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a b s t r a c t

This paper deals with the design problem of H∞ control for linear systems in finite-frequency (FF)
domain. Accordingly, the H∞ norm from the exogenous disturbance to the controlled output is reduced
in a given frequency range with utilizing the generalized Kalman–Yakubovic–Popov (gKYP) lemma. As
some of the states are hard or impossible to measure in many applications, a dynamic output feedback
controller is proposed. In order to meet practical requirements that express the limitations of the
physical system and the actuator, these time-domain hard constraints are taken into account in the
controller design. An algorithm terminating in finitely many steps is given to determine the dynamic
output feedback with suboptimal FF H∞ norm bound. The algorithm consists of solving a series of
linear matrix inequalities (LMIs). Finally, two case studies are given to demonstrate the effectiveness
and advantageous of the proposed method.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The past few decades have witnessed remarkable develop-
ments in H∞ control theory, which addresses the problem of
worst-case controller design for systems subject to unknown
external disturbances and uncertainties [1–4]. Particular attention
has been paid to this subject in light of its robustness and distur-
bance attenuation capabilities. After the high-impact paper [2],
a huge amount of papers has been devoted to theoretical and
application sides of H∞ theory [5–10], and to the implementation
on many practical systems [11–19].

It is worth pointing out that the standard H∞ control concerns
the infinite-frequency range. However, in many real-world prob-
lems the signals of interest have a limited frequency spectrum: to
mention but a few, the wave force for offshore platforms, earth-
quake force for multi-storey buildings and road disturbance for
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vehicles are signals of this kind. Therefore, it is important to in-
vestigate FF H∞ control, because the consideration of a bounded
frequency interval may reduce the conservatism of the standard
H∞ control. Fortunately, the gKYP lemma of [20] and [21] pro-
vides a way to optimize some infinite-frequency performances –
including theH∞ performance – in a FF range. With the aid of this
method, the FF H∞ control is developed and employed for many
practical systems with promising results [15,22–26]. The advan-
tage of FF H∞ control in comparison with the entire-frequency
H∞ control is apparently illustrated in the paper [27].

On the one hand, the state-feedback control is probably the
most common and most intensively investigated controller struc-
ture. This is because the state-feedback uses the internal infor-
mation of the system to control it, which is generally much more
informative than the system output. Therefore, many published
papers on the FF H∞ control have focused on state-feedback
control [23,25,27]. On the other hand, output-feedback control
has received great attention in the most important problems in
control theory and applications due to the fact that all state vari-
ables are not always available for measurement. In this regard,
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the FF H∞ static output-feedback control is developed and con-
sidered for active suspension systems [15], linear time-invariant
fractional-order systems [28], and vibration control of structural
systems [19]. Another kind of output-feedback controller is the
dynamic output feedback controller. Theoretically, the dynamic
output feedback controller is more powerful than a static output
feedback controller while its design is more challenging [29,30].
To the best of our knowledge, there are only few results on
H∞ dynamic output feedback control over FF range with fixed
H∞-gain [29–31] limited to active vehicle suspension systems.
Motivated by the aforementioned discussion, the aim of this
paper is to design a FF H∞ dynamic output feedback subopti-
mal controller for linear systems with practical constraints. The
contributions of this paper can be mentioned as follows:

1. Finite-frequency H∞ suboptimal control is designed for
linear systems via dynamic output feedback.

2. Practical hard constraints are considered in the design
problem.

Notation. Standard notations are used. Especially, R > 0 (≥
0) stands for a real symmetric positive definite (semi-definite)
matrix R, Sn and S+

n denote the set of n × n symmetric and
n×n symmetric and positive definite matrices, respectively. For a
matrix R, its orthogonal complement is denoted by R⊥, and [R]s =

R + RT , R−T
= (R−1)T . ∥T (s)∥∞ represents the maximum singular

value of a transfer-function matrix T (s). A block-diagonal matrix
is represented by diag{. . .} and a conjugate-transpose term in a
Hermitian matrix is denoted by ∗.

2. Problem statement and preliminaries

Consider a linear dynamic system as⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Axx(t) + Bxu(t) + Exf (t), x(0) = x0,
z(t) = Czx(t) + Bzu(t) + Ez f (t),
y(t) = Cyx(t),
v(t) = Cvx(t),

(1)

where x(t) ∈ Rnx is the state vector, z(t) ∈ Rnz represents the
controlled or penalty output, y(t) ∈ Rny denotes the measured
output vector, v(t) ∈ Rnv is the output vector to be constrained,
and u(t) ∈ Rnu is the control signal. Function f (t) ∈ L2[0, T ) for
any T > 0 is the external disturbance. The matrices Ax ∈ Rnx×nx ,
Bx ∈ Rnx×nu , Ex ∈ Rnx , Cz ∈ Rnz×nx , Bz ∈ Rnz×nu , Ez ∈ Rnz ,
Cy ∈ Rny×nx and Cv ∈ Rnv×nx are known real matrices.

