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Abstract 

Changes in the mean and extreme climate characteristics are undeniably evident in observational 

records. Over the United States, the mean temperature has approximately increased by 1°C since 

the late 19th century and an additional warming of up to 2.2°C is projected by the mid 21st century. 

Similarly, changes in the temperature and precipitation extremes are also visible through a 

decreasing trend in the number of rain days and an increasing trend in the frequency of droughts, 

heat waves and heavy downpours. Discernable evidence suggests that such changes in 

hydroclimate characteristic are impacting human systems such as energy, agriculture and critical 

infrastructure. Within this context, this research investigates the responses of regional 

hydroclimate over the United States to projected increases in radiative forcing in the near term 

future and its implications for the human systems. This investigation is divided in four parts. The 

first part quantifies potential changes in county-level residential space heating and cooling 

requirements as a result of projected changes in heating and cooling degree days. The second part 

investigates the characteristics of dry versus humid heatwaves and the associated thermodynamic 

changes in the present and warmer future climate. The third part studies changes in the spatial and 

temporal characteristics of precipitation events, including extent, intensity and frequency in 

response to increase in radiative forcing. The fourth part evaluates potential changes in the 

magnitude of probable maximum precipitation, which is used as a design criteria for critical 

infrastructure, in the warmer and moister future climate over a hydrological basin in the 

southeastern United States. Overall, this research should enable development of rigorous analytical 

frameworks for better planning to cope with the challenges posed by climate change. 
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Chapter 1  

Introduction 
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Continued warming of earth’s atmosphere has resulted in changes in the mean and  extreme climate 

characteristics. These variations include, but are not limited to, sub seasonal to seasonal shifts in 

the mean temperature and precipitation distributions, changes in the characteristics of low 

frequency and high intensity wet, hot and dry extremes [Diffenbaugh et al., 2017]. In particular, 

over the United States (hereafter US), annual average temperature has increased by 1°C  since the 

late 19th century [Vose, 2017]. Recent climate projections suggest a further warming of up to 2.2°C 

across the US by the mid 21st century [Ashfaq et al., 2016; Melillo, 2014]. Given that eight out of 

ten warmest years on record have occurred in the last 20 years, [NOAA, 2018], a shift in the 

temperature distribution is quite evident. More importantly, strongest observed changes in the 

mean temperature have occurred over the higher elevations in the western US that receive 

substantial amount of snow, resulting in an earlier snowmelt and consequently changes in the 

regional hydrological cycle [Barnett et al., 2008]. In addition to changes in the mean climate, US 

has also witnessed extended periods of extreme high temperatures, droughts and floods during the 

recent past [NOAA 2018]. According to the National Centers for Environmental Information 

(NCEI) database, US has sustained a total of 241 weather and climate disasters during 1980 to 

2018 period exceeding a total cost of $1.6 trillion. These changes in the extremes have been partly 

driven by an increase in the frequency of precipitation related multi-billion dollar disasters with 

almost a doubling in the 5 most recent years (11.6 events/year) as compared to the average during 

1980 to 2017 period (6 events/year).  

In the absence of comprehensive climate legislations to curb greenhouse gases emissions, the 

prevailing trends are expected to continue or even intensify in the foreseeable near future, which 

has implications for the human systems such as human settlements, energy, agriculture, 

transportation routes and other critical infrastructures. For instance, rising temperatures will likely 
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impact both energy production and energy consumption [Bartos and Chester, 2015; McFarland et 

al., 2015; Wilbanks, 2008] due to potential reduction in the water availability and enhanced space 

cooling requirements respectively. Similarly, the projected increase in the hot extremes will 

increase energy demand during peak hours in the summer months [Auffhammer et al., 2017]. 

Agriculture is another important human system that may experience adverse impacts due to climate 

change [Calzadilla et al., 2013; Lobell et al., 2011; Zhu and Troy, 2018]. For instance, changes in 

the temperature distribution is causing a shift in the growing seasons across the US. Excessive heat 

and reduced water availability, as a result of an increase in the intensity and the frequency of 

extreme hot days, can potentially cause irreversible damages to the crops resulting in a decrease 

in yield [Lesk et al., 2016; Lobell et al., 2013; Lobell et al., 2011]. Similarly, changes in the 

precipitation distribution may increase the need for irrigation [Wada et al., 2013] or cause  damage 

to crops due to excessive water [Rosenzweig et al., 2002]. Moreover, widespread extreme 

precipitation events are a major cause of flooding that results in a loss of life and/or damages to 

critical infrastructures such as transportation networks and electric grids. [Melillo, 2014].  

Given the multidimensionality of climate change and its potential impacts, the goal of this doctoral 

dissertation is to develop an analytical framework that provides a benchmark for the evaluation of 

projected hydroclimate variations and their implications for the human systems. To this end, this 

research considers use cases related with the temperature and precipitation extremes such as 

heatwaves, strong and widespread storms and probable maximum precipitation to demonstrate 

how methodological choices may influence our understanding of impact of future climate change 

on human lives. Moreover, this work also uses highly resolved climate projections to not only 

highlight the implications of climatic changes for the US energy system at household level but also 
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to inform the stakeholders and scientific community of the modeling and analytical needs for 

climate impact analyses at policy relevant scales. 

Overall, this research work consists of four studies that leverage high resolution numerical 

modeling outputs. The first and the third study utilize one of the most detailed (to date) ensemble 

of climate simulations over the US [Ashfaq et al., 2016] that regionally downscales 11 General 

Circulation Models (GCMs) from Coupled Model Inter-comparison Project Phase 5 (CMIP5). The 

second study uses a set of reanalysis driven 13-year high resolution simulations, detailed in Liu et 

al. [2017], conducted using Weather Research Forecasting (WRF) model over the US following 

the pseudo global warming approach. The fourth study develops a framework using WRF to 

downscale extreme storms from reanalysis and GCM to fine scale [Rastogi et al., 2017]. A brief 

description of each part is as follows: 

• The first part of this research provides a comprehensive picture of the residential energy 

demand in response to changes in degree days. We develop observations based 

econometric models that relate the residential energy demand to human population and 

climatic conditions. Subsequently, these models are used to estimate future changes in both 

the electricity and the natural gas demands for space heating and cooling [Rastogi et al., 

2019].  

• The second part of this research investigates the characteristics of dry versus humid 

heatwaves across the US. Using a compound heatwave definition, we identify daily 

maximum- temperature and apparent temperature heatwaves in a pair of high-resolution 

convection permitting simulations. Further, we investigate the variations in the 

thermodynamic factors such as humidity and heat fluxes during the two kind of heatwaves 

and their role in changing the characteristics of heatwaves in future period.  
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• The third part of this research focuses on the indirect impacts of climate change on human 

systems that are driven by changes in precipitation characteristics. For this purpose, we 

categorize precipitation events in terms of their intensity and spatial extent. Specifically, 

we apply a continuous component labeling technique on precipitation data to identify mid-

size and widespread events. Finally, we examine the historical and future characteristics of 

selected events. Any change in the characteristics of these hydroclimate extremes has 

important implications for formulating strategies for damage control planning. 

• The fourth part of this research focuses on the evaluation of probable maximum 

precipitation (PMP) in the southeastern US in a warmer and a moister climate. PMP is used 

as the strictest design standard for highly important energy-water infrastructures. In this 

study, we employ WRF model, driven by reanalysis and GCM, for downscaling and 

maximization of 120 extreme storms to generate PMP estimates for the historical and future 

periods. The simulated PMP estimates are evaluated against the conventional PMP values 

and the impact of changing climate on PMP estimates is examined [Rastogi et al., 2017]. 
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Chapter 2  

Shift in Seasonal Climate Patterns Likely to Impact Residential Energy Consumption in the 

United States 
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Abstract  

We develop a highly-resolved ensemble of climate simulations and empirical relationships 

between weather and household energy consumption to provide one of the most detailed estimates 

to date for potential climate-driven changes in the United States residential energy demand under 

the highest greenhouse gas emissions pathway. Our results indicate that more intense and 

prolonged warm conditions will drive an increase in electricity demand while a shorter and milder 

cold season will reduce natural gas demand by the mid 21st century.  The environmental conditions 

that favor more cooling degree days in summer and reduced heating degree days in winter are 

driven by changes in daily maximum temperatures and daily minimum temperatures in the 

respective seasons. Our results also indicate that climate driven change can potentially reverse 

impacts of a projected decrease in rural population on residential energy demand. These projected 

changes in climate-driven energy demand have implications for future energy planning and 

management. 
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2.1 Introduction  

Frequent occurrences of hotter summers and warmer winters across the United States (US) reflect 

a potentially permanent change in temperature distribution that is progressively reshaping energy 

demands [EPA, 2014; Petri and Caldeira, 2015]. In particular, warming trends are the strongest 

on record in recent decades with seven out of the ten warmest years since 1998 [EPA 2014]. Given 

the current trajectory of emissions, most recent temperature projections suggest  warming of 1.1°C 

to 2.2°C across the continental US by the mid 21st century [Ashfaq et al., 2016; Melillo et al., 

2014]. Increase in the mean temperatures is the strongest over the higher elevations and the part 

of US that presently receive significant amounts of cold season precipitation in the form of snow 

while southwest and southeast are projected to be the hot spots for increases in maximum 

temperatures. Additional warming will likely exert further influence on the US energy system 

making adaptation a necessity to meet the challenges of future energy demand.  

Changes in ambient temperatures have implications for the two dominant sources of energy that 

are used for residential space heating and air conditioning in the US Electricity is the dominant 

source of energy used for space cooling and therefore temperature increases associated with 

climate change are anticipated to drive electricity demand associated with greater air conditioning 

use. A recent study projected that by the end of the 21st century, residential energy costs in 

relatively warm states (such as Florida) could increase by $200/year [Huang and Gurney, 2017]. 

Meanwhile, natural gas is the dominant fuel source for residential space heating. Hence, demand 

for natural gas is expected to decline in the future as rising temperatures reduce heating demand 

[Wilbanks et al., 2008]. Nevertheless, given the diversity in the climate characteristics and the 

magnitude of projected climate change across the US, substantial geographic heterogeneity in the 

response of residential energy demand (hereafter RED) to climate change should be expected. This 
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variability will exert contrasting controls on natural gas and electricity demand, leading to 

inevitable fine-scale variations in the energy system response. 

A comprehensive investigation of the fine-scale changes in the RED is important for planning 

future enhancements to the electricity generation and distribution system, as well as the natural 

gas pipeline network. There are several technological, societal, economic and environmental 

factors that will frame the future RED. However, given the interdisciplinary nature of these factors 

and lack of reliable future estimates for many, it is practically impossible to incorporate their 

combined influences in a single study. Due to these limitations, this study mainly focuses on the 

influences of climate driven long-term environmental variations on RED within the context of 

projected population increase. Thus far, a number of studies have investigated potential variations 

in the US energy system in the future climate, but results to date are relatively limited. Most of the 

studies either use spatially and/or temporally aggregated data [McFarland et al., 2015; Sailor and 

Munoz, 1997; Zhou et al., 2014], or have focused on a particular geographic sub-region within the 

US [Amato et al., 2005; Maximilian Auffhammer and Aroonruengsawat, 2011; Ruth and Lin, 

2006]. Similarly, most of the studies often have only investigated changes in electricity 

consumption [Allen et al., 2016; M. Auffhammer et al., 2017; McFarland et al., 2015], without 

considering changes in natural gas demand. Likewise, RED investigations at spatially 

disaggregated scales so far have obtained future climate data either directly from general 

circulation models (GCMs) [Huang and Gurney, 2016; Wang and Chen, 2014] or via statistical 

downscaling of GCMs [Dirks et al., 2015]. While GCMs remain the most reliable tool for 

understanding future climate change, a mismatch between their resolution and the scales that are 

relevant for policymaking preclude their direct use when making reliable estimates of climate 

change impacts [Ashfaq et al., 2016; Ashfaq et al., 2009; Diffenbaugh et al., 2005; Suggitt et al., 
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2011]. Likewise, statistical downscaling has its own limitations given that it cannot refine climate 

change signal without altering the simulated process-based climate system response in GCMs 

[Ashfaq et al, 2013]. Therefore, while computationally expensive and data intensive, regional 

climate modeling based dynamical downscaling of GCMs remains the most sophisticated 

methodology for the generation of fine-scale climate projections. 

In this study, we seek to build on previous work and provide a more comprehensive and applicable 

picture of RED in response to climate change. We develop observations based economic models 

that describe the relationship of RED to human population and climatic conditions. Further, 

leveraging one of the most detailed (to date) ensemble of climate change simulations over the US. 

[Ashfaq et al., 2016], economic models are used to provide estimates for future changes in 

residential energy use for space heating and cooling in response to changes in climatic conditions. 

Our analyses provide estimates for future changes in both electricity and natural gas demand for 

residential space heating and cooling across the US at the county level.  

2.2 Data and Methodology 

2.2.1 Data  

This study is based on the following datasets: 

2.2.1.1 Observed Meteorological Data  

Gridded daily maximum temperature (Tmax) and daily minimum temperature (Tmin) from the 

Parameter-Elevation Regressions on Independent Slopes Model (PRISM) observations [Daly et 

al., 2008] for 1981 to 2005 at 4km horizontal grid spacing. 
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2.2.1.2 Simulated Meteorological Data  

Hybrid downscaled 11-member ensemble of GCMs (see Table 2.1) ). (Note: All tables and figures 

referred in this dissertation are placed in Appendix attached towards the end of this document) 

from Coupled Model Inter-comparison Project Phase 5 (CMIP5). Each GCM is dynamically 

downscaled to 18 km horizontal grid spacing over the US using a regional climate model 

(RegCM4) for 1966 to 2005 in the historical period and 2011 to 2050 in the future period under 

Representative Concentration Pathway 8.5 (RCP 8.5). The historical period analyses in this study 

are only limited to 1981 to 2005 simulation period that overlaps with the gridded daily PRISM 

observations. Details of dynamical downscaling experiments and projections are provided in 

Ashfaq et al. [2016]. The daily Tmax and Tmin from each downscaled ensemble member are bias 

corrected at 4 km PRISM grid over the continental US through a quantile mapping approach that 

is detailed in Ashfaq et al. [2010]; Ashfaq et al. [2013]. 

2.2.1.3 Energy Data  

US Energy Information System (EIA) state-level monthly i) energy consumption data for 

residential electricity retail sales and natural gas consumption for 1990 to 2005 [EIA, 2016a; b], 

and ii) residential energy consumption survey [RECS] data for each of 10 US census divisions 

(Figure 2.1) for four recent surveys (1997, 2001, 2005 & 2009) RECS data provides percentages 

of total residential electricity used for space heating and cooling and percentage of total residential 

natural gas used for space heating at the US census division level (Figure 2.1). It also provides 

percentage of fuel (electricity versus natural gas) used in a census division for space heating. Given 

discontinuous RECS data availability and its low temporal variation, we use average RECS data 

using the four recent surveys while we use EIA demand data for each year. 
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2.2.1.4 Population Statistics  

US Census Bureau yearly population estimates for each county in the US obtained for 1981-2005 

[Census, 2016].   

2.2.2 Methodology  

There are multiple steps in the analyses that are detailed in the following sub-sections. 

Additionally, Figure 2.2 provides a schematic summary of these steps. 

2.2.2.1 Heating and Cooling Degree Days  

We use degree days to quantify the energy requirements for residential heating and cooling. 

Heating (Cooling) degree days is defined as the number of degrees (in degree Celsius; °C) to be 

heated (cooled) below (above) a given threshold. Using a base temperature of 18.3° C (65 degrees 

Fahrenheit), we employ the UK Met Office equations [Day, 2006] to calculate daily heating degree 

days (HDD) and daily cooling degree days (CDD) at each point on the 4km grid of observations 

and model simulations. Daily gridded values are aggregated both spatially over the counties and 

states, and temporally over the months to calculate monthly HDD and CDD for each county and 

state.  

Since both electricity and natural gas are used for heating, we calculate the percentage use of each 

energy source from averaged RECS data. The average value is disaggregated equally to all 

counties within each division. We attribute the percentage usage of electricity and natural gas in 

each county to HDD to obtain the HDD requirement fulfilled by electricity (hereafter HDDelec) and 

the HDD requirement fulfilled by natural gas (hereafter HDDng). 
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2.2.2.2 Econometric Model 

Equation 1 and 2 represent the econometric models for residential electricity and natural gas 

consumption. Each econometric model is based on state level observed EIA energy (electricity or 

natural gas) consumption, state level degree-days from aggregated PRISM meteorological 

observations and state level population from Census for 1990 to 2005.  

log(𝐸&'(
&)*) = 𝑐. 	+	𝛼.23𝐻𝐷𝐷.6.'

&)*7 + 𝛼.83𝐻𝐷𝐷.6.'
&)*79 + 𝛽.2(𝐶𝐷𝐷&)*) + 𝛽.8(𝐶𝐷𝐷&)*)9 +

																									𝛾.23𝑃&*7 	+ 	𝑓&+	𝑓) + 𝜀@        (1) 

log(𝑁𝐺&(
&)*) = 𝑐CD 	+ 𝛼CD23𝐻𝐷𝐷CD

&)*7 + 𝛼CD83𝐻𝐷𝐷CD
&)*79 + 𝛾CD23𝑃&*7 + 𝑓&+	𝑓) + 𝜀8  (2) 

RECS-based percentage usage is applied to total residential electricity and natural gas 

consumption to obtain the relative shares of electricity (𝐸&'(
')*), used for space heating and cooling, 

and the natural gas (𝑁𝐺&(
')*), used for space heating for state s, month m and year y. 

Similarly,  𝐻𝐷𝐷.6.'
&)* , 𝐻𝐷𝐷CD

&)*	and 𝐶𝐷𝐷&)* are HDD fulfilled by electricity, HDD fulfilled by 

natural gas and CDD for respective state, month and year. 𝑐. and 𝑐CD are constant terms, 𝛼.2, 𝛼.8, 

𝛽.2, 𝛽.8, 𝛾.2, 𝛼CD2, 𝛼CD8, 𝛾CD2 are coefficients of respective terms as shown in the equations and 

𝜀@, 𝜀8 are error terms. Additionally, we use 𝑓& and 𝑓) as fixed effects for states and months 

respectively. Fixed effects are used in a regression model to control for some types of omitted 

variable bias. The state fixed effects account for the average difference in time-invariant state 

characteristics.  The month of year fixed effects account for common shocks to all states in a month 

of the year and can capture seasonal patterns unobserved in the data. In this case, inclusion of state 

and month fixed effects allows control for differences in the magnitude of degree days that arise 

i) among states because of differences in population size and ii) among months because of seasonal 
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variations. It should be noted that while the month fixed effects account for intra-annual 

differences among the states, the differences between years arising from factors such as 

macroeconomic fluctuations are not incorporated. Moreover, the electricity model uses all months 

while summer months (June, July and August) are excluded for the natural gas model. Overall, the 

econometric models are able to precisely estimate the determinants of electricity and natural gas 

demand. The R-square values for the models are 0.99 and 0.98 respectively and there are 

significant t-statistics for all the coefficients at 95% significance level. The F-statistics suggest that 

the results are jointly as well as individually statistically significant (Table 1.2 and 1.3). We also 

perform additional tests to rule out any temporal or spatial correlation in our datasets. First, we 

perform regressions using Newey-West standard errors with 45 and 34 lags for electric and natural 

gas models respectively. Second, we estimate these regression using [Driscoll and Kraay, 1998] 

standard errors. These standard errors are robust to very general forms of temporal and spatial 

correlation with all coefficients being statistically significant at the 1 % level.  

The fixed effect regression models established in equations 1 and 2 are subsequently applied to 

each of the RegCM4 ensemble members by replacing the PRISM degree days with the simulated 

degree days in the 25 years in the historical period (1981-2005) and the 40 years period in the 

future (2011-2050). For the future models, the population is kept at the 2005 level to isolate the 

variations in energy demand that arise solely because of climatic changes. 

