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Abstract

Wide area motion imagery (WAMI) sensor technology is advancing rapidly. Increases

in frame rates, detector array sizes, and communications bandwidth have led to a dra-

matic increase in the volume of data that can be acquired and exploited. However, a

commensurate increase in analytical manpower has not accompanied the WAMI data

growth, leaving some of it underutilized. This creates a need for fast, automated, and

robust methods for detecting signals of interest. The most difficult targets to detect are

unresolved (i.e., sub-pixel in size), dim (i.e., low signal-to-noise (SNR) ratio), and mov-

ing. Current tracking methods fall into two categories: detect-before-track (DBT) and

track-before-detect (TBD). The DBT methods apply a threshold to reduce the quantity

of data to be processed, making real time implementation practical for high-SNR targets

(SNR > 10). However, detecting low-SNR targets (2 < SNR < 5) requires the acceptance

of high false alarm rates. TBD methods compare temporal and spatial information

simultaneously with hypothesized target tracks to make detection of low SNR targets

possible. Unfortunately, TBD methods incur substantial computational costs, limiting

their use in most real-time detection applications. The performance of both DBT and

TBD algorithms depend on many factors associated with target motion, the background

environment, and sensor capabilities and configuration. Thus, vast amounts of WAMI

truth data spanning sensor, background, and target parameter spaces are required for

statistically meaningful performance evaluations of DBT / TBD algorithms. Unfortu-

nately, it is prohibitively costly to collect real truth data spanning the variable space,

and many data simulation efforts have ignored important factors which strongly affect

an algorithm’s detection performance.

This research effort addresses the DBT-TBD performance gap for low-SNR targets,

aiming to achieve TBD-like performance with DBT-like computational costs in order

to maintain real-time applicability, and its development is target and sensor agnostic,
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ensuring wide applicability. However, to ensure realistic characterization of detection

performance, this research first focused on the improvement and validation of AFIT

Sensor and Scene Emulation Tool (ASSET). ASSET is an electro-optical sensor, target,

and scene generation tool which employs a physics-based imaging-chain model and

includes realistic sensor artifacts. ASSET simulations were validated against: (1) static

visible and infrared images collected by Himawari-8, a recently-launched Japanese

weather satellite, to assess various stationary performance elements including spectro-

radiometric sensor response, optical blurring, and pixel-to-geospatial coordinate trans-

formations; and (2) laboratory measurements using a visible and infrared camera to

further validate stationary performance metrics, and also assess ASSET’s temporal

simulation aspects, including sensor noise and platform jitter.

Having ensured ASSET can generate sufficiently realistic scenes with sensing arti-

facts that make dim-target detection difficult under realistic conditions, the focus turned

to the detection of low-SNR targets by mathematically undergirding, thoroughly testing,

and expanding Higher-Order Moments Anomaly Detection (HOMAD), a method that

exploits both spatial and temporal information but is still computationally efficient and

massively parallelizable. Improvements include fast background suppression, feature-

based filtering for false-alarm suppression, and algorithm parameterization in terms

of sensor and target phenomenology and these improvements are packaged into a

robust Moments-Based Detection (MBD) code. The expected moment-based detection

(MBD) algorithm performance for a physical sensor was derived and validated with a

second statistical approach. Optimal MBD parameters for detection performance were

determined as a function of a target’s physical characteristics, such as size, brightness,

and velocity. MBD was shown to detect dim targets with performance comparable

to leading TBD methods in less than 1000th of the computational time, enabling near

real-time detection at temporal signal-to-clutter-plus-noise ratios (SCNR’s) down to 0.5

under realistic conditions.

v
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IMPROVING DETECTION OF DIM TARGETS:

OPTIMIZATION OF A MOMENT-BASED DETECTION ALGORITHM

I. Introduction

1.1 Problem History and Motivation

The field of remote sensing is rapidly expanding to meet commercial, defense,

and intelligence community demands. Many new wide area (100-10,000km) imaging

sensors have been developed in the last few decades, and many more are currently under

development. Imagery is constantly collected by a large variety of platforms with varying

resolutions, including both space and ground based telescopes, airborne vehicles, and

satellites. Within this imagery are many different objects of interest, varying in size

and brightness. However, the increasing number of sensors, along with detector array

sizes, frame rates, and data transfer rates has not been accompanied by an equivalent

increase in the manpower necessary to manually process it. This mismatch between

manpower and data volume results in large quantities of data that are underutilized. To

prevent this mismatch from causing a significant loss in information, algorithms that

are capable of reliably and automatically detecting and tracking objects of interest are

required.

In the cases where the imager is of high quality with a high resolution, and objects

of interest have high signal to noise ratios (SNRs) or are large in size, the problem of

detecting and tracking is often not challenging due to the simple fact that the target

of interest is clearly discernible in each frame of data. For these targets, automated

detection and tracking methods already exist. However, as the resolution of the camera,
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size of the target, or brightness of the target decreases, it becomes increasingly difficult

to detect the target. These small, low SNR targets, or hard targets, are present in many

fields. Examples include satellites in ground based telescope imagery in the space

situational awareness field, and small vehicles or people in low cost unmanned aerial

vehicle (UAV) imagery, as might be implemented for border patrol or other large scale

surveillance operations. In order to detect hard targets such as these, methods that

exploit the information available in many frames of data simultaneously are needed and

are therefore the focus of many current research efforts. While there are methods that

currently do this, due to the megapixel size and multi-detector nature of today’s sensors,

these methods are typically too computationally complex, and thus slow, to be of use

in a near real-time setting. Additionally, the performance of detection and tracking

algorithms will depend greatly on elements such as the sensor used to collect the data,

the environment, and the target characteristics, requiring a large volume of relevant data

to fully test any algorithm. This research seeks to contribute a solution to the problem

of detecting the challenging subset of dim, unresolved targets through development of

the Moments-based Detection (MBD) algorithm, while the development and validation

of the AFIT Sensor and Scene Emulation Tool (ASSET) provides a method of acquiring

the large volumes of data needed for thorough algorithm testing.

1.2 Overview

The motivations behind research in the realm of target detection and tracking and

sensor and scene emulation have been discussed. The remainder of this document

can be summarized as follows: Chapter II discusses the physics involved in collecting

data using an optical detection system, the different approaches to the detection and

tracking problem, and the common methods of testing such algorithms. In Chapter

III, the development and validation of the sensor emulator, ASSET, used to test and
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compare the algorithms researched is presented. Chapter IV discusses the theory

behind the MBD algorithm, the algorithm itself, and the optimal algorithm parameters

given a set of target and data characteristics. Chapter V compares the performance

of the MBD algorithm to existing methods, and Chapter VI provides conclusions and

recommendations for future work. In Appendix A, an alternative derivation is provided

for a key result presented in Chapter IV. Finally, the final Matlab code developed in this

research effort is presented in Appendix B.
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II. Background

2.1 Physics of Imaging

The goal of any remote sensing effort is to gather information from a distance. To

accomplish this, many different sensors exist for collecting electromagnetic radiation

depending on the wavelengths of interest and the applications involved. This research

focuses on one subset of these sensors, staring optical detectors, but does not focus on

any specific wavebands in an effort to keep the results applicable across a large range

of platforms.

2.1.1 Problem Scenario.

Figure 1 depicts the remote sensing scenario in this research. The remote sensing

platform is staring at a scene containing primarily background features (water, ice,

forest, desert, etc.) as well as some targets of interest, represented here by the tiny

dragon breathing a fireball.

Figure 1. The remote sensing scenario in this research. The green region represents a single spatial
pixel while the multi-colored arrows represent various types of radiation.
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The sensor collects radiation from all sources within its field of view (FOV) from both

the background and targets over the integration time,∆t , and outputs a single digital

number for each pixel. While some sensor geometries will produce data containing

targets that are multiple pixels in extent, the scenario depicted here and focused on

in this research is the sub-pixel, unresolved target case. In this scenario, each pixel

will image either solely background, or background plus a target. It is also assumed

that the target is emissive and has a signal larger than the background. The detection

problem is then the problem of determining which pixels contain only background, and

which contain target in addition to background. To solve this problem, it is useful to

understand how the digital number output from the sensor relates to the original scene

that it is replicating.