Due to practical requirements, some physical constraints are
introduced for v(t) and u(t) as follows:

|vi(t)| ≤ 1, i = 1, . . . , nv, (2)⏐⏐uj(t)
⏐⏐≤ uj,max, j = 1, . . . , nu, (3)

where the numbers uj,max (j = 1, . . . , nu) are given constants.

Remark 1. Note that hard constraints for some state variables
(or combinations of them) are necessary in several cases due to
physical restrictions as it is shown in the examples of Section 4.
For example, the state constraint in Example 1 means that the rel-
ative drifts of the floors of a building may not exceed a prescribed
value. Similarly, due to the limitation in the maximum power
of the actuator, the control signal should be constrained. The
violation of the constraints may lead to damage to the structure
or the actuator.

In order to simplify the formulation of forthcoming state-
ments, the notion of admissible disturbances is introduced as
follows. An external disturbance f satisfying inequality∫

∞

0
f (t)2dt ≤ f 2max (4)

with a given fmax is called admissible.
The dynamic output feedback controller is defined as{
˙̂x(t) = Ac x̂(t) + Bcy(t),
u(t) = Cc x̂(t) + Dcy(t),

(5)

where the matrices Ac ∈ Rnx×nx , Bc ∈ Rnx×ny , Cc ∈ Rnu×nx , and
Dc ∈ Rnu×ny are the controller gain matrices to be designed. For
the sake of brevity, introduce the notation K = [Ac, Bc, Cc,Dc],
which will also be referred to as the controller gain matrix.

Define ξ (t) =
[
xT (t), x̂T (t)

]T
∈ R2nx . Then, by substituting (5)

into (1), one can obtain the closed-loop systems as{
ξ̇ (t) = Aξ (t) + Bf (t), ξ (0) = ξ0 =[xT0, 0

T
]
T ,

ζ (t) = Cξ (t) + Df (t),
(6)

where

A =

[
Ax + BxDcCy BxCc

BcCy Ac

]
, B =

[
Ex
0

]
,

C =
[
Cz + BzDcCy BzCc

]
, D = Ez .

By introducing the notations κ =
[
DcCy Cc

]
, Cv = [Cv 0]

and ej ∈ R1×nu as the jth unit row vector (e.g. for nu = 4,
e2 = [0 1 0 0]), the constraints (2) and (3) can be written as

ξ T (t)CT
viCviξ (t) ≤ 1, i = 1, . . . , nv, (7)

ξ T (t)κT eTj ejκξ (t)≤ u2
j,max, j = 1, . . . , nu, (8)

where Cvi is the ith row of Cv . Note that uj(t) = eju(t). Consider
the FF H∞ performance index

sup
ϖ1<ω<ϖ2

∥G(jω)∥∞ < γ , (9)

where ϖ1 and ϖ2 represent the lower and upper bound of the
specified frequency, γ is a positive scalar, and G(jω) denotes
the transfer-function matrix of the closed-loop system (6) from
the exogenous disturbance f (t) to the controlled output ζ (t). The
problem statement can be formulated as the following.

Problem statement: The aim is to design a gain matrix K =

[Ac, Bc, Cc,Dc] for the dynamic output feedback controller (5)
such that,

• the closed-loop system (6) is asymptotically stable in case
f (t) = 0,

• the FF H∞ performance index (9) is assured with a γ as
small as possible,

• the hard constraints (2) and (3) are met.

Remark 2. The basic tool for the construction of dynamic output
feedback controller is the reduction of computations to matrix
inequalities. As it is well-known, these matrix inequalities are
bilinear in the decision variables. There are already available
software tools (as e.g. PENLAB of Fiala, Kocvara & Stingl) for
the solution of bilinear matrix inequalities (BMIs), but the ap-
plicability is limited in respect of the size of the problem. The
standard method to reduce the BMI conditions to linear matrix
inequalities (LMIs) originated from the seminal work of Gahinet–
Apkarian [32] is suitable, if the H∞ problem is considered on
the entire-frequency domain. To eliminate the difficulties caused
by FF domain and the presence of hard constraints, an iterative
procedure will be proposed. It will be shown that the proposed
method can efficiently be applied to practical problems presented
in Section 4.

The following lemmas are utilized through the paper.
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Lemma 1 (Projection Lemma; [32,33]). Let matrices A ∈ Cn×m,
B ∈ Ck×n and S = S∗

∈ Cn×n be given. Then the following statements
are equivalent:

(i) There exists a matrix Q satisfying

AQB + (AQB)∗ + S < 0,

(ii) The following conditions hold:

A⊥SA∗

⊥
< 0

(
or AA∗ > 0

)
,

B∗

⊥
S(B∗

⊥
)∗ < 0

(
or B∗B > 0

)
.

Remark 3. It has to be emphasized that, even if B ∈ Rn×m,
C ∈ Rk×n, but Q is complex Hermitian, equivalence of the two
statements is valid only in the case, when X is allowed to be
a general complex matrix, i.e. a nonzero imaginary part should
be assumed, and no assumption on the structure of X should be
stated. Otherwise, one only has (i) ⇒ (ii).

