J. Hortl. Sci. Vol. 8(1):74-81, 2013

Improvement in quality of wine by blending white and coloured grapes

Veena Joshi, S. Amarender Reddy¹, Vinod Kumar² and B. Srinivas Rao

Grape Research Station, Dr. YSR Horticultural University Rajendranagar, Hyderabad-500 030, India E-mail : veenahorti@rediffmail.com

ABSTRACT

Blending of juices from four white grape varieties viz., Thompson Seedless, Chenin Blanc, Sauvignon Blanc and Italia with three coloured varieties, viz., Shiraz, Ruby Red and Bangalore Blue, was done in 2:1 and 3:1 ratios to assess the effect of blending on wine quality. White varieties blended with Bangalore Blue recorded maximum titratable acidity (1.23%), while those blended with Ruby Red showed the least acidity (0.42%), Alcohol content in the wine ranged from 8.11% (Italia + Ruby Red, 2:1) to 12.04% (Chenin Blanc + Shiraz, 2:1). The range of values for tannin content (0.007% to 0.044%) and total phenol content (228mg/l to 571mg/l) indicated that white varieties blended with the coloured cv. Shiraz had the lowest content of tannins and total phenols in wine, while, those blended with cv. Ruby Red showed highest content of these in the blended wines. Hence, among different blends, Chenin Blanc, Thompson Seedless, Sauvignon Blanc and Italia blended with the coloured variety Shiraz, in 2:1 ratio, produced good quality wine.

Key words: Grape, coloured varieties, white varieties, wine, blending

INTRODUCTION

Blending of wines (coupage, assemblage) is frequently used to equilibriate composition of wines and to increase their stability, colour and quality. Therefore, it is of great interest to wineries to work out optimum proportions of each component in the blend to achieve perfect quality of the wine. Nowadays, there is an increasing interest in studying grape varieties that could yield better blends and coupages, with original quality-attributes. Another objective of blending wines is to optimize use of certain grape varieties to cut production costs (Escudero-Gilete *et al*, 2010)

Most studies in literature on wine blending are based on sensorial attributes (Datta and Nakai, 1992; Monagas *et al*, 2006; Monagas *et al*, 2007). Blending wines is a complex process demanding great rigour. Analytical and colorimetric study of original wines and their mixtures may lead to a better knowledge of the influence of the particular phenolic composition of the grape on wine characteristics especially colour (Escudero-Gilete *et al*, 2010). Polyphenolic compounds are also important sensory components providing colour, taste, bitterness, astringency and microbiological stability (Xi Zhu-mei *et al*, 2010)

Coloured and white grapes are used for preparing blended grape juice and wine. Akopyan (1979) reported that quality of red wines could be improved by blending thereby resulting in reduction of acidity and tannin content. According to Pawar (2002), wine from blended juice of 'Ugni Blanc' and 'Sharad Seedless' at 1:3 ratio gave better quality of wine over the other blends. Suitability of a grape variety for the purpose is judged by certain criteria which differ from case to case. Wine prepared from white varieties is dull-coloured. Hence, to overcome this, blending is a method to impart colour, flavour and acceptability. With this objective, wines were prepared by blending juices of white grape varieties (Sauvignon Blanc, Chenin Blanc, Thompson Seedless and Italia) with coloured varieties (Shiraz, Ruby Red and Bangalore Blue) in two different proportions, i.e., 2:1 and 3:1 ratios. The study involves analysis of various biochemical properties and organoleptic evaluation of different wine blends.

MATERIAL AND METHODS

Wine was prepared by blending juices of four white grape varieties (Thompson Seedless, Chenin Blanc, Sauvignon Blanc and Italia) with three coloured varieties (Shiraz, Ruby Red and Bangalore Blue) in two proportions (2:1 & 3:1). Treatments were replicated thrice. Total number of treatments was twenty four.

