
https://doi.org/10.1177/1177932219865533

Bioinformatics and Biology Insights
Volume 13: 1–10
© The Author(s) 2019
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/1177932219865533

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Malaria is one of the most challenging infectious diseases to eradi-
cate, especially in Sub-Saharan Africa.1 Plasmodium falciparum 
remains the most prevalent malaria parasite in the world account-
ing for 216 million estimated cases in 2016.2 The drug resistance 
of malaria parasite has led to the need and search for new chemical 
scaffolds that have novel modes of action and can act through new 
protein targets.3,4 One of such protein targets in P falciparum is the 
adenylosuccinate lyase (ADSL), which is an important enzyme in 
purine metabolism.5 The de novo purine biosynthetic pathway 
that gives rise to the formation of adenosine monophosphate 
(AMP), catalysed by ADSL, is absent in P falciparum, making it a 
potential drug target for antimalarial studies.6,7 Cassera et  al7 
reported that 5-aminoimidazole-4-carboxamide ribonucleotide 
(AICAR) and its analogues can serve as potential inhibitors for 
ADSL of P falciparum, hence novel putative antiparasitic agents. 
Benzimidazole derivatives (substituted benzo[d]imidazol-1-yl)
methyl)benzimidamides) were considered as potential analogues 
for AICAR due to similarities in chemical structure (Figure 1), 
and could be evaluated for their antimalarial propensity. 
Benzimidazole derivatives have been widely used in recent years 
due to their wide range of pharmacological activities including 
antimalarial,8 antileishmanial,9 analgesics,10 anticancer,11 antitu-
mour,12 antimicrobial,13 anti-inflammatory,14 antihepatitis C 

virus,15 antihelmintic,16 antibacterial17 and antitrypanosomal18 
activities. Although several benzimidazole derivatives have been 
synthesised and developed into commercially available drugs, little 
is known about the design of the template as an inhibitor against 
P falciparum ADSL (PfADSL).

Over the years, different approaches have been used to 
improve how antimalarial agents are designed, put through 
clinical trials and eventually released as commercially available 
drugs.19 One of such approaches is structure-based drug design 
(SBDD), which relies on the knowledge of the 3-dimensional 
(3D) structure of the protein target to design a suitable ligand 
that can function as its potential inhibitor.20 In a situation 
where the experimental 3D structure of the protein is not avail-
able, homology model can be built from its amino acid 
sequence.21 Molecular docking is an important technique in 
SBDD, which can be applied in facilitating and speeding up 
the development of antimalarial agents or drugs that can be 
active against the deadly malaria parasite.22 Molecular docking 
has helped scientists to virtually screen a library of ligands (or 
compounds) against a target protein and predict the binding 
conformations and affinities of the ligands to the target.19 The 
aim of this study is to model the 3D structure of PfADSL, 
design and predict the in silico absorption, distribution, metab-
olism, excretion and toxicity (ADMET) of some substituted 
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benzo[d]imidazol-1-yl)methyl)benzimidamide compounds as 
well as predict the potential interaction modes and binding 
affinities of the designed ligands with the modelled PfADSL.

Materials and Methods
Homology modelling of PfADSL and the target-
template sequence alignment

The experimental crystal structure of PfADSL is not available 
in the Protein Data Bank (PDB);23 hence, its 3D structure was 
modelled. The protein ID of the target (P falciparum adenylo-
succinate lyase 3D7 strain) was retrieved from UniProt 
Knowledgebase (UniProtKB)24 with the accession number 
Q7KWJ4. Afterwards, the protein ID was submitted to 
SWISS-MODEL25 web server to develop a model with suffi-
cient query sequence coverage and sequence identity. The most 
reliable 3D structure was selected based on the Global Model 
Quality Estimation (GMQE)26 and Qualitative Model Energy 
Analysis (QMEAN)27 values. The GMQE values are usually 
between 0 and 1, and the higher the number, the higher the 
reliability of the predicted structure, while for QMEAN, a 
value below 4.0 shows reliability.28 The similarity identity 
between the amino acid sequences of the homology model of 
PfADSL and the template structure used for the homology 
model were confirmed using Clustal Omega version 1.2.1.29