Lemma 2 (gKYP Lemma; [20,21]). Real matrices A ∈ Rn×n, B ∈

Rn×m, C ∈ Rp×n, D ∈ Rp×m, a real number γ > 0, and an
interval Iω = {ω ∈ R : ω1 ≤ ω ≤ ω2} are given. Let G (jω) =

C (jωI − A)−1 B + D. Suppose that A has no eigenvalues on the
imaginary axis, and DTD − γ 2I < 0. Then the following statements
are equivalent:

(i)
[
G (jω)

I

]∗

Π

[
G (jω)

I

]
< 0, for allω ∈ Iω .

(ii) There exist real symmetric matrices P and Q with Q > 0 such
that[
A B
I 0

]T

Ξ

[
A B
I 0

]
+

[
C D
0 I

]T

Π

[
C D
0 I

]
< 0, (10)

where Ξ =

[
−Q P + jωcQ

P − jωcQ −ω1ω2Q

]
, Π =

[
I 0
0 −γ 2I

]
, and

ωc =
1
2 (ω1 + ω2).

Corollary 1. Under the conditions of Lemma 2, statement (i) of
Lemma 2 is equivalent to the following:

(iii) There exist real symmetric matrices P, Q with Q > 0, and
real matrices Wr , Wim such that[

Ω̂r + jΩ̂im Γ T

Γ −I

]
< 0, (11)

where Γ = [0 C D],

Ω̂r =

⎡⎣ −Q P − Wr 0
P − W T

r Ω1r W T
r B

0 BTWr −γ 2I

⎤⎦ ,

Ω1r = ATWr + W T
r A − ω1ω2Q , (12)

Ω̂im =

⎡⎣ 0 ωcQ − Wim 0
−ωcQ + W T

im Ω1im −W T
imB

0 BTWim 0

⎤⎦ ,

Ω1im = ATWim − W T
imA. (13)

Proof. The proof follows similar arguments as e.g. a part of the
proof of Theorem 1 in [18]. By Lemma 2, statements (i) and (ii)
are equivalent. Set

Ξ̃ =

[
Ξ

0
0

0 0 0

]
+

⎡⎣ 0 0 0
0 CTC CTD
0 DTC DTD − γ 2I

⎤⎦ .

Now inequality (10) can equivalently be written as[ A B
I 0
0 I

]T

Ξ̃

[ A B
I 0
0 I

]
< 0. (14)

Since Q > 0 and DTD − γ 2I < 0 are assumed, inequality

ΘT
1⊥Ξ̃Θ1⊥ < 0, (15)

holds true together with (14), where Θ1⊥ =

[
I 0 0
0 0 I

]
. Here

Θ1⊥ is the orthogonal complement of Θ1 = [0 I 0]T . Using the
notation Θ2 = [−I A D]T , it can be seen that (14) is nothing
else as ΘT

2⊥Ξ̃Θ2⊥ < 0. The application of Lemma 1 shows that
(14) and (15) are equivalent to the existence of a matrix Ŵ =

Wr + jWim such that

Ξ̃ + Θ2ŴΘT
1 + Θ1ŴΘT

2 < 0.

It can be shown that, by using Schur complements, (11) is equiv-
alent to the above inequality. □

3. Main results

Firstly, the condition on H∞-stability will be derived. Sec-
ondly, an algorithm terminating in finitely many steps will be
given to determine the dynamic output feedback with the lowest
H∞-norm bound.

Proposition 1. Let Iω = {ω ∈ R : ω1 ≤ ω ≤ ω2} and let G(jω) be
the transfer function matrix of system (6). Suppose that A has no
eigenvalues on the imaginary axis, and γ > 0 is such a number that
DTD − γ 2I < 0. Then

sup
ω∈Iω

∥G(jω)∥∞ < γ , (16)

if and only if there exist matrices P ∈ S2nx , Q ∈ S+

2nx , Wr ,Wim ∈

R2nx×2nx such that the following matrix inequality holds:⎡⎢⎣ Ω̂r Γ T Ω̂im 0
Γ −I 0 0

−Ω̂im 0 Ω̂r Γ T

0 0 Γ −I

⎤⎥⎦ < 0, (17)

where Γ , Ω̂r , Ω̂im are obtained from (iii) of Lemma 2 with [A, B, C,

D] = [A,B, C,D], P = P , Q = Q, Wr = Wr , Wim = Wim.

Proof. The proof immediately follows from Corollary 1 by using
the well-known fact that the Hermitian matrix S = S1 + jS2
is negative definite if and only if the real symmetric matrix[

S1 S2
−S2 S1

]
is negative definite, as well. □

Remark 4. Divide the selectable variables in inequality (17) into
two groups: let the first one be defined by Ψ0 = [P,Q,Wr ,Wim,

γ ], where γ = γ 2, and the second one by K = [Ac, Bc, Cc,Dc ].
Formally, inequality (17) can be written as

L0 (Ψ0,K) < 0, (18)

which is LMI with respect to the decision variables in Ψ0 by fixing
the matrices in K, and it is LMI with respect to the decision
variables in K by fixing the parameters in Ψ0.