- T₁- Thompson Seedless + Shiraz (2:1)
- T_2 Thompson Seedless + Shiraz (3:1)
- T_3 Thompson Seedless + Ruby Red (2:1)
- T_4 Thompson Seedless + Ruby Red (3:1)
- T_5 Thompson Seedless + Bangalore Blue (2:1)
- T_6 Thompson Seedless + Bangalore Blue (3:1)
- T_7 Chenin Blanc + Shiraz (2:1)
- T_{8-} Chenin Blanc + Shiraz (3:1)
- T_9 Chenin Blanc + Ruby Red (2:1)
- T_{10-} Chenin Blanc + Ruby Red (3:1)
- T₁₁ Chenin Blanc + Bangalore Blue (2:1)
- T_{12} Chenin Blanc + Bangalore Blue (3:1)
- T_{13} Sauvignon Blanc + Shiraz (2:1)
- T_{14} Sauvignon Blanc + Shiraz (3:1)
- T_{15} Sauvignon Blanc + Ruby Red (2:1)
- T_{16} Sauvignon Blanc + Ruby Red (3:1)
- T_{17} Sauvignon Blanc + Bangalore Blue (2:1)
- T_{18} Sauvignon Blanc + Bangalore Blue (3:1)
- T_{19} Italia + Shiraz (2:1)
- T_{20} Italia + Shiraz (3:1)
- T_{21} Italia + Ruby Red (2:1)
- T_{22} Italia + Ruby Red (3:1)
- T_{23} Italia + Bangalore Blue (2:1)
- T_{24} Italia + Bangalore Blue (3:1).

Wine samples were analyzed for titrable acidity, alcohol content, tannins, total phenols, and, organoleptic evaluation, viz., appearance, aroma, flavour, taste, colour and overall acceptability of the wine.

Wine preparation

The following procedure, as outlined by Joshi (1995) was followed for reparation of the wine.

a. Preparation of yeast culture

Yeast strain *Saccharomyces cerevisiae* var *ellipsoideus* was used in the present study. Fresh grape juice was diluted in the ratio 1:1 (one litre juice with one litre distilled water) and was pasteurized. A little quantity of the pasteurized juice from the container was poured into a test tube containing the yeast culture, under aseptic condition, and mixed. The culture was ready for inoculation after 24h when plenty of bubbling was observed.

b. Preparation of 'Must'

The berries were washed with water and handcrushed, then filtered through a cheese cloth. The clear juice thus obtained was used for fermentation. TSS and pH were estimated and adjusted to 24°B and 3.5 respectively. Potassium meta-bisulphite was added to the juice @ 100-150mg per litre to inhibit growth of wild yeast and other microorganisms causing spoilage, and also to prevent browning due to oxidation. This was treated as 'Must'.

c. Fermentation

Must extracted after SO₂ treatment was inoculated with 2% (v/v) yeast culture and left at 20+1°C for primary fermentation. Nearly 7 days were needed to complete the primary fermentation process for red wine, and 10 days for white wine. Fermentation was completed when no more bubbles were released. This was also ascertained by stabilizating TSS for two successive days. TSS is normally to 7 or 8°Brix.

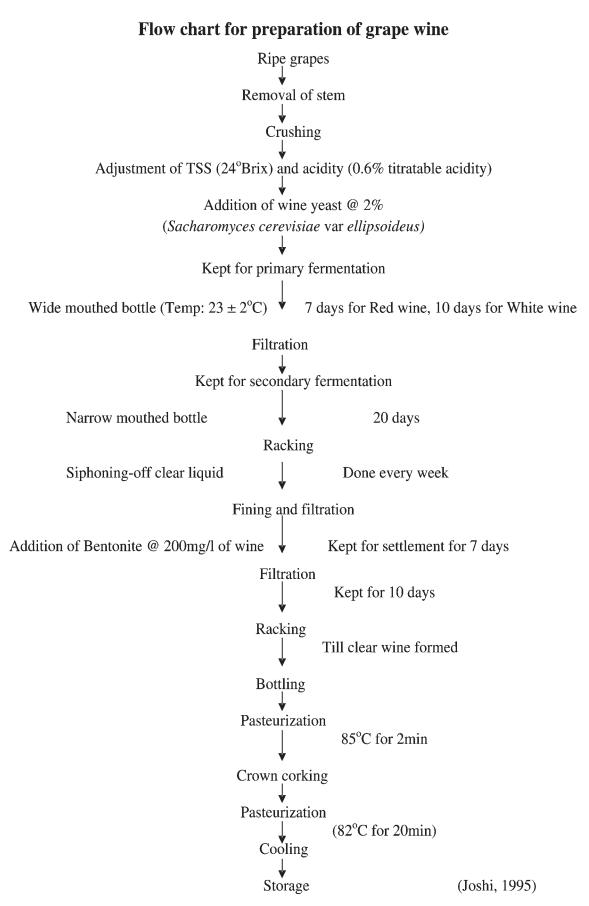
d. Filtration

After completion of fermentation, the supernatant was siphoned off, filtered through a muslin cloth, and placed for cold stabilization for a week.