There are a number of details to consider when looking at this scene to digital output

mapping, but generally the problem can be broken down into two parts: propagation to

the detector, and the conversion of the signal at the detector to a digital count. The first

part depends on the radiance from all sources L , within the field of view of a pixelΩI F OV ,

the transmission of the atmosphere τAT M , the transmission of the optics τO P T , and

the the area of the sensor’s aperture AO P T . The second part depends on the quantum

efficiency of the detector, η, and the integration time. Putting all these terms together

and integrating over the bandwidth∆λ and integration time results in a signal in terms

of total electrons that can be converted to a digital number,

D = A/D
§

∫

∆t

∫

∆λ

τa t m (λ)L (λ, t )ΩI F OV AO P TτO P T (λ)
η(λ)

h c /λ
dλd t

ª

, (1)

where A/D represents the analog to digital signal conversion based on the total number

of bits. That is, if there are 12 bits, the range of digital numbers, or counts would be from

zero to 212−1= 4095, with a value of 4095 representing saturation and zero representing

no signal. In a perfect system, the only source of electrons would be the incident
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photons from the scene, contained within L (λ, t ), and the number of counts would be

proportional to L . Additionally, for a perfect system that is diffraction limited, the energy

on the detector could be computed by using an Airy function to represent the point

spread function. However, real optical systems suffer from a number of factors that

degrade their performance and as a result, have an impact on the detection problem.

2.1.2 Noise and Image Artifact Sources.

Section 2.1.1 discussed the problem of imaging a scene with a staring sensor. While

ideally this process would produce an exact representation of the scene and targets,

there are a number of noise sources and aspects of the imaging process that corrupt

the ideal image, making it more challenging to extract useful information from the data.

Photodetectors rely on a detector material suitable for absorption of energy transmitted

within a narrow band. For photovoltaic detectors, incident photons are converted to a

photogenerated current ig =ηφq q whereη is the quantum efficiency,φq is the incident

photon flux, and q is the elementary charge. Analog current is linearly converted to a

digital number D recorded at each pixel in the image plane. Therefore for ideal detectors,

D ∝φq . The proportionality constant between D andφq will depend on the specific

characteristics of the detector collecting the radiation, butφq is not the only source of

current in the detector system.

In addition to the photogenerated current, current due to noise sources both internal

to the detector and due to the electronics and environment are present. The potential

internal detector-generated sources of noise in an optical detection system include

Johnson, shot, generation recombination, one over frequency, temperature fluctuation,

microphonics and popcorn noise; while the external sources include noise photon flux,

and the post-detector electronics involved in converting current to the output signal.

While all of these noise sources may be present, some will dominate, and generally only
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three or four will be of concern. Here, only an understanding of the noise statistics

for the primary noise sources is necessary, but a detailed discussion of these noise

sources can be found in [21]. For the sensors of interest to the department of defense

and intelligence communities (DOD/IC), the typically dominant internal noise sources

are Johnson noise (also known as thermal noise), which is a result of the thermal motion

of charges, and shot noise, which is due to discrete photoelectron generation and is

associated with DC current flow across a potential barrier (namely the pn junction in

photovoltaic detectors). The dominant external sources are quantization noise, which

is due to the conversion from analog signal to a digital output and photon noise, which

is the result of fluctuations in the incident signal and background radiation [14]. For

quantization and photon noise, the noise distribution can be approximated with a

Gaussian distribution due to the large numbers involved (e.g. current carriers, photons)

via the central limit theorem [21, 38].

In addition to noise current, the individual pixels of real imagers will always have

slightly different characteristics and therefore responses, producing non-uniformities

in the final image that do not trace back to the scene being imaged. Generally, non-

uniformity corrections (NUCs) and removal of bad pixels (e.g. pixels with virtually no

response to incident radiation, saturation regardless of incident radiation, or other

anomalous behavior) is performed prior to any further image analysis. Most detection

and tracking methods assume such corrections have been performed. The details of

these corrections are beyond the scope of this research, but an understanding of the

concept of NUCs will aid in recognizing the advantage of a detection method that is

insensitive to such non-uniformities.

Another factor to consider is the point spread function (PSF). The PSF describes

how radiation from a point source is physically distributed on the focal plane and is a

property of the optical system. For an ideal imaging system that is diffraction limited,
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the PSF is an Airy disc, but in reality few systems are diffraction limited. For most well

designed imagers the PSF is roughly Gaussian and as such, many detection approaches

simplify the problem by using a Gaussian shape for the PSF so that targets have a 2-D

Gaussian profile as in [2, 5, 8, 9]. Figure 2 shows an example of a Gaussian PSF. The

sensor model described in Chapter III and used throughout this research has the option

of loading in a specific PSF, but because the work here is meant to be platform agnostic,

a simple 2D Gaussian profile is used.

Figure 2. An example of the point spread function of an imager.

Because the energy collected by an imager is first blurred by the PSF and then sampled

by the pixels in the detector, even when a target is centered in the field of view of a

pixel, its energy will generally be spread across multiple pixels, requiring integration

over the PSF to collect all the energy from any given target. This is an important effect

to understand when discussing the difficulty of detecting various targets and will be

discussed further in Section 2.4.

Finally, the sensor inherent noise and non-uniformity discussed above are not the

only factors altering the final digital image; environmental and platform motion effects

also contribute to sensor artifacts. For a completely stationary sensor, every frame would

image the same portion of the scene in the same pixel as the previous frame; however,

small sensor motions known as jitter can cause an object to appear in an adjacent
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pixel in consecutive frames. For areas in the scene where there is a large contrast, such

as coast lines or cloud edges, this results in clutter, or clutter noise. Similarly, sensor

drift and yaw also cause objects to appear in different spatial pixels over time. For

algorithms that use a large number of temporal frames of data, these are important

effects to consider.

2.2 Approaches to the Detection and Tracking Problem

The output of an imager as described in Section 2.1 is a three dimensional array

often referred to as an image stack, frame stack, or a data cube. Each pixel in the

data cube has a digital number value Dk (r, c ) that is proportional to the number of

photons collected by that pixel. Here, r and c represent the pixel row and column

and k represents the frame number. Each pixel contains structured background signal

represented by Bk (r, c ), noise represented by εk (r, c ) that is randomly varying in time,

and potentially a target of interest represented by Tk (r, c ). The equation

Dk (r, c ) = Bk (r, c ) +Tk (r, c ) + εk (r, c ) (2)

describes every pixel in such a frame stack. A target is defined here as a moving object

that is not part of the background scene. For example, in the case of the Space Based

Infrared System (SBIRS) whose mission includes global strategic missile warning, targets

are certain classes of missiles [1]. Targets can be grouped into those that are resolved

(target is observed in multiple pixel field of views) or unresolved (target completely

contained within a single pixel’s field of view). This research focuses on unresolved

targets.
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2.2.1 Detect-Before-Track.

There are two common paradigms for the detection and tracking problem. The first

(and simplest) involves using the information contained in either a single frame k or

multiple frames combined into a single frame to decide whether to declare a detection.

This is generally referred to as the Detect-Before-Track (DBT) approach and is shown in

Figure 3, where a blue square represents the data at a particular stage and a rounded

green rectangle represents an operation on the data.

Figure 3. DBT process for detecting moving targets

The input of the process is the data cube described in the previous section. The image

processing step in the DBT scheme is generally a two part process. The first part involves

applying a NUC and removing bad pixels as discussed in Section 2.1.2 while the second

is known as background suppression and involves removing the structured background

from the frame stack so that ideally only the temporally and spatially varying noise and

targets are left in the data. Techniques for background suppression have been a popular

research topic for decades and as a result a large number of methods are available.