2.2.2.3 Energy Data Disaggregation  

We devised a weighting method to disaggregate state-level estimated energy consumption data to 

the county level. This accounts for differences in the population, heating and cooling requirements 

across counties within each state. First, we calculate monthly electricity and natural gas weighting 

factors (𝑤𝑓.6.'FGH'
')* , 𝑤𝑓CD

')*)	 for each county c, every month m in a given year y (equations 1 and 
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2). The weight is a product of county population (𝑃'*)	for that year and total degree days for that 

month, normalized by the state total (equations 3 and 4). Total degree days are calculated as the 

sum of HDD fulfilled by electricity and total CDD 3𝐻𝐷𝐷.6.'
')* + 𝐶𝐷𝐷')*7 for electricity and only 

HDD fulfilled by natural gas 3𝐻𝐷𝐷CD
')*7 for natural gas. Second, electricity (𝐸')*) and natural 

gas (𝑁𝐺')*)	consumptions for each county are calculated by multiplying the estimated state 

consumptions for electricity and natural gas (i.e,, 𝐸&'(
&)*	,	 𝑁𝐺&'(

&)*)	with the respective weighing 

factors of the county (equations 5 and 6). 

𝑤𝑓.6.'FGH'
')* = 	 3JKKLMLN

NOPQRKKNOP7∗TNP
∑ V3JKKLMLN

NOPQRKKNOP7∗TNPWN
NXY

       (3) 

 

𝑤𝑓CD
')* = 	

VJKKZ[
NOPW∗TNP

∑ VJKKZ[
NOP∗TNPWN

NXY
         (4) 

 

𝐸')* = 	𝑤𝑓.6.'FGH'
')* ∗ 	𝐸&'(

&)*         (5) 

 

𝑁𝐺')* = 	𝑤𝑓CD
')* ∗ 	𝑁𝐺&'(

&)*         (6) 

 

2.2.2.4 Time Series Analysis 

We investigate annual variations in HDD, CDD, electricity demand and natural gas demand for 

ten metropolitan areas across the US, New York-Jersey City–White Plains (NY-NJ), Chicago,  

(IL), Dallas-Fort Worth-Arlington and Houston,  (TX), Washington, D.C.-Arlington-Alexandria,  
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(DC-VA), Philadelphia-Camden-Wilmington, (PA), Miami-Fort Lauderdale-West Palm Beach, 

(FL), Atlanta-Sandy Springs-Roswell, (GA), Boston-Cambridge Newton, (MA), San Francisco-

Oakland-Hayward,  (CA), and Seattle-Tacoma-Bellevue,(WA)). We compare the RegCM4 based 

HDD and CDD with the PRISM observations. While the RegCM4 based electricity and natural 

gas demands are compared with EIA observations. All the time series are standardized with respect 

to their means, and the significance of the trend is tested by using the modified Mann-Kendall test 

with a 95 percent confidence interval. While we perform analyses individually for each of the 11 

RegCM4 ensemble members, results are presented as an ensemble mean. 

2.3 Results and Discussion  

2.3.1 Historical Comparisons  

Across the US, residential space heating requirements are generally higher than the space cooling 

requirements given the higher number of HDD than CDD (Figures 2.3a, 2.3b). Cooler 

temperatures associated with continental air and higher elevations drive maximum space heating 

requirements in the north central US (up to >3400 °C) whereas space cooling requirements peak 

mostly over southern US such as Florida, Texas and parts of the southwest (up to >2000 °C).  The 

spatial variability in the degree days, along with their magnitudes are simulated exceptionally well 

in the RegCM4 simulations compared to the observations (Figures 2.3a-d). 

Observations exhibit a decreasing (increasing) trend in HDD (CDD) across the US, which is also 

captured in the simulations (Figures 2.3e-h, 2.4-2.5). However, the simulated decrease in HDD 

(up to 350 °C) is substantially milder than observed (up to 550 °C) over the Rockies, and the 

strongest observed increase in CDD over the southwest is approximately 1.5 times higher than the 

simulated trends. The trends in HDD are significant in both the observations and the simulations 

in most of the western half and parts of the eastern half of the US. However, the increasing trend 
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in CDD is only significant over parts of the southwest and Pacific Northwest in the observations 

in contrast to the simulations that also exhibits significant trends over the southeast and parts of 

the northeast. HDD and CDD trends in ten metropolitan regions exhibit similar characteristics in 

both the observations and the simulations. For instance, both datasets exhibit a decreasing trend in 

HDD over all ten regions, which is also statistically significant over three regions. Similarly, both 

datasets exhibit increasing but insignificant trends in CDD over 9 out of 10 regions (Figures 2.1i, 

2.4-2.5). Collectively, these comparisons demonstrate that the downscaled data exhibits good skill 

in the simulation of the mean HDD and CDD, and first-order skill in the simulation of their historic 

trends (Figures 2.3-2.5). This is important because historic trends in HDD and CDD provide a 

precursor for future changes in energy demands in warmer climates.  

Driven by the skillfulness of downscaled data in capturing the characteristics of HDD and CDD, 

simulations-based electric and natural gas demands also compare well with the EIA observations, 

particularly at low and medium demand levels (< 4000 GWh for electricity and < 60000 MMcf 

for natural gas) (Figures 2.6-2.8). The simulated electric demand also exhibits skill at the 

metropolitan level where statistically significant trends are simulated across all ten metropolitan 

regions in both the RegCM4 simulations and the observations (Figures 2.3i, 2.6) . The trend in 

simulated natural gas demand compares well with the observations for 7 out of 10 regions (Figures 

2.1i, 2.7). Both electricity and natural gas demand exhibit an upward trend, due to the rising 

population over the historical period.  

2.3.2 Future Changes in Energy Demand and Net Cost  

To understand the impacts of climate variations on RED, we fix all other factors including 

population and other economic drivers that may influence energy system response. Such an 

approach is a standard in the future climate studies. For instance, all RCPs driven GCMs 
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simulations only simulate climate system response to changes in representative concentration 

pathways. With population kept at 2005 levels, electricity demand is projected to increase across 

the US with the exception of some parts of western US, which exhibit a decrease of up to 7% in 

parts of Arizona, Nevada, and California  by 2050 (Figure 2.9a). The magnitude of increase across 

the rest of the US is up to 10 %. For metropolitan regions considered in this study, an increase in 

electricity demand is projected for eight out of ten, ranging from approximately 0.5 % for Boston-

Cambridge Newton, MA to more than 7% for Miami-Fort Lauderdale-West Palm Beach, FL 

(Figure 2.9e). In the case of natural gas, the demand is projected to decrease over most of the US 

(Figure 2.9f) with the exception of parts of some states such as Texas, Arizona, and Florida that 

exhibit a strong increase. However, these strong percent increases over parts of these states 

primarily driven by their relatively small natural gas demand during the historical period. Given 

that natural gas is mainly used for space heating, the decrease in natural gas demand is driven by 

the changes during the winter months (i.e., September to May). RegCM4 ensemble members show 

a robust decrease in natural gas demand (up to 4%) across all ten metropolitan centers, which is 

mainly driven by a decrease in HDD (Figures 2.9f, 2.9g). The decrease is larger during the 

transition months i.e., April and May in spring, and September and October in fall compared to 

winter months.  

2.3.3 Driving Climate Variations 

We investigate the factors driving future changes in RED by defining changes in the summer-like 

(hereafter summer) and the winter-like (hereafter winter) conditions. Summer (winter) conditions 

are defined as the longest consecutive period when CDD (HDD) is greater than HDD (CDD). 

Figure 2.10 shows a comparison of accumulated degree days and degree days per day (CDD for 

summer and HDD for winter) in the PRISM observations and the RegCM4 simulations for summer 
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and winter respectively. Accumulated CDD (HDD) range from 0 to >1400 (0 to >4000) °C 

whereas CDD (HDD) per day range from 0 to 10 (0 to 18) °C during summer (winter). The total 

and per day degree days are based on the timing and duration of summer and winter. Summer 

starts as early as April in the south and as late as June/July in the north, with a gradual decrease in 

the duration (>200 to <40 days) and the cooling requirements (>1400 to <200 °C).  Winter starts 

as early as September in the north and as late as December/January in the south, with a gradual 

decrease in duration (>280 to <40 days) and heating requirements (>4000 to <400 °C) from north 

to south. This seasonal duration shift intensifies with the increase (decrease) in latitude and/or 

elevation for summer (winter) (Figure 2.11)  

While electricity is used for both space heating and cooling, future changes in the characteristics 

of summer and winter suggest that the projected increase in the electricity demand is primarily 

driven by an increase in the cooling demand. A late onset of winter, particularly over the higher 

elevations, and an early arrival of summer shrink the length of winter conditions (Figure 2.12) by 

a few days in the parts of southeast to as much as a month in the parts of the western US, reducing 

the HDD by 20 °C to as much as 400 °C respectively (Figure 2.13b). On the other hand, there is 

an increase in the length of summer conditions (Figure 2.12c) by a few degree days in the parts of 

Pacific Northwest and Rockies to as much as a month in most of the southwest, increasing the 

CDD by 20 °C to as much as 300 °C respectively (Figure 2.13a). The per day degree day change 

in heating (cooling) demand that ranges from -0.7 to 0 (0 to 1) °C is mainly driven by changes in 

minimum (maximum) daily temperature during winter (summer) (Figures 2.13e, 2.13f).  
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2.3.4 Socioeconomic Drivers 

While this study only focuses on the climate driven long-term environmental variations that can 

potentially influence RED, there are other socioeconomic factors that may reverse, mute or amplify 

the projected influence of climate-driven changes. We elaborate on such an impact of 

socioeconomic variations by considering projected changes in population distribution (Figure 

2.14a) in our economic model. We use 5-yearly population projections data from 

Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios 

(SRES) A2 scenario, which is  analogous for RCP8.5 [EPA, 2010], and linearly interpolate it at 

yearly time-scale to match the future period (2011 to 2050). Use of both climate and population 

changes in our economic model enables comparisons of future changes in energy demand caused 

by changes in climate (Figures 2.2a, 2.2b) with those caused by changes in both population and 

climate (Figures 2.14b, 2.14c). With the exception of Texas, California, and Florida where future 

population increase is projected to be statewide, urban areas are mainly expected to experience 

population growth. The projected increase in RED due to population increases (Figures 2.14b, 

2.14c) in these three states and urban areas across the US will outpace the projected increase in 

RED due to climate (Figures 2.9a, 2.9b). On the other hand, most of the rural areas are projected 

to witness a decline in the population (Figure 2.14a); however, climate-driven increase in RED in 

those rural areas will overwhelm the decrease caused by population changes (Figures 2.9, 2.14). 

Compared to climate driven changes, our results indicate that an increase (decrease) in urban 

(rural) population can potentially result in as much as 10 fold increase (as low as 5 fold decrease) 

in residential electricity demand. Similarly, compared to climate driven changes, increase 

(decrease) in urban (rural) population can potentially result in as much as 5 fold increase (as low 

as  5 fold decrease) in natural gas demand. 
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In addition to changes in the population, economic factors can potentially exert a significant 

influence on the pace of technological advancements and residential energy prices. Moreover, a 

growing economy boosts advancement in technology, resulting in more efficient heating and 

cooling systems, efficient building designs etc. Likewise, factors such as supply and demand 

variations and inflation in the energy sector can also drive changes in residential energy prices. 

However, due to the absence of reliable estimates for the future energy supply and demand, 

economic conditions and technological innovations, no other socioeconomic factors have been 

considered in this study. 

2.4 Summary and Conclusions 

This study uses econometric models and one of the most detailed climate projections over the 

continental US to investigate future variation in residential energy demand by the mid-21st century 

in response to increases in radiative forcing. The econometric model (RegCM4) exhibits 

exceptional skill across the US in the prediction (simulation) of the characteristics of RED (degree 

days). Future climate is projected to exhibit an increase in the span of hot conditions due to the 

early arrival of summer-like conditions and delay in the onset of winter-like conditions, leading to 

a net increase in the residential electricity demand and a decrease in the residential natural gas 

demand by the mid-21st century. However, driven by the spatial heterogeneity in the climate 

change signal and the background cooling and heating demands, there are important variations in 

the characteristics of future RED. For instance, counties in the southern half of US and parts of 

Midwest are projected to experience stronger increases in the residential electricity demand as 

compared to those in the northeast and northwest. Similarly, the decrease in natural gas demand is 

higher in the parts of southeast and parts of the south as compared to its demand in the northwest 

and Midwest. The projected shift in the energy needs from natural gas to electricity may affect 
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greenhouse gas (GHG) emissions, depending on the source of electricity generation. Electricity 

generation from natural gas and coal based thermal plants contributes to GHG emissions, while 

electricity generation from renewable sources such as hydropower and solar does not. An increase 

in space cooling requirements will necessitate enhanced electricity generation capacity to meet the 

electricity demand, which may lead to additional construction and operational costs and higher 

electric bills.  

While keeping the main focus on climate driven changes in the future RED, this study also 

highlights the importance of socioeconomic drivers that may either reverse, mute or amplify the 

impacts of climate change on energy systems. Using the projected population changes as an 

example, we demonstrate that while urban areas will likely experience a strong increase in the 

future RED due mainly to the greater influx of migrating population, rural areas may also exhibit 

an increase in the future RED due to climate driven changes despite a decline in rural population. 

However, as previously pointed out, other socioeconomic drivers and technological advancements, 

which have not been considered in this study, will also be important determining factors of the 

future changes in energy demand. Lastly, it should also be noted that biases arising from 

methodological choices such as disaggregation technique, statistical model errors, and 

uncertainties in the future climate projections may also have influenced our estimates of climate 

impacts on the future RED. Nonetheless, the results presented in this study should pave the way 

for the development of more rigorous and comprehensive analysis frameworks for understanding 

the response of RED to future changes in climate and socioeconomic conditions. 
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Chapter 3  

Increase in Temperature to Drive the Future Amplification of Dry As Well As Humid Heatwaves 

over the United States 
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Abstract 

The frequency and the intensity of heatwaves in the US is projected to increase in the 21st century. 

Despite its importance for amplifying heat stress, the role of humidity in future heatwaves is still 

uncertain. Here, we investigate heatwaves in a pair of high-resolution model simulations that 

constraint large-scale atmospheric circulations, to understand the thermodynamic impacts on the 

characteristics of future heatwaves over four regions across the US. We use daily maximum- 

temperature and apparent temperature to identify dry and humid heatwaves respectively. While 

the two kinds of heatwaves show differences in Southeast, Northeast-Midwest, their characteristics 

are largely similar in Central and West US. Further, relative humidity is projected to decrease 

during dry heatwaves whereas it remains unchanged during the humid heatwaves. However, the 

increase in daily maximum temperature still intensifies heat stress during the future humid 

heatwaves across all the regions. Moreover, these results confirm studies using unconstrained 

climate models and thus underscore that thermodynamic processes are largely sufficient to explain 

the projected changes during dry heatwaves whereas a weak land-atmosphere coupling exists 

during humidity driven heatwaves. 
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3.1 Introduction 

Heatwaves, generally defined as persistent hot conditions above certain threshold, severely impact 

the social-ecological systems by affecting human health and productivity, by exerting stress on 

energy and other infrastructure, and by adversely impacting agricultural yields and other 

ecosystems [Auffhammer et al., 2017; Bobb et al., 2014; Burke et al., 2015; Coffel et al., 2017; 

Lesk et al., 2016; Rastogi et al., 2019]. Upward trends in the frequency, intensity and duration of 

heatwaves are already evident globally as well as in the United States (US) [Perkins et al., 2012; 

Shiva et al., 2019; Smith et al., 2013]. These observed changes in the characteristics of heatwaves 

have been attributed to global warming and are projected to prevail or further exacerbate in 

response to a projected increase in global temperature [Dosio et al., 2018; Jaeger et al., 2008; King 

et al., 2018; Schoetter et al., 2015]. Additionally, the presence of high humidity levels during 

heatwaves can further enhance physiological heat stress, and poses severe risks to human health 

[Fischer and Knutti, 2013; Glaser et al., 2016] by reducing human body’s ability for evaporative 

cooling and by limiting heat tolerance [Dunne et al., 2013; Sherwood and Huber, 2010].  

The characteristics of a heatwave are defined by a combination of many dynamic (i.e. atmospheric 

circulations) and thermodynamic factors (such as moisture and heat fluxes). Heatwaves are often 

associated with atmospheric blocking patterns. Further, the build-up and entrainment of dry and 

hot air causes dry heatwaves and advection of hot and humid air from warm ocean results in more 

humid heatwaves. The thermodynamic characteristics of heatwaves also depend on the regional 

scale land-atmosphere interactions [Fischer et al., 2007; Miralles et al., 2014; Raghavendra et al., 

2019; Russo et al., 2017]. Land surface processes can play an important role in amplifying or 

dampening a heatwave by influencing the partitioning of the available energy between sensible 

and latent heat fluxes. When soil moisture is abundant, higher evaporation results in conversion of 
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more energy to latent heat, reducing sensible heat and therefore limiting air temperature rise. 

Conversely, under limited soil moisture conditions, more energy is partitioned towards sensible 

heat, causing air temperature to intensify and resulting in drier heat [Cheng et al., 2019; Lee et al., 

2016; Lorenz et al., 2010; Ukkola et al., 2018]. These land-atmosphere interactions are expected 

to change in response to increase in radiative forcing [Donat et al. 2017; Lee et al., 2016], which 

may result in an enhanced surface drying and an increase in atmospheric moisture following the 

Clausius Clapeyron relationship. Such changes in the thermodynamic characteristics have the 

potentially to significantly alter the nature of future heatwaves. Many studies [Lee et al., 2016; 

Teuling et al., 2010] provide ample evidence regarding the influence of land-atmospheric 

interactions in the amplification of warming during heatwaves. For instance, reduced evaporative 

cooling as a result of soil moisture depletion enhanced the record-breaking European heatwave 

during both in terms of the intensity and duration [Lorenz et al., 2010; Teuling et al., 2010]. 

Similarly, soil moisture availability exerts controls on the relationship between latent-sensible heat 

flux partitioning and the heatwave frequency during spring and summer over the Central US [Lee 

et al. 2016]. Likewise, Cheng et al. [2019]  demonstrated a strong soil moisture-temperature 

coupling in relatively dry regions of the southern Great Plains and the southwestern US whereas a 

weak coupling that remains unchanged in the moisture-abundant region over the northern and 

northeastern US in a warmer climate. Overall, these studies outline the importance of land-

atmosphere coupling during the heatwaves especially associated with water limited conditions. 

Following the Clausius-Clapeyron relationship, at the global scale, the near-surface specific 

humidity is projected to rise with an increase in air temperature, resulting in no change in relative 

humidity  [Sherwood et al., 2010]. A decrease in relative humidity is projected during the hottest 

days over land [Fischer and Knutti, 2013] but these changes in humidity during the heatwaves 
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need further evaluation. Moreover, commonly used heat stress indices such as wet bulb 

temperature or apparent temperature often include nonlinear relationships between temperature 

and relative humidity and are amplified by an increase in temperature even when relative humidity 

remains unchanged. Therefore, use of such indices restricts our ability to exclusively understand 

the role of humidity during a heatwave. A few studies have examined these relationships [Coffel 

et al., 2019; Fischer and Knutti, 2013; Raymond et al., 2017; Russo et al., 2017]. Raymond et al. 

[2017] investigated the primary factors driving the wet bulb temperature extremes using National 

Climate Data Center’s Integrated database and found that these extreme days coincide more 

frequently with the specific humidity extreme days than with the temperature extreme days over 

the eastern and parts of the western US during 1981 to 2015 period. Coffel et al. [2019] depict that 

the effects of amplified warming on the wet bulb temperature are counter balanced by an enhanced 

drying, resulting in a dampening of extreme wet bulb temperatures globally. On the other hand, 

Dahl et al. [2019] and Russo et al. [2017] project an increase in the maximum apparent temperature 

and an enhanced human exposure to extreme heat events by the end of 21st century. However, most 

of these studies are based on the data from General Circulation Model (GCM) form the 5th phase 

of Coupled Model Intercomparison Project (CMIP5)  that conducted simulations at grid spacing 

not suitable for resolving processes that generate convective precipitation [Liu et al., 2017]. 