e. Clarification

After filtration, if the wine was found not clear, it was clarified using clarifying agents such as Bentonite (150ppm) to recover wine of crystal-clear finish.

f. Siphoning/ Racking


Siphoning of clear liquid from the fermented must was done four times at fortnight intervals to get a clear liquid.

g. Pasteurization

After clarification, the clear wine was siphoned off and transferred to fresh sterile bottles, corked and subjected to pasteurization at 82°C for 20 minutes.

h. Maturation

After cooling, the bottles were stored for maturation in a BOD incubator at 10°C for 90 days. During maturation, the wine was racked regularly.

Veena Joshi et al

Biochemical analysis

a. Estimation of titratable acidity

Titratable acidity of wine was determined by AOAC method (1965) using 0.1N NaOH and expressed as % tartaric acid.

Tartaric acid (g) /100 ml wine =
$$\frac{\text{ml NaOH x Normality of NaOH x 0.075 x 100}}{\text{Volume of sample (ml)}}$$

b. Estimation of alcohol

Alcohol content of wine was estimated using a spectrophotometer at 600nm as (Natu *et al*, 1986) using sulphuric acid and potassium dichromate, and was expressed as % alcohol content.

c. Estimation of tannins

Tannins in wine were determined by the method of Amerine and Joslyn (1951) using indigo carmine as the dye and titrated against potassium permanganate solution (0.1N).

% Tannins = C x Normality of $KMnO_4 \times 0.0416 \times 100$ /Volume of wine (ml)

d. Estimation of total phenols

Total phenol content in the wine was estimated by the procedure of Sadasivam and Manickam (1996). Phenols react with phosphomolybdic acid in Folin-ciocalteau reagent in an alkaline medium and produce a blue-coloured complex (molybdenum blue) measured at 650nm in a spectrophotometer, and is expressed as mg/ml of wine.

Organoleptic evaluation

Sensory evaluation of wine was done for appearance, aroma, flavour, taste, colour and overall acceptability after maturation of the wine. A panel of 10 members evaluated wine samples on a 20 point scale. Wine samples were graded on a hedonic scale (Table 1).

All parameters were recorded for two consecutive years. The data was pooled and means were calculated for

Table	1.	Hedonic	scale	used	in	the	study
Invie		Heat	Denie	abea	***	une	Study

Quality	Hedonic	20 point
	scale	scale score
Excellent	7	18-20
Good	6	15-17
Fair	5	12-14
Ordinary	4	9-11
Poor	3	6-8
Bad	2	3-5
Very bad	1	1-2

Table 2. Quality parameters of wine from grapes

Biochemical	Standard	Wine quality in		
properties	International Wine	different blends		
of wine	composition (A)	studied (B)		
Titratable acidity	0.40 - 1.5%	0.42 - 1.23%		
Alcohol	7.4 -15.5%	8.11 - 12.04%		
Tannins	0.002 - 1.40% (White wine)	0.007 - 0.044%		
	0.04 - 3.26% (Red wine)			
Total phenols	246-426 mg/l (White wine)	283 - 570mg/l		
	910-2160 mg/l (Red wine)			

A - Adil *et al*,1980; Bhalerao, 2001; Suresh *et al*, 1985; Pawar, 2002 B - Results of the present study

both the years. Statistical analysis was applied as per Panse and Sukhatme (1967).

RESULTS AND DISCUSSION

Mean data for two years on biochemical properties of wine are presented.

Titratable acidity

Grape juice and wine mainly contain organic acids like tartaric, malic and citric acid. These play an important role in quality of a wine, particularly tartness, colour and keeping-quality. Data on titratable acidity of wine with various treatments are presented in Table 3.

Significant variation was observed among different blending treatments and time (years). However, interaction between treatments and years showed no significant effect.