All involve a prediction of the background derived from the data either spatially or

temporally. Simple methods involve using spatially or temporally neighboring pixels

to create the background prediction as in [24, 10, 29, 25, 26, 27]while more advanced

methods involve performing a low-rank and sparse (LRS) decomposition using a method

such as Robust Principle Components Analysis (RPCA) [32].

In general, for every frame k , the background estimation method produces a cor-

responding frame containing only background information (Bk (r, c )). The next step

involves simply subtracting the background estimation frames from the original frame
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stack to produce a new image stack containing only targets and noise, as shown in

Figure 4.

Figure 4. The process of removing the structured background from an image where the background
estimation (center) is subtracted from the raw data (left) to produce the final image containing only
noise and targets (right)

At this point it is the goal of the detection process to determine which pixels in the

background suppressed data cube contain targets and which are simply noise. As with

the background suppression step, there are a number of different ways to perform the

detection step, but the basic premise is the same for most of them. First a threshold is

chosen based on the desired balance of true detections and false alarms and a chosen

metric, then all pixels exceeding that threshold are given a value of one and those below

it are given a value of zero. The result is the candidate detections cube, a binary cube

with the same dimensions as the raw data cube, but with a value of one for a possible

target and zero elsewhere. Variations in detection approaches enter with respect to

how the threshold is determined. The simplest example is to base the threshold on the

overall noise (represented by the standard deviation) in the data cube, but additional

methods include using a probability distribution to set a threshold, as in [4] or the use

of a sliding window structure as in [39].

The candidate detections cube is then passed through a filtering process. The goal

of this step is to reduce the number of false alarms by eliminating candidate detections

that are likely to be false. For example, one such type of filtering is spatial filtering.
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If the targets are known to be multiple pixels in extent, then it follows that isolated

pixels are false detections and can be removed. The result of the filtering step (a more

accurate candidate detections cube) is then fed into a tracking algorithm to combine

the individual detections into groups of candidate detections corresponding to a single

target, known as tracks.

These tracking algorithms all follow the same basic iterative two step approach

with varying degrees of complexity. Starting with the first temporal frame of data, each

candidate detection or measurement is used to predict measurements in subsequent

frames. This is known as state estimation and usually involves using equations of

motion (in terms of position, velocity and acceleration). After the prediction step, the

measurements in future frames are compared to the predictions, and if they fall within

some acceptable region, they are then considered potentially part of that particular

track. This is illustrated with track A in Figure 5. The circle around frame 4 (green)

indicates the acceptable region. Clearly only one of the frame 5 detections falls within

this acceptable region and so it is considered the next point in the track. One of the

most well known approaches to state estimation involves using the Kalman filter of [19].

The second step involves determining which measurements belong to which tracks

when multiple candidates fall within a single predicted region. These data association

methods fall into two categories, non-Bayesian and Bayesian. The non-Bayesian ap-

proaches involve maximizing a cost function to determine data associations while the

Bayesian methods use the measurements that are already part of a track to estimate

probabilities for each potential new track point. For example, a simple non-Bayesian

method involves using the nearest neighbor approach. This means that when deciding

between multiple measurements, the closest measurement to the previous time step

is chosen (as shown in track D of Figure 5). This process of state estimation and data

association is repeated until all measurements have either been grouped into tracks
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Figure 5. Illustration of the data association and state prediction steps in a tracking algorithm.

or discarded as false. Potential challenges for tracking algorithms include missed de-

tections (as illustrated in track C of Figure 5) as well as false detections that trick the

algorithm into choosing the wrong path, as the frame 5 detections of track B in Figure 5

would do for the nearest neighbor approach.

The Detect Before Track scheme works well in situations where the targets of interest

are bright with high signal to noise (SNR) ratios, but the decision to threshold based

on an individual frame of data presents a problem when signal from targets of interest

are barely discernible above the noise floor. This problem is demonstrated in Figure 6:

the top row shows a sequence of frames in which the target is moving and bright. The

bottom row is a similar sequence of frames but with a target that is only slightly above

the noise floor and (as a result) is difficult to discern in a single frame of data.
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Figure 6. A target with a maximum SNR of 10 (top) and a target of SNR 2 (bottom) moving along the
true path indicated by the white dots

In this latter situation it is necessary to lower the threshold value significantly to

avoid discarding potential target pixels. As a result, the number of candidate detections

passed to the tracking stage is very high, causing an increase in the number of false

alarms as well as an increased burden on the tracker. Figure 7 illustrates this problem

using a simulated data set containing eighteen targets with average SNRs ranging from

2.5 to 50. The threshold was set at 4σ on the left and 3σ on the right where σ is the

standard deviation of the whole data cube and is a simplistic representation of the

noise in the scene. While three times the noise level seems like a fairly high threshold, it

is clear that there are a large number of false alarms present. This is due to the large

number of pixels. For a normal distribution, 99.7% of the data points are within ±3σ

of the mean, which means there is an expected 0.3% false alarm probability. For an

array that is 500×500, this means there will be 750 false detections. When the threshold

is lowered to detect dim targets, these false detections can overwhelm the tracking

algorithm. As a result, detection of low SNR targets with the DBT approach is generally

not feasible. In response to this problem, many algorithms that delay the detection

decision through partial target tracking across multiple frames and pixels, have been

developed and as a body are termed Track-Before-Detect (TBD) methods.
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Figure 7. Single frame of detections with a 4σ (left) and 3σ (right) threshold

2.2.2 Track-Before-Detect.

TBD methods leverage the information contained in multiple frames of data as well

as spatial information simultaneously, allowing them to perform better for low SNR

targets. Figure 8 shows the general processing chain for TBD methods.

Figure 8. TBD process for detecting moving targets

The principle is the same as that of averaging images to reduce noise, but with

the added complication that the target’s path must be predicted for each additional

frame. Just as with the DBT approach, the first step involves processing the image

to remove non-uniformities, bad pixels and the structured background. But instead

of thresholding the data at this point, potential target tracks are found and scored

using various methods. Examples include Bayesian methods like that of [36], which

accumulate the probability from all candidate tracks and determine the most likely track;
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and maximum likelihood (ML) methods like that of [6] , which select the single best track

at each time step based on a metric. Figure 9 is a notional diagram to illustrate these

approaches. The five tracks shown represent the potential paths a target could have

taken based on a set of assumptions such as the maximum velocity and acceleration of

the target. For the Bayesian approach, the probability that each of the final five tracks is

correct is computed and the final track is the one with the highest probability. For the

maximum likelihood approach, each step in time is treated separately and the highest

scoring trajectory at each step is kept. For example, in Figure 9 if path 2-5 is the most

likely of the three paths from frame two to three, then at the next frame, only paths 5-8

and 5-10 are compared and whichever scores higher is kept. This process is repeated

over the entire data cube and tracks that score above a set probability threshold (or

metric threshold for ML methods) comprise the final output.

In this illustration the potential paths over four frames were limited to 5 for ease of

visualization, but in reality, without prior knowledge of the target’s motion, the number

of potential paths may be as large as (R ×C )K . For our simple example, there would

really be (5×5)4 ≈ 390,625 possible paths in a data cube with five rows, five columns

and four frames. What this means is that prior knowledge of the target’s motion is

necessary to reduce computation time to a feasible level, but even then the number

of computations (at least one for each possible path) is extremely high and thus the

resulting TBD algorithms are computationally expensive. In a comparison of four TBD

methods, it was found that even the fastest implementation of the four (the histogram

probabilistic multiple hypothesis tracking (H-PMHT) method of [37]) took 42 seconds to

process a 20×20×20 data cube [12]. Without considering the size of the data cube, this

is a reasonable computation time, but with today’s megapixel array sizes, this quickly

becomes intractable. To put this into perspective, first note that computer clock speeds

have largely plateaued since 2004 [16]. Let’s also assume that the H-PMHT method
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Figure 9. Illustration of the Bayesian and ML track-before-detect approaches

scales linearly with the number of pixels (a poor assumption but the most generous

one we can make). For a large data cube with dimensions 1024×1024×500, the total

computation time would be over 31 days, clearly making real-time implementation

impossible. As a result, new methods that combine the speed of DBT approaches with

the ability of TBD methods to detect low SNR targets are needed. These methods are

the focus of this research.