Moreover, synoptic conditions suitable for the occurrence of heatwaves (e.g. blocking), are often 

not very well represented in GCMs, which further limits the representation of heatwaves in GCMs 

based studies [Rasmijn et al., 2018]. Further, the simultaneous changes in dynamic (i.e. 

atmospheric circulations) and thermodynamic components (such as moisture and heat fluxes) in 

GCMs also complicate process attribution of projected changes in heatwaves [Wehrli et al., 2018] 
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Given the methodological and modeling limitations in the earlier studies, we employ a pair of high 

resolution convection-permitting spectrally nudged numerical model simulation [Liu et al., 2017] 

and a methodology that enables the isolation of moisture related impacts on heatwaves to 

investigate potential changes in the characteristics of dry and humid heatwaves in a warmer 

climate. Use of two different kinds of heatwaves allows isolation of impacts that moister 

atmosphere many have in the future climates. Moreover, convection-permitting design of model 

simulations has the potential to realistic simulate the conditions conducive for the occurrence of 

heatwaves. Further, the large-scale atmospheric circulations are spectrally nudged towards 

reanalysis data under both present day and future climate boundary conditions. This setup keeps 

large-scale conditions almost identical in the two experiments and allows for the reoccurrences of 

present day real-world atmospheric events (e.g. heatwave) in the future warmer climate. Therefore, 

this permits a direct comparison of events in the two climates and enables us to isolate the 

thermodynamically-driven changes in the characteristic of the events. 

3.2 Materials and Methods 

3.2.1 Model Simulations 

We use a pair of 13-year simulations that employ the Weather Research Forecasting (WRF) model 

Version 3.4.1 [Skamarock et al., 2008] over a domain covering the contiguous US and parts of 

Canada and Mexico. We refer the readers to Liu et al. [2017] for a detailed description of the 

experimental setup. Briefly, each model simulation is conducted at a 4 km horizontal grid spacing 

with 1360 grid point along the longitude and 1016 grid point along the latitude. The first simulation 

is a control simulation (WRF-CTRL) that is driven by 6-hourly 0.7o ERA-Interim data [Dee et al., 

2011] to reproduce the current climate. The second simulation is a climate change experiment that 

follows the pseudo global warming (PGW) approach (WRF-PGW). The WRF-PGW simulation is 
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driven by modified ERA-Interim that includes a climate perturbation based on the climate change 

signal (2071 to 2100 minus 1976 to 2005) from Coupled Model Intercomparison Phase 5 (CMIP5) 

multimodel ensemble mean under the Representative Concentration Pathway 8.5 (i.e., 

CMIP52071−2100 minus CMIP51976−2005 ). The climate change perturbation is applied to 

horizontal wind fields, geopotential, temperature, specific humidity, sea surface temperature, soil 

temperature, sea level pressure, and sea ice. The simulations extend from 1 October 2000 to 30 

September 2013. These simulations use a spectral nudging approach for the scales on the order of 

2000 km and greater, thus allowing the reproduction of present-day specific synoptic weather 

events in the perturbed simulations. In this study, we use daily-scale maximum temperature (Tmax), 

mean specific humidity, soil moisture, and sensible and latent heat flux from these simulations. 

Further, we calculate evaporative fraction (EF) as the ratio of latent heat flux to total heat flux 

(latent + sensible) to depict energy partitioning between the two heat fluxes. The use of EF in the 

analyses is motivated by the reasoning that if the warming during the heatwaves is related to energy 

partitioning, changes in Tmax should be correlated with changes in EF during the heatwaves days 

[Donat et al., 2017]. 

3.2.2 Observational Dataset 

We use Parameter-Elevation Regressions on Independent Slopes Model (PRISM) [Daly et al., 

2008] observations for comparison and model validation. We obtain daily Tmax and daily mean 

dew point from the dataset for 2001 to 2013 period. The dataset is available at 4 km horizontal 

grid spacing over the continental US.  

3.2.3 Maximum Apparent Temperature 

We use maximum apparent temperature (ATmax), also referred to as heat index or “feels like” 

temperature for human body [Steadman, 1979], to account for the role of humidity during 
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heatwaves. ATmax is calculated by applying the Heat Index equation (1) used by National Oceanic 

and Atmospheric Administration. The equation 1 provides ATmax values in degrees Fahrenheit (°F) 

that are converted to degrees Celsius (°C). Additional adjustments for different range of Tmax and 

relative humidity are applied as detailed in the NOAA factsheet 

 (https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml). We calculate relative 

humidity from daily mean specific humidity and Tmax for the WRF simulations and from daily 

mean dew point temperature and Tmax for the PRISM observations. In order to isolate impacts of 

temperature and humidity on heatwaves, we substitute ATmax values that are below Tmax with Tmax 

values. Minor differences between the magnitudes of ATmax and Tmax during the heatwaves suggest 

temperature as a driving factor while major differences between the magnitudes of ATmax and Tmax 

during the heatwaves suggest humidity as a driving factor. Russo et al. [2017] follow similar 

approach to account for the effect of relative humidity during the heatwaves. 

𝐴𝑇	 = 	 𝑐8 + 𝑐9𝑇 +	𝑐^𝑅 +	𝑐`𝑇𝑅 +	𝑐a𝑇9 + 𝑐b𝑅9 + 𝑐c𝑇9𝑅 + 𝑐d𝑇𝑅9 + 𝑐e𝑇9𝑅9  (1) 

Where, 

𝐴𝑇 is the apparent temperature in °F 

𝑇 is the  temperature in °F 

𝑅 is the in relative humidity in % between 0 and 100 

3.2.4 Compound Heatwave Definition 

There are numerous ways to define heatwaves. One of the most common definitions involves use 

of minimum number of consecutive days above a certain threshold (absolute or percentile based) 

[Baldwin et al., 2019; Horton et al., 2016]. However, heatwaves may often continue after break of 
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a day, therefore, use of consecutive days criteria may underestimate the actual length of a 

heatwave. Therefore, following Baldwin et al. [2019], we use a compound heatwave definition. 

Using this definition, a period during the summer season (June-July-August, JJA) is considered a 

heatwave if at least 3 consecutive days cross a given threshold. In our definition, the heatwave 

continues on the subsequent days after the consecutive days period if only a single day separates 

the days fulfilling the threshold requirements. We use  grid based 95th percentiles of Tmax (T95) and 

ATmax  (AT95), which are based on all the days in 13 summer seasons, as a threshold. We calculate 

two separate thresholds for WRF-CTRL and WRF-PGW JJA periods respectively. We identify the 

heatwaves in WRF-CTRL using only WRF-CTRL thresholds (hereafter CTRLCTRL) while the 

heatwaves in WRF-PGW are identified using both the WRF-CTRL thresholds (hereafter 

PGWCTRL) and the WRF-PGW thresholds (hereafter PGWPGW). The use of two separate thresholds 

to find heatwaves in WRF-PGW enables the comparison of the characteristics of heatwaves 1) 

occurring in the warmer climate with respect to the present climate and 2) occurring in the present 

climate (WRF-CTRL) with respect to present (WRF-CTRL) threshold (CTRLCTRL) and occurring 

in the future climate (PGW) with respect to future (WRF-PGW) threshold (PGWPGW). This allows 

for a direct comparison between the present and the future heatwaves given that similar heatwave 

can occur in the two cases (i.e. CTRLCTRL and PGWPGW) . We apply the heatwave definition on 

Tmax and ATmax  using T95 and AT95 thresholds to identify Tmax and ATmax heatwaves respectively 

for the CTRLCTRL, the PGWPGW and the PGWCTRL. 

3.2.5 Heatwave Indices 

We use several indices to calculate heatwave characteristics as defined below: 

1. Duration of heatwave is defined as the total number of days above the threshold including the 

break days.  
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2. Mean amplitude is calculated as the average of Tmax over the length of heatwave excluding the 

break days.  

3. Mean heatwave intensity is the average difference between Tmax and T95 over the length of 

heatwave excluding the break days. 

4. Number of heatwaves are the total count of heatwaves that occur during a summer season  

5. Percentage area under heatwave or extent is defined as the fraction of the total grid points (in 

percent) in a region where a heatwave is occurring. We aggregate the results over the whole season 

including all days when a heatwave is present for the scatter and box plots. 

3.2.6 Regional Analysis 

We focus our analysis primarily on four regions across the US: Southeast, Northeast-Midwest, 

Central and West, which are marked in Figure 3.1m. These regions are derived from United States 

Geological Survey (USGS) climate adaptation science center regions. For the ease of presentation, 

we combine Northwest and Southwest regions and North Central and South Central regions to 

create West and Central regions respectively. We evaluate changes in the heatwave characteristics 

such as heat wave indices, humidity and heat fluxes for all the four regions. The significance of 

change in each characteristics has been tested using two tailed Student’s T-test. 

3.3 Results  

3.3.1 Characteristics of Tmax versus ATmax Heatwaves 

We first evaluate the characteristics  (duration, intensity, area) of the Tmax and the ATmax heatwaves 

(Figure 3.1) that occurred during the analyses period (2001 to 2013) over the four geographical 

regions across the US. Southeast, which is the most humid region in the US, generally shows 

higher mean percentage area and mean intensity for the ATmax heatwaves as compared to the Tmax 
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heatwaves with the exception of a few years (Figure 3.1a,e). We illustrate this point by showing a 

comparison for 2010, when higher percentage of the Southeast was under the ATmax heatwave 

during the summer season when compared with the percentage area under the Tmax heatwave 

(Figure 3.1i). This comparison reflects that humidity can also potentially exacerbate geographical 

footprint of heatwaves. Such an impact of ATmax heatwave is further evident from the large average 

differences between ATmax and Tmax values during 2010 heatwaves (Figure 3.1k,l). Contrarily, 2012 

summer was comparatively dry even for the Southeast, with a higher percentage of area under the 

Tmax compared to that under the ATmax heatwaves and comparatively smaller mean differences 

between ATmax and Tmax during the heatwaves (Figure 3.1j,m,n).  

The Northeast-Midwestern US displays mixed behavior with generally higher mean intensity 

values for the ATmax as compared to the Tmax heatwaves, whereas the mean percentage area is 

similar under the ATmax and the Tmax heatwaves (Figure 3.1b,f). On the other hand, the Central 

(Figure 3.1c-d) and the West regions (Figure 3.1g-h), generally exhibit indistinguishable 

characteristics for the two kinds of heatwaves, consistent with the predominantly dry summer over 

these regions with little moisture in the atmosphere. Consequently, the ATmax and Tmax heatwaves 

show very similar characteristics in terms of mean intensity and mean percentage area under 

heatwaves, particularly over the Western US. Overall, heatwaves last for up to 8 days, with the 

majority lasting between 3 to 6 days across the four regions for both Tmax and ATmax (Figure 3.1a-

h). 

3.3.2 WRF-CTRL versus Observations 

We compare the simulated (WRF-CTRL) and the observed (PRISM) characteristics of both the 

Tmax and the ATmax heatwaves for the analyses period (Figure 3.1a-h, Figure 3.2-3.3). Overall, 

WRF-CTRL simulates a comparable range for both the mean intensity (Figure 3.1a-d) and the 
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mean percentage area (Figure 3.1e-f) averaged over the four regions. The spatial patterns for 

simulated characteristics, including average length, total heatwaves, average amplitude, average 

intensity of the Tmax and the ATmax heatwaves, and T95 and AT95, compare well with the observed 

characteristics with the exception of a few noticeable biases in their magnitudes (Figure 3.2-3.3). 

For instance, WRF-CTRL underestimates the number of Tmax and ATmax heatwaves in the western 

US and the number of ATmax heatwaves in the Southeast US and parts of Midwest (Figure 3.2b,g 

and Figure 3.3b,g). WRF-CTRL also exhibits positive biases in the average amplitudes of both the 

Tmax and the ATmax heatwaves (Figure 3.2c,h and Figure 3.3c,h) and T95 and AT95 (Figure 3.2e,h 

and Figure 3.3e,h), primarily over the Central US  and the Southeast. These biases in the magnitude 

of heatwaves are possibly associated with the prevailing warm season (May to October) biases in 

these simulations. A near-surface temperature bias of up to 3°C exists in the Central US followed 

by lower biases of up to 2°C in the Southeast and the Midwest and up to 1°C bias in the Northeast 

in the WRF model during JJA. The warm bias over the Central US during JJA is attributed to high 

biases in daytime temperatures [Liu et al., 2017].  

To further explain the WRF model agreements and differences with the observations using the 

Tmax and the ATmax heatwaves over the Southeast in 2010 and 2012. In 2010, WRF-CTRL 

reproduces the percentage area under the Tmax and the ATmax heatwaves suggested by PRISM 

(Figure 3.1i). Figure 3.1k and 3.1l shows where ATmax is larger than Tmax during 2010, the spatial 

pattern of which is well simulated. WRF-CTRL slightly underestimates the amplification of ATmax 

relative to Tmax along the Lower Mississippi (Figure 3.1k,l). During 2012, WRF-CTRL show 

comparatively larger biases in simulating these characteristics (Figure 3.1 j, m, n). Nevertheless, 

WRF-CTRL is able to capture the overall spatial and temporal characteristics of the observed 

heatwaves during 2001-2013.  
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3.3.3 Changes in the Characteristics of Heatwaves under a Warmer Climate 

Changes in the moisture availability during heatwaves can potentially change their characteristics. 

To investigate such thermodynamic influences, we plot relative humidity against Tmax during both 

the Tmax and the ATmax heatwaves in the PRISM observations, and the CTRLCTRL, the PGWCTRL and 

the PGWPGW (Figure 3.4). During the Tmax heatwaves, relative humidity shows small changes when 

it is compared between the PGWCTRL and the CTRLCTRL (Figure 3.4a-d). Contrarily, Tmax in the 

PGWCTRL heatwaves is projected to be higher than Tmax in the CTRLCTRL heatwaves. Further, a 

strong and significant increase in average duration and average number of heatwaves in the 

PGWCTRL as compared to the CTRLCTRL is projected (Figure 3.5). Consequently, more than half of 

the summer days over majority of the US (Figure 3.6) qualify as a part of the heatwaves per the 

CTRLCTRL threshold. Therefore, the characteristics of the heatwaves during the PGWCTRL closely 

resemble the average summer conditions in the future. Contrarily, the PGWPGW, which represents 

the future heatwaves defined relative to future climate, includes comparatively stronger heatwaves 

with Tmax increasing by an average of at least 5°C in all regions compared to CTRLCTRL (Figure 

3.4). Relative humidity during the Tmax heatwaves in the PGWPGW is projected to decrease in all 

the regions except the West where relative humidity during the heatwaves is historically low. The 

strongest decrease is exhibited in the Southeast and the Northeast-Midwest (Figure 3.4a-d). The 

decrease is relative humidity during the Tmax heatwaves corresponds with no noticeable changes in 

the specific humidity (Figure 3.7a-d) and increase in Tmax (Figure 3.4a-d). On the other hand, 

during the ATmax heatwaves, relative humidity remains largely unchanged, given an increase in 

both the specific humidity and Tmax (Figure 3.7e-h) in the PGWPGW as well as  the PGWCTRL. This 

suggests that the humid heatwaves will persist in a future warmer climate, which, together with 



 38 

increasing Tmax, greatly increases heat stress during the future ATmax heatwaves in all the regions 

(Figure 3.4e-h). 

Given the spectral nudging in these simulations, heatwaves in the CTRL are likely to reappear in 

the PGW by design, which allows us to directly compare the PGWPGW heatwaves with the 

corresponding CTRLCTRL heatwaves (Figure 3.6a,c,d,f). Therefore, we calculate the paired 

differences for each of the 13 years between the characteristics of the PGWPGW and the CTRLCTRL 

heatwaves. We note that the differences in the duration, the extent and the frequency of the Tmax 

and the ATmax heatwaves are indistinguishable and not significant between the CTRLCTRL and the 

PGWPGW. However, we find noticeable differences in the intensities between the CTRLCTRL and 

the PGWPGW heatwaves that are significant for the Central and the West US during the Tmax 

heatwaves and for all the four regions during the ATmax heatwaves at 95 percent confidence interval 

(Figure 3.8).  

Further, we analyze thermodynamic changes in the characteristics of heatwaves. For the Tmax 

heatwaves in the PGWCTRL, which span more than half of future summer over majority of the US 

(Figure 3.6 b, e), the latent and the sensible heating do not show robust changes with respect to the 

CTRLCTRL for all the regions except for small but significant increases in latent heat for the 

Southeast and the Central and sensible heat in Northeast-Midwest (Figure 3.9a,b). For the Tmax 

heatwaves in the PGWPGW, on the other hand, the latent heat decreases while the sensible heat 

increases with respect to the CTRLCTRL and these changes are significant at 95 percent confidence 

level for all the four regions (Figure 3.9a,b). This corroborates the results in Figure 3.4, which 

suggest future summers will see constant or increased relative humidity, but the future heatwaves 

will see decreases in relative humidity, thus relatively damping heat stress on the hottest days in 

the future [Coffel et al., 2019]. During the ATmax heatwaves, the PGWPGW show small changes in 
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the latent heat and the sensible heat with respect to the CTRLCTRL for the Southeast and the 

Northeast-Midwest regions whereas no mean change in heat fluxes are projected in the PGWCTRL 

heatwaves with respect to the CTRLCTRL (Figure 3.9c,d). These changes in heat fluxes correspond 

with the changes in soil moisture during the heatwaves (Figure 3.10). 

To further establish the role of land-atmosphere interactions in driving variations in the 

characteristics of heatwaves, we investigate the relationship between changes in the evaporative 

fraction (EF) and changes in Tmax during the future heatwaves with respect to the CTRL (Figure 

3.9e-l). During the Tmax heatwaves, changes in EF are negatively correlated with changes in Tmax 

over most regions with comparatively high correlation coefficients during both the PGWCTRL and 

the PGWPGW heatwaves in the Northeast-Midwest and Central US and during the PGWCTRL 

heatwaves in the West (Figure 3.9e-h). However, for the ATmax heatwaves, correlations between 

EF and Tmax show mixed signs and small magnitudes except for the West where it shows stronger 

negative correlations (Figure 3.9i-l). Overall, these changes depict that the amplified warming 

during Tmax heatwaves are more closely associated with reduced evaporative cooling portraying 

land-atmosphere interactions as primary driver during these heatwaves. Conversely, a weak 

relationship between changes in EF and changes in Tmax during ATmax heatwaves indicates a weak 

land-atmosphere coupling during these heatwaves. 

3.4 Conclusion and Discussion 

Using a set of convection-permitting spectrally nudged high resolution WRF model simulations, 

we evaluate changes in the characteristics of Tmax and ATmax heatwaves under a warmer climate. 

We find a decrease in the relative humidity during the future Tmax heatwaves and no significant 

change in the relative humidity during the future ATmax heatwaves with reference to the Tmax and 

ATmax heatwaves in the control period. Given that ATmax depends on both relative humidity and 
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temperature, higher Tmax during the humid heatwaves drives an increase in ATmax as relative 

humidity remains unchanged. Further, changes in Tmax during the Tmax heatwaves are correlated 

with changes in EF, which reflects a stronger land-atmosphere coupling during these heatwaves. 

Contrarily, no relationship exists between the changes in EF and the changes in Tmax during the 

ATmax heatwaves indicating a weak land-atmosphere coupling during such heatwaves.  

The findings associated with Tmax heatwaves, are generally consistent with the findings of previous 

studies, which associate intensification of temperature extremes with higher partitioning to 

sensible heat as a result of stronger land-atmosphere coupling under water-limited circumstances 

in the future climates [Donat et al., 2018; Donat et al., 2017; Fischer and Knutti, 2013; Lee et al., 

2016; Teuling et al., 2010]. Contrarily, in water-abundant circumstances, such as described by 

ATmax heatwaves, the lack of changes in energy flux partitioning yields no amplification of 

heatwave characteristics beyond the mean warming. This is again consistent with previously 

reported undetectable changes in land-atmosphere interactions in water-abundant regions [Cheng 

et al., 2019].  