For given R ∈ S+

2nx and α > 0, introduce the ellipsoid

Eα(R) =
{
ξ ∈ R2nx : ξ TRξ ≤ α

}
.
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Proposition 2. Let α0 > 0, ν > 0 be given, and consider system (6)
with admissible disturbances compliant with (4). Suppose that there
exists a matrix R ∈ S+

2nx such that the following matrix inequalities
hold true: [

ATR + RA BTR
RB −νI

]
< 0, (19)[

R ακT eTj /
√
uj,max

αejκ/
√
uj,max αuj,max

]
≥ 0, j = 1, . . . , nu, (20)[

R αCT
vi

αCvi α

]
q ≥ 0, i = 1, . . . , nv, (21)

where α = α0 + νf 2max. Then

• system (6) is asymptotically stable in case f (t) = 0,
• if f is an admissible disturbance and ξ0=

[
xT0, 0

T
]T

∈ Eα0 (R),
then ξ (t) ∈ Eα(R) for all t ≥ 0, and the constraints (2) and
(3) are satisfied.

Proof. Let V (ξ (t)) = ξ T (t)Rξ (t). It can be shown in a standard
way that (19) implies inequality
d
dt

V (ξ (t)) − νf T (t)f (t) < 0. (22)

Then,

V (ξ (τ )) − V (ξ (0)) < ν

∫ τ

0
f T (t)f (t)dt. (23)

For f (t) ≡ 0, (22) implies that d
dt V (ξ (t)) < 0, thus the internal

stability follows. For disturbances satisfying (4) one has

V (ξ (τ )) ≤ V (ξ (0)) + νf 2max,

therefore for any initial condition satisfying ξ0 ∈ Eα0 (R), one
obtains that

ξ (τ )TRξ (τ ) ≤ α0 + νf 2max = α,

i.e. ξ (t) ∈ Eα (R) for all t ≥ 0. Consider now uj(t) = ejκξ (t),
j = 1, . . . , nu. It can be seen in a standard way that[
u2
j,maxR κT ejT

ejκ 1
α

]
≥ 0, j = 1, . . . , nu, (24)

implies (8), thus (3) as well. A simple congruence transformation
shows that (24) is equivalent to (20). One can prove in a similar
way that (21) implies (7) and (2). This completes the proof. □

Remark 5. The selectable variables of (19)–(21) can be divided
into two groups analogously to Remark 4 to see that matrix
inequalities (19), (20) and (21) are bilinear with respect to the
decision variables Ψ1 = [R, ν] and K = [Ac, Bc, Cc, Dc ].
Formally, one can write these inequalities as

L1 (Ψ1,K) < 0, L2 (Ψ1,K) ≥ 0, L3 (Ψ1,K) ≥ 0, (25)

which are LMIs with respect to the decision variables in Ψ1 by
fixing the matrices in K, and they are also LMIs with respect to
the decision variables in K by fixing the parameters in Ψ1.

Remarks 4 and 5 suggest the following idea: if there is a suit-
able guess for (Ac, Bc, Cc,Dc), then one can reduce γ by iteratively
solving the obtained bilinear inequalities alternately fixing one or
the other group of the decision variables. How to obtain a suitable
initial guess? If a γ0 is fixed, one can seek the solution of the
dynamic output feedback problem by solving the H∞-problem on
the entire-frequency domain ω ∈ R. If it has a feasible solution,
then it is a feasible solution of the H∞-problem on the restricted
frequency domain. The construction can be done by an approach
frequently applied since [32].

To this end, several notations are needed. Let R ∈ S+

2nx , and

R =

[
X N1
NT

1 Z

]
, R−1

=

[
Y N2
NT

2 W

]
,

F1 =

[
X I
NT

1 0

]
, F2 =

[
I Y
0 NT

2

]
. (26)

Furthermore, define matrices

L̃ = N1Bc + XBxDc, K̃ = CcNT
2 + DcCyY , D̃ = Dc, (27)

Ã = XAxY + L̃CyY + CT
y D

T
c B

T
x + XBxCcNT

2 + N1AcNT
2 . (28)

Proposition 3. Let α0 > 0, γ 0 > 0 be given, and consider system
(1) with admissible disturbances compliant with (4). Suppose that
there exist matrices X, Y ∈ S+

nx , Ã ∈ Rnx×nx , L̃ ∈ Rnx×ny , K̃ ∈ Rnu×nx ,
D̃ ∈ Rnu×ny such that LMIs

Φ0
=

[
X I
I Y

]
> 0, (29)

Φ1
=

⎡⎢⎢⎢⎢⎢⎣
Φ1

11 AT
x + Ã XEx Φ1

14

∗ Φ1
22 Ex Φ1

24

∗ ∗ −γ 0I ET
z

∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎦ < 0, (30)