2.3 Algorithms for Comparison

Because the focus of this research is on algorithms with the potential to operate in

the near real time realm, direct realistic comparisons will be made to two other detect-

before-track approaches both in terms of their detection performance and computation

time. Both of these algorithms essentially consist of a background suppression step

followed by a local spatial detection method, like the one use in [39].

The first algorithm is known as coaddition, or coadd, and implements several basic
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local background estimation strategies combined with frame summation. Figure 10

shows a single pixel from a frame stack of 40 frames.

Figure 10. Coaddition algorithm parameters and calculations

The coadd algorithm computes a coadded frame by performing a signal operation

on W frames in the signal block, a background operation on the WS frames in the

background blocks, and then subtracting the two. The whole process is then repeated

after sliding S frames forward in the frame stack. The available operations are mean,

median, minimum and maximum. The result of this process is a background suppressed

and signal enhanced frame stack where the level of enhancement depends on how much

platform motion is present (in the background case) and how long the target dwells in

a single pixel (in the target case). For the background case, this is because the mean,

median, minimum and maximum will only provide relevant information when the pixel

is imaging the same portion of the scene over the WS included frames. In the target

case, summing frames will enhance the signal as long as the target is still partially in the

pixel since the signal will add and the uncorrelated noise will tend to average to zero,

resulting in a theoretical SNR increase of
p

W .

The second algorithm used for comparison is a running principle components al-

gorithm. Whereas coadd subtracts a background estimated using simple operations,

running principle components is a more complex and accurate method of background

estimation. The parameters and implementation of the running principle components

algorithm are the same as they are for coadd, with the exception of the background

portion. Instead of performing a simple operation over the background frames and
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using the result as a background estimate, the running principle components algorithm

uses the background frames (WS ) to determine the principle components, and then

projects the missing frames that contain the signal (W ) into that space to get a back-

ground estimate for the current frame. The result of this process is a very good estimate

of the background, with the different principle components being used to account for

all the different sensor motion that occurs.

For the detection step, the implementation in both these algorithms is the same. A

spatial kernel like the one shown in Figure 11 is used to compute a peak local spatial SNR,

SNRS = (x −µS )/σS where µS andσS are the mean and standard deviation computed

using the gray background pixels and x is the red test pixel.

Figure 11. Kernel used to compute local spatial SNR for detect-before-track methods

This computation is done for every pixel in the frame stack, resulting in a new cube of

local spatial SNRs. To get detections, a threshold is set and pixels with a local spatial

SNR greater than the threshold are detects and set to one, while those with lesser values

are set to zero.

2.4 Metrics

In order to quantify how well a detection or tracking method is performing, a number

of different metrics are used both to quantify how challenging the scenario is and to
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measure the detection performance.

2.4.1 Signal to Noise Ratio.

In the previous section, the local spatial signal to noise ratio, SNRS , was introduced

as a metric to describe how easily a target can be detected. Generally speaking, the

signal to noise ratio is defined as the ratio of the signal of interest to the background

noise level [22], but there are numerous definitions for both the signal and the noise

terms in the ratio that can greatly impact the calculated value. Here we will lay out the

many different methods of computing SNR in the context of targets in wide area motion

imagery, and discuss how they relate to each other, allowing the results presented here

to be put in the context of existing work.

As discussed in Section 2.1.2, the energy from a target is smeared across multiple

pixels by the point spread function. As a result, rather than a single bright pixel, several

adjacent pixels will also appear brighter than the background. There are three different

ways to describe the signal of the target. The first is in terms of a peak maximum signal,

SM X which is the value of the pixel containing the target when the target is perfectly

centered. This value is of use in describing generally how bright a target is, but since

targets are rarely perfectly centered, it is not a practical method of quantifying target

brightness in real data. The second approach is to integrate over the point spread

function to obtain a total signal, ST OT . This will produce a much higher value than

the peak maximum signal but is of use in scenarios where spatial features of the target

are an important element. It also will be consistent as a target moves since it does not

depend heavily on the position of the target relative to a pixel. The third approach is to

use the actual value of the pixel containing the target as the signal, known as the peak

signal, SP K . This is the approach used for the local spatial SNR discussed in Section 2.3.

Similar to the peak maximum signal, the peak signal is based on a single pixel, but it is
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derived from the data and will change significantly depending on the target’s position

within the pixel. Since the MBD algorithm does not make use of spatial features in

the frame stack, this third metric is the most logical choice given that it will quantify

the instantaneous brightness of the target and provide a measure of the difficulty of

detecting a target in any given frame.

The signal is only one component of the signal to noise ratio. There are also three

common ways of quantifying the background noise. The first approach is to use the

global standard deviation,σB , a metric that captures the variation across the whole data

cube. For this to be a meaningful metric, the structured background must be removed

first (as shown in Figure 4), because it is the time-varying noise that is of interest, not

the spatial variation in the scene. Letting εrk ,ck
represent a pixel in the data cube after

the background has been removed,

σB =

√

√

√

√

1

r c k

r
∑

g=1

c
∑

i=1

k
∑

j=1

(εg j ,i j
−µε)2, (3)

where µε is the mean over all noise pixels εrk ,ck
. For this approach to be accurate, the

structured background must be removed effectively and the noise must be fairly uniform

across the scene. In cases where there is platform motion and the background cannot

be easily removed, a localized estimate of the variation in the background is of more

use. This can be done either temporally, computing the standard deviation for a single

spatial pixel over time, or spatially, computing the mean and standard deviation over

a local spatial region as discussed in Section 2.3. For the temporal case, the standard

deviation for a pixel can either be computed using its entire temporal history, or it can

be computed using an approach analogous to the local spatial approach, computing the

standard deviation over a local temporal region and excluding the frames containing the

signal. The latter approach is much more accurate as it excludes the target, preventing
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the target’s signal from artificially inflating the background variation. Figure 12 is the

temporal analog of Figure 11. In this figure, σT is the standard deviation of the gray

pixels.

Figure 12. Regions for computing temporal SNR for a single spatial pixel

Now that we have discussed the various methods of computing the signal and noise

in a data cube, we turn to combining these two elements into some common SNR

metrics, and discuss how these will be used in the context of this research. The first of

these, the local spatial SNR, SNRS , has already been discussed. A second useful localized

metric is the local temporal SNR, SNRT = SP K /σT , which quantifies the instantaneous

difficulty of detecting a target in a single spatial pixel and frame using the pixel’s time

history. In the case of perfect background suppression, as more temporal frames are

included, these two metrics should approach each other. Additional useful metrics

are the peak maximum global SNR, SNRM X = SM X /σB and the total local spatial SNR,

SNRST OT
= ST OT /σS . Other combinations of the signal and background calculations

discussed previously are possible, but this research will primarily use the local spatial

and temporal SNRs and will make a comparison to work that uses the peak maximum

global metric.

To illustrate how these metrics differ, consider a scenario with a target moving in a

straight line in Gaussian distributed noise as shown in Figure 13a. One hundred such

scenarios were created at a single input signal level with the target persisting for 20

frames in each case for a total of 2000 data points containing target. The target’s SNR

was then decreased twice to create 2 more sets of data with the only difference being a

lowered target signal. Two individual frames from each of these 3 scenarios are shown
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from left to right in Figure 13a. Figure 13b shows histograms of the calculated local

temporal, local spatial, and total local spatial SNRs along with a line representing the

peak maximum global SNR for each scenario.