Overall, this study provides a new perspective towards the changing characteristics of heatwaves 

in the future climate. Design of our experiments and analyses allows us to more robustly associate 

these changes in heatwave characteristics to thermodynamic processes. However, future 

heatwaves are likely to be affected by changes  in atmospheric circulation, although these are 

typically less robust in model intercomparisons [Gibson et al., 2017]. Still, a comprehensive 

assessment of heat stress hazard needs to take into account both dynamic and thermodynamic 

factors. This study further highlights the importance of incorporating the effect of humidity in the 

heatwaves studies. A lack of humidity consideration in these studies can lead to an underestimation 

of heat stress as perceived by humans resulting in a lower estimate of heatwave impacts on society.   
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Chapter 4  

Shift Towards Intense and Widespread Precipitation Events over the United States by Mid 

Century   
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Abstract 

Recent decades have witnessed an increase in the frequency of precipitation events across the 

United States that are not only more intense but also spatially widespread. Observations exhibit an  

increasing trend in precipitation over eastern half of the United States that is largely driven by an 

increase in daily-scale events that receive at least 12.5 mm precipitation and cover an area over 

200 thousand square km. Despite these observed changes in both the spatial and the temporal 

characteristics of precipitation events, most of the research regarding future changes in 

precipitation has almost entirely focused on precipitation intensity and/or frequency. Given that 

prevailing observed trends in precipitation characteristics suggest a need for more comprehensive 

understanding of precipitation response to increase in radiative forcing, this study investigates 

potential changes in the characteristic of daily-scale precipitation events both in terms of their 

intensity and spatial extent in the near-term future. We use high-resolution regionally downscaled 

climate simulations data that spans 1966 to 2005 in the historical period and 2011 to 2050 in the 

future period under Representative Concentration Pathway 8.5. We classify precipitation events 

based on their intensity and spatial extent through a feature continuous labeling algorithm. Our 

simulated ensemble captures observed changes in the characteristics of precipitation events in the 

historical period and projects a further increase in the intensity and occurrence of widespread 

precipitation events by mid 21st century. These changes in the spatial and temporal characteristics 

of precipitation are attributed to an increase in the occurrence of intense and/or widespread events 

and a decrease in the occurrence of moderate and small-scale events. We note that such a change 

in precipitation characteristics is projected to be episodic in nature with extreme years of historical 

period in terms of frequency of mid to widespread events becoming commonplace in the coming 
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decades. Overall, this analyses suggest an upwards shift in the intensity as well as spatial extent of 

precipitation events in response to an unchecked increase in radiative forcing. 
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4.1 Introduction 

Intense, widespread and damaging storms have become more frequent across the United States 

(hereafter US) in the recent past. National Centers for Environmental Information (NCEI) [2018], 

database suggests that annual average frequency of multi-billion dollar precipitation related 

disasters in the 5 most recent years has almost doubled (11.6 events/year) compared to their long 

term average during 1980-2017 (6 events/year). Some of these events are not only intense but 

widespread. For example, storm Alberto caused extensive and intense rain resulting in flash 

flooding and damages in multiple southeastern and northeastern states including Florida and 

Maryland during May 2018. Similarly, winter storm Harper brought widespread snow across 

several states in the west, Midwest and northeast causing extensive damage during January 2019. 

The widespread damages associated with these storms signify the importance of the spatial extent 

in addition to the intensity of precipitation events in determining the spread of associated risks. 

The focus of most studies investigating precipitation characteristics have been on intensity and/or 

frequency of the events [Donat et al., 2016a; Donat et al., 2016b] while a complete understanding 

of spatial characteristics of precipitation is still lacking. These studies find a magnification in 

number and magnitude of intense precipitation events over the past century [Dittus et al., 2015; 

Donat et al., 2016a; Karl and Knight, 1998] and are projected to increase further under enhanced 

radiative forcings in the 21st century [Donat et al., 2016b; Rastogi et al., 2017]. This intensification 

of the precipitation events is attributed to enhanced atmospheric water-holding capacity, which is 

expected to increase exponentially with temperature based on Clausius-Clapeyron equation (6.0-

7.5% per degree Celsius warming) [Min et al., 2011; Santer et al., 2007; Willett et al., 2007]. An 

increase in atmospheric moisture may impact multiple precipitation characteristics including the 

spatial extent in addition to the frequency and intensity. However, only a limited number of studies 



 46 

have investigated the spatial characteristics of precipitation mean [Benestad, 2018; Guinard et al., 

2015] and precipitation extreme [Chang et al., 2016; Hamada et al., 2014; Wasko et al., 2016] 

events. These studies concluded that the areal extent of daily precipitation has either declined or 

remain unchanged at global as well as at regional scale while the precipitation intensity has 

increased resulting in more spatially concentrated rainfall over past decade as well as by the end 

of 21st century [Benestad, 2018]. However, these studies are limited by their coarse spatial scales 

with analysis being conducted at either global scale [Benestad, 2018; Hamada et al., 2014] or 

regional scale using coarse horizontal resolution data [Guinard et al., 2015] and hence missing the 

fine scale information. Contrarily, the precipitation distribution shows strong regional variations 

even within the conterminous US. For example, west and Midwest exhibit high seasonality with 

precipitation concentrated during winter and spring and spring and summer respectively whereas 

southeast exhibit low seasonality with precipitation spread throughout the year. The changes in 

average annual precipitation have also exhibited regional differences resulting in a higher contrast 

between wet and dry areas [Ashfaq et al., 2016]. Similarly, the spatial characteristics of 

precipitation events are likely to vary across regions depending upon the source of precipitation 

such as large scale frontal systems, hurricanes or local convective storms and associated changes 

in these weather patterns [Kunkel et al., 2012], but the exact picture is obscure. Therefore, in this 

study, we aim to understand spatial extent in addition to other characteristics of daily precipitation 

events at regional scale to better prepare for possible future changes and associated risks. The study 

brings a new perspective by conducting a comprehensive investigation of multiple precipitation 

characteristics. We investigate spatial extent in addition to intensity and frequency of precipitation 

events using precipitation outputs from a high resolution dynamically downscaled climate model 

projections for historic and future periods [Ashfaq et al., 2016]. We specifically focus on large 



 47 

scale events since these have major impacts on extensive areas across the US and the changing 

characteristics of these events have important implications for formulating strategies for damage 

control planning. 

4.2 Data and Methodology 

4.2.1 Data  

This study is based on the analyses of daily simulated and observed precipitation datasets as 

described below. 

4.2.1.1 Observation 

Observed daily precipitation is obtained from Parameter-Elevation Regressions on Independent 

Slopes Model (PRISM) observations [Daly et al., 2008] for 1981 to 2005. This dataset is available 

at 4 km horizontal grid spacing over the continental US. 

4.2.1.2 Simulation 

Simulated daily precipitation is obtained from a dynamically downscaled and bias corrected 

ensemble of climate simulations at 4 km. The dynamical downscaled data is taken from Ashfaq et 

al. (2016), which uses a regional climate model RegCM4 to downscale 11 general circulation 

models (GCMs) from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) at 18 km 

horizontal grid spacing over a domain that cover continental US and the parts of Mexico and 

Canada. The bias correction of daily precipitation from RegCM4 ensemble is based on the 

methodology described in Ashfaq et al. [2010, 2013], which uses quantile mapping to adjust the 

magnitudes of simulated quantiles with respect to observation while conserving the auto-

correlation of the simulated time series. Bias correction is applied on the monthly data and 

correction factors are disaggregated to the daily values. For the bias correction of precipitation 
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from RegCM4 ensemble members, we use monthly PRISM observations. Each bias corrected 

ensemble member covers 1966 to 2005 in the historical period and 2011 to 2050 in the future 

period under Representative Concentration Pathway 8.5 (RCP 8.5). 

4.2.2 Methodology 

4.2.2.1 Precipitation Events 

We classify precipitation events based on their intensity (I) and spatial extent (S). In the case of 

intensity, on each day, only those grid points are considered in analysis where daily precipitation 

is at least 0.5 inch (12.5mm). Further, We divide events in two categories: 1) moderate to heavy 

event (Total number of events; Ti): when each grid receives at least 0.5 inch (12.5 mm) of daily 

precipitation on a given day, and 2) heavy event (Hi): when each grid receives at least 1 inch (25 

mm) of daily precipitation on a given day. It should be noted that Hi events are a subset of Ti 

events. Our use of 0.5 inch and 1.0 inch as thresholds for the two categories is based on the fact 

that for 90% of the US, 65 percent of precipitation is less than 0.5 inch whereas 85 percent of 

precipitation is less than 1.0 inch (Figure 4.1).  

We further divide Ti and Hi events in two categories in terms of their spatial extent. All events with 

area between 200 to 400 thousand square kilometers (hereafter TSK) are classified as midsize 

events (Ms), and all events with area >400 TSK are classified as widespread events (Ws). Spatial 

extent of a precipitation event is calculated through the use of continuous labeling technique.  On 

a given day, all grids where daily precipitation is at least 0.5 inch are labelled. For each labelled 

grid, 8 neighboring grid points are examined for values above the threshold. This search is 

continued until the adjacent grids have daily precipitation values below the threshold. The area 

spanning the connected grids is then calculated to find the spatial extent of the event. The process 
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is repeated for all Hi events. All precipitation events that do not meet minimum criteria for intensity 

(0.5 inch) and/or spatial extent (>200 TSK) are not considered in our analyses.  

4.2.2.2 Regional Analysis 

We consider four regions (southeast, northeast, west and Midwest) in the continental US for 

regional analyses (Figure 4.2e). Using the centroid of an event, we attempt to assign one of the 

four regions to each Ti event. Additionally, various characteristics of the precipitation events, 

including mean, maximum, volume and frequency are calculated for each category (of intensity 

and size). Precipitation mean and maximum are calculated by taking mean and maximum of 

precipitation over all the grid point that are part of the daily event. Precipitation volume is 

calculated as the product of mean precipitation of the daily event multiplied with the total area of 

that event.  

4.3 Results 

Observations exhibit an increasing trend in precipitation over most of the upper and lower Midwest 

and eastern half of US with an increase up to 15 mm per year during 1981 to 2016 period (Figure 

4.2a).  On the other hand, most of the western US with some exceptions in parts of the Pacific 

Northwest, exhibit a decreasing trend in precipitation over the same period. It is important to note 

that the regions that have been experiencing an increase have such a precipitation change  

dominated by an increase in precipitation from those daily-scale events that receive at least 0.5 

inch (12.5 mm) of precipitation (Figure 4.2b). The positive change in precipitation is also driven 

by an increase in contribution from events that not only exhibit magnitudes greater than 12.5 mm 

but also a spatial extent of at least 200 thousand square kilometers (Figure 4.2c).  This consistency 

in precipitation increases and increase in the contribution from widespread medium to heavy 

intensity events suggests that climatic variations may be causing not only an intensification of 
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precipitation events but also an increase in the spatial extent of those events.  It should be noted 

that these precipitation trends have visibly intensified over last decade as observations show 

similar but less widespread trends in precipitation for 1981 to 2005 period. We use 1981 to 2005 

period to compare trends in the RCM ensemble simulations and observations given that RCM 

simulations for the historical period only go up to 2005. Interestingly, majority of the RCM 

ensemble members exhibit changes similar in sign to those in PRISM observations (agreement is 

shown by stippling) (Figure 4.3). It should be noted that a number of regions in PRISM 

observations, especially parts of upper and lower Midwest, exhibit a reversal of precipitation trend 

from negative to positive during last decade, which provides an indication that coming decades 

may see a further intensification of precipitation increase across the US, driven by more intense 

and widespread precipitation extremes. Given that intense and widespread precipitation extremes 

have been responsible for several multi-billion dollar disasters across US, it is imperative to 

investigate changes in such precipitation characteristics in response to higher levels of radiative 

forcing that are expected in coming decades.  

4.3.1 Historical Characteristics of Precipitation  

Historically, US receives up to 200 annual wet days ( > 1mm)  (Figure 4.4a,b) contributing to over 

1500 mm of precipitation (Figure 4.5a,b) during the historical period. These precipitation events 

exhibit strong regional characteristics across the US The total annual wet days range from less than 

20 days in parts of southern California, Arizona and Nevada to up to 150 days in south eastern and 

up to 200 days in the north western US (Figure 4.4a,b) contributing less than 100 mm over 

southwestern US to over 1500 mm annual precipitation in the north west and south east (Figure 

4.5a,b) respectively. Both the observations and the simulations (RegCM4 ensemble mean; RCM) 

show southeastern and western US as the hot spots for Ti events receiving around 50% of wet days 
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in this category (Figure 4.4 c,d). Approximately half of the Ti events fall in the Hi category (Figure 

4.6b,d) corresponding to up to 20 -25% of total wet days in the southeast and the west (Figure 4.4 

e,f). Moreover, Ti events contribute to up to 80% while Hi events contribute to up to 60% of total 

precipitation  in the two regions (Figure 4.5c-f). Similarly, parts of the upper and lower Midwest 

experience up to 30 days of Ti events with up to half of them falling in the Hi category (Figure 

4.6a-d). In these regions, Ti events correspond to up to 40% of wet days and contribute to up to 

80% of total precipitation whereas Hi events correspond to up to 15% of wet days and contribute 

to up to 45% of total precipitation (Figures 4.4 and 4.5). Seasonally, while both Ti and Hi events 

are well distributed across the four seasons over the southeast, those are more seasonal in the west 

(winter to spring) and in the Midwest (spring to summer) (Figures 4.7, 4.8), given the high 

seasonality of precipitation over these regions [Ashfaq et al 2016]. It should be noted that simulated 

data is not corrected directly at daily scale (see Methods), still, it exhibits remarkable skill in the 

simulation of the spatial and temporal characteristics of precipitation events (Figures 4.4-4.6). 

Characteristic of precipitation events in terms of their sizes also vary at regional scale. For instance, 

majority (up to 20 days) of Ti events in the southeast fall in the Ws category (i.e. >400 TSK) while 

none of the events in the west fall in this category (Figure 4.7). Conversely, frequency of Hi events 

is stronger for Ms (up to 6 days) than for the Ws (up to 4 days) over the southeast (Figure 4.8). Over 

northeast and Midwest, at least half of Ti events occur at Ms or Ws scale whereas fewer Hi events 

have Ms or Ws scale. Temporally, Ws events over the southeast mostly occur during winter, spring 

and fall while Ms events are more distributed across all seasons. (Figures 4.7, 4.8).Over northeast 

and Midwest, both Ms and Ws events are predominant during fall and spring. 

More than one third (>33%) of the Ti precipitation over the continental US comes in the form of 

Ws events. Regionally, the largest contribution from Ws events comes over southeast (>50%) 



 52 

followed by that over Midwest and northeast where they contribute approximately 32 % and 21.5 

% respectively. In contrast, Ms events contribute up to 20% to the annual Ti precipitation over the 

continental US with regional contribution varying from approximately 25% over northeast, west 

and Midwest to < 20% over southeast. If only Hi events are considered then Ms events contribute 

more than Ws events both at regional and at continental scale (Figure 4.6f).  

At seasonal scale, precipitation contribution from Ws events to Ti is higher during winter, fall and 

spring seasons as compared to summer whereas precipitation contribution from Ms events to Ti is 

relatively more uniform across seasons over southeast and northeast where precipitation does not 

exhibit much seasonality (Figure 4.9). For Hi events precipitation contribution is dominated during 

winter, fall and spring irrespective of the spatial scales over the southeast. It should be noted that 

these characteristics of precipitation events are simulated in the RCM with reasonable accuracy.  

4.3.2 Future Changes in the Characteristics of Precipitation  

Increase in the radiative forcing will result in a robust increase in the frequency of Hi  events both 

at Ms and Ws scale in the future period (Figure 4.10). With the exception of the parts of southeast, 

northeast and Pacific Northwest, robust increase in the frequency of Ti events is also witnessed 

(Figure 4.10a). The decrease in Ti events over southeast and northeast is partly driven by a decline 

in the occurrence of Ti events at Ms scale events which show small decrease in these regions (Figure 

4.10c). It is important to note that both of these regions exhibit one of the strongest increases in Hi  

events at Ws  and Ms, which implies that despite a decrease in Ti events these regions are also 

experiencing a shift towards heavier and widespread events (Figure 4.10d,f). Seasonally, strongest 

decline in the occurrence of the Ms  events is exhibited during fall season for the Hi events and 

during fall and winter for Ti events over parts of southeast, northeast and Midwest. Both  Ti and Hi  
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events at Ws  scale are projected to increase during winter and spring whereas a decline is projected 

for Ti  at Ws  scale during fall. (Figures 4.11, 4.12).  

In addition to the changes in the frequency of precipitation events of various intensities and sizes, 

there is also a change in the relative contribution from these events to the annual precipitation. 

With the exception of the northeast, Ws events are projected to contribute more to both Ti and Hi 

precipitation. However, there are regional variations in the characteristics of these contributions. 

For instance, over the southeast, increase in the contribution from Ws events is at the cost of 

contribution from Ms events that exhibits a decrease. On the other side, west exhibits increase in 

the contribution to Hi precipitation regardless of their spatial extent. Similarly, changes in the 

relative contribution from various categories of precipitation events is opposite in the  northeast as 

it exhibits a decrease in contribution from Ws events (Figure 4.13a). At seasonal scale, fall (winter) 

exhibits the largest number of declines (increases) in the contribution for different events 

categories and regions (Figure 4.9). More importantly, we note that increases in the contribution 

from Ms and Ws events is not distributed uniformly across the years in the future period. When 

contribution from different categories of precipitation events is ranked across the years and a 

change is calculated at different quantile levels, we note that increase in the contribution from Ms 

and Ws events to both Hi and Ti precipitation is more concentrated in the higher quantiles than in 

lower quantile (Figure 4.13b-c). This suggests that more years are likely to witness higher 

frequency of larger spatial scale events in the future period.  

We summarize changes in various characteristics of precipitation events, including frequency, 

mean and maximum of magnitude, volume, and mean and maximum of spatial extent using heat 

maps. In general, precipitation events volume and frequencies are projected to increase for both 

Ms and Ws events regardless of their intensities. It is interesting to note that when examined across 
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the regions and precipitation events, mean precipitation (ranging from -1.5 to  5.5%)  and mean 

area (ranging from 0 to 10%) of an event exhibit relatively smaller changes compared to the 

respective changes in the maximum (ranging from -7 to 19% and -2 to 14.5%). We also note that 

changes are relatively stronger for Ws events. For instance,  changes in precipitation volume in the 

case of  Ws scale Ti events range between 20% to 35% compared to those from Ms scale Ti events 

that range from 5%, to 23 %. Likewise, change in the frequency of Ws events ranges between 17% 

to 25% from northeast to southeast compared to change in the frequency of Ms events that ranges 

between 2% to 22% from southeast to Midwest (Figure 4.13). Overall these results show a shift of 

precipitation events towards higher intensity and larger scale. 

4.4 Summary and Discussion  

Overall, RCMmean exhibit exceptional skills in simulating spatial precipitation characteristics over 

the conterminous US. By 2050, a shift towards heavy and widespread events is projected across 

the US. While a decrease in the frequency of medium to heavy events is projected over the parts 

of southeast, northeast and Pacific Northwest, this decline is only partly driven by decrease in 

midsize and/or midscale events implying a decrease in smaller scale events since frequency of 

widespread events is increasing over these regions. This decline is predominant in the summer 

season over northeast and southeast which is dominated by small scale convective storms. Further, 

a stronger increase is projected in maximum precipitation and extent as compared to their 

respective means and the increase in precipitation characteristics such as volume, mean and 

maximum areal extent show stronger increase for widespread scale as compare to midscale events. 

The projected increase in the frequency and intensity of heavy precipitation events is in accordance 

with the past studies that have established a rise in the number of destructing weather storms and 

their precipitation intensities [Balling and Goodrich, 2011] [NOAA NCEI 2013].However, the 
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projected rise in frequency of midscale and widespread scale events and their associated areal 

extent is contradictory to previous studies that find likely shrinking of precipitation storms  

[Benestad, 2018; Hamada et al., 2014] resulting in less severe flood impact than expected with 

increase precipitation intensity under climate change [Chang et al., 2016]. The differences in 

results can be partly attributed to the difference in methodology and threshold used in this study. 