Φ1
11 = XAx + AT

xX + L̃Cy + CỹLT , Φ1
14 = CT

z + CT
y D̃

TBT
z ,

Φ1
22 = AxY + YAT

x + BxK̃ + K̃ TBT
x , Φ1

24 = YCT
z + K̃ TBT

z ,

Φ2
j =

⎡⎢⎢⎢⎢⎢⎣
X I

1
√
uj,max

CT
y D̃

T eTj

∗ Y
1

√
uj,max

K̃ T eTj

∗ ∗ uj,max µ

⎤⎥⎥⎥⎥⎥⎦ ≥ 0, j = 1, . . . , nu,

(31)

Φ3
i =

⎡⎢⎢⎣X I CT
vi

∗ Y YCT
vi

∗ ∗ µ

⎤⎥⎥⎦ ≥ 0, i = 1, . . . , nv, (32)

hold true, where µ = 1/
(
α0 + γ 0f 2max

)
. Let N1, N2 be defined

by factorization I − XY = N1NT
2 . Then matrices Ac , Bc , Cc , Dc

obtained by subsequent solution of (27), (28) yield an internally
stable closed-loop system (6), satisfying constraints (2), (3) and
having the property

G (jω)∗ G (jω) < γ 0, for all ω ∈ R. (33)

Proof. Let V (ξ (t)) = ξ (t)TRξ (t). Then

d
dt

V (ξ (t)) + ζ (t)T ζ (t) − γ 0f (t)
T f (t) =

[
ξ (t)
f (t)

]T

Υ

[
ξ (t)
f (t)

]
,

where

Υ =

[
AT I
BT 0

][
0 R
R 0

][
A B
I 0

]
+

[
CT 0
DT I

][
I 0
0 −γ 0I

][
C D
0 I

]
.

Thus Υ < 0 implies that

V (ξ (T )) − V (ξ (0)) +

∫ T

0
ζ (t)T ζ (t)dt < γ 0

∫ T

0
f (t)T f (t)dt, (34)

which in turn implies the internal stability of (6) and property
(33), provided that R is positive definite. However,

F T
1 R

−1F1 =

[
X I
I Y

]
, (35)
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which is positive definite according to (29), thus R−1 and R are
positive definite as well.

Using Schur complements, one can see that Υ < 0 is equiva-
lent to⎡⎣RA + ATR RB CT

BTR −γ 0I DT

C D −I

⎤⎦ < 0. (36)

Taking a congruence transformation with diag
{
R−1F1, I, I

}
, sub-

stituting the definition of A, B, C, D, Eqs. (27), (28), and taking
into consideration that R−1F1 = F2, one can verify that (36) is
equivalent to (30).

Next, the control and state constraints (7) and (8) have to be
investigated. Because of (34), inclusion

ξ (t) ∈ Eµ (R) , t ≥ 0 (37)

holds true for any initial value ξ0 ∈ Eα0 (R). Therefore[
R µ

√
uj,maxκ

T eTj
∗ µuj,max

]
≥ 0, j = 1, . . . , nu, (38)

implies (8) provided that ξ0 ∈ Eα0 (R). Taking into consid-
eration (35) and performing a congruence transformation with
diag

{
R−1F1, I

}
, one can verify that (38) is equivalent to (31). It

can be seen from (37) in an analogous way that (32) implies (7).
Finally, it has to be shown that Eqs. (27)–(28) are solvable for

Dc , Cc , Bc and Ac . Condition (29) implies that I − XY is positive
definite. Consider a factorization I − XY = N1NT

2 , (e.g. by singular
value decomposition or a QR factorization). Since matrices N1 and
N2 are invertible, matrices Dc , Cc , Bc and Ac can be determined
from Eqs. (27)–(28). This completes the proof. □

Algorithm

Step 0. Chose α0 > 0, γ 0 > 0. Solve the system of LMIs (29)–(32)
for the decision variables X , Y , Ã, K̃ , L̃, D̃. If it has a feasible
solution, then compute N1, N2 from I − XY = N1NT

2 , R
from (26), and Ac , Bc , Cc , Dc from (27), (28). Let γ (0)

= γ 0,
K(0)

= {Ac, Bc, Cc,Dc}, and k = 1. Choose some γmin > 0,
and Nmax ∈ N+.

Step k. (i) If K(k−1) is known, solve problem P1 for Ψ0, Ψ1 :

P1 : min γ , with respect to

L0
(
Ψ0,K(k−1)) < 0, L1

(
Ψ1,K(k−1)) < 0,

L2
(
Ψ1,K(k−1))

≥ 0, L3
(
Ψ1,K(k−1))

≥ 0,

according to (18) and (25). LetΨ (k)
0 ,

Ψ
(k)
1 be defined as the solution.