Pooled data indicate that T_{12} [Chenin Blanc + Bangalore Blue, (3:1)] recorded maximum titratable acidity (1.23%), followed by T_{23} , T_{24} , T_{11} , T_{18} , T_{17} , T_{20} , T_8 and T_{19} , which were at par. Minimum titratable acidity (0.42%) was recorded in T_3 (Thompson Seedless + Ruby Red, 2:1), followed by T_9 , T_{10} , T_4 and T_1 . Rest of the treatments recorded intermediate values, ranging from 0.66 to 1.01%.

It was observed that white varieties blended with Bangalore Blue recorded maximum titratable acidity while those blended with Ruby Red showed the lowest acidity. The blends under the study yielded optimum values (Standard International Wine Composition values, 0.40 to 1.5%) for titratable acidity. Acidity imparts flavor too to the wine and is a crucial factor in wine making (Ethiraj and Suresh, 1978). Dry table-wines require high acidity (0.6 to 0.9%), while sweet (dessert) wines require 0.5 to 0.6% acidity (Bammi, 1968).

Alcohol content

In the present study, alcohol content in blended wines ranged from 8.11 to 12.04% (Table 3). Wines blended with

Treatment details		Titratab	le acidity of wir	ne (%)	Alcohol content of wine (°B)			
		Batch I	Batch II	Mean	Batch I	Batch II	Mean	
T ₁	Thompson Seedless + Shiraz 2:1	0.55	0.62	0.58	11.59	11.44	11.51	
T ₂	Thompson Seedless + Shiraz 3:1	0.61	0.72	0.66	10.72	10.38	10.55	
T ₃	Thompson Seedless + Ruby Red 2:1	0.42	0.43	0.42	8.40	8.28	8.34	
$T_{4}^{\tilde{3}}$	Thompson Seedless + Ruby Red 3:1	0.46	0.49	0.47	8.83	8.54	8.68	
T,	Thompson Seedless + B. Blue 2:1	0.66	0.68	0.67	9.24	9.15	9.19	
T_6	Thompson Seedless + B. Blue 3:1	0.75	0.88	0.81	9.83	9.73	9.78	
T ₇	Chenin Blanc + Shiraz 2:1	0.92	1.01	0.96	12.11	11.97	12.04	
T ₈	Chenin Blanc + Shiraz 3:1	1.00	1.12	1.06	10.72	10.67	10.69	
T ₉	Chenin Blanc + Ruby Red 2:1	0.41	0.50	0.45	8.54	8.21	8.37	
T ₁₀	Chenin Blanc + Ruby Red 3:1	0.44	0.50	0.47	9.39	9.27	9.33	
T ₁₁	Chenin Blanc + B. Blue 2:1	1.13	1.22	1.17	10.30	10.17	10.23	
T_{12}^{11}	Chenin Blanc + B. Blue 3:1	1.21	1.26	1.23	10.82	10.67	10.74	
T_{13}^{12}	Sauvignon Blanc + Shiraz 2:1	0.86	1.00	0.93	10.40	10.29	10.34	
T_{14}^{15}	Sauvignon Blanc + Shiraz 3:1	0.90	1.12	1.01	10.22	10.07	10.14	
T_{15}^{14}	Sauvignon Blanc + Ruby Red2:1	0.79	0.82	0.80	9.20	9.02	9.11	
T_{16}^{15}	Sauvignon Blanc + Ruby Red 3:1	0.88	0.96	0.92	9.43	9.25	9.34	
T_{17}^{10}	Sauvignon Blanc + B. Blue 2:1	1.04	1.19	1.11	9.42	9.39	9.40	
T ₁₈	Sauvignon Blanc + B. Blue 3:1	1.06	1.20	1.13	9.71	9.62	9.66	
Τ.,	Italia + Shiraz 2:1	1.00	1.11	1.05	8.69	8.52	8.60	
T_{20}^{19}	Italia + Shiraz 3:1	1.05	1.09	1.07	8.41	8.27	8.34	
T_{21}^{20}	Italia + Ruby Red 2:1	0.61	0.75	0.68	8.20	8.02	8.11	
T ₂₂	Italia + Ruby Red 3:1	0.71	0.75	0.73	8.33	8.11	8.22	
T_{23}^{22}	Italia + B. Blue 2:1	1.17	1.22	1.19	8.54	8.38	8.46	
T_{24}^{23}	Italia + B. Blue 3:1	1.07	1.32	1.19	8.49	8.41	8.45	
Mean		0.82	0.91	0.86	9.56	9.40	9.48	
		F test	SEm	CD(<i>P</i> =0.05)	F test	SEm	CD(P=0.05)	
Treatment		*	0.07	0.20	*	0.04	0.12	
Years *		0.02	0.06	*	0.01	0.04		
Treatment x Years		NS	0.03	NS	NS	0.06	NS	