Nevertheless, these results provide a different perspective and highlights that while we are likely 

to witness a rise in frequency of heavy precipitation events, their spatial extent is likely to increase 

as well.  

These heavy and widespread precipitation events cause extensive devastation resulting in 

tremendous damages to property and claiming numerous lives [NOAA NCEI 2013]. Any increase 

in the frequency, intensity and spatial extent of such precipitation events will result in extensive 

societal and economic damages resulting from flooding, wind damage, electric grid failure 

resulting in widespread loss of power etc. Therefore, accurate estimation of spatial characteristics 

of precipitation extremes is crucial and have important implications for future emergency planning 

for damage control and restoration. 
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Chapter 5   

Effects of Climate Change on Probable Maximum Precipitation: A Sensitivity Study over the 

Alabama-Coosa-Tallapoosa River Basin 



 58 

 A version of this manuscript were originally published by Deeksha Rastogi, Shih-Chieh 

Kao, Moetasim Ashfaq, Rui Mei, Erik D. Kabela, Sudershan Gangrade, Bibi S. Naz, Benjamin L. 

Preston, Nagendra Singh, and Valentine G. Anantharaj in Journal of Geophysical Research-

Atmospheres 

 Rastogi, D., S.-C. Kao, M. Ashfaq, R. Mei, E.D. Kabela, S. Gangrade, B. S. Naz, B. L. 

Preston, N. Singh, and V.G. Anantharaj (2017), Effects of climate change on probable maximum 

precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin. Journal of 

Geophysical Research: Atmospheres, 122(9), 4808-4828, doi: /10.1002/2016JD026001. 

  



 59 

Abstract 

Probable maximum precipitation (PMP), defined as the largest rainfall depth that could physically 

occur under a series of adverse atmospheric conditions, has been an important design criterion for 

critical infrastructures such as dams and nuclear power plants. To understand how PMP may 

respond to projected future climate forcings, we used a physics-based numerical weather 

simulation model to estimate PMP across various durations and areas over the Alabama-Coosa-

Tallapoosa (ACT) river basin in the southeastern United States. Six sets of Weather Research and 

Forecasting (WRF) model experiments driven by both reanalysis and global climate model 

projections, with a total of 120 storms, were conducted. The depth-area-duration relationship was 

derived for each set of WRF simulations and compared with the conventional PMP estimates. Our 

results showed that PMP driven by projected future climate forcings is higher than 1981–2010 

baseline values by around 20% in the 2021–2050 near-future and 44% in the 2071–2100 far-future 

periods. The additional sensitivity simulations of background air temperature warming also 

showed an enhancement of PMP, suggesting that atmospheric warming could be one important 

factor controlling the increase in PMP. In light of the projected increase in precipitation extremes 

under a warming environment, the reasonableness and role of PMP deserves more in-depth 

examination. 
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5.1 Introduction 

Probable maximum precipitation (PMP) is defined as “the greatest depth of precipitation for 

a given duration meteorologically possible for a design watershed or a given storm area at a 

particular location at a particular time of year” [World Meteorological Organization, 2009], and 

it represents the largest rainfall that could physically occur under a series of adverse atmospheric 

conditions [Casas et al., 2008 and 2011; Douglas and Barros, 2003; Schreiner and Riedel, 1978; 

Fernando and Wickramasuriya, 2011]. Distinguished from the statistically based T-year extreme 

rainfall estimate that associates depth with annual exceedance probability (AEP = 1/T; see Kao 

and Ganguly, 2011), PMP is the deterministic upper bound of extreme storms. By definition, PMP 

is greater than all T-year rainfalls and can theoretically be considered as the approximated value 

when T approaches infinity (or AEP approaches 0). The National Research Council [1994] 

estimates that the return periods of PMP in the United States (hereafter US) are in the range of 105 

to 109 years. As the upper bound of extreme storms, PMP and the resulting probable maximum 

flood (PMF) are hence used as the strictest design/evaluation standard for highly important energy-

water infrastructures that cannot tolerate any failure, such as dams and nuclear power plants 

[Prasad et al., 2011]. Many important facilities such as large schools, hospitals, and waste 

treatment plants are also purposely located outside of the PMF flood plain [Biringer et al., 2013; 

Hossain et al., 2015]. Failure of such critical infrastructure can have serious consequences. For 

instance, heavy rains in February 2017 caused the failure of Twenty Mile Dam in Nevada, which 

resulted in flooding and damage to property in the downstream region [Griggs et al., 2017]. 

Although various methods have been developed for estimating PMP [World Meteorological 

Organization, 2009; Hershfield, 1961; Schreiner and Riedel, 1978; Hansen, 1987; Rakhecha and 

Singh, 2009], how to reasonably and objectively estimate PMP remains a challenging task. Clearly, 
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since PMP is located at the far end of an extreme rainfall distribution, statistically based methods 

[e.g., Hershfield, 1961 and 1965] are limited because of insufficient historic observations (i.e., 

how can one estimate extreme rainfall with a return period of thousands of years based on decades 

of data?). Another popular approach is the storm moisture maximization, transposition, and 

envelopment method that has been used in a series of National Weather Service (NWS) 

hydrometeorological reports e.g., HMR51 by Schreiner and Riedel, [1978]. For a location of 

interest, this method starts by collecting all historic storms that have occurred in the same region 

or in regions with similar meteorological settings that allow storm transposition. Based on the 

hydrostatic and pseudo-adiabatic assumption, a representative surface dew point value (or a sea 

surface temperature [SST] value if the selected moisture source is on the ocean) is selected as a 

surrogate to estimate the theoretical precipitable water (PWControl) for each storm. A ratio between 

observed and climatologically maximum air moisture (PWPMP) is then estimated to convert all 

observed rainfall depths into “moisture maximized” depths to identify the maximum value as PMP. 

Although this approach is perhaps the most widely used PMP method to date, there are concerns 

and criticisms regarding the validity of this deterministic approach [Papalexiou and 

Koutsoyiannis, 2006], as well as the large and unsettled uncertainty of PMP estimates [Micovic et 

al., 2015]. Abbs [1999] showed that the relation between precipitable water and dew point 

temperature on the surface is nonlinear. Chen and Bradley [2006 and 2007] pointed out that the 

12-hour persisting dew point used to calculate maximum precipitable water is not uniquely defined 

and can be affected by subjective judgment. Above all, it should be noted that this conventional 

approach is data-driven, and it is challenging to verify whether one has collected a sufficient 

number of historic storms to confidently derive PMP. 
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Another important issue is the effects of climate change on PMP. While a warming atmosphere 

will lead to intensification of T-year rainfall extremes [Kao and Ganguly, 2011], whether the 

deterministic storm upper bound will increase correspondingly is yet to be confirmed. Currently, 

the World Meteorological Organization (WMO, 2009) specifically defines PMP “under modern 

meteorological conditions” and “with no allowance made for long-term climatic trends.” 

Nevertheless, in the Chapter 1.8, “PMP and Climate Change,” WMO [2009] indicated that extreme 

rainfall events would likely increase in the 21st century (owing to the overall increase in available 

moisture in a warming climate) and highlighted the need for carefully examination of potential 

climate change effects on major PMP driving mechanisms such as moisture availability, depth-

area curves, storm types, storm efficiency, and generalized rainfall depths. 

Recent studies have suggested PMP is likely to increase under a warming environment [Kunkel et 

al., 2013; Beauchamp et al., 2013; Rousseau et al., 2014; Stratz and Hossain, 2014; Klein et al., 

2016]. Using outputs from multiple Coupled Model Intercomparison Project phase-5 (CMIP5) 

global climate models (GCMs) with spatial resolution generally greater than 150 km, Kunkel et al. 

[2013] showed that the maximum precipitable water is projected to increase across various GCMs 

and inferred that PMP is likely to increase correspondingly. This is consistent with Robinson’s 

[2000] finding that the observed hourly dew point (from 178 stations in the conterminous US) 

increased by approximately 1°/100 year during 1951–1990. Beauchamp et al. (2013), Rousseau et 

al. [2014], and Rouhani and Leconte [2016] analyzed the downscaled climate projections at 45-

km spatial resolution produced by the Canadian Regional Climate Model (CRCM; Music and 

Caya, 2007) for the estimation of PMP over watersheds in Quebec. They all followed the same 

conventional moisture maximization and adjustment approach (used in the NWS 

hydrometeorological reports) but used more enriched CRCM outputs (e.g., simulated total 
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precipitable water, atmospheric air temperature, and convective available potential energy 

[CAPE]) to improve the estimation of PWControl, PWPMP, and the maximization factor (PWPMP / 

PWControl). Given the projected increase in future precipitable water, they also suggested a likely 

increase in PMP. Although further exploration is needed for various types of 

geographical/meteorological locations at refined spatial resolution, an increase in PMP is highly 

plausible. Considering the importance of infrastructures designed according to PMP, it is therefore 

imperative to better understand the effects of climate change on this critical and sensitive design 

parameter. 

The advance of computational power in the recent decade has enabled the enhancement of PMP 

evaluation using numerical weather forecasting models. Using the European Centre for Medium-

Range Weather Forecasts reanalysis (ECMWF) [Gibson et al., 1997] as the boundary forcing, 

Abbs [1999] applied the Colorado State University Regional Atmospheric Modeling System 

(RAMS) [Pielke et al., 1992] at 7-km spatial resolution to simulate an extreme storm event in 

Australia to examine multiple assumptions used in conventional PMP analysis. Driven by the 

National Center for Environmental Prediction/National Center for Atmospheric Research 

Reanalysis I (NCEP/NCAR R1) [Kalnay et al., 1996], Ohara et al. [2011] and Ishida et al. [2015] 

developed a relative humidity moisture maximization method (RHM) and used the fifth-generation 

mesoscale model (MM5) [Grell et al., 1994] to simulate PMP for the American River Watershed 

in California. The atmospheric boundary condition shifting method (ABCS) [Ishida et al., 2014] 

were subsequently developed to estimate PMP for other watersheds in California. Tan [2010] and 

Chen and Hossain [2016] utilized multiple reanalysis data sets and the Weather Research and 

Forecasting model (WRF) [Skamarock et al., 2008] to reconstruct major historic storms to estimate 

PMP. To test how land use/land cover (LULC) change may influence extreme precipitation, 
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Woldemichael et al. [2012] and [2014] also conducted numerical weather simulations using RAMS 

under various LULC scenarios. Despite the high modeling uncertainty of rainfall depth, these 

numerical weather prediction models can provide a theoretically sound framework for a process-

based understanding of climate change effects on extreme rainfall and PMP. 

To understand the effects of climate change on PMP, in this study we developed PMP estimates 

using a numerical weather forecasting model and evaluated the sensitivity of PMP estimates to 

projected future climate conditions over the Alabama-Coosa-Tallapoosa (ACT) river basin in the 

southeastern US. The WRF model, driven by both reanalysis and GCM projections, was used to 

downscale and simulate a total of 120 extreme storms at 3-km horizontal grid spacing. The RHM 

method [Ohara et al., 2011; Ishida et al., 2015] was then used to simulate moisture-maximized 

storms and derive PMP across various durations and areas. The changes in the PMP depth-area-

duration (DAD) relationship were also quantified and discussed. Our main objectives are to test 

whether PMPs will increase in the future (through two different modeling strategies, one using 

GCM-based climate change simulations as the boundary forcing and the other increasing the 

background air temperature in the reanalysis-driven control historic simulations directly) and to 

examine whether the changes in total precipitable water are consistent with the changes in PMP 

depth. This paper is structured as follows: Section 2 introduces the overall method, data, and study 

area; Section 3 illustrates and describes results; and Section 4 presents discussion and the 

conclusion of this study. 

5.2 Methods 

5.2.1 Study Area 

The study area covers the ACT river basin, which spans across the northeastern and eastern-central 

regions of Alabama, northwestern Georgia, and parts of Tennessee, including the Coosa, 
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Tallapoosa, and Alabama rivers and their tributaries. The upper Coosa River Basin lies in Georgia 

and overlaps with the Atlanta metropolitan area. The total ACT drainage area is around 59,050 

km2 (22,800 mi2). The topography is relatively flat, with an average elevation of around 197 m 

(646 ft, calculated from National Elevation Dataset) [Gesch et al., 2002]. Precipitation occurs in 

all seasons, and the total annual precipitation is around 1,364 mm (53.7 inch). Major winter storms 

are large-scale frontal systems formed when warm, moist air masses from the Gulf of Mexico meet 

with cold, drier air masses from the north [US Army Corps of Engineers, 2013]. The storms that 

occur in summer or early fall are usually regional-scale convective systems with high rainfall 

intensities over smaller areas. Occasionally, tropical storms or hurricanes also bring significant 

amounts of precipitation during summer and fall. There are more than 16 large dams in the ACT, 

mainly owned and operated by the US Army Corps of Engineers or the Alabama Power Company. 

5.2.2 Data and Storm Selection 

To identify and select major historic extreme storms in the ACT river basin, two widely used 

gridded precipitation data sets were used: (1) the 4-km spatial resolution Oregon State University 

PRISM [Daly et al., 2008] and (2) the 1-km spatial resolution Oak Ridge National Laboratory 

(ORNL) Daymet [Thornton et al., 1997]. Based on comprehensive rain gauge observations across 

the conterminous US (e.g., NWS Cooperative Observer Network and others), both products used 

various gridding and orographic correction methodologies to form refined daily rainfall fields for 

various research needs. Given the consideration of orographic effects, both products should be 

able to provide more reliable spatial rainfall distributions than the conventionally used Thiessen 

polygon approach [Thiessen, 1911]. Another useful data source is NCEP Stage IV precipitation 

[Lin, 2011] that assimilates both radar and gauge observations (e.g., used by Gagnon et al. [2012] 

to estimate the parameters of a rainfall spatial disaggregation model). While we did not use NCEP 
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Stage IV in this study, mainly because the data are available only since 2002, we note that PRISM 

has also incorporated radar measurements in its daily precipitation estimates since 2002. 

For both data sets, complete daily precipitation data from 1981–2011 were collected. Focusing on 

the study domain from 30.5°N to 35.5°N and from 84.5°W to 88.5°W, the 3-day (72-hour) 

precipitation total was calculated to identify the largest 30 storms (Table 5.1) with the highest 

rainfall depth during 1981–2011 for WRF control simulation and model verification. 

5.2.3 Numerical Weather Simulation 

We used WRF version 3.6 [Skamarock et al., 2008] to simulate extreme storms for the ACT river 

basin. The WRF model, a successor of MM5, is a mesoscale numerical weather simulation model 

designed for both atmospheric research and operational forecasting. In addition, WRF has been 

widely used to dynamically downscale coarser-resolution GCM signals into finer-resolution 

climate projections that can better represent fine-scale meteorological processes such as 

precipitation extremes [Caldwell et al., 2009; Lo et al., 2008; Rasmussen et al., 2014; Yoo et al., 

2016]. In this study, we used a two-way nested WRF domain at 9-km and 3-km horizontal spacing, 

with 110 by 122 and 184 by 220 grids in each domain, respectively (Figure 5.1) and 45 vertical 

levels to conduct the simulation. All precipitation and moisture analyses were conducted on a study 

domain (from 30.5°N to 35.5°N and from 84.5°W to 88.5°W) that is slightly smaller than the WRF 

inner simulation domain but covers the entire ACT river basin. 

To reconstruct the historic storms listed in Table 5.1, the Climate Forecast System Reanalysis I 

(CFSR) [Saha et al., 2010] was used as the boundary forcing to drive WRF. CFSR is a coupled 

atmosphere-ocean–land surface–sea ice system with high horizontal (38 km) as well as vertical 

spacing (64 pressure levels). The presence of both ocean and sea ice makes CFSR more 

comprehensive and accurate than earlier NCEP global reanalysis products [Saha et al., 2010]. The 
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CFSR was chosen over the North American Regional Reanalysis (NARR) [Mesinger et al., 2006] 

because (1) the 2009 version of the Noah land-surface model is used in the CFSR versus the 2003 

version in the NARR; and (2) Mo et al. [2011] found NARR did not partition evapotranspiration 

and runoff well, leading to very high values of evapotranspiration and low values of runoff across 

the entire US. Although biases exist in the CFSR, they are mainly contained in the western US and 

Great Plains [Mo et al., 2011]. 

For each storm, a 5-day simulation was conducted that started 1 day before and ended 1 day after 

the identified 3-day period. To determine a most appropriate cumulus parameterization and cloud 

microphysics scheme for the selected storms in the ACT river basin, we tested six different 

combinations of parameterization schemes by changing cumulus and microphysics 

parameterizations (Table 5.2) [Grell and Dévényi, 2002; Hong et al., 2004; Kain and Fritsch 1990, 

1993; Kain, 2004; Lin et al., 1983; Thompson et al., 2004] for each historic storm. The 

parameterization scheme that yielded the best model performance in the study area (discussed in 

Section 3.2) was then used for further climate downscaling and PMP simulation. In addition to the 

control simulation, we tested the sensitivity of PMP to background temperature adding 1°C and 

2°C on the control simulation. 

To explore how PMP may change in projected future climate conditions, we used the 

Community Climate System Model version 4 (CCSM4) [Gent et al., 2011] r6i1p1 ensemble 

member under the RCP8.5 emission scenario from the CMIP5 archive as the boundary forcing to 

drive WRF. Following the same storm selection procedures described in Section 2.2, we calculated 

the 3-day (72-hour) precipitation total over the study area and selected extreme storms from the 

baseline (BL: 1981–2010), near-future (F1: 2021–2050), and far-future (F2: 2071–2100) periods.  
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The selected CCSM4 storms and their maximum 72-hour domain average precipitation within a 

5-day simulation period are reported in Table 5.3. 

Overall, six sets of WRF experiments with a total of 120 storms were set up for this study: 

(1) CFSR-WRF-CT: Control simulation that includes 30 storms driven by 1981–2011 CFSR 

reanalysis 

(2) CFSR-WRF-T1: CFSR-WRF-CT with 1°C increase in air temperature 

(3) CFSR-WRF-T2: CFSR-WRF-CT with 2°C increase in air temperature 

(4) CCSM4-WRF-BL: Baseline simulation that includes 30 storms driven by both 1981–2005 

in historical period and 2006–2010 in future period under RCP8.5 scenario of CCSM4 

experiments 

(5) CCSM4-WRF-F1: Near-future simulation that includes 30 storms driven by 2021–2050 

CCSM4 projection under RCP8.5 scenario 

(6) CCSM4-WRF-F2: Far-future simulation that includes 30 storms driven by 2071–2100 

CCSM4 projection under RCP 8.5 scenario 

We selected RCP8.5 because it is closest to the observed emissions during 2006–2010 [Peters et 

al., 2013] and because we wanted to test how the 2071–2100 far-future PMP may change in the 

highest emission concentration pathway in CMIP5. The numerical simulations were conducted on 

the Titan supercomputer maintained by the Oak Ridge Leadership Computing Facility at ORNL, 

used more than 3 million computational hours, and generated over 10 terabytes of hourly WRF 

output to support further analysis and applications. 
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5.2.4 PMP Simulation and Analysis 

To simulate PMP, the RHM method [Ohara et al., 2011; Ishida et al., 2015] was used. For each 

storm, the moisture of boundary forcing was maximized by modifying the relative humidity in the 

boundary conditions to 100% (i.e., fully saturated), which raised the atmospheric moisture to its 

theoretical maximum levels (governed by air temperature, pressure, and other meteorologic 

variables). A 5-day WRF simulation was then repeated for each extreme storm with maximized 

moisture to simulate PMP. Although not directly comparable to the conventional HMR approach 

[Schreiner and Riedel, 1978], the concept of moisture maximization is somewhat similar. For each 

storm within the HMR, the total precipitable water was estimated by an observed surface dew 

point (or SST). At the same location where (and the same timing when) the dew point was selected, 

the historic maximum dew point was looked up to calculate the climatically maximum total 

precipitable water. However, the biggest difference is that the HMR used the ratio between original 

and maximized total precipitable water (PWPMP / PWControl) to linearly re-scale the observed rainfall 

depth (DepthControl) to form the PMP (DepthPMP), whereas RHM simulated PMP using a numerical 

weather forecasting model directly. 