(ii) If Ψ
(k)
0 , Ψ

(k)
1 is known, solve problem P2 for K and

ε > 0 :

P2 : min (−ε) , with respect to

L0

(
Ψ

(k)
0 ,K

)
< −ε, L1

(
Ψ

(k)
1 ,K

)
< −ε,

L2

(
Ψ

(k)
1 ,K

)
≥ 0, L3

(
Ψ

(k)
1 ,K

)
≥ 0.

Let K(k) be defined as the solution.

If γ (k−1) > γ (k) > γmin and k < Nmax, then set k = k + 1,
and repeat step k, otherwise stop.

Theorem 1. If the LMIs in Step 0 have a feasible solution, then
problems P1 and P2 are feasible, Step k defines a strictly decreasing
sequence γ (k), and the algorithm terminates in finitely many steps
yielding a suboptimal solution of the formulated problem.

Proof. Suppose that Step 0 was successful. Then K(0) defines a
closed-loop system, which is internally asymptotically stable, the
constraints are satisfied and

sup
ω∈R

∥G(jω)∥2
∞

< γ 0.

Consequently, in accordance with Corollary 1, there exists a
solution of

L0
(
Ψ0,K(0)) < 0,

if γ = γ 0 is taken. Furthermore, if R is taken as R from the
solution of Step 0, and ν as ν = γ 0, then Ψ 1 =

{
R, ν

}
satisfies

inequalities

L1
(
Ψ 1,K(0)) < 0, Li

(
Ψ 1,K(0))

≥ 0, i = 2, 3,

thus problem P1 is feasible. Let the solution be denoted by Ψ
(1)
0 ,

Ψ
(1)
1 , and the minimum value of γ by γ (1). Because of the strict

inequalities, there exists an ε > 0 such that L0

(
Ψ

(1)
0 ,K(0)

)
<

−ε and L1

(
Ψ

(1)
1 ,K(0)

)
< −ε, while Li

(
Ψ

(1)
1 ,K(0)

)
≥ 0, i =

2, 3 remain valid. Thus problem P2 is feasible, too, and K(1) is
well-defined. Since γ (0) belongs to the set of feasible solutions,

γ (1)
≤ γ (0)

holds. If γ (1)
= γ (0) or γ (1)

≤ γmin, then the algorithm terminates,
and γ (1), K(1) yields the solution of our problem. Otherwise, the
considerations above can be repeated inductively for k = 2, 3 . . .

until either γ (k)
= γ (k−1) or γ (k)

≤ γmin or k = Nmax is satisfied.
This completes the proof. □

Remark 6. The theorem states on the one hand that the LMIs
preserve the feasibility in each step of the iteration, provided
that the initial step was feasible. On the other hand, the iteration
yields a strictly decreasing sequence γ (k) until γ (k−1)

= γ (k),
or the given lower bound γmin (or the given maximum number
of iterations) is reached, thus a suboptimal solution is obtained.
Observe that the LMIs to be solved are getting to be ill-posed near
to the infimum value of γ , thus it is advantageous to prescribe a
γmin for computations because of numerical reasons.

4. Illustrative examples

The effectiveness of the proposed method will be illustrated
by two case studies. The computations have been performed by
MATLAB and YALMIP [34]. As it can be seen below, the parame-
ters of both case studies are of significantly different magnitudes.
Therefore, it was expedient to use an appropriate scaling be-
fore the computations in order to achieve numerical stability.
However, the presented results are given in the original units.

Example 1. Consider a three-storey building model drawn in
Fig. 1 [22]. In this model, all three storeys are supposed to be
identical with masses, damping and stiffness coefficients equal to
mi = 345.6 ton, ci = 2973 kN s/m−1, and ki = 3.404 × 105

kN/m, i = 1, 2, 3, respectively. The symbol qi stands for the
relative drift between ith and (i − 1)th floor, and ẍg = f (t) is the
earthquake acceleration force. Define q(t) = [q1(t), q2(t), q3(t)]T
and x(t) = [qT (t), q̇T (t)]T . Based on the given parameters, the
matrices in (1) are as follows (for more details about obtaining
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these matrices see [22]):

Ax =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−984.95 984.95 0 −8.6 8.6 0
984.95 −1969.9 984.95 8.6 −17.2 8.6

0 984.95 −1969.9 0 8.6 −17.2

⎤⎥⎥⎥⎥⎥⎦ ,

Bx = 10−6
×

⎡⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0

2.89 0 0
−2.89 2.89 0

0 −2.89 2.89

⎤⎥⎥⎥⎥⎥⎦ , Ex =

⎡⎢⎢⎢⎢⎢⎣
0
0
0

−1
0
0

⎤⎥⎥⎥⎥⎥⎦ ,

Cy =
[
03×3 I3

]
, Cv =

[
1

zmax
× I3 03×3

]
,

Cz = diag {3, 1, 1, 3, 1, 1} ,

and Bz = 06×3, Ez = 06×1. Parameter zmax is the maximum
allowable relative drift between the floors and it is considered
to be 2 cm (0.02 m). Note that the matrices Cy and Cz are taken
from [18]. The 1940 El-Centro earthquake real data is utilized for
the input disturbance f (t), which is plotted in Fig. 2. It has been
shown in [22] that the earthquakes happen in frequency range
equal to 0.3–8.8 Hz, i.e. ϖ1 = 0.3 and ϖ2 = 8.8. For such a
system with the given parameters, the controller gain matrices
are obtained after two iterations as