(a) Target Examples (b) SNRs

Figure 13. Examples of variation in SNR of targets depending on position and the method used to
calculate signal and noise components

As expected, the local spatial and local temporal SNR calculations align very well,

but show significant spread. This is due to the variation in the position of the target in a

pixel and is noticeable when comparing the top and bottom rows in the first column of

Figure 13a. In the top row the target is mostly centered on a pixel, while in the bottom

row it is at the corner of a pixel. The difference in brightness is significant, and it is

this difference that causes the spread in the histograms of Figure 13b. As mentioned

previously, one way to account for this is to use the total local spatial SNR instead, and as

expected, these histograms are not as spread out. The spread that is present is due to the

small variations in the local spatial noise over the scene. However, for this research, this

metric is not as meaningful since single spatial pixels are operated on independently

to produce detects. Finally, the lines indicating the peak maximum global SNR appear

on the right tail side of the local temporal and spatial SNR distributions, but are clearly
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not the maximum values for these distributions. This is due to the variation in the local

noise statistics. When the local temporal or spatial noise is lower than the global noise

and the target is relatively well centered in a pixel, the local metrics will likely produce

higher values than the peak maximum global SNR.

Clearly, there are a large number of methods of quantifying how difficult a target is

to detect. For this research, since the MBD algorithm operates primarily temporally

and because it does not depend on how the background is removed, we will use the

median of the distribution of a target’s local temporal SNR, SNRT , as a single metric

when discussing the SNR of targets within a scene. Also note that in cases where there is

considerable platform motion, and therefor clutter noise, the value computed for SNRT

becomes a measure of the signal to clutter plus noise ratio, SCNRT , since it is not possible

to separate clutter noise from other noise sources. When the background is perfectly

removed, clutter noise goes to zero and SNRT = SCNRT . Throughout the following

chapters, when the local temporal SNR is computed before background suppression, it

will be referred to as the local temporal signal to clutter plus noise ratio SCNRT , and

when the same metric is computed after background suppression, it will be referred to as

the local temporal signal to noise ratio, SNRT . In the latter case, imperfect background

suppression may still leave some artifacts, but these will have the same impact on target

detectability as other noise sources, and thus we make no distinction between the two

types of noise.

2.4.2 Reciever Operating Characteristic Curves.

Now that we have a method of quantifying a target’s brightness in a meaningful and

repeatable way, we need metrics with which to compare and quantify the performance

of a detection algorithm. As discussed previously, the detection problem involves

determining if any given pixel contains either only background, or background with the
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addition of a target. To illustrate this concept, consider a target embedded in normally

distributed noise with mean µB and standard deviationσB . Using the framework of a

statistical hypothesis test and assuming that the presence of a target causes only a shift

in the mean of the background normal distribution from µB to some higher value, µT ,

H0 : X ö
1

p

2πσB

exp
−(x −µB )2

2σ2
B

(4a)

Ha : X ö
1

p

2πσB

exp
−(x −µT )2

2σ2
B

, (4b)

where X is a random variable representing a pixel in a data cube and the magnitude of

µT depends on the SNR of the target. Figure 14 show plots of the null and alternative

hypotheses in blue and orange respectively. Since the detection problem is binary, a

threshold is chosen and realizations of X that are greater than that threshold will result

in rejecting the null hypothesis while lesser values will accept it. In the example in

Figure 14, the threshold is set at five.

Figure 14. Null (blue) and alternative (orange) hypothesis probability distributions withσB = 2,µB =
0 and µT = 2, resulting in SN RM X = 1

We estimate the probability of detection, P̂D as the number of accurate decisions, or true
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positives, divided by the total number of trials or truth pixels,

P̂D =
# True Positive Detects

# Total Truth Pixels
. (5)

This metric quantifies how effectively a target is detected, with zero representing no

detects, and one representing perfect detection. The lighter shaded region in the figure

indicates the probability of detection with a threshold set at 5. Clearly, a large portion of

the pdf is not included in this region (in this example, P̂D = 0.07). Sliding the threshold

to the left will increase the probability of detection, but at the cost of more incorrect

decisions, where the null hypothesis is accepted while a target is actually present. This

trade off is quantified with a second metric, the false alarm probability, P̂F A. In the

context of detection, there are a number of similar ways to quantify this property, but

for this research we estimate it as the number of false detections divided by the total

number of pixels in the data cube,

P̂F A =
# False Positive Detects

# Total Pixels (R ×C ×K )
. (6)

Different applications will have different requirements when it comes to acceptable

false alarm and detection probabilities. As a result, it is useful to examine the perfor-

mance of a detection method over the whole space of possible false alarm and detection

probabilities. This is traditionally done using a reciever operating characteristics curve

or ROC curve, which is a plot of the probability of detection versus the false alarm

probability. Each point on the curve represents a different possible operating point

for the detector, providing a complete picture of the detector’s performance. If the

probability distribution functions for the null and alternative hypothesis are known (as

is the case in Figure 14), the ROC curve can be computed directly from their cumulative

distribution functions with P̂D = 1−C D FT g t+B k g (θ ) and P̂F A = 1−C D FB k g (θ ), but when
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testing an algorithm on a set of data, we estimate P̂D and P̂F A through equations 5 and

6. Clearly, the accuracy of this approach will depend on the quantity of data used. To

quantify this, the relative absolute error at some significance level α given N trials can

be computed for PD as

ε=

√

√ [Q−1(α/2)]2(1−PD )
N PD

, (7)

where Q is the right tailed probability for the standard normal distribution and 100(1−α)

is the confidence level [20]. Figure 15a shows the ROC curves for the scenario in Figure

14 and Figure 15b shows the same scenario with a target that is three times as bright.

(a) SN RM X = 1 (b) SN RM X= 3

Figure 15. ROC curves computed theoretically and numerically for two targets with SN RM X = 1 (a)
and SN RM X = 3 (b) with error bars computed using equation 7 with α= 0.05 .

The red curve represents the theoretical ROC curve based on the cumulative distribution

functions while the other curves are numerically computed using varying numbers of

trials. As the number of trials or probability of detection increase, the error bars shrink

and the numerically determined curves approach the theoretical curve as expected.

Equation 7 will be used for all error bars in the following sections, where the number of

trials will simply be the number of truth points (the denominator in PD ).
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Finally, while ROC curves are an excellent method of comparing a small number of

detection approaches, the large number of data points makes it difficult to visualize and

compare the results when comparing many different sets of algorithm parameters. To

solve this problem, two approaches will be used to compare the information contained

in ROC curves using a single metric. The first involves computing the minimum distance

to the top left corner of the plot containing the ROC curve,

DR O C =
q

P 2
F A + (1−P 2

D ). (8)

This metric is a representation of overall performance for a detector, but in some cases

the minimum distance may have an unacceptable false alarm probability for an ap-

plication. The second approach involves choosing a specific false alarm probability

and finding the probability of detection at that single operating point. Both of these

methods will be used to quantify and compare the detection performance of algorithms

in the following chapters.

2.5 Algorithm Test Data

In order to truly understand the performance of MBD compared to the two algo-

rithms described in Section 2.3, a direct comparison is necessary. Because the algo-

rithms will perform differently depending on elements such as noise, sensor motion,

target dynamics, and target signal, to make a meaningful comparison, sets of data

that span the relevant parameters are needed. Additionally, to compute the metrics

discussed in Section 2.4, absolute target truth must also be known. There are three

primary ways of obtaining such data sets. The generally preferred method is to ob-

tain data from real sensors; however, these data sets are often difficult to obtain, the

truth is estimated and not necessarily accurate, and the scene content cannot be easily
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controlled to test algorithms under a large variety of relevant conditions. All of these

elements make using real data in the initial development and testing of algorithms very

challenging. The second method is to use real data sets for the background imagery

and embed moving targets to detect. This approach solves the problem of obtaining

absolute truth, but still does not allow for a great deal of flexibility for testing algorithms

in a variety of scenarios, and again presents the problem of obtaining good data sets

to work with. The third and final option is to use synthetically generated data. With

this approach, all elements of the scene and target motion are controllable, allowing

for thorough studies of automatic detection algorithm performance across a range of

scenarios. When considering ease of use and the ability to evaluate algorithms over a

large number of scene parameters, the option of generating synthetic data is the most

practical, as long as it is truly representative of real data.
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III. ASSET

This chapter is a repetition of [42], a conference paper presented at the 2017 in-

ternational society for optics and photonics, defense and commercial sensing (SPIE

DCS) conference. Minor changes have been made to improve grammar and clarity

but the content is the same as originally presented and published in the conference

proceedings.