We selected RHM in this study given that the total precipitable water is known to be the most 

important variable controlling PMP (especially for the long-duration rainfall depth). However, 

there are other factors affecting PMP that may not be satisfied by RHM. For instance, we noticed 

that CAPE does not always increase in PMP simulations when RHM is used, suggesting that there 

could be further room to maximize convective rainfall depth through modification of temperature, 

wind, and other meteorological variables that may positively influence CAPE. Such inconsistency 

in CAPE response also suggests the need to explore further meteorologically justifiable adjustment 

strategies to simulate PMP. The recent work by Rouhani and Leconte [2016] explored using CAPE 
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as a filtering criterion to select more defensible annual maximum precipitable water values to 

estimate 100-year return period precipitable water as PWPMP. Another example is the ABCS 

method [Ishida et al., 2014] that was designed for regions where extreme precipitation is 

associated with sustained moisture inflow through atmospheric rivers (e.g., western US). Overall, 

given that the RHM method does not require the subjective judgment of a surface representative 

dew point location and value (for comparison with the conventional HMR method), it can be 

methodologically more objective. We conducted PMP simulations for all of the 120 storms 

reported in Section 2.3. 

To evaluate the simulated PMP, we summarized the DAD relationship of each storm. Within the 

study domain and for the entire 5-day period, we used elliptic moving windows with different 

combinations of eccentricity and orientation (i.e., to mimic the shapes of synthetic storms 

generated by HMR52; Hansen et al., 1982) to thoroughly search the maximum precipitation under 

6-, 12-, 24-, 48-, and 72-hour storm durations and 25.9-, 518-, 2,590-, 12,900-, 25,900-, and 

51,800-km2 (10-, 200-, 1,000-, 5,000-, 10,000-, and 20,000-mi2) storm areas. The use of elliptic 

spatio-temporal moving windows allowed us to examine the simulated precipitation extremes 

across various storm durations, areas and orientations, not limited to a particular temporal and 

spatial scale. By identifying the maximum simulated value across all combinations of durations 

and areas, we constructed the DAD of the PMP. We computed the PMP DADs separately for 

CFSR-WRF-CT, CFSR-WRF-T1, CFSR-WRF-T2, CCSM4-WRF-BL, CCSM4-WRF-F1, and 

CCSM4-WRF-F2. The conventional HMR51 PMP values at the same durations and areas from 

Schreiner and Riedel [1978] for the ACT river basin (33°N, 86°E) were also looked up for 

comparison. 
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5.3 Results 

5.3.1 Representativeness of the Selected GCM Projection 

Given that only one climate simulation was used in this study, we started by evaluating the 

representativeness of the selected GCM (CCSM4-r6i1p1) simulation within the CMIP5 ensemble. 

Focusing on annual precipitation and temperature averaged across the entire outer WRF domain 

(Figure 5.1), a scatter plot (Figure 5.2) was prepared for a total of 70 CMIP5 simulations (from 30 

GCMs) for three time periods, including a 1981–2010 baseline (1981–2005 from historical and 

2006–2010 from RCP8.5 scenario for future simulations) and two future periods, 2021–2050 and 

2071–2100, under the RCP8.5 scenario. Dashed lines denote the ensemble median of 70 CMIP5 

simulations, and blue squares indicate the selected CCSM4-r6i1p1. 

In terms of the multi-model median, the annual temperature was projected to increase by ~1°C 

from the baseline to the near future, and by ~4°C from the baseline to the far future. The change 

in mean annual precipitation was less obvious, around a 2.7% increase from the baseline to the 

near future and a 3.6% increase from the baseline to the far future. Nevertheless, note that the 

change in precipitation extremes could be more significant than the mean annual precipitation, 

which has been suggested by multiple studies [Kharin et al., 2013; O’Gorman, 2015]. In all three 

periods, CCSM4-r6i1p1 lay very close to the median lines for both annual precipitation and 

temperature, suggesting that the selected model should not provide overly wet/dry or hot/cold 

projections compared with other CMIP5 members. 

We further compared the synoptic features of CCSM4-r6i1p1 air temperature, specific humidity, 

and wind (i.e., three main boundary forcing variables for WRF simulation) with both the CFSR 

and the CMIP5 multi-model mean in Figures 5.3 and 5.4. For winter months (Figure 5.3—

December, January, and February) and summer months (Figure 5.4—June, July, and August), the 
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1981–2005 average zonal temperature (°C) and specific humidity (kg/kg) were illustrated at 

various pressure levels. In addition, the 500-mb wind direction and magnitude were illustrated for 

the entire US. As a result of the available data at the time of analyses, 46 GCMs were used for air 

temperature, 37 GCMs were used for specific humidity and 31 GCMs were used for winds from 

CMIP5 archives. During winter, CFSR is generally warmer, wetter, and has stronger jetstream 

over the study area compared with CCSM4. During summer, CCSM4 near-surface humidity in the 

southern domain is higher than in CFSR, but magnitudes are more comparable in the case of 

temperature and winds. Overall, the synoptic features of CCSM4 are very close to those of the 

CMIP5 multi-model mean, and also remain largely similar to CFSR. 

The skillfulness of CCSM4 over the US has also been reported in earlier studies. For the 

southeastern US, Rupp [2016] recently conducted a thorough model evaluation of 41 CMIP5 

GCMs using multiple observational datasets and 42 diagnostic metrics, including mean/seasonal 

temperature and precipitation, strength of El Niño Southern Oscillation (ENSO) teleconnection, 

and other metrics. In his evaluation, CCSM4 is among the most highly ranked models. In addition, 

Liu et al. [2013] investigated the Atlantic warm pool (AWP) variability in the historical run of 19 

CMIP5 GCMs and concluded that CCSM4 is among the best three CMIP5 models in simulating 

AWP SST variability. Moreover, CCSM4 is also used in Yoo et al. [2016] as the boundary forcings 

in WRF to simulate and study tropical cyclones. Given the relatively better performance of 

CCSM4 within all CMIP5 models, we believe that CCSM4 is a reasonable choice for the purpose 

of this study.  

5.3.2 WRF Tuning and Validation 

For the selected 30 extreme storms during 1981–2011, we tested various parameterization schemes 

(Table 5.2). Given that our focus is on rainfall depth, we computed the simulated 3-day domain 
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average precipitation (mm) for each storm and compared it with both Daymet/PRISM observations 

(Table 5.1). The coefficient of determination (R2) and root mean square error (RMSE) between the 

simulated and observed storms were also calculated. Overall, the results suggested that the P1 

parameter set (Grell-Devenyi cumulus parameterization and Lin et al. [1983] cloud microphysics 

scheme) provided the most similar results to both the Daymet and the PRISM observations with 

the highest R2 (Daymet: 0.725; PRISM: 0.704) and lowest RMSE (Daymet: 19 mm; PRISM: 19 

mm). 

For further insight into the influence of different schemes, the example of an August 24–26, 2008, 

storm is illustrated in Figure 5.5. Rainfall depth seemed to be more sensitive to cumulus 

parameterization than to the cloud microphysics scheme. The rainfall depth simulated by the Grell-

Devenyi ensemble scheme (118–126 mm, panels a–c) was much closer to Daymet (121 mm) and 

PRSIM (117 mm) than the depth simulated by the Kain-Fritsch scheme (164–174 mm, panel d–f). 

The influence of the cloud microphysics scheme seemed to be less obvious; in it, all storms patterns 

remained largely similar (panels a–c) with smaller variation in local storm cells and rainfall depth. 

While the Thompson scheme (panel c) was more representative for the illustrated storm in Figure 

5.5, overall, the Lin et al. (1983) scheme (P1) worked better across all storms (Table 5.1). 

Although one set of parameterization schemes may not be the best for all types of storms under 

different meteorological and climatic conditions, it is important to identify a generally suitable set 

from all of the reanalysis-driven control storms to increase the objectivity of the process. In 

particular, in conducting a GCM-driven WRF simulation, one would be unable to adjust the 

parameterization specifically for each storm (i.e., given the lack of a ground truth such as 

PRISM/Daymet). The evaluation focused on rainfall depth (Table 5.1) could help us identify and 

exclude inappropriate choices that could lead to unreasonable estimates of extreme rainfall and 
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PMP. Given the overall better performance of P1, we hence used it for all CCSM4-WRF PMP 

simulations. 

5.3.3 PMP during Historic Period 

The maximum rainfall depth under various durations and areas for each set of simulated storms 

was summarized; PMPs of different durations are illustrated in Figure 5.6, and PMPs with different 

areas are illustrated in Figure 5.7. For comparison, the conventional HMR51 estimates are also 

included.  

In comparing HMR51 with CFSR-WRF-CT, it can be seen that CFSR-WRF-CT is generally larger 

than HMR51 (Figure 5.6). The most similar results are shown for a 6-hour duration (Figure 5.6a). 

As the duration increased, the simulated PMP started to diverge from HMR51 (Figures 5.6 and 

5.7). For example, at 25.9 km2 (10 mi2) and 6 hours, the PMP for HMR51 and CFSR-WRF-CT 

was 787 mm and 821 mm, respectively (4% difference, Figure 5.6a and 5.7a). When the duration 

was increased to 72 hours, their values became 1295 mm and 1979 mm, respectively (53% 

difference, Figure 5.6e and 5.7a). At 518,00 km2 (20,000 mi2) and 6 hours, the PMP for HMR51 

and CFSR-WRF-CT was 127 mm and 158 mm, respectively (17% difference, Figure 5.6a and 

5.7a). The values at 72 hours became 483 mm and 908 mm, respectively (88% difference, Figure 

5.6e and 5.7a). Overall, the PMP levels simulated by WRF using CFSR forcing were higher than 

HMR51 in all 30 combinations of durations and areas examined in this study. 

We further evaluated the change in precipitable water versus the change in rainfall depth due to 

the RHM moisture maximization (Figure 5.8). For the 30 CFSR-WRF-CT storms, we calculated 

the 72-hour average precipitable water over the study domain from the original simulations 

(PWControl) and the ones with RHM (PWPMP). Correspondingly, we also calculated the maximum 6- 

and 72-hour and 25.9- and 51,800-km2 (10- and 20,000-mi2) rainfall depths from the original 



 75 

simulation (DepthControl) and the ones using RHM (DepthPMP). The ratios PWPMP / PWControl, 

indicating the change in average precipitable water, and DepthPMP / DepthControl, indicating the 

change in rainfall depth, are illustrated in various scatter plots (Figure 5.8). Conventionally, in 

HMR51, the PWPMP / PWControl ratio is calculated using storm representative and climatology 

maximum dew point values. HMR51 further assumes PWPMP / PWControl = DepthPMP / DepthControl to 

calculate DepthPMP across various durations and areas. 

Overall, with a few exceptions, both precipitable water and rainfall depth increased as a result of 

the influence of RHM. However, these two ratios had a large spread and did not fall near the 1:1 

line. The range of PWPMP / PWControl was from 1.2 to 2, but the range of DepthPMP / DepthControl was 

from 0.7 to 5.5. While conventionally it is assumed that the change in precipitable water will be 

consistent with the change in rainfall depth (because of moisture maximization), such a 

relationship was not presented in these simulations. Again, we found a large difference in the 

scatter patterns between a shorter precipitation duration (DepthPMP / DepthControl average 1.64 and 

1.48 in panels a and c) and a longer duration (DepthPMP / DepthControl average 2.18 and 2.41 in panels 

b and d). This could be one explanation for the difference in the longer-duration HMR51 and 

simulated PMP values in Figures 5.5 and 5.7. In a few cases, particularly for a shorter duration 

(panels a and b) or smaller area (panels a and c), the change in moisture could actually alter the 

original storm structure and lead to a slightly decreased maximum rainfall depth (i.e., DepthPMP / 

DepthControl < 1). 

Another explanation for the larger difference at longer duration can be associated with how the 

storm precipitable water (i.e., PWControl) is estimated in the conventional approach. For each historic 

storm, the air moisture trajectory before the occurrence of a storm was identified (from wind and 

pressure charts) to select weather stations with representative dew point observations to estimate 



 76 

PWControl (see Chen and Bradley [2006 and 2007] for a more in-depth discussion). Conceptually 

speaking, the conventional approach provides a snapshot of the total precipitable water right before 

a storm occurs, but not in or during the development of a storm. Therefore, while the conventional 

approach can be a reasonable approximation for a shorter-duration storm, the method, by design, 

is unable to capture the variation in total precipitable water of a longer-duration storm (because of 

front movement, local moisture recycling, and other meteorological moisture exchange 

mechanisms that occur after a storm starts). The RHM method, on the other hand, is designed to 

maximize the total precipitable water during the entire storm period of a numerical simulation and 

hence can lead to a more significant increase in precipitation over a longer duration. We note that 

Beauchamp et al. [2013] and Rousseau et al. [2014] define PWControl for an event as the maximum 

of all instantaneous precipitable water values simulated over a regional climate model (CRCM) 

tile during and before the start of an event (2 days earlier in Beauchamp et al. [2013] and 18 hours 

earlier in Rousseau et al. [2014]); hence, the concepts are more similar to the conventional 

approach. Although the implications of these differences deserve further exploration and thinking, 

it is our opinion that the simulated PMP should be closer to the spirit of a theoretical PMP (i.e., 

the meteorological upper bound—if exists). 

Despite this difference in longer-duration events, the similarity of the PMP between the 

conventional and simulated estimates at a 6-hour duration is in fact intriguing. Note that the 

methods used in HMR51 and in this study are totally different, so the similarity suggests a possible 

convergence of two approaches. The shorter-duration PMP is particularly important for the 

evaluation of the local intense precipitation-driven flash flooding risk for critical infrastructures 

such as nuclear power plants. 
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5.3.4 Effects of Climate Change on PMP 

In this section, we investigate the effects of climate change on PMP, comparing the DAD 

relationship of the CCSM4-driven simulations for the baseline and future periods. The simulated 

PMP during three time periods (1981–2010, 2021–2050, and 2071–2100) is also illustrated in 

Figures 5.6 and 5.7. 

In comparing CCSM4-WRF-BL with CFSR-WRF-CT, it can be seen that CFSR-driven PMP 

exceeds CCSM4-driven PMP in most durations and areas (3 of 30 cases) during the baseline 

period, suggesting that CCSM4 forcing could potentially lead to an underestimation of PMP (under 

the assumptions that the CCSM4 modeling bias will consistently persist and that CFSR-driven 

PMP is more accurate). In comparing CCSM4-WRF-BL with CCSM4-WRF-F1 and CCSM4-

WRF-F2, it can be seen that, moving further into the future, PMP estimates increase (under the 

RCP8.5 scenario). For instance, at a 6-hour duration and over a 25.9-km2 (10-mi2) area, the 

simulated PMP for the CCSM4 baseline, near-future, and far-future periods was 731 mm, 761 mm, 

and 960 mm, respectively (Figure 5.6). The largest increase during the F1 period was found to be 

39% for a 6-hour duration and over a 12,950-km2 (5,000-mi2) area, and the largest increase during 

the F2 period was found to be 63% at a 12-hour duration and over a 2,590-km2 (1,000-mi2) area, 

compared with the baseline period. Average increases of 20% and 44% in PMP were found for the 

30 combinations of duration and area for the F1 and F2 periods, respectively. PMP estimates for 

the far future were higher than those for the near future at all durations and areas, suggesting a 

consistent increase in PMP with an increase in radiative forcing during the 21st century. Overall, 

our results suggest the PMP is projected to increase in the future, which is consistent with findings 

from previous studies [Kunkel et al., 2013; Beauchamp et al., 2013; Rousseau et al., 2014; Rouhani 

and Leconte, 2016]. 
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Although there are various factors in future climate projections that could affect extreme 

precipitation and PMP (e.g., circulation and wind patterns), it is generally understood that 

atmospheric warming plays a critical role. Enhanced radiative forcing under a changing climate 

will cause a rise in atmospheric temperature. A warmer atmosphere is in turn capable of holding 

more moisture, following the Clausius-Clapeyron relationship [see Lenderink and van Meijgaard, 

2008; Berg et al., 2013; Loriaux et al., 2016 for further discussion]. These factors may lead to an 

intensification in the hydrological cycle due to increased precipitable water and 

evapotranspiration, resulting in more intense extreme precipitation events. 

To test the sensitivity of PMP to background air temperature warming, we conducted further 

CFSR-WRF-T1 and CFSR-WRF-T2 simulations. These simulations used the same setup as CFSR-

WRF-CT, but increased the CFSR air temperature by 1°C and 2°C. Combined with RHM, this 

temperature adjustment led to an increase in total precipitable water in the WRF boundary forcings. 

The simulated PMP is included in Figures 5.6 and 5.7 for comparison. As expected, the higher 

background temperatures led to increased rainfall depth in nearly all cases, especially over longer 

durations (Figure 5.6d and 5.6e). The higher temperatures may also have led to stronger 

evapotranspiration and a faster local moisture recycling rate that also increased the PMP. Once 

again, the increase in total precipitable water and PMP is nonlinear and exhibits a large variation. 

This is similar to what we observed and discussed in regard to Figure 5.8, in which the change in 

precipitable water could be inconsistent with the change in rainfall depth, and the original storm 

structure could be altered by a change in the moisture pattern. 

It is interesting that the influence of temperature increases on PMP at 6 hours was very minor. It 

suggests that, although the precipitable water increased (as a result of increasing temperature), the 

maximum precipitation at 6 hours seemed to reach a maximum. It is also interesting to note that, 
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although the projected future PMPs (CCSM4-F1 and CCSM4-F2) were larger than those in 

temperature sensitivity runs (CFSR-T1 and CFSR-T2) in smaller storm areas (Figures 5.7a–c), the 

order was reversed in larger storm areas (Figures 5.7d–f). As mentioned, although we think 

atmospheric warming is one important factor affecting the projected future PMP values, there are 

also other factors affecting PMP that cannot be fully explained by temperature. Further exploration 

is hence needed for other modeling choices and other study areas to better understand the effects 

of climate change on PMP. 

5.3.5 Uncertainties in PMP Simulation 

Finally, we examined the uncertainty across all simulated storms in Figure 5.9. We used a box plot 

to illustrate the maximum, minimum, and three quartiles of RHM rainfall depth among the 30 

storms in each set of simulations across various storm durations and areas. As a reminder, since 

our objective was to identify the maximum possible rainfall, the maximum value in each set of 

simulations (i.e., each box) was what we identified as the PMP. 

Taking a 6-hour storm duration as an example, it can be seen that the CFSR-driven RHM rainfall 

depth range is 43–236 mm for 10,000 mi2 (Figure 5.9–e1) and 150–821 mm for 10 mi2 (Figure 

5.9–a1). For a 72-hour duration, the CFSR-driven RHM depth range is 95–1083 mm for 10,000 

mi2 (Figure 5.9–e5) and 392–1979 mm for 10 mi2 (Figure 5.9–a5). CCSM4-driven RHM depths at 

6-hour duration during the baseline period range from 39–157 mm for 10,000 mi2 (Figure 5.9–e1) 

and from 157–731 mm for 10 mi2 (Figure 5.9–a1). For a 72-hour duration, the CCSM4-driven 

RHM depth range is 160–930 mm for 10,000 mi2 (Figure 5.9–e5) and 254–1843 mm for 10 mi2 

(Figure 5.9–a5), lower than the CFSR-driven control estimates. The range of depths simulated for 

the future periods of CCSM4 is higher than in the baseline period. At a 6-hour duration, the 

CCSM4-driven RHM depth range is 65–198 mm and 78–225 mm for the two future periods for 
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10,000 mi2 (Figure 5.9–e1), and 223–761 mm and 239–959 mm for 10 mi2 (Figure 5.9–a1). 