Structure validation of modelled protein

The SWISS-MODEL web server automatically calculates the 
QMEAN scoring function for the estimation of the local and 
the global model quality based on the geometry, the interac-
tions and the solvent potential of the protein model. It also 
provides the z-score ranging from 0 to 1, which are compared 
with the expected value for any structure. PROCHECK was 
used to check for the quality of the modelled 3D structure of 
PfADSL generated via SWISS-MODEL. For this structure 
validation, the .pdb file format of the modelled PfADSL was 
uploaded on the PDBsum web server30 of European 
Bioinformatics Institute. The .pdb file format of the modelled 
PfADSL was uploaded on the server to obtain both the 
Ramachandran plot and the Ramachandran plot statistics. 
While the Ramachandran plot is used in accessing the quality 
of a modelled protein or an experimental structure, the 
Ramachandran plot statistics provides information on the total 
number of amino acid residues found in the favourable, allowed 
and disallowed regions.31 Also, Verify3D32 was used to validate 
the structure of the modelled protein, determine how compat-
ible a 3D structure is to its own amino acids and compare the 
result with that of good-known structures.

Alignment of the PfADSL model and the template 
structure

The alignment of the PfADSL model and template structure 
was carried out using PyMOL molecular viewer33 to show how 

closely related the carbon atoms are. This is derived from the 
root mean square deviation (RMSD) between the positioning 
of the carbon atoms of both the template and the model that is 
obtained from the alignment. The lower the RMSD (w.r.t 0), 
the more closely related the structures are.

Ligand modelling

AICAR analogues are good inhibitors of PfADSL7 and simi-
lar to benzimidazole, as shown in Figure 1. Therefore, the 
benzimidazole derivatives were built as ligands to function as 
potential inhibitors of PfADSL, which is the target protein. 
The 2-dimensional (2D) structures of the substituted 
benzo[d]imidazol-1-yl)methyl)benzimidamide compounds, 
4a-h (Scheme 1), were built using ChemDraw Professional 
15.0 by PerkinElmer USA. Also, ChemDraw was used to 
generate the simplified molecular-input line-entry system 
(SMILES) that were converted to their corresponding 3D 
structures using FRee Online druG 3D conformation gener-
ator (FROG)34 and saved in .pdb format. In addition, 
OpenBabel software35 was used to convert the .pdb files to 
the AutoDock docking format (.pdbqt), which was further 
used for the docking simulation.

In silico drug-likeness and toxicity predictions

Drug-likeness is a prediction that determines whether a par-
ticular pharmacological agent has properties consistent with 
being an orally active drug.36 This prediction is based on an 
already established concept by Lipinski et al,37 called Lipinski 
rule of five. The rule predicts that there is likely to be poor 
absorption or permeation when a compound possesses more 
than 5H-bond donors, 10H-bond acceptors, molecular weight 
greater than 500 and the calculated LogP (CLogP) greater 
than 5.37 The selection of compounds as drug candidates is also 
determined by a parameter called drug score.38 The higher the 
drug score value, the higher the chance of the compound being 
considered as a drug candidate.38 The in silico drug-likeness 
and toxicity predictions of the designed ligands were carried 
out using OSIRIS Property Explorer39 and Swiss ADME pre-
dictor.40,41 OSIRIS Property Explorer programme estimates 
the mutagenic, tumorigenic, irritant and reproductive risks, and 
also provides information on the compound’s hydrophilicity 
(LogP), solubility (LogS), molecular weight, drug-likeness and 
drug score.42 Meanwhile, SwissADME predictor provides 
information on the numbers of hydrogen donors, hydrogen 
acceptors and rotatable bonds, total polar surface area and the 
synthetic accessibility of the compounds. The ligands were also 
subjected to Lipinski et  al,37 Muegge et  al,43 Ghose et  al,44 
Egan et al45 and Veber et al46 screenings using SwissADME 
predictor. The analyses of the compounds were compared with 
that of chloroquine, and only compounds without violation of 
any of the screenings were used for the molecular docking 
analysis.
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Protein preparation