'Shiraz' recorded higher % of alcohol, while, those blended with 'Ruby Red' recorded a lower content. Alcohol content increase when blended with Shiraz which may be due to varietal specification, total soluble solids and yeast activity during fermentation (Chikkasubbana *et al*, 1990). Other factors which determine the alcohol content in wine include initial sugar content of the juice, amount of by-product formed, amount of sugar utilized by yeast and other microorganisms for their growth, and alcohol lost to evaporation (Amerine *et al*, 1979).

Tannin content

Tannins are a complex group of polyphenolic compounds which impart a bitter taste. Data on tannin content of wine in various blended wines for both the years are presented in Table 4. Blended treatments showed significant differences, whereas, years and interaction effect were found to be non-significant. Significantly high content of tannins (0.044%) was recorded in T_{21} (Italia + Ruby Red, 2:1) and minimum was observed in T_8 (0.007%) (Chenin Blanc + Shiraz, 3:1).

cv. Shiraz registered minimum content of tannins in the wine, while, those blended with cv. Ruby Red showed the maximum tannin content. High tannin content in wine blended with 'Ruby Red' can be attributed to extraction/presence of higher amount of tannins in grape skin and seeds. White varieties contributed less amount of tannins to the wine because must here is fermented without the skin and seeds (Sharma, 1987). Tannin content decreases upon storage by complexing with proteins (Padshetty *et al*, 1982). Tannins polymerize with ageing, leading to low astringency and greater softness in the wine (Leslie, 2000). **Total phenol content**

Interestingly, white varieties blended with the coloured

Phenolic compounds play a vital role in determining wine colour and flavour. For total phenol content, blending treatments were significant while years and interaction were non-significant (Table 4). Maximum total phenol was recorded in T_{21} (570.89mg/l) and minimum (228.32mg/l) in T_{8} . In both the years, similar trend was observed among treatments wherein maximum content was found in T_{21} , and

minimum in T_8 . Among treatments, it was observed that 'Shiraz' blended with white varieties registered minimum total phenol content in the wine, while blend of 'Ruby Red' with any white variety showed maximum content of total phenols in the wine. Shiraz, when blended with a white variety, resulted in better mouth-feel, colour and astringency compared to the rest of the treatments. Singleton and Easu (1969) reported higher phenol content in white varieties compared to red varieties. Suresh *et al* (1983) reported that blending of musts result in better quality red wines.

Organoleptic evaluation

Blended wines were evaluated by a panel of five members. A 20 point scale was considered based mainly on appearance, aroma, flavour, taste, colour and overall acceptability. Significant differences were found among treatments for all the quality attributes studied (Table 5). Treatment T_7 recorded the highest score for appearance (17.18), aroma (16.25), flavour (16.55), taste (17.30) and colour (17.83). This was followed by T_1 for appearance,

aroma and taste; T_{12} for flavor and T_4 for colour. Lowest score was observed in T_{21} and T_{23} . Overall acceptability of wine in T_7 (Chenin Blanc + Shiraz, 2:1) was found to be excellent (with a score of 18.31), followed by T_1 (Thompson Seedless + Shiraz, 2:1) with a score of 17.41.

Based on average score, wine made from blending Shriraz juice can be graded as Good (T_7 , T_1 , and T_{13}), while the rest of the blends produced fair quality wine (except T_{23} , which showed ordinary quality). Hence, blending any white variety with Shiraz gave good quality wine in terms of phenolic compounds (total phenols and tannins) and alcohol content within the specified range of composition of standard wine.

It can be concluded that blending white varieties (Chenin Blanc, Thompson Seedless, Sauvignon Blanc and Italia) with the coloured variety Shiraz was found to produce good quality wine, recording the highest average organoleptic score. As regard ratio, 2:1 proportion recorded as superior to 3:1 in terms of wine quality and organoleptic evaluation.