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2194 2495.2 1707.3 12116 −6063.8 11104
−2101.9 −782.94 −1424.3 −10485 19621 −1760.9
−1130.6 −903.92 4.5845 −218.79 −18762 −11722
−1335.3 1058.8 −280.52 −420.06 463.73 −1463.1
619.32 −1863.4 1788.9 73.87 −892.89 200.45

−10.757 −321.7 351.18 110.29 98.148 −1210

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Bc = 106
×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.5284 4.6307 −0.92638
−0.95314 6.2436 0.27299
−0.5147 4.3993 1.4704

−0.098311 18.017 −3.4045
0.014268 −16.537 23.131

−0.034514 −1.8597 4.7301

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Dc =

⎡⎢⎣−2749.6 −1430 −438.88
−2169.8 −1914.3 −698.64
−2036.3 −1844.9 −1323.8

⎤⎥⎦ ,

Cc =

⎡⎢⎣−2.5824 −2.9097 −2.1788 5.7761 15.046 −66.202
−1.6189 −2.1792 −1.5 10.521 9.8605 −61.777
−1.4117 −1.8261 −1.5665 10.294 16.943 −58.249

⎤⎥⎦
with the minimum value γ = 2.2890 × 10−6. The closed-loop
response of the relative drifts to 1940 El-Centro earthquake is
shown in Fig. 3. It is clear that the maximum drifts are much
smaller than zmax = 2 cm (20 mm), so the constraints are met.
In order to illustrate the effectiveness of the proposed controller,
three articles, [19,22] and [18], are opted to compare the results.
The papers [22] and [19] are devoted to the design of state-
feedback and static-output-feedback FF H∞ control, respectively,
while paper [18] presents a dynamic output feedback controller.
Although the methods used in these papers are different and they
have different fields of applicability, their performance on control
of buildings can correctly be compared with each other. Since an
important characteristic of the performance is γ , indicating the
effect of the disturbance to the controlled output, the obtained
value of it is reported in Table 1 for each controller. Note that the
method presented in [18] used a given value of γ , but the other
papers, including this paper, calculated it by an optimization
procedure. Obviously, the proposed controller has been able to

Fig. 1. A three-storey building model [22].

Fig. 2. The 1940 El-Centro earthquake real data for the input disturbance f (t).

Table 1
Minimum obtained performance level (γmin) for different controllers.
Controller γmin

FF H∞ state feedback controller in [22] 0.0166
Dynamic output feedback controller in [18] 0.0086
FF H∞ static output feedback controller in [19] 0.0038
The proposed controller 0.0015

achieve a lower minimum performance level than the other con-
trollers. For simulating the results, all these controllers including
the proposed controller are applied to the building model and
the resulted relative drifts of the first, the second, and the third
floors to 1940 El-Centro earthquake are plotted in Figs. 4, 5, and
6, respectively. These figures demonstrate that the qualitative
behaviour of the relative drifts is much better for the proposed
controller than the others. The only exception is the behaviour of
the third floor under the application of the controller proposed
by [19]. Since the peak values of relative drifts are very important,
these values for each floor are compared in Fig. 7(a). At the same
time, Fig. 7(b) illustrates that the peak of control signal of the
proposed method is not significantly increased compared to other
methods (less than 10%).

Example 2. In this example, an offshore steel jacket platform is
considered, which has been discussed in many papers [13,35–
37]. This platform is equipped with an active mass damper
(AMD). A simplified model of this platform is drawn in Fig. 8,
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Fig. 3. Relative drifts of the floors to 1940 El-Centro earthquake.

Fig. 4. Relative drift of the first floor to 1940 El-Centro earthquake.

where zp(t) and za(t) denote the displacements of the plat-

form deck and the AMD, respectively, f (t) is the external wave

force from the sea, and u(t) is the control signal. Define x(t) =

[x1(t), x2(t), x3(t), x4(t)]T = [zp(t), za(t), żp(t), ża(t)]T . Based on

the parameters given in [35], the following matrices are obtained:

Ax =

⎡⎢⎣ 0 0 1 0
0 0 0 1

−4.2290 0.0403 −0.0899 0.0080
4.0297 −4.0297 0.8030 −0.8030

⎤⎥⎦ ,

Fig. 5. Relative drift of the second floor to 1940 El-Centro earthquake.

Fig. 6. Relative drift of the third floor to 1940 El-Centro earthquake.