The homology modelled 3D structure of the target protein, 
PfADSL, was downloaded from SWISS-MODEL in its .pdb 
format. The modelled protein structure was defined as receptor 
while the complexed ligands were removed using Chimera 
software.47 Furthermore, the protein was prepared by the com-
putation of Gasteiger charges, with the addition of polar 
hydrogens and merging of the nonpolar hydrogens using 
AutoDockTools 1.5.6.48

Prediction of active sites in the modelled protein

The Computed Atlas of Surface Topography of proteins 
(CASTp) 3.049 was used to predict the active sites that were 
present in the modelled protein structure. CASTp is an online 

server that is applied in the identification and measurement of 
voids on 3D protein structures.50 The modelled 3D protein was 
submitted on the server, and the necessary amino acids for 
binding interactions were predicted.50

Molecular docking analysis

It has been reported that ADSL enzymes, which were used for 
the docking analyses, are biologically active as homotetram-
ers.51,52 The molecular docking studies were carried out using 
AutoDockTools, which is a free graphic user interface (GUI) 
for the AutoDock4.2 programme.53 The grid box was con-
structed using 58, 58, and 40, pointing in x, y, and z directions, 
respectively, with a grid point spacing of 0.508 Å. The centre 
grid box is of 14.527 Å, 56.689 Å and −5.122 Å around Arg 
17A, Tyr 18A, Asn 312A, His 173C, Asn 90D, Asp 92D, Gln 
250D, Arg 338D, Ser 343D and Arg 347D. These amino acids 
were selected based on the CASTp result and the alignment of 
the modelled 3D structure to the template structure. In addi-
tion, the docking analysis was executed using Lamarckian 
Genetic Algorithm 4.2, and the macromolecule was kept rigid 
throughout the docking simulation. The number of genetic 
algorithm runs was set at 10, and the other docking parameters 
were left at default values. Ten different conformations were 
generated for each ligand scored using AutoDock 4.2 scoring 
functions and were ranked according to their binding energies. 
AutoDockTools, PyMOL and LigPlot54 were used for the 
post-docking analyses.

Figure 1. Structures of AICAR and benzimidazole showing the regions of 

similarity.
Abbreviation: AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide.

Scheme 1. Schematic representation of the compounds 4a-h.
‘R’ stands for substituents on the compounds; ‘n’ stands for number of CH2.
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Results and Discussion
Homology modelling of PfADSL and the target-
template sequence alignment

A 3D structure of PfADSL was built using SWISS-MODEL 
with GMQE of 0.80 and QMEAN of −1.46. Also, Plasmodium 
vivax ADSL Pv003765 with AMP bound (PDB ID: 2QGA; 
resolution: 2.01 Å)55 was identified to have the closest template 
to PfADSL with a similarity identity of 63.91% and sequence 
similarity of 0.50. The GMQE value of 0.80 and QMEAN 
score of −1.46 indicate that the modelled structure is reliable 
and has a good quality.26,28

The multiple sequence alignment of the amino acid 
sequences56 of the PfADSL (UniProtKB ID: Q7KWJ4) and P 
vivax ADSL with AMP bound (PDB ID: 2QGA) is shown in 
Figure 2. A percentage identity matrix of 63.36% was obtained, 
which confirms the similarity identity of 63.91% obtained 
from the homology modelling.

Structure validation of modelled protein

The plot of the predicted local similarity to target against the resi-
due number of the predicted 3D structure of the modelled protein 
was graphically represented (Figure 3A). The value of most of the 
residues was close to 1, indicating that the local quality estimate of 
the residues of the predicted model is good. The residues with val-
ues lower than 0.6 were considered to be of low quality. The mod-
elled protein structure also lies within the range of other protein 
structures in PDB, which confirms its reliability (Figure 3B).