 Table 4. Evaluation of various wine blends for tannins and total phenol content

	Treatment details	Tanni	n content of wi	ne (%)	Total phenol content of wine (mg/l)			
		Batch I	Batch II	Mean	Batch I	Batch II	Mean	
T ₁	Thompson Seedless + Shiraz 2:1	0.012	0.017	0.014	486.66	492.63	489.64	
T_2^{1}	Thompson Seedless + Shiraz 3:1	0.011	0.015	0.013	473.55	481.32	477.43	
T ₃	Thompson Seedless + Ruby Red 2:1	0.018	0.023	0.020	516.23	525.00	520.61	
T ₄	Thompson Seedless + Ruby Red 3:1	0.016	0.019	0.017	501.00	513.12	507.06	
T ₅	Thompson Seedless + B. Blue 2:1	0.015	0.018	0.016	495.04	509.00	502.02	
T ₆	Thompson Seedless + B. Blue 3:1	0.014	0.016	0.015	474.00	479.30	476.65	
T ₇	Chenin Blanc + Shiraz 2:1	0.008	0.012	0.010	251.24	267.67	259.45	
T ₈	Chenin Blanc + Shiraz 3:1	0.006	0.008	0.007	221.65	235.00	228.32	
T ₉	Chenin Blanc + Ruby Red 2:1	0.028	0.029	0.028	319.32	329.57	324.44	
T ₁₀	Chenin Blanc + Ruby Red 3:1	0.022	0.024	0.023	300.05	305.35	302.70	
T ₁₁	Chenin Blanc + B. Blue 2:1	0.015	0.018	0.016	301.10	310.12	305.61	
T ₁₂	Chenin Blanc + B. Blue 3:1	0.010	0.013	0.011	274.31	284.63	279.47	
T_{13}^{12}	Sauvignon Blanc + Shiraz 2:1	0.017	0.021	0.019	240.33	247.65	243.99	
T_{14}^{13}	Sauvignon Blanc + Shiraz 3:1	0.015	0.018	0.016	222.33	243.00	232.66	
T ₁₅	Sauvignon Blanc + Ruby Red2:1	0.026	0.030	0.028	270.10	275.66	272.88	
T ₁₆	Sauvignon Blanc + Ruby Red 3:1	0.022	0.025	0.023	258.67	264.02	261.34	
T ₁₇	Sauvignon Blanc + B. Blue 2:1	0.020	0.022	0.021	254.10	272.00	263.05	
T ₁₈	Sauvignon Blanc + B. Blue 3:1	0.019	0.020	0.019	237.64	241.35	239.49	
T ₁₉	Italia + Shiraz 2:1	0.023	0.025	0.024	480.54	485.24	482.89	
T ₂₀	Italia + Shiraz 3:1	0.016	0.021	0.018	453.12	472.60	462.86	
T ₂₁ ²⁰	Italia + Ruby Red 2:1	0.043	0.045	0.044	553.78	588.00	570.89	
T ₂₂	Italia + Ruby Red 3:1	0.029	0.032	0.030	535.11	553.00	544.05	
T ₂₃	Italia + B. Blue 2:1	0.026	0.029	0.027	513.25	531.66	522.45	
T ₂₄	Italia + B. Blue 3:1	0.018	0.021	0.019	487.62	509.37	498.49	
Mean		0.018	0.021	0.019	380.03	392.34	386.18	
		F test	SEm	CD (<i>P</i> =0.05)	F test	SEm	CD (P=0.05	
Treatment		*	0.003	0.010	*	6.47	19.75	
Years		NS	0.005	NS	NS	3.82	NS	
Treatm	ent x Years	NS	0.002	NS	NS	5.48	NS	