Bx = 10−4
×

⎡⎢⎣ 0
0

−0.0013
0.1278

⎤⎥⎦ , Ex = 10−6
×

⎡⎢⎣ 0
0

0.1278
0

⎤⎥⎦ ,

Cz =

[
1 0 0 0

−4.2290 0.0403 −0.0899 0.0080

]
,

Bz = 10−4
×

[
0

−0.0013

]
, Ez = 10−6

×

[
0

0.1278

]
,

Fig. 7. Comparison results for the peaks of absolute value of the (a) relative drifts |qi| (i = 1, 2, 3) (b) control signal |ui| (i = 1, 2, 3).
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Cv =

⎡⎢⎢⎣
1

zdmax
−

1
zdmax

0 0

1
zpmax

0 0 0

⎤⎥⎥⎦, Cy =

[
1 0 0 0
0 1 0 0

]
,

where zdmax is the maximum deflection between the AMD and
the platform deck, and zpmax is the maximum deviation of the
platform. These limits are assumed to be zdmax = 25 m and
zpmax = 0.2 m. For designing the controller, the values umax =

7.6 × 106, ϖ1 = 0.25, and ϖ2 = 5 are considered, based on the
parameters given in [35]. For the external disturbance, a wave
force has been generated and shown in Fig. 9, based on JONSWAP
model [38]. The dynamic output feedback controller gain matrices
obtained by the proposed algorithm in the second iteration are as
follows:

Ac =

⎡⎢⎣ 6.7385 −53.24 73.373 −75.844
0.90973 −16.033 16.179 −18.314
0.38187 −2.1075 1.4078 −0.71247
0.026967 0.029572 −1.8 −0.76372

⎤⎥⎦ ,

Bc = 104
×

⎡⎢⎣−40.009 5.0811
−87809 1.4810
−9876.5 0.1965
0.2064 −0.0052961

⎤⎥⎦ ,

Dc =
[
5225.3 −663.1

]
,

Cc =
[
−0.10145 0.72814 −0.96248 1.0034

]
.

The closed-loop displacements and accelerations of the platform
deck under this controller and three other controllers presented
in [35,36], and [39] are shown in Figs. 10 and 11, respectively.
These figures indicate that not only the peak of displacement, but
also the peak of acceleration of the platform under the proposed
controller is less than those obtained by other methods. At the
same time, the constraints with zdmax, zpmax, and umax are met,
too, as it is shown in Figs. 12 and 13. It is worth noting that
control signal generated by the proposed controller is smaller
than the method introduced in [35], while its performance is
much better. For quantitative comparison between the results,
define the following parameters:

Md = max{|x1(t)|, t ∈ [0, St ]}, Jd =

√
1
St

∫ St

0
x21(t)dt,

Mv = max{|x3(t)|, t ∈ [0, St ]}, Jv =

√
1
St

∫ St

0
x23(t)dt,

Ma = max{|ẋ3(t)|, t ∈ [0, St ]}, Ja =

√
1
St

∫ St

0
ẋ23(t)dt,

Mu = max{|u(t)|, t ∈ [0, St ]}, Ju =

√
1
St

∫ St

0
u2(t)dt,

where St is the simulation time. These parameters are depicted in
Table 2 for all the controllers. One can see that the obtained result
has better performance compared with the other published meth-
ods while the peak of control signal and energy consumption is
better than in [35] and [39], though somewhat worse than in [36]
and [13]. The latter is explained by the fact that the performance
of the control is measured by the penalty output only.

5. Conclusion

The design problem of FF H∞ control for linear systems was
addressed in this article. In order to meet practical requirements,
some hard constraints of the physical system and the actua-
tor limitation was considered in the dynamic output feedback

Fig. 8. Offshore steel jacket platform simplified model [35].

Fig. 9. Wave force generated on the basis of JONSWAP model [38].

Fig. 10. Displacement of the platform deck.

Fig. 11. Acceleration of the platform deck.
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Table 2
Quantitative comparison between different controllers.
Method Md (m) Mv (m/s) Ma (m/s2) Mu (106 N) Jd (m) Jv (m/s) Ja (m/s2) Ju (105 N)

No control 0.8373 1.7687 3.8246 – 0.4686 0.9551 1.929 –
[39] 0.4641 0.9975 2.7896 5.3181 0.2514 0.5112 1.3520 29.196
[13] 0.2107 0.4413 1.0434 1.2952 0.1150 0.2345 0.4992 7.1400
[36] 0.2093 0.4386 1.0313 1.2901 0.1143 0.2331 0.4946 7.0770
[35] 0.1271 0.2913 0.7359 2.9959 0.0691 0.1479 0.3403 11.6200
Proposed 0.0857 0.2067 0.5011 2.5591 0.0452 0.0984 0.2335 9.8300

Fig. 12. Plotting v(t) under the proposed controller.

Fig. 13. Control signal generated by different controllers.

controller design. After deriving sufficient conditions on FF H∞-
stability based on gKYP lemma, an algorithm of finitely many
steps was given to determine the dynamic output feedback with
suboptimal H∞-norm bound. A seismic-excited building and an
offshore platform were utilized for case studies. The simulation
of the behaviour of the closed-loop systems with the designed
controllers showed that the proposed method was more effective
than other published methods.
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