Both the Ramachandran plot (Figure 4A) and the 
Ramachandran plot statistics (Figure 4B) were obtained from 
PDBsum web server. The Ramachandran plot statistics implied 
that the modelled 3D structure of PfADSL has 91.8% of its 
residues in the most favoured regions, 7.4% of its residues in 
additional allowed regions, 0.8% of its residues in the gener-
ously allowed regions and 0.0% of its residues in disallowed 
regions of the Ramachandran plot. This also validates that the 

Figure 2. Alignment of the amino acid sequences of Plasmodium falciparum ADSL and the crystal structure of 2QGA.
Abbreviation: ADSL, adenylosuccinate lyase.
‘*’ represents positions that have single, fully conserved residue; ‘:’ indicates conservation between groups of strongly similar properties; ‘.’ indicates conservation between 
groups of weakly similar properties.
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modelled 3D structure is a good quality model. Also, the 
Verify3D plot of the modelled protein (Figure 4C) was 
obtained for the structure validation and it showed as PASS. 

The 3D environment profile shows that 85.64% of the residues 
have averaged 3D-1D score ⩾ 0.2, which suggests the validity 
of the modelled protein.

Figure 3. Structure validation of modelled PfADSL: (A) Local quality estimate of the residues of the predicted PfADSL model; (B) comparison of the 

predicted PfADSL structure with nonredundant set of PDB structures.
Abbreviation: PfADSL, Plasmodium falciparum adenylosuccinate lyase, PDB, Protein Data Bank.

Figure 4. Structure validation using (A) Ramachandran plot; (B) Ramachandran plot statistics of the homology modelled PfADSL; and (C) Verify3D.
Abbreviation: PfADSL, Plasmodium falciparum adenylosuccinate lyase.
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Alignment of the PfADSL model and template 
(2GQA) structure

A RMSD value of 0.105 Å was obtained from the alignment 
computed using PyMOL molecular viewer, indicating that the 
structures were closely related (Figure 5). The template struc-
ture is represented by the blue helices, whereas the protein 
model is represented by the green helices. The alignment 
showed that the chain B and chain C of the dimer template 
structure (2QGA) corresponded to the chain C and chain D of 
the tetramer structure of the protein model. Meanwhile, it was 
observed from the molecular viewer that the binding of the 
AMP to the amino acid residues of 2QGA at His 168B, Asn 
85C, Asp 87C, Gln 245C, Ser 338C, Arg 333C and Arg 342D 
also corresponded with the binding of the AMP with the 
amino acid residues of the modelled template at His 173C, 
Asn 90D, Asp 92D, Gln 250D, Ser 343D, Arg 338D and Arg 
347D.

In silico results of risks and drug-likeness of ligands 

a. OSIRIS property explorer result. With the exception of 
compound 4c, all the predicted toxicity risk factors for the 8 
designed substituted benzo[d]imidazol-1-yl)methyl)benzi-
midamides were low (Table 1). Also, the 8 compounds had 
molecular weights less than 500, which implied that they are 
likely to be absorbed and are able to reach the place of action 
when administered as drugs.57 All compounds including the 
standard drug (chloroquine) had LogP values not higher 
than 5, suggesting good absorption and permeation across 
cell membranes.57 Among the compounds, 4-((2-benzyl-
1H-benzo[d]imidazol-1-yl)methyl)benzimidamide 4f had 
the highest value of drug score (0.83), which is higher than 
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Figure 5. Alignment of the PfADSL model and the 2GQA template 

structure of Plasmodium vivax ADSL.
Abbreviation: PfADSL, Plasmodium falciparum adenylosuccinate lyase.
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Table 2. ADME prediction of compounds 4a-h in comparison with chloroquine, predicted by SwissADME.