J. Hortl. Sci. Vol. 8(1):74-81, 2013

Treatment		Organoleptic evaluation							
	_	Appearance	Aroma	Flavour	Taste	Colour	Overall acceptability	Mean	
Max. S	core	20	20	20	20	20	20	20	
T ₁	Thompson Seedless + Shiraz 2:1	16.53	15.41	15.73	16.53	16.31	17.41	16.32	
T_2^1	Thompson Seedless + Shiraz 3:1	14.75	13.21	12.63	13.11	14.41	14.46	13.76	
T ₃	Thompson Seedless + Ruby Red 2:1	13.46	10.96	13.66	13.45	15.01	15.56	13.68	
T_4^3	Thompson Seedless + Ruby Red 3:1	13.40	14.51	14.56	14.50	16.95	16.40	15.05	
T ₅	Thompson Seedless + B. Blue 2:1	14.30	12.16	12.86	14.50	14.11	13.20	13.52	
T_6^{3}	Thompson Seedless + B. Blue 3:1	14.10	14.26	14.63	15.05	14.78	13.91	14.45	
T ₇	Chenin Blanc + Shiraz 2:1	17.18	16.25	16.55	17.30	17.83	18.31	17.23	
T ₈	Chenin Blanc + Shiraz 3:1	15.16	13.20	14.51	15.71	15.56	15.40	14.92	
T ₉	Chenin Blanc + Ruby Red 2:1	13.51	10.63	13.15	13.41	13.91	14.35	13.16	
T ₁₀	Chenin Blanc + Ruby Red 3:1	13.95	12.63	14.55	15.69	14.55	14.66	14.33	
T_{11}^{10}	Chenin Blanc + B. Blue 2:1	14.38	11.25	13.73	13.90	14.33	14.30	13.64	
T_{12}^{11}	Chenin Blanc +B. Blue 3:1	15.36	14.40	16.08	16.25	15.53	15.41	15.50	
T_{13}^{12}	Sauvignon Blanc + Shiraz 2:1	15.30	14.53	14.50	14.60	15.36	15.90	15.03	
T_{14}^{15}	Sauvignon Blanc + Shiraz 3:1	14.38	12.18	14.60	13.65	15.10	15.56	14.24	
T ₁₅ ¹⁴	Sauvignon Blanc + Ruby Red2:1	14.58	11.31	11.55	14.20	14.51	12.91	13.17	
T ₁₆	Sauvignon Blanc + Ruby Red 3:1	14.16	13.70	12.23	14.31	14.71	13.58	13.78	
T ₁₇	Sauvignon Blanc + B. Blue 2:1	14.50	12.86	13.78	12.20	14.90	14.10	13.72	
T ₁₈	Sauvignon Blanc + B. Blue 3:1	14.70	14.25	14.83	13.98	15.16	14.51	14.57	
T ₁₉	Italia + Shiraz 2:1	15.06	14.51	14.66	13.33	13.65	15.85	14.51	
T ₂₀	Italia + Shiraz 3:1	13.18	11.15	13.86	12.90	13.23	14.83	13.19	
T_{21}^{20}	Italia + Ruby Red 2:1	11.66	12.75	12.26	12.01	12.63	11.55	12.14	
Τ.,	Italia + Ruby Red 3:1	13.10	14.98	13.66	14.30	13.10	12.23	13.56	
T_{23}^{22}	Italia + B. Blue 2:1	12.35	10.26	11.63	12.13	13.16	12.26	11.96	
T_{24}^{23}	Italia + B. Blue 3:1	13.28	12.93	12.26	13.51	13.41	12.43	12.97	
Mean		14.26	13.09	13.85	14.18	14.67	14.54		
F- test		*	*	*	*	*	*		
SEm		0.06	0.07	0.08	0.08	0.07	0.12		
CD (P=	=0.05)	0.17	0.21	0.22	0.28	0.19	0.34		

Table 5. Organoleptic evaluation of wine in different blended treatments of Grape (Mean of two years data)

*Significant NS: Non significant

Hedonic scale: 18-20 Excellent, 15-17 Good, 12-14 Fair, 9-11 Ordinary, 6-8 Poor, 3-5 Bad, 1-2 Very bad

REFERENCES

- Adil G. Sachde, Abdul Monam Al–Kaisy and Raad, A.K. Norris. 1980. Chemical composition with relation to quality of some wine brands produced in Iraq. *Amer. J. Enol. Vitic.*, **31**:254-256
- Akopyan, A.A. 1979. Improvement in quality of red wines by means of grape blending. *Vino. Vingograd.*, SSSR, 6-32
- A.O.A.C. 1965. Official methods of analysis of Association of official agricultural Chemists, 10th Ed., Washington D.C, pp. 183-187
- Amerine, M.A., Berg, H.W. and Cruess, W.V. 1979. The technology of wine making. 4th ed., AVI Publishing Company, West Port, Connecticut, U.S.A.
- Amerine, M.A and Joslyn, M.A. 1951. Testing and analyzing Table Wines. The Technology of their production in California. The Regents of the University of California, 187-215