3.1 ASSET Model Description

ASSET was originally developed for internal use at the Air Force Institute of Technol-

ogy (AFIT) to support student research where absolute knowledge of object position

and radiometric signature (i.e. truth) is needed, as is the case in detection and tracking

efforts [43], as well as research where a large number of data sets are required, such as

machine learning. It is intended to be used to model sensor response to at-aperture

irradiance, generate data sets suitable for algorithm development and testing, and allow

for the investigation of sensor configurations in a way that is computationally efficient

and easily accessible to the user. As a result, it is not suitable for work where exact

radiometric properties of specific scenes are needed: for example, in absolute band

comparisons in various weather applications – for those types of applications, tools

such as the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model [34]

or the Monte Carlo Scene (MCScene) model [33, 3]may be better suited.

ASSET is a sensor emulator, not a simulator, and as such is not designed to replace

high fidelity models such DIRSIG or MCScene, but rather to operate in the problem

space where plausible and realistic but time consuming calculations, such as using the

bidirectional reflectance distribution function (BRDF) and ray tracing, do not provide a

significantly improved result for the application at hand, i.e. where the signal statistics
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and sensor artifacts are much more important than absolute radiometric representation.

ASSET’s value is its ability to reproduce the imperfections commonly associated with

real sensors but not often observed in simulated data, and to do so efficiently and with

a shallow learning curve.

3.1.1 Model Overview.

ASSET is a physics-based image-chain model in which a high resolution source

image provides the basis for the background scene, various remote sensing processes

are emulated, and a dynamic (i.e. time-varying) array of data frames is output. The

overall process flow is shown in Figure 16. For clarity, we refer to the input as the

source image; intermediate steps as oversampled arrays (for reasons which will be later

explained); and the sensor’s output as a data cube comprised of multiple detector frames.

Characteristics of the sensor and scene emulated in ASSET are specified with an

ASCII text configuration file containing all of the tunable parameters in the emulator. A

representative subset of these parameters are identified in Table 1. To start, ASSET takes

the high resolution source image as an input. ASSET was originally developed to use

Landsat-8, which is approximately 6000×6000 samples at 30m ground sample distance

(GSD), but any generic image can be used with additional user-defined spatial and

radiometric properties. For Landsat-8 inputs, the data are calibrated to convert from

digital numbers (D N ) to top of atmosphere spectral radiance (Lλ) using the Landsat-8

metadata; for generic images, the user defines the dynamic range of the scene radiance,

and the minimum to maximum DN are linearly mapped to the minimum and maximum

radiance values. The user may instead specify the range of surfaces reflectivity (or its

complement, emissivity) which are likewise linearly interpolated to DN. For the latter,

surface radiance is then computed as the sum of Lambertian-reflected seasonally-
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Figure 16. Process flow diagram for ASSET. The large box colors represent changes in the dimensions
of the source image as it is propagated through the model, as noted in the lower left of each box; the
inset boxes indicate which scene characteristics are included at each point in the process; and the
bottom right of each box identifies the units associated with each pixel.

adjusted solar irradiance at earth’s surface for the user-specified scene location, date,

and time [28]; and thermal graybody emissions at surface temperature T. For both

reflected and emitted components, spectral radiance is attenuated by atmosphere and

path radiance is added,

Lλ =τa t m ·
�ρ

π
·Es o l +ε ·B (T )

�

+ Lp a t h (9)

where τa t m and Lp t h are derived from a user-defined atmosphere, the default values of

which are currently obtained from MODTRAN standard atmospheres [7].

The source image is then resampled via 2D linear interpolation so that the ratio of

the model sensor’s GSD (∆) to the source image’s GSD (δ) is an integer value equal to an

user-specified oversample factor. This oversampling conserves energy and is performed

in order to facilitate sensor jitter later in the process. In the case that the the source

image is not of sufficient spatial resolution, i.e. the ratio∆/δ is less than the specified

oversample factor, a sharpening algorithm is used to artificially introduce higher spatial

frequency content. This is necessary to provide sufficient spatial variation to generate

realistic clutter statistics from sensor motion.
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Table 1. ASSET Configuration Parameters

Source Image Properties Sensor Configuration
Rotation angle [deg] Frame rate [Hz] Quantum efficiency [e/ph]

Scene dimensions [km × km] Integration Time [µs] Well depth [e]
Pixel dimensions [m ×m] Focal plane dimensions [pix × pix] Dark current [e/s]
Radiance range [W/m2-sr] Ground sample distance [m] Dark current variance [%]

Surface reflectivity range [min, max] Focal length [cm] Thermal [e/s]
Emissivity range [min, max] Platform altitude [km] Read [e]

Environmental Characteristics Platform yaw rate [deg/hr] Flicker β

Cloudyness [%] Platform jitter [µrad/s] Flicker strength [e/s β ]
Cloud velocity [km/hr] Optical transmission [%] Dead pixels [%]

Cloud warp rate [m/s] Aperture diameter [cm] Hot pixels [%]
Cloud base [m] Point source width [pix] Happy pixels [%]

Cloud depth [m] Cold stop temperature [K] Aimpoint drift [µrad/s]
Cloud albedo [%] Cold stop emissivity Vertical non-uniformity [%]

Surface temperature [K] Optics temperature [K] Horizontal non-uniformity [%]
Date & Time Optics emissivity Random non-uniformity [%]

Location [lat, lon] Bit depth

At this point it is helpful to introduce additional terminology to avoid confusion.

The source image has N ×M samples (or N ′×M ′ samples after resampling). We use

the term samples instead of pixels because the latter is reserved for the modeled focal

plane, which is of dimensionality n ×m pixels. The ratio N ′/n =M ′/m =∆/δ is the

oversample factor, the reciprocal of which is the minimum sub-pixel shift in sensor

pointing that can be accommodated by the model. A larger oversample factor results in

finer spatial quantization of scene, and consequently a more highly resolved frame-to-

frame jitter and drift, but at the cost of greater memory requirements. In summary, the

source image is comprised of samples, the detector frames are comprised of pixels, and

the ratio of pixel to sample linear dimension is the oversample factor.

The sensors emulated by ASSET do not respond directly to energy (e.g. joules).

Rather, they are photon detectors, and thus source spectral radiance is converted to

at-aperture photon flux,

Φp = Lλ
λ

h · c
Ω ·A (10)

where Ω is the solid angle subtended by the model sensor’s aperture and A is the area of

a source image sample (after resampling). In the case that Landsat-8 images are used

as the input, the conversion from Watts to photons/second is accomplished using the
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band-average photon energy.

To account for the effects of the optical system and sampling by detectors with finite

spatial extent, the image is convolved with the point spread function (PSF) of the sensor

and also with the detector response,

Oversampled ArrayN ′×M ′ =F −1[F (Source ImageN×M )×F (P S F )×F (D e t )] (11)

Equation 11 shows how these two steps are accomplished. The Fourier Transform (FT)

of the source image is computed and multiplied by the FTs of the PSF and detector

response. Currently, ASSET uses a Gaussian as the PSF and a rect function as the

detector response, but future development will allow the user to directly specify any

arbitrary PSF or Det function. Taking the inverse transform produces an oversampled

representation of the source image in which the PSF has introduced blurring (energy

is conserved) and the detector response has spatially integrated (energy is summed).

The oversampled array has a factor (∆/δ)2 greater energy than the source image (hence

the term oversampled) because this array represents sampling of the scene at multiple

sub-pixel positions – this will be used later to model sub-pixel jitter and drift.