COMPOUNDS FORMULA NHD NHA NRB TPSA
(Å2)

LOGP (ILOGP) LOGS (ESOL) SYNTHETIC ACCESSIBILITY

4a C21H18N4 2 2 4 67.69 2.27 −4.53 2.44

4b C21H17ClN4 2 2 4 67.69 2.11 −5.11 2.54

4c C21H20N6 4 2 4 119.73 1.38 −3.81 2.74

4d C21H18N4O 3 3 4 87.92 2.11 −4.38 2.52

4e C21H19N5 3 2 4 93.71 2.00 −4.17 2.62

4f C22H20N4 2 2 5 67.69 2.11 −4.17 2.62

4g C23H20N4 2 2 5 67.69 2.34 −4.98 2.89

4h C21H19N5 3 2 4 93.71 1.81 −4.17 2.60

Chloroquine C18H26ClN3 1 2 8 28.16 3.95 −4.55 2.76

Abbreviations: ADME, absorption, distribution, metabolism, excretion; NHA, no. of hydrogen bond acceptors; NHD, no. of hydrogen bond donors; NRB, no. of rotatable 
bonds; TPSA, total polar surface area.

Table 3. Energy-based interactions and hydrogen bonds for benzimidazole derivatives 4a-h, AICAR and AMP docked into modelled PfADSL.

COMPOUNDS BINDING ENERGIES (KCAL/MOL) HYDROGEN BONDS AND THE BOND LENGTHS

4a −7.52 Ser 298A (3.01 Å), Ser 299A (3.19 Å)

4b −7.85 Ser 298A (3.17 Å), Ser 299A (2.98 Å)

4c −6.85 Asn 90D (2.90 Å), Thr 124D (2.90 Å), Thr 300A (2.67 Å)

4d −7.03 Ser 298A (2.87 Å), Ser 299A (3.10 Å), Thr 124D (2.79 Å)

4e −7.48 Gln 250D (3.05 Å), Ile 296A (2.71 Å)

4f −8.09 Glu 295A (2.46 Å), Asn 306A (2.70 Å)

4g −8.75 Ser 299A (3.02 Å), Thr 124D (2.97 Å)

4h −7.20 Ser 298A (3.17 Å), Ser 299A (3.25 Å), Asp 92D (2.77 Å)

AICAR −5.49 Ser 298A (2.92 Å), Ser 299A (2.81 Å), His 91D (3.04 Å), Thr 172 C (2.76 Å), Lys 304A 
(2.96 Å), His 173C (2.90 Å)

AMP −5.10 Tyr 18A (2.56 Å), Asn 312A (3.04 Å), Arg 17A (2.94 Å), Asn 90D (2.72 Å), Gln 250D 
(2.72 Å), Arg 338D (3.01 Å), Ser 343D (2.95 Å), Arg 347 (2.76 Å)

Abbreviations: AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; AMP, adenosine monophosphate.

Figure 6. The surface of the binding pocket of the modelled protein as 

computed using CASTp 3.0.

that of chloroquine (0.25). This high value could be as a 
result of the aliphatic carboxylic acid (phenyl acetic acid) on 
position 2 of the benzimidazole in 4f. In general, the drug 
score values of compounds 4a-h (0.3-0.83) were bigger than 
that of chloroquine. In addition, it was predicted that all the 
designed compounds possessed low mutagenic, tumorigenic, 
irritant and reproductive effective toxicity risks except 4c, 
which was predicted to have a high mutagenic toxicity risk. 
However, the removal of the amino group on position 5 of 
the benzoic acid as seen in 4h reduced the risk of the muta-
genic toxicity of 4c.

b. SwissADME prediction. The numbers of hydrogen bond 
acceptors (NHA) and hydrogen bond donors (NHD) in com-
pounds 4a-h (Table 2) are in accordance with the rule of five 
by Lipinski et  al.37 The LogS prediction of −5.11 to −3.81 
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indicated that all the compounds were moderately soluble. 
Also, the highest value (2.89) of synthetic accessibility was 
recorded for compound 4g, suggesting that it will be the most 
difficult to synthesise from the compound library. This could 
be due to the presence of a double bond in position 2 of the 
benzimidazole. Generally, the synthetic accessibility of all the 
compounds (2.44-2.89) was within the range of easy syn-
thetic accessibility. It is also interesting to note that none of 
the compounds violated the Lipinski rule of five, Ghose filter, 
Veber rule, Egan rule and Muegge rule. This shows that all 
the ligands can be considered as good lead compounds in 
drug design.

