken, I. Click chemistry in peptide-based drug design. Molecules 2013, 18, 9797–9817.
[CrossRef] [PubMed]

15. Hu, Q.; Deng, Y.; Yuan, Q.; Ling, Y.; Tang, H. Polypeptide ionic liquid: Synthesis, characterization, and
application in single-walled carbon nanotube dispersion. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 149–153.
[CrossRef]

16. Castro, V.; Rodriguez, H.; Albericio, F. Wang Linker Free of Side Reactions. Org. Lett. 2013, 15, 246–249.
[CrossRef]

17. Patel, J.B.; Cockerill, F.R., III. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow
Aerobically—Ninth Edition: Approved Standard M7-A9; Clinical and Laboratory Standards Institute: Wayne,
PA, USA, 2012.

18. Bessa, L.J.; Manickchand, J.R.; Eaton, P.; Leite, J.R.S.A.; Brand, G.D.; Gameiro, P. Intragenic antimicrobial
peptide Hs02 hampers the proliferation of single- and dual-species biofilms of P. aeruginosa and S. aureus: A
promising agent for mitigation of biofilm-associated infections. Int. J. Mol. Sci. 2019, 20, 3604. [CrossRef]

19. Overhage, J.; Campisano, A.; Bains, M.; Torfs, E.C.W.; Rhem, B.H.A.; Hancock, R.E.W. Human host defense
peptide LL-37 prevents bacterial biofilm formation. Infect. Immun. 2008, 4176–4182. [CrossRef]

20. Lin, Q.; Deslouches, B.; Montelaro, R.B.; Di, Y.P. Prevention of ESKAPE pathogen biofilm formation by
antimicrobial peptides WLBU2 and LL37. Int. J. Antimicrob. Agents 2018, 52, 667–672. [CrossRef]
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