Moreover, at 72 hours, CCSM4-driven RHM depth range is 154–961 mm and 216–1,450 mm for 

the two future periods under 10,000 mi2 (Figure 5.9–e5), and 288–2,298 mm and 544–2,800 mm 

for 10 mi2 (Figure 5.9–a5). 

A key observation from Figure 5.9 is the high uncertainty associated with the simulated RHM 

depths. Although the moisture was maximized in all storms, there was still a large spread in the 

simulated rainfall depth, again suggesting moisture is not the only necessary factor controlling 

PMP. In addition, not a single storm produced a maximum depth across all durations and areas 

(not shown here). Therefore, it is imperative to incorporate a large set of storms in order to more 

reliably identify the PMP (e.g., such as the work done by Rousseau et al. [2014] and Rouhani and 

Leconte [2016]). In other words, the PMP values could be underestimated if only a few storms are 

considered (which seems to be true for both conventional analysis and the numerical simulation 

used in this study). However, incorporating more storms will bring a large computational burden 

to the already extensive simulation of each extreme storm. Additional modeling considerations—

such as different reanalysis and climatic forcings, weather forecasting models, domains and 

parameterizations—would all increase the dimension of complexity in the simulation of PMP. 

Another note concerns the use of maximum value to derive PMP. Although from the medians of 

these simulated storms we may conclude that CCSM4-F2 is always greater than CCSM4-F1 and 

then CCSM4-BL, the maximum value itself may sometimes be misleading. For instance, in Figure 

5.9–d5, the maximum CCSM4-BL value is slightly greater than the maximum CCSM4-F1, 

opposite the case for the median values. This is in fact a limitation to which the maximum is prone 

in the existence of statistical outliers. Nevertheless, unless we are willing to move forward from 
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pure deterministic thinking in PMP evaluation and application (i.e., focusing only on maximum 

rainfall and flood events), such challenges are likely to linger. 

5.4 Conclusion and Discussion 

In this study, a physics-based numerical weather simulation model was used to estimate PMP over 

the ACT river basin and to understand the effects of climate change on these estimates. The WRF 

model was tuned by six different combinations of cumulus and microphysics parameterization 

schemes for 30 historical storms and evaluated against gridded observations from Daymet and 

PRISM. Six sets of WRF experiments with a total of 120 storms were set up to estimate the PMP 

and its sensitivity associated with changes in climate forcings and atmospheric warming. Overall, 

our results suggest that RHM-based PMP [Ohara et al., 2011; Ishida et al., 2015] is projected to 

increase in the future climate condition. This finding is related with the following factors for further 

consideration. 

(1) We used a numerical weather simulation approach to estimate PMP using RHM method that is 

different from the conventional data-driven storm moisture maximization, transposition, and 

envelopment method [Schreiner and Riedel, 1978]. Although both methods provided comparable 

estimates at a 6-hour duration (Figure 5.6a), the numerically simulated PMP was found to be much 

larger than the conventional PMP at a longer storm duration. We believe one main reason is related 

to the use of a storm representative dew point in the conventional approach that cannot capture the 

total precipitable water of a longer-duration storm. The RHM method was designed to maximize 

the total precipitable water during the entire storm period and hence could lead to a more 

significant increase in precipitation in a longer-duration storm. 

(2) Although it is generally assumed that the change in precipitable water (due to moisture 

maximization) is around the same scale as the change in rainfall depth, such a relationship was not 
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found in this study. The applicability of this linear relationship was also questioned by Abbs 

[1999]. In addition to the large uncertainty across different storms (Figure 5.8), the change in 

rainfall depth was generally smaller in shorter-duration and larger in longer-duration storms. This 

can be another explanation for the difference between longer-duration HMR51 and simulated PMP 

(Figures 5.6 and 5.7). 

(3) Despite the differences between the CFSR- and CCSM4-driven PMP estimates during the baseline 

period, the overall results can be used to understand the effects of climate change on PMP estimates 

by comparing the PMP estimated under different sets of CCSM4-driven experiments. PMPs for 

the two future periods were found to be higher than the baseline PMP, indicating an increase in 

PMP under enhanced radiative forcing. The additional sensitivity simulations of background air 

temperature warming also showed an enhancement of PMP, suggesting that atmospheric warming 

could be an important factor controlling the increase in PMP. Therefore, like the intensification of 

T-year rainfall extremes [Kao and Ganguly, 2011], an increase in the deterministic PMP storm 

upper bound in a warming environment is also likely. Further studies to identify other controlling 

factors (e.g., circulation and moisture patterns) would be useful to enhance our understanding of 

PMP. 

(4) Given the large uncertainty across different storms, durations, and areas (Figure 5.9), we showed 

that a large number of storms are required to identify the most critical combinations of 

meteorological conditions that may lead to the formation of the PMP. A PMP value based on few 

storms is hence at risk of underestimation. However, it is challenging to confirm whether one has 

already collected a sufficient number of storms to construct the PMP. Additional modeling 

considerations, such as different reanalysis forcings, models, domains, and parameterizations, can 

also be tested to identify the maximum PMP forming conditions. 
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(5) The PMP estimates generated in this study are used by Gangrade et al. [2019 and 2018] to run a 

distributed hydrology model followed by a flood model to generate probable maximum flood 

estimates and conduct flood assessment studies. 

Finally, while we have shown that the simulated PMP is projected to increase under future climate 

conditions, how to further strengthen the simulated PMP for engineering applications deserves 

further thinking. For instance, although the maximum moisture condition (RHM) is plausible in 

the coastal region, it may not be reasonable to adopt it for an inland desert (where moisture is less 

likely to reach). Various types of modeling uncertainties—from driving forcings, the ability of 

numerical models to simulate rainfall depth, and approaches to achieving PMP rainfall, to the 

selection of extreme storms—all need to be better understood before a simulated PMP can be 

developed for application. On the other hand, given the lack of improvement in conventional PMP 

methods and estimates, inaction is not an option. As shown in this and previous studies, various 

fundamental assumptions regarding the conventional PMP method (e.g., using change in 

precipitable water to infer change of rainfall depth) have been found to be questionable and need 

to be reexamined. Philosophically speaking, the biggest issue for estimating PMP for engineering 

practice is perhaps its deterministic nature. Given the goal of maxima searching, there is hardly 

any room to consider risk and likelihood. The community should start assigning uncertainties to 

PMP estimates [Micovic et al., 2015] or seek an alternative method, such as probabilistic flood 

hazard assessment [US Nuclear Regulatory Commission, 2013]. In light of the projected increases 

in precipitation extremes under a warming environment, the reasonableness and role of PMP 

deserves a more in-depth examination.  
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Chapter 6  

 Summary and Outlook 
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This doctoral dissertation consists of multiple studies that use high-resolution process-based 

physical models’ simulations to thoroughly investigate the anthropogenic hydroclimatic changes, 

which can severely impact human systems. In the first study, we develop empirical relationships 

between the observed climate and household energy demand. Subsequently, we apply these 

relationships on a high-resolution climate data [Ashfaq et al., 2016] to evaluate anthropogenically 

driven changes in the residential energy demand over the US by mid 21st century. We find that 

more intense and prolonged warm conditions will drive an increase in the electricity demand due 

to higher space cooling requirement, while shorter and milder winter will decrease natural gas 

usage for space heating [Rastogi et al., 2019]. In the second study, we use a pair of high-resolution 

numerical model simulations, which constraint large-scale atmospheric circulations [Liu et al., 

2017] to evaluate the characteristics of dry and humid heatwaves in the control and the pseudo 

climate warming scenarios. A comparison of dry and humid heatwaves characteristics in their 

respective climates shows a decrease in relative humidity during the dry heatwaves whereas 

undetectable changes in relative humidity during the humid heat waves. Further, we find strong 

land-atmosphere coupling during the dry heatwaves and a weak coupling during the humid 

heatwaves. This study highlights the importance of incorporating humidity in heatwave 

identification, which can further enhance physiological heat stress, and poses severe risks to human 

health. In the third study, we investigate spatial and temporal characteristics of daily precipitation 

events and their projected changes by the mid 21st century in response to increase in radiative 

forcing. We apply a continuous component labeling technique and intensity thresholds to 

categorize precipitation events in terms of their spatial extent and magnitude. We find a shift 

towards more intense and spatially widespread events under warmer conditions in the future 

climates. In the fourth study, we evaluate PMP, which is used as a design criteria for highly 
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important infrastructures, and sensitivity of its magnitudes to changes in temperature and moisture 

in the future climates. We employ WRF model to downscale and maximize three-day extreme 

precipitation events in the boundary forcing of a reanalysis data and a GCM. We compare 

simulated PMP with the conventional estimates in the historical period and further evaluate the 

projected changes in PMP in a warmer and moister climate. We find 20% and 44% increase in 

PMP in the near-future (2021 to 2050) and far-future (2071 to 2100) with reference to the historical 

period (1981 to 2010) [Rastogi et al., 2017]. These results have strong implications for energy-

water infrastructures. 

Overall, this doctoral dissertation develops rigorous analytical frameworks, which can be used as 

a benchmark to assess various aspects of hydroclimate responses to anthropogenically driven 

changes. It provides important scientific insights that can be used to improve our understanding of 

risks associated with the changes in extreme temperature and precipitation events on human 

settlements, energy, and other important infrastructures. In the case of research related with future 

energy demand, most of the previous studies have used spatially aggregated scales that are not 

relevant for decision making. This research work addresses this limitation by using a relatively 

fine spatial scale climate data, which accounts for important regional to local scale differences that 

are present in the energy demand projections. Further, we find a shift in the net energy demand, 

used for residential space heating and cooling, from natural gas towards electricity. The decrease 

in natural gas demand primarily occurs during the winter months, which has important 

implications for natural gas prices and underground gas storage. The increase in electricity demand 

has important implications for greenhouse gas emissions depending upon the source of additional 

electricity generation and highlights that strategic planning is required to meet the energy demands 

across the US in the coming decades in economically feasible and environmental friendly ways.  
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Further, the previous studies that focus on evaluating heatwave characteristics mostly do not 

incorporate the effect of humidity. Moreover, these studies utilize coarse resolution GCM outputs 

that are unable to fully capture atmospheric blocking patterns, which commonly drive such 

extreme heat events. In order to improve on these limitations, this dissertation employs high 

resolution numerical outputs and incorporates humidity in the identification of heatwaves with a 

goal to improve the accuracy of heat stress estimation as perceived by humans. 

We also note that US has received an increasing number of intense and widespread storms over 

the past decades. More recently, storm Alberto caused extensive and intense rain that resulted in 

flash flooding and damages in many eastern states during May 2018. Similarly, winter storm 

Harper brought widespread snow across multiple states in the west, Midwest and northeast, 

causing extensive damage during January 2019. Given that these storms often cause widespread 

damage, it is importance to investigate that how the spatial extent of precipitation events may vary 

in the coming decades. To this end, part of this dissertation work investigates changes in the 

temporal and spatial characteristics of daily-scale precipitation events in the coming decades. We 

find a potential increase in the intensity as well as the spatial extent of daily-scale precipitation 

events in the future projections, which has the potential to exacerbate the risk associated with the 

occurrences of such storms. Therefore, this research work highlights the need of better planning 

for damage control in this regard. 

Lastly, this research highlights the need of better ways for more accurate estimation of PMP scale 

precipitation event that, if occur, can bring unprecedented damage to critical infrastructures. In 

recent past, the precipitation associated with hurricane Harvey exceeded conventional PMP 

estimates for certain durations and areas [Kao et al. 2019]. The storm flooded a chemical and 

processing facility and disabled the cooling equipment resulting in overheating, igniting fire and 
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shutting the plant [Sebastian et al, 2017], among numerous other damages. Such occurrences 

highlight the importance of updating conventional estimates particularly in the context of projected 

increase in the intensity and extent of future storms. Through model based synthetic PMP 

experiments, this research has been able to show that PMP magnitudes will be higher in warmer 

and moister future climate. The PMP estimates generated in this work have been used by other 

scientists to investigate the changes in the occurrences probable maximum floods and their 

implications for critical infrastructure such as hydropower plants [Gangrade et al. 2019 and 2018]. 

The PMP modeling framework, developed in this dissertation, can be used as a benchmark to 

further improve the physical model based calculations of PMP for better understanding of human 

system vulnerabilities due to climate changes.  

In the end, we also want to highlight a number of caveats in this research that are related with 

modeling choices, analytical methodologies and data limitations. All of modeling outputs are 

based on dynamical downscaling of coarse scale boundary forcing, which in some case have been 

statistically bias corrected. We have not investigated the uncertainties arising from the use of 

dynamical downscaling and the choice of correction procedure. We have also used empirical 

models whose limitations were not thoroughly tested. Similarly, moisture maximization at the 

boundaries is one way to achieve PMP estimates but there is a need to test other modeling 

approaches to understand the robustness of these estimates. Also, these PMP estimates were only 

based on a single reanalysis data and a single GCM and there is a need to conduct similar analyses 

using multiple reanalysis and GCMs to reduce modeling uncertainties. Some uncertainties also 

arise due to observed data limitations such as coarse scale energy demand data which we hope will 

reduce with time as observations are becoming more refined both spatially and temporally. Better 

observations should reduce the issues related with fine-scale disaggregation, which are presently 
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visible across state boundaries in our energy use estimates. Similarly, high temporal observations 

related with peak hour energy demand should enable better understanding of changes in climate 

extremes on household energy use. Lastly, all use cases in this dissertation are over the US. While 

we hope that analytical and modeling frameworks should be useful for similar studies over other 

geographical regions, transferability of these techniques to other regions requires rigorous 

evaluation. Nonetheless, the frameworks developed in this dissertation provide a foundation to 

motivate future work in these areas.  
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Table 2.1 List of the dynamically downscaled CMIP5 GCMs. 

No. GCM Name Ensemble  

1 ACCESS1-0  r1i1p1 

2 BCC-CSM1-1  r1i1p1 

3 CCSM4  r6i1p1 

4 CMCC-CM  r1i1p1 

5 FGOALS-g2  r1i1p1 

6 GFDL-ESM2M  r1i1p1 

7 MIROC5  r1i1p1 

8 MPI-ESM-MR  r1i1p1 

9 MRI-CGCM3  r1i1p1 

10 NorESM1-M  r1i1p1 

11 IPSL-CM5A-LR  r1i1p1 

 

 

Figure 2.1 Map showing US Census divisions.  
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Figure 2.2 Schematic showing various steps of methodology. 
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Table 2.2 Summary of the electricity demand econometric model. Yes implies the use if that 

particular fixed effect. Symbols are as show in equation 1. 

 log(𝐸&'(
&)*) Std. Error t-statistics 

𝛼.2  0.00003 1.80E-06 16.63 

𝛼.8  -1.79E-10 4.77E-11 -3.75 

𝛽.2  0.0000424 9.65E-07 43.94 

𝛽.8  -3.01E-10 1.18E-11 -25.45 

𝛾.2 1.44E-07 2.99E-09 48.37 

𝑐. 12.60142 0.0216013 583.36 

N 9,408   

Fixed Effects   

County Yes   

Month Yes   

R-square 0.9862   

F-statistics 10423.33   
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Table 2.3 Summary of the natural gas demand econometric model. Yes implies the use if that 

particular fixed effect. Symbols are as show in equation 1. 

 
log(𝑁𝐺&(

&)*) Std. Error t-statistics 

𝛼CD2 0.0000409 1.79E-06 22.86 

𝛼CD8 -6.10E-10 3.57E-11 -17.07 

𝛾CD2 4.82E-08 4.73E-09 10.18 

𝑐CD 8.158396 0.029287 278.57 

N 7,052     

Fixed Effects 
  

State Yes 
  

Month Yes     

R-square 0.9804 
  

F-statistics 5930.69     
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Figure 2.3 Historical period comparisons. Climatology of heating degree days (HDD) in (a) 

observations (PRISM) (b) simulations (RegCM4). Climatology of cooling degree days (CDD) in 

(c) PRISM (d) RegCM4. Trends in HDD in e) PRISM (f) RegCM4. Trends in CDD  in (g) PRISM 

(h) RegCM4. The units for HDD and CDD are in degree Celsius i) Trends in HDD and CDD 

(PRISM and RegCM4), natural gas and electricity demands (EIA and RegCM4) for ten 

metropolitan areas across the US. An upward (downward) triangle indicates positive (negative) 

trend. Separate triangles are drawn for the observation and the RegCM4 if the direction of trend 

does not match with “o” inside the triangle representing the observations. Filled triangle indicate 

trend is significant in both the observations and the RegCM4. All comparisons are for 1981 to 

2005 historical period except for the comparisons with the EIA data that corresponds to 1990 to 

2005 historical period. RegCM4 results represent mean of all ensemble members. 
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Figure 2.4 Time series of average annual HDD anomaly over 1981 to 2005 period for PRISM, 11 

RegCM4 ensemble members and RegCM4 mean for ten metropolitan areas across the US. The 

values in the plots are the average annual HDD values in degree Celsius during the 1981-2005 

period for RegCM4 mean (M) and Observations (O). 
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Figure 2.5 Time series of average annual CDD anomaly over 1981 to 2005 period for PRISM, 11 

RegCM4 ensemble members and RegCM4 mean for ten metropolitan areas across the US. The 

values in the plots are the average annual CDD values in degree Celsius during the 1981-2005 

period for RegCM4 mean (M) and Observations (O).   
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Figure 2.6 Time series of percent anomaly in annual electricity demand over 1990 to 2005 period 

for EIA, 11 RegCM4 ensemble members and RegCM4 mean for ten metropolitan areas across the 

US. The values in the plot are the average annual electricity demand values in MWh during the 

1990-2005 period for RegCM4 mean (M) and Observations (O).  
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Figure 2.7 Time series of percent anomaly in annual natural gas demand over 1990 to 2005 period 

for EIA, 11 RegCM4 ensemble members and RegCM4 mean for ten metropolitan areas across the 

US. The values in the plots are the average annual natural gas demand values in MMcf during the 

1990-2005 period for RegCM4 mean (M) and Observations (O).  
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Figure 2.8 Scatter plots showing model predicted demand as simulated by the statistical model, 

driven with climate inputs from RCM, versus EIA consumption for period 1990 to 2005 for (a) 

Electricity (GWh) (b) Natural gas (MMcf ). RCM results represent mean of all ensemble members.  
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Figure 2.9 Future period projected changes. Percent change in the residential (a) electricity demand 

(b) natural gas demand. Box and whisker plots show the spread of projected changes across 

RegCM4 11 ensemble members for (c) residential electricity demand, (d) CDD, (e) residential 

natural gas demand, and (f) HDD for the ten metropolitan areas. Changes are shown as absolute 

values in (d) and (f) and percent values in (c) and (e). Changes for Miami-Fort Lauderdale-West 

Palm are not shown in (e) due to negligibly small natural gas demand. Changes are calculated at 

county level for each year as the departure from the 2011 value. We then fit a linear regression to 

40 years time series in the future period (2011-2050). Finally, we calculate the change as the 

percent or absolute difference between the last and first points on the regression line. 
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Figure 2.10 Historical comparisons (1981 to 2005) between the observations (PRISM) and 

simulations (RegCM4) for (a, b)  CDD accumulated over the duration of summer, (c, d) CDD per 

day during summer, (e, f) HDD accumulated over the duration of winter, (g, h) HDD per day 

during winter. All the units are in degree Celsius. 
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Figure 2.11 Beginning of summer in (a) PRISM (b) RegCM4. Duration of summer in (c) PRISM 

(d) RegCM4. Beginning of winter in (e) PRISM (f ) RegCM4. Duration of winter in (g) PRISM 

(h) RegCM4. All calculations are based on 1981 to 2005 period. RegCM4 results represent mean 

of all ensemble members.  
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Figure 2.12 Projected changes (2011 to 2050 minus 1981 to 2005) in (a) timing of summer (b) 

timing of winter (c) duration of summer (d) duration of winter in RegCM4. 
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Figure 2.13 Future changes (2011 to 2050 minus 1981 to 2005) in (a) accumulated CDD during 

summer, (b) accumulated HDD during winter, (c) CDD per day during summer, (d) HDD per day 

during winter, (e) daily maximum temperature during summer, (f) daily minimum temperature 

during winter. All the units are in degree Celsius. 
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Figure 2.14 (a) Projected future changes in the population under EPA A2 scenario with respect to 