- Bammi, R.K. 1968. Need for growing wine grapes in India. *Indian Hort.*, **12**:21-22
- Bhalerao, S.B. 2001. Indian grape wine: A profitable business from grape cultivation (Trans). *Drakshavritta*, **27**:73-78
- Chikkasubbanna, V., Chadha, K.L. and Ethiraj, S. 1990. Influence of maturity of Thompson Seedless grape on the wine composition and quality. *Indian J. Hort.*, 47:12-17
- Datta, S. and Nakai, S. 1992. Computer-aided optimization of wine blending. *J. Food Sci.*, **57**:178–182
- Escudero-Gilete, M.L, González-Miret, M.L. and Heredia, F.J. 2010. Implications of blending wines on the relationships between the colour and the anthocyanin composition. *Food Res. Int'l.*, **43**:745-752
- Ethiraj, S. and Suresh, E.R. 1978. Deacidification of high acid grape musts and wine making with Schizosaccharomyces pombe. J. Food Sci. Technol., 15:111-113

- Joshi, V.K. 1995. General methods of wine preparation. Fruit wine. 1st Ed., Deep and Deep Publication, New Delhi, pp. 25-33
- Leslie, A.W. 2000. Grape and Wine Tannins and Phenolics – Their roles in flavour, quality and human health. Annual New York Wine Industry Workshop, Department of Horticulture, Cornwell University, USA
- Monagas, M., Bartolomé, B. and Gómez-Cordovés, C. 2006.
 Effect of the modifier (Graciano vs. Cabernet Sauvignon) in blends of Tempranillo wine during ageing in the bottle. I. Anthocyanins, pyranthocyanins and non-anthocyanin phenolics. *LWT Food Sci. Technol.*, **39**:1133–1142
- Monagas, M., Martín-Álvarez, P.J., Gómez-Cordovés, C. and Bartolomé, B. 2007. Effect of the modifier (Graciano vs. Cabernet Sauvignon) in blends of Tempranillo wine during ageing in the bottle. II. Colour and overall appreciation. *LWT Food Sci. Technol.*, 40:107–115
- Natu, R.B., Sawant, A.D. and Jadhav, S.J. 1986. Spectrophotometric assay of ethanol in fermented molasses and sugarcane juice. *Bharatiya Sugar*, **11**:41-43
- Padshetty, N.S., Patil, R.B., Subba Rao, M.S. and Amla, B.L. 1982. Maturity stage and harvest season effect on dry wine variety Bangalore Blue. *Indian Food Packer*, **36**:81-84

- Panse, V.S. and Sukhatme, P.V. 1967. Statistical methods for agricultural workers.(4th Ed.). Indian Council of Agricultural Research, New Delhi, pp. 70-72
- Pawar, R.A. 2002. Studies on preparatation of wine from blended juices of commercially grown grape cultivars.*M.Sc. (Agri.) Thesis*, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra
- Sadasivam, S. and Manickam, A. 1996. Biochemical methods. New International Publishers 2nd Ed. pp. 193-194
- Sharma, N. 1987. Studies on the suitability of certain grape varieties to wine making. *Ph.D. Thesis*, A.P. Agricultural University, Rajendranagar, Hyderabad
- Singleton, V.L. and Esau, P. 1969. Phenolic substances in grapes and wines and their significance. Academic Press, New York and London, pp. 60-62
- Suresh, E.R., Ethiraj, S. and Onkarayya, H. 1983. Blending of grape must for production of red wines. *J. Food Sci. Technol.*, **20**:313-315
- Suresh, E.R., Ethiraj, S. and Negi, S.S. 1985. Evaluation of new grape cultivars for preparation of wine. J. Food Sci. Technol., 22:211-212
- Xi Zhu-mei, Zhang Zhen-wen, Cheng Yu-feng and Li Hua. 2010. The effect of vineyard cover crop on main monomeric phenols of grape berry and wine in *Vitis vinifera* L. cv. Cabernet Sauvignon. *Agril. Sci. China*, **3**:440-448

(MS Received 28 May 2012, Accepted 10 July 2012, Revised 31 October 2012)