Whereas the background scene is treated as static (i.e. background scene radiance

does not vary) any objects or clouds in the scene may be dynamic, both moving and

potentially changing shape over the duration of the sensor collection. Rather than

injecting objects and clouds into the scene and repeating the process up to this point

for every detector frame, for computation efficiency the background scene is computed

only once, and each detector frame is obtained by sampling the oversampled array

based on the jitter and drift sub-pixel shift of the sensor’s pointing for the frame. Objects

and clouds are processed in a similar manner and then fused with the background scene,

accounting for obscuration and effects of blurring at edges, as will be described below.

ASSET currently has three methods of injecting objects: user-defined, pre-defined,
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or random path. For all cases, the object position on the emulated sensor’s focal plane for

each frame is obtained from its projection from row, column, and altitude position in the

source image. The object’s radiometric signature (i.e. time-varying radiance) is either

user-specified; derived from its projected area, temperature, and surface reflectivity

and/or emissivity; or scaled to a desired signal-to-noise ratio (SNR) relative to the global

scene noise. For the case where the surface properties are specified, the apparent object

signal is modeled as a combination of solar reflection and graybody at the specified

temperature, which is then weighted by atmospheric transmission and the sensor’s

relative spectral response (RSR) and integrated across the band pass,

Φt g t =

∫

τa t m · (εt g t ·B (λ, Tt g t ) +
ρ

π
·Es o l ) ·RSR (λ)dλ. (12)

If the SNR was provided, rather than the surface properties, the object signal is scaled

so that its peak signal – after accounting for the system response as in Equation 11 – is

equal to the SNR times an estimate of the global noise. In all cases the object is currently

modeled as spherical1 if larger than or equal to that of a sample in the source image

(30m for Landsat); or if the object area is smaller than that of a sample, then the object

is treated as a point source. Although modeling the object shape these ways seems

unconventional, for WFOV sensors with GSD on the order 100-1000m, the object is

often much smaller than a pixel and the shape is unimportant. Nonetheless, future

development will allow for non-spherical object shapes.

In an application where the user needs full control over the object, all object infor-

mation can be provided as an input to ASSET. However, since many situations do not

require specific object motion and generation of such data can be tedious, the user can

instead provide kinematic limits on the object’s velocity, lateral acceleration, and axial

1The version of ASSET validated here modeled the object as rectangular, but the version used in
Chapter IV is the newer version with spherical objects
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acceleration; and ASSET will produce a random object path that meets the provided

standards. Additionally, since repeating the same object path across test data sets is

often desirable, e.g. when evaluating different sensor configurations for the same scene

and objects, the user can re-use previously simulated objects.

Once the object signal and path are defined, the object must be inserted into the

scene. This is accomplished as in Equation 11 using a peak-normalized object profile

(shape). Here, however, the convolutions are performed in two steps so that PSF blurring

of the object profile can be used to also generate an obscuration mask which is used to

remove signal from the background scene proportional to obscuration by the object:

complete obscuration at the center of objects that are of multi-sample size, and partial

obscuration for sub-sample size objects and at all object edges. The latter ultimately

results in a blending of scene and object signal which is physically representative of

the blurring of adjacent scene irradiance into the object, and vice versa, due to the

optical system. In all cases, energy is conserved and the result is identical to – albeit

more computationally efficient than – injecting the object into the source image for

every frame.

Whereas the obscuration mask is applied after convolution with the PSF only (it’s a

blurring of the irradiance incident on the focal plane), the detector response must be

included in the object signal to account for spatial integration of incident irradiance

over each pixel’s detector dimension. The object profile is convolved with the detector

response, and its area-under-the-curve is scaled to the signal level as discussed above.

This object signal profile is added to the oversampled array at the sub-pixel position for

the corresponding frame. The result is a object whose signal profile properly represents

changes in shape and pixel-to-pixel signal level due to changes in sub-pixel position

frame-to-frame. This is shown in Figure 17 where the top set of chips (small region

about the object) is the object signal profile and the bottom set is after insertion into
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the data cube. These chips demonstrate the utility of ASSET, i.e. exact truth is known for

every aspect of the data cube, allowing the algorithm developer to investigate whether

anomalous results are due to their algorithm, object signal, sensor noise, artifacts, etc.

Figure 17. Objects as seen by the emulated sensor alone (top rows) and after insertion into the data
cube (bottom rows).

Clouds can present a significant signal processing challenge due to their motion

and changes in shape over the course of a sensor collection, and they are often a source

of significant error when algorithms that have been developed on simplistic simulated

data are applied to real sensors. Because of the need to develop algorithms that function

in the presence of clouds, ASSET allows the user to introduce artificial clouds into a

scene. A fractal model is used to generate cloud textures and depth which are con-

verted to reflectance and altitude maps, respectively. Cloud radiance is computed as

a combination of in-band solar-reflected irradiance and thermal emission based on

the altitude-derived temperature of the International Standard Atmosphere [18]. The

clouds are inserted into the oversampled array using the same process described above

for objects. As indicated in Figure 16, we intend to include object and cloud shadows

that are dependent on solar position, sensor viewing geometry, and shape and altitude.

However, at present this functionality is still under development.

With all scene content incorporated, each frame of sensor data is obtained iteratively

by first rotating the oversampled array (if the sensor is rotating) and then sampling the
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array according to the current frame’s aimpoint error. Rotation accounts for yaw of the

satellite about the line-of-sight vector from sensor to aimpoint and is accomplished

by rotating the image about its center (the aimpoint) by an angle calculated per frame

equal to the product of the accumulated yaw rate and time since the beginning of the

collection. Aimpoint error is the sum of sensor drift and jitter and may be specified

directly by the user as a vector of aimpoint error per frame, or it may be defined by the

user as a drift rate and random jitter motion. Jitter motion can further be specified as

either distributed randomly about the ideal aimpoint or as a random shift from the

previous frame’s actual aimpoint (i.e. "random walk"). Regardless of how aimpoint

error is specified, a frame’s aimpoint error is rounded to the nearest integer sample

(recall that δ/∆ is the minimum allowed sub-pixel shift, which corresponds to a single

sample). The aimpoint error is a shift in row and column of the oversample array from

its center, (EN , EM ).

Sampling is accomplished by starting at some offset (N0+EN , M0+EM ) that accounts

for aimpoint error and edge padding of the oversampled array (the latter to allow for

sensor drift and yaw without the emulated focal plane moving off of the image) and

taking every (∆/δ)t h sample, in both rows and columns, until the focal plane size

is reached. This reduces the number of samples from (N ×M ) to (n ×m). These

samples are the pixels of the modeled sensor’s focal plane that comprise the detector

frame for the current iteration. For example, the n t h row of a detector frame is the

set of samples {Φn ,M0+EM
,Φn ,M0+EM+(∆/δ),Φn ,M0+EM+2·(∆/δ), ...,Φn ,M0+EM+m ·(∆/δ)}where Φi , j is

the at-aperture photon flux in the (i , j )t h sample of the oversampled array. It should

now be evident why jitter and drift are quantized by the oversample factor. To obtain

finer aimpoint error requires increasing the oversample factor, which introduces the

trade-off between computational limits and model fidelity.

Self-emission photon flux, modeled as graybody radiances from low emissivity but
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warm optics plus high emissivity but cold cryo chamber or cold stop, are added to the

detector frame to obtain the total photon flux incident on the detector. Optics and cryo

temperatures, emissivities, and relative proportions of the field of view of each pixel

are all user-defined parameters that allow the user to include self-emission radiation,

which is often important in MWIR through LWIR applications.

To emulate the detector response to the total incident photon flux, the detector

frame is multiplied by the integration time to obtain the total number of photons

collected during a single frame. The per-pixel photon numbers serve as the means

of Poisson distributions that are randomly sampled to determine the total number of

photons actually detected during the integration time – this is the shot or photon noise.