Active site identif ication

From the active site prediction, a pocket was identified with an 
area (SA) of 2919.055 and a volume (SA) of 2797.556 (Figure 6). 
A total of 166 amino acid residues were predicted to be the 

active sites for the modelled protein. However, the following 
were chosen as the more favourable sites for the docking analy-
ses due to the similarities observed from the alignment of the 
modelled structure to the template structure: Arg 17A, Tyr 
18A, Asn 312A, His 173C, Asn 90D, Asp 92D, Gln 250D, 
Arg 338D, Ser 343D, Arg 347D.

Molecular docking results

The obtained binding energies and hydrogen bonds of com-
pounds 4a-h from the molecular docking simulations are 
detailed in Table 3, whereas the docked conformation of 
AICAR and (E)-4-((2-styryl-1H-benzo[d]imidazol-1-yl)
methyl)benzimidamide (4g) in the active sites of PfADSL is 
presented in Figures 7 and 8, respectively. Structure–activity 
relationship studies based on the observed dock score values of 
the compounds suggest that the presence of amidine group, 
RC(=NH)-NH2, on the compounds could be responsible for 

Figure 7. Molecular docking interactions between AICAR and the binding sites of PfADSL: (A) 2D model of the interactions between AICAR and PfADSL; 

(B) 3D model of the interactions between AICAR and the binding sites of PfADSL.
Abbreviation: AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; PfADSL, Plasmodium falciparum adenylosuccinate lyase.

Figure 8. Molecular docking interactions between 4g and the binding sites of PfADSL: (A) 2D model of the interactions; (B) 3D model of the interactions.
Abbreviation: PfADSL, Plasmodium falciparum adenylosuccinate lyase.
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the low binding energies and strong binding affinity (Table 3). 
Also, the presence of amino group on position 2 of the substi-
tuted phenyl in 4e (–7.48 kcal/mol) increased the binding 
affinity of the compound as against it being on position 3 as 
observed in 4h (–7.20 kcal/mol). The di-substitution of amino 
groups on positions 3 and 5 of the substituted phenyl in 4e did 
not have a positive impact on the binding energy but rather 
reduced its binding affinity (–6.85 kcal/mol) as against the 
mono-substitutions on position 2 of 4e and position 3 on 4h.

Furthermore, all the designed compounds exhibited dock 
score values between −6.85 and −8.75 kcal/mol, having lower 
binding energies than that of the complexed ligand (AMP) 
that had a binding energy of −5.10 kcal/mol. Also, the binding 
energies of the compounds were lower than AICAR (–5.49 kcal/
mol), which has been reported to be a potential inhibitor of 
PfADSL.7 The lowest autodock score and the best interactions 
were used to ascertain the compound with the best conforma-
tion.2 The best dock score among the designed benzimidazole 
derivatives was −8.75 kcal/mol for compound 4g. The hydro-
gen bond formed between compound 4g and the amino acid 
residues (Ser 299A, Thr 124D) of PfADSL also validates the 
functional and structural stability of the ligand-protein com-
plex.2 Thus, the binding model reported in this study suggests 
that these substituted benzo[d]imidazol-1-yl)methyl)benzimi-
damides behave as PfADSL inhibitors and show some key 
structural points to be considered in future optimization.

Conclusion
PfADSL is a potential drug target that can be considered in the 
design of antimalarial compounds to combat the malaria menace. 
This study gives an insight into the design and prediction of 
potential interaction modes and binding affinities of 8 substituted 
benzo[d]imidazol-1-yl)methyl)benzimidamide compounds with 
homology modelled PfADSL. (E)-4-((2-styryl-1H-benzo[d]
imidazol-1-yl)methyl)benzimidamide, 4g, had the highest dock 
score value among the designed ligands. All the designed com-
pounds possessed good in silico ADMET properties, demon-
strating their safety for further synthesis and development into 
active commercially available antimalarial drugs. Also, experi-
mental characterization is needed for further validation of the 
protein target.
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