2005 Census population. Relative changes in demand (b) electricity (c) natural gas with and 

without population changes in the future period (2011-2050). The relative change is calculated by 

dividing the demand projections when econometric model considers both population change and 

climate change by the demand projections when econometric model only considers climate 

change.
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Figure 3.1 Scatter plots between the mean duration and (a-d) the mean intensity of the heatwaves, 

(e-h) the mean percentage area under the heatwaves for Southeast, Northeast-Midwest, Central 

and West US respectively. Each circle represents average characteristics of heatwaves (filled for 

ATmax and hollow for Tmax) during each summer (JJA). Line plots show mean percentage area under 

heatwaves (solid lines for ATmax and dashed lines for Tmax)  over the Southeast for JJA during (i) 

2010 (i) 2012. The spatial maps show the average differences between ATmax and Tmax magnitudes 

during the heatwaves in 2010 for (k) WRF-CTRL (l) PRISM and in 2012 for (m) WRF-CTRL (n) 

PRISM. Black color denote observations (PRISM) and red color indicate WRF-CTRL in scatter 

as well as line plots. The four regions are marked in Figure 1m. 
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Figure 3.2 Spatial plots showing average length, total number, average amplitude, average 

intensity of Tmax heatwaves, 95th percentile of Tmax over 2001 to 2013 in (a-e) WRF-CTRL (f-j) 

PRISM respectively. 
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Figure 3.3 Spatial plots showing average length, total number, average amplitude, average 

intensity of ATmax heatwaves, 95th percentile of ATmax over 2001 to 2013 in (a-e) WRF-CTRL (f-

j) PRISM respectively. 
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Figure 3.4 Scatter plots between average Tmax and average relative humidity during (a-d) Tmax 

heatwaves (e-h) ATmax heatwaves for Southeast, Northeast-Midwest, Central and West US 

respectively. Each circle represent averages during heatwaves occurring in summer (JJA). Black, 

blue, green and red circles are used for PRISM, CTRL, PGWCTRL and PGWPGW heatwaves 

respectively. The background contours in (e-h) correspond to respective values for ATmax. 
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Figure 3.5 Box plots showing the spread in paired differences in characteristics between PGWCTRL 

and CTRL heatwaves for each year over the 13 year analysis period (2001 to 2013) during Tmax 

and ATmax heatwaves for (a,b) average duration (c,d) average intensity (e,f ) percentage land area 

(g,h) number respectively. All changes shown here are significant at 95 percent confidence level 

using two tailed Student’s T-test.  
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Figure 3.6 Average number of days under Tmax and ATmax heatwaves during (a,d) CTRLCTRL (b,e) 

PGWCTRL and (c,f) PGWPGW respectively. 
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Figure 3.7 Scatter plots between average Tmax and average specific humidity during (a-d) Tmax 

heatwaves (e-h) ATmax heatwaves for Southeast, Northeast-Midwest, Central and West US 

respectively. Each circle represent averages during heatwaves occurring in summer (JJA). Black, 

blue, green and red circles are used for PRISM, CTRL, PGWCTRL and PGWPGW heatwaves 

respectively.  
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Figure 3.8 Box plots showing the spread in paired differences in characteristics between PGWPGWL 

and CTRL heatwaves for each year over the 13 year analysis period (2001 to 2013) during Tmax 

and ATmax heatwaves for (a,b) average duration (c,d) average intensity (e,f ) percentage land area 

(g,h) number respectively. Boxes marked with asterisk sign show significant differences at 95 

percent confidence level using two-sided Student’s T-test. 
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Figure 3.9 Box plots showing the spread in paired differences between years over the 13 year 

analysis period (2001 to 2013) during Tmax heatwaves for (a) latent heat (b) sensible heat and during 

ATmax heatwaves for (c) latent heat (d) sensible heat. Green (Red) boxes show the differences 

between PGWCTRL (PGWPGW) and CTRL heatwaves. Boxes marked with asterisk sign show 

significant differences at 95 percent confidence level using two-sided Student’s T-test. Scatter plot 

between change in Tmax and change in evaporative fraction (EF) for Tmax Heatwaves (e-h) for ATmax 

Heatwaves (i-l) for Southeast, Northeast-Midwest, Central and West US respectively. Green (Red) 

dots represent change between PGWCTRL (PGWPGW) and CTRL heatwaves for each year during 

2001 to 2013 period. The number inside the plots are correlation coefficients between changes in 

Tmax and EF during PGWPGW minus CTRL heatwaves (marked as PGWPGW) and PGWCTRL minus 

CTRL (marked as PGWCTRL).  
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Figure 3.10 Box plots showing the spread in paired differences in soil moisture between years over 

the 13 year analysis period (2001 to 2013) during  (a) Tmax heatwaves (b) ATmax heatwaves. Green 

(Red) boxes show the differences between PGWCTRL (PGWPGW) and CTRL heatwaves. Boxes 

marked with asterisk sign show significant differences at 95 percent confidence level using two-

sided Student’s T-test. 
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Figure 4.1 a) 65th b) 85th percentile of daily precipitation in observations (PRISM) 
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Figure 4.2 Total change in precipitation during a) Wetdays (>1mm) b) Medium to Heavy days 

(>12.5 mm) c) Medium to Heavy days with Mid to Large spatial scale (> 200 thousand sq. km.) 

over 1981 to 2016 period. 
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Figure 4.3 Same as Figure 4.2 but for 1981- 2005 period. Stippled area show the region where sign 

of change is robustly simulated by the RCMs. 
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Figure 4.4 Total number of wetdays , percent of wetdays occurring as Ti days and percent of 

wetdays occurring as Hi days in (a, c, e) Observation (b, d, f) PRISM respectively. 
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Figure 4.5 Precipitation from wetdays , percent of precipitation from wetdays occurring during Ti 

days  and percent of precipitation from wetdays occurring during Hi days in (a, c, e) Observation 

(b, d, f) PRISM respectively. 
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Figure 4.6 Spatial maps showing annual frequency of precipitation events >0.5 inch (Ti) and >1.0 

inch (Hi) in PRISM observations (a and b) and RCM ensemble mean (c and d). (e) Four regions 

for regional analysis. (f) Polar map showing simulated percentage of the annual precipitation 

contributed by Ms (red) and Ws (green) during Ti (light colors) and Hi events (strong colors). Black 

hollow lines represent magnitudes based on the PRISM observations. 
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Figure 4.7 Spatial maps showing number of (a-e) Ti events (f-j) Ti events at Ms scale (k-o) Ti events 

at Ws scale annual and seasonal across the US averaged over 1981-2005 period. 

 

Figure 4.8 Spatial maps showing number of (a-e) Hi events (f-j) Hi events at Ms scale (k-o) Hi 

events at Ws scale annual and seasonal across the US averaged over 1981-2005 period. 
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Figure 4.9 Polar map showing simulated historical (1966-2005) percentage of the seasonal 

precipitation for (a) Ti events (b) Hi events, projected changes (2011-2050 with respect to 1966-

2005) in the percentages (c) Hi events (d) Ti events contributed during Winter (blue), Spring 

(green),  Summer (red) and Fall (orange), for Ms events (light colors) and Ws events (strong colors).  
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Figure 4.10 Projected changes (2011 to 2050 minus 1966 to 2005) in a) Ti events b) Hi events c) 

Ti events at Ms scale d) Hi events at Ms scale e) Ti events at Ws scale f) Hi events at Ws scale. 

Stippled where less than 8 models agree i.e. not robust. 
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Figure 4.11 Projected changes (2011 to 2050 minus 1966 to 2005) in annual and seasonal number 

of (a-d) Ti events (e-h) Ti events at Ms scale (i-l) Ti events at Ws scale. Stippled where less than 8 

models agree i.e. not robust. 

 

Figure 4.12 Projected changes (2011 to 2050 minus 1966 to 2005) in annual and seasonal number 

of (a-d) Hi events (e-h) Hi events at Ms scale (i-l) Hi events at Ws scale. Stippled where less than 8 

models agree i.e. not robust. 
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Figure 4.13 Polar maps showing a) projected changes (2011 to 2050 minus 1966 to 2005)  in 

percentage of precipitation contributed by Ti and Hi events at Ms and Ws scales. Polar maps 

showing projected changes in number of years with frequency of (b) Ti and (c) Hi events falling 

within the six percentiles as shown. Heat maps showing projected percentage changes in 

precipitation event volume, mean, maximum, frequency, mean area and maximum area for (d) Ti 

events (e) Hi events at Ms and Ws scales. Projected changes are significant at 95% confidence 

interval if a cell is marked with x.
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Table 5.1 Selected historic extreme storms in the ACT river basin along with Daymet/PRISM 

observations and CFSR-WRF-CT simulation results. The R2 and RMSE between CFSR-WRF-CT 

and Daymet/PRISM are also reported. 

N Period 

72-hour ACT domain average precipitation (mm/72 hours) 

Daymet PRISM 
CFSR-WRF-CT simulation 

P1 P2 P3 P4 P5 P6 

1 02/10/1981–02/12/1981 W 92 90 99 91 79 111 99 93 

2 02/01/1982–02/03/1982 W 88 86 82 76 67 92 82 80 

3 04/07/1983–04/09/1983 W 81 78 104 96 90 133 115 128 

4 12/02/1983–12/04/1983 W 72 73 50 47 43 62 54 56 

5 01/15/1987–01/17/1987 W 74 68 53 52 48 65 58 60 

6 02/27/1987–03/01/1987 W 71 75 63 63 58 72 68 69 

7 09/29/1989–10/01/1989 S 90 84 105 106 97 132 126 128 

8 02/15/1990–02/17/1990 W 82 79 46 40 37 66 51 62 

9 03/16/1990–03/18/1990 W 148 160 131 120 113 144 131 130 

10 02/18/1991–02/20/1991 W 74 73 40 39 35 50 45 46 

11 03/02/1991–03/04/1991 W 82 85 78 72 66 92 81 83 

12 12/01/1991–12/03/1991 W 71 70 48 45 41 63 55 58 

13 10/03/1995–10/05/1995 S 173 173 164 155 150 192 174 189 

14 03/06/1996–03/08/1996 W 83 81 61 54 48 89 77 80 

15 09/24/1997–09/26/1997 S 66 61 54 48 47 69 58 66 

16 10/25/1997–10/27/1997 S 81 73 90 76 71 134 108 125 

17 01/06/1998–01/08/1998 W 97 97 65 62 57 82 76 82 

18 03/07/1998–03/09/1998 W 105 98 79 74 72 117 94 116 

19 09/28/1998–09/30/1998 S 117 118 88 85 78 114 106 107 

20 09/25/2002–09/27/2002 S 103 102 80 79 76 102 94 103 

21 05/06/2003–05/08/2003 S 67 69 61 43 43 113 92 99 

22 06/30/2003–07/02/2003 S 92 84 95 94 92 125 114 127 

23 09/06/2004–09/08/2004 S 28 26 34 31 31 40 39 38 

24 09/16/2004–09/18/2004 S 128 122 118 112 112 132 121 133 

25 08/24/2008–08/26/2008 S 121 117 126 120 118 174 164 167 
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Table 5.1 continued 

N Period 

72-hour ACT domain average precipitation (mm/72 hours) 

Daymet PRISM 
CFSR-WRF-CT simulation 

P1 P2 P3 P4 P5 P6 

26 12/10/2008–12/12/2008 W 111 108 98 87 77 116 99 98 

27 03/26/2009–03/28/2009 W 105 101 102 96 86 114 103 103 

28 11/10/2001–11/12/2001 S 77 79 73 70 68 73 70 69 

29 05/02/2010–05/04/2010 S 84 82 73 65 61 92 78 86 

30 09/04/2011–09/06/2011 S 109 115 140 141 132 177 164 177 

R2 – Daymet 0.725 0.703 0.706 0.620 0.626 0.605 

R2 – PRISM 0.704 0.683 0.681 0.580 0.595 0.558 

RMSE – Daymet (mm) 19 22 25 26 21 24 

RMSE – PRISM (mm) 19 22 25 28 22 26 

Note: W—storms occur during winter/spring; S—storms occur during summer/fall  
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Figure 5.1 Study area showing the nested WRF domain and ACT basin. 
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Table 5.2 Six sets of cumulus parameterizations and cloud microphysics schemes tested in this 

study. 

WRF no. Cumulus parameterization Cloud microphysics scheme 

P1 Grell-Devenyi ensemble scheme Lin et al. 

P2 Grell-Devenyi ensemble scheme WRF Single Moment 5-class scheme 

P3 Grell-Devenyi ensemble scheme Thompson scheme 

P4 Kain-Fritsch scheme Lin et al. 

P5 Kain-Fritsch scheme WRF Single Moment 5-class scheme 

P6 Kain-Fritsch scheme Thompson scheme 

Note: In addition, the Mellor-Yamada-Janjic (Eta) TKE boundary layer scheme, Rapid Radiative Transfer 
model for long wave, and Dudhia scheme for short wave are used. 
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Table 5.3 List of CCSM4-WRF 5-day simulations for the ACT river basin and their maximum 

72-hour domain average precipitation. 

N 

CCSM4-WRF 5-day simulation starting date and maximum 72-hour domain average precipitation 

1981–2010 baseline 2021–2050 near future 2071–2100 far future 

Starting date Max. 72-hour 
precip. (mm) Starting date Max. 72-hour 

precip. (mm) Starting date Max. 72-hour 
precip. (mm) 

1 12/09/1983 W 116 02/04/2022 W 86 11/24/2076 S 75 

2 02/16/1984 W 49 06/02/2023 S 56 02/18/2077 W 115 

3 12/18/1984 W 116 11/22/2023 S 41 09/24/2079 S 77 

4 03/29/1985 W 78 05/03/2024 S 68 01/05/2080 W 89 

5 02/21/1987 W 61 03/13/2026 W 73 02/20/2080 W 70 

6 11/11/1987 S 54 01/01/2029 W 106 05/29/2080 S 63 

7 03/27/1989 W 58 01/14/2029 W 100 10/20/2080 S 98 

8 02/19/1991 W 67 11/13/2029 S 53 03/31/2082 W 100 

9 02/26/1991 W 95 01/20/2031 W 44 03/22/2083 W 71 

10 11/29/1992 S 136 07/31/2032 S 80 02/15/2084 W 77 

11 12/04/1992 W 61 11/27/2033 S 83 03/10/2084 W 119 

12 03/11/1994 W 70 03/15/2034 W 65 02/27/2085 W 103 

13 02/10/1997 W 73 01/26/2037 W 105 02/25/2088 W 94 

14 09/01/1997 S 69 12/21/2037 W 40 11/04/2088 S 67 

15 12/30/1997 W 112 02/16/2038 W 52 03/31/2089 W 43 

16 11/10/1998 S 78 11/24/2038 S 117 04/01/2091 W 100 

17 03/30/1999 W 53 02/25/2039 W 53 01/02/2092 W 66 

18 01/24/2000 W 83 04/30/2040 W 77 03/17/2092 W 90 

19 03/13/2000 W 75 02/06/2041 W 67 12/18/2092 W 99 

20 11/09/2001 S 51 03/24/2042 W 113 01/24/2093 W 65 

21 04/18/2003 S 52 11/25/2042 S 87 01/31/2093 W 71 

22 11/01/2003 S 53 03/13/2043 W 89 02/09/2094 W 135 

23 12/15/2003 W 58 11/30/2043 S 89 04/20/2096 W 62 

24 01/11/2004 W 60 04/23/2045 W 75 10/31/2096 S 95 

25 02/01/2004 W 114 01/29/2046 W 76 12/04/2096 W 77 

26 11/16/2005 S 52 03/11/2046 W 89 01/16/2097 W 69 
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Table 5.3 continued 

N 

CCSM4-WRF 5-day simulation starting date and maximum 72-hour domain average precipitation 

1981–2010 baseline 2021–2050 near future 2071–2100 far future 

Starting date Max. 72-hour 
precip. (mm) Starting date Max. 72-hour 

precip. (mm) Starting date Max. 72-hour 
precip. (mm) 

27 03/26/2007 W 86 04/06/2046 W 44 02/15/2097 W 146 

28 01/03/2010 W 88 12/25/2048 W 93 02/26/2098 W 119 

29 02/04/2010 W 94 03/12/2049 W 65 12/15/2099 W 64 

30 04/22/2010 W 54 12/27/2049 W 49 04/06/2100 W 80 

Note: W—storms occur during winter/spring; S—storms occur during summer/fall 
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Figure 5.2 Scatter plots of mean annual temperature and precipitation averaged over the outer 

WRF domain for 70 CMIP5 climate simulations from 30 GCMs under (a) 1981–2010 baseline 

(with 1981–2005 20th century and 2006–2010 RCP 8.5 experiments), (b) 2021–2050 near future, 

and (c) 2071–2100 far future periods. Blue squares denote CCSM4-r6i1p1, green full circles 

denote the other five ensemble members of CCSM4, and all other symbols denote the remaining 

64 CMIP5 simulations. The number of ensemble members of each GCM is marked in parentheses 

after the GCM name. Dashed lines denote the ensemble median of 70 CMIP5 simulations. 
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Figure 5.3 Comparison of 1981–2005 synoptic winter air temperature (°C, upper row), winter 

specific humidity (kg/kg, central row), and winter 500-mb wind (m/s, lower row) for CFSR (left 

column), CCSM4-r6i1p1 (central column), and CMIP5 multi-model mean (right column). Both 

air temperature (panels a–c) and specific humidity (panels d–e) are summarized in terms of zonal 

means at various pressure levels for the inner ACT WRF domain. The synoptic 500-mb wind 

direction and magnitude are illustrated for the entire United States (panels g–i). Winter months 

include December, January, and February. 
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Figure 5.4 Comparison of 1981–2005 synoptic summer air temperature (°C, upper row), summer 

specific humidity (kg/kg, central row), and summer 500-mb wind (m/s, lower row) for CFSR (left 

column), CCSM4-r6i1p1 (central column), and CMIP5 multi-model mean (right column). Both 

air temperature (panels a–c) and specific humidity (panels d–e) are summarized in terms of zonal 

means at various pressure levels for the inner ACT WRF domain. The synoptic 500-mb wind 

direction and magnitude are illustrated for the entire United States (panels g–i). Summer months 

include June, July, and August. 
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Figure 5.5 Example of WRF tuning for the 2008/08/24 – 2008/08/26 storm over the ACT river 

basin. Panels (a) to (f) show CFSR-WRF simulations using different parameterization schemes. 

The observations from Daymet and PRISM are shown in panels (g) and (h). 
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Figure 5.6 Conventional and simulated PMP for (a) 6-hour, (b) 12-hour, (c) 24-hour, (d) 48-hour, 

and (e) 72-hour storm durations. 
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Figure 5.7 Conventional and simulated PMP for (a) 25.9-km2 (10-mi2), (b) 518-km2 (200-mi2), (c) 

2,590-km2 (1,000-mi2), (d) 12,950-km2 (5,000-mi2), (e) 25,900-km2 (10,000-mi2), and (f) 51,800-

km2 (20,000-mi2) storm areas. 
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Figure 5.8 Change in precipitable water (PWPMP / PWControl) versus change in rainfall depth 

(DepthPMP / DepthControl) under (a) 6-hour, 25.9-km2 (10-mi2), (b) 72-hour, 25.9-km2 (10-mi2), (c) 6-

hour, 51,800-km2 (20,000-mi2), and (d) 72-hour, 51,800-km2 (20,000-mi2) for the 30 CFSR-WRF-

CT storms. Broken line represents PWPMP / PWControl = DepthPMP / DepthControl and dotted line 

represents DepthPMP / DepthControl = 1. 
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Figure 5.9 Box plot showing the spread of simulated PMP across all 120 storms for different 

durations and areas, a1 to f5, where letters a through f correspond to areas 25.9 km2 to 51,800 km2 

and numbers 1 to 6 to durations of from 6 to 72 hours, respectively. 
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