The detector frame is then multiplied by a global quantum efficiency term perturbed

by user-defined random and patterned non-uniformities to obtain a total number of

electrons per pixel. Bias due to dark current is also added with a global value and random

and patterned perturbations per pixel. The non-uniformities represent pixel-to-pixel

variance in detector response due to either the detector material or read-out integrated

circuit (ROIC). Figure 18 shows two examples of these non-uniformities.

Figure 18. Examples of non-uniformities in ASSET including bad, happy and dead pixels (left) and
fixed pattern noise (right).

Read and thermal noise are next added as random draws from time-independent and

time-dependent normal distributions, respectively, with user-defined variance. Flicker

noise is likewise added with a user-defined strength and frequency dependence (e.g.
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β = 1 for Pink, β = 2 for Brownian, etc.). The detector frame, now in units of electrons

and including most noise sources, is quantized with a conversion gain (electrons/count)

derived from user-defined well-depth, bit-depth, and analog gain factor. The resulting

count values (equivalent to DNs) are rounded down, introducing quantization error.

The final step is to add bad pixels and other focal plane artifacts to the detector frame.

Bad pixels include dead, hot, and happy and are randomly distributed across the frame

with user-defined clustering, fraction of the focal plane, minimum and maximum signal

values, and fraction of frames fixed or flickering. Additional artifacts include streaks

(in the case of a scanning sensor) and short-duration streaks (for staring or scanning

sensors, representing a temporary fault in the ROIC) of configurable frequency and

length.

Once all of these elements have been included, the detector frame is added to the

data cube. The process continues iteratively until the full n×m×p data cube is formed,

where n is rows, m is columns p is frames, and the data cube’s units are counts. In

addition, nearly all of the elements can be output (or saved to files) independently, e.g.

values of all noise sources per pixel and per frame, non-uniformities, bad pixel types and

locations, object’s sub-pixel positions and signal profiles as a function of frame, cloud

shape and altitude per frame, and so on. As stated previously, this provides tremendous

value for the algorithm developers who wish to test their code – and more importantly

– understand exactly which sensor, scene, or object phenomena are hindrances or

enablers for their application.

3.2 Validation

Some of the potential uses for ASSET include: as a tool for training students and

analysts on a wide range of sensors, generating data sets for tracking and detection algo-

rithm development, and exploring sensor configurations supporting the development
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of new sensors. For all of these tasks, and to make the best use of ASSET, it is important

to quantify and understand how well ASSET’s emulated data represent data from real

sensors. Two approaches were taken to achieve this goal: a space-based sensor data

comparison, and a lab test with a mid-wave infrared camera and a visible camera. For

the space-based sensor comparison, a frame of Himawari-8 data was emulated and then

compared to real Himawari-8 data. The purpose of this effort was to quantify how well

ASSET can match actual radiance values from a space-based sensor. The lab test was

performed to quantify how well ASSET can emulate time-varying sensor characteristics,

such as noise and jitter, in staring sensors operating at frame rates ranging from less

than 1 to 10s of frames per second.

3.2.1 Satellite Data.

To test ASSET’s ability to emulate a specific space-based sensor, synthetic data from

the Japanese weather satellite Himawari-8 was generated using high resolution imagery

from Landsat-8 as the source image, and the output was compared to actual Himawari-8

data collections. Figure 19a shows an example of a full disc earth image from Himawari

with four corresponding high resolution Landsat images to give a sense of the relative

areas covered by these two sensors.

For this comparison, two different methods for determining at-aperture irradiance

were tested in ASSET. The first is the best case scenario in which a Landsat image and

its corresponding calibration coefficients are available in a band similar to that of the

sensor being emulated. Looking at Figure 19, it can be seen that this is the case for

nine of Himawari-8’s sixteen bands. The second case considered is where no such

nearby band is available, and a satellite image collected in a different or unknown band

must instead be used as the source input. In this latter scenario, the radiance of the

source image is calculated from the minimum and maximum reflectance, emittance
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or radiance values provided by the user. The lowest and highest DNs in the source

image are then linearly scaled to match the user-specified bounds in order to create a

distribution of values (reflectance or radiance) that match the real data as closely as

possible. While all of Himawari’s see to ground bands were examined, the remainder

of this chapter will focus on three bands: one each in the visible, short-wave infrared

(SWIR), and long-wave (LWIR) regions of the electromagnetic spectrum. These three

bands are Himawari bands 3, 5 and 13 which match well with Landsat bands 4, 6 and

10 and are shown in orange, purple and green, respectively, in Figure 19. Additionally,

to test the performance of ASSET for the out-of-band case, the same three Himawari

bands were used, but this time with neighboring Landsat bands, namely bands 3 (center

λ= 0.56µm), 7 (center λ= 2.2µm) and 11 (center λ= 12µm).

(a) Scenes (b) Bands

Figure 19. Himawari-8 and Landsat 8 Data (a) and relative spectral response curves for Landsat-8
(solid gray) and Himawari-8 (blue line) bands. The three bands used for comparison are shown in
orange, purple and green (b) .

In an ideal situation, all of the parameters of the emulated sensor would be known

and the user would include them in the configuration file; however, only a subset of

Himawari’s parameters are releasable to the public. These parameters were obtained

from the Advanced Himawari Imager (AHI) manufacturer and their values are listed in
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Tables 2 and 3. The remaining required parameters (shown in gray rather than black

in Tables 2 and 3) were found by first assuming reasonable values consistent with the

known parameters, and then fine tuning the choices using a tuning scene. This process

is described further in section 3.2.1.2

Table 2. Himawari Band Specific Parameters

Band # Center λ (µm) GSD (km) Detector Frame∆t (µs) Well Depth (e −×106) Dark Current (e −×106)

1, 2, 3 0.47, 0.51, 0.64 1, 1, 0.5 Si 902, 902, 451 1.5, 0.66, 0.413 46, 10, 10.3
4, 5, 6 0.86, 1.61, 2.26 2 HgCdTe 902, 902, 1803 1, 2.28, 2.93 5.23 9.33, 9.74

7-12
3.9, 6.19, 6.95 N/A (No matching N/A (No matching
7.34, 8.5, 9.61 2 HgCdTe 1803 band to tune) band to tune)

13, 10.35, 2 HgCdTe 1803 50 500
14, 15, 16 11.2, 12.3, 13.3 2 HgCdTe 1803

Table 3. Himawari General Parameters

Parameter Value

Altitude (km) 35,800
Aperture Diameter (cm) 27

Bits 11
Focal Length (cm) 35.8
Detector Size (µm) 20

Analog Gain (G) 1
Optical Transmission (τ) 0.85
Quantum Efficiency (η) 0.7

3.2.1.1 Baseline Comparison.

In order to know what constitutes good agreement between emulated and actual

Himawari data, a baseline (or best-case) scenario for comparing Himawari-8 data to

Landsat-8 data is needed. To accomplish this, both data sources were geolocated using

information provided with each data set, then the lower resolution Himawari-8 data

were upsampled to match the Landsat-8 data, and the two images were further aligned

using an affine image registration method that minimized the squared distance between

radiance values in the two data sources. Once the two high resolution images were

registered, they were both converted back to the resolution of the Himawari data. This
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was done by convolving the high resolution image with a rectangle function and then

interpolating to find the values for the lower resolution array. Additionally, both data

sources were converted to units of radiance (W /m 2− s r −µm ) using the calibration

coefficients for Landsat and a digital number to radiance look up table for Himawari.

Once the two scenes were registered and in the same units, their pixel-to-pixel radi-

ance values were compared in two ways: using a point by point radiance comparison

and a visual examination of the results in image and histogram form. These visual-

izations, along with their corresponding bands, are shown in Figures 20 and 21, first

for the case where the bands of Himawari and Landsat match well, and second for a

less-than-ideal scenario where the bands do not agree or even overlap significantly. The

Figure 20. Comparison of Landsat-8 (dashed line) and Himawari-8 (solid line) data in matching
bands for the Southern Australia scene used for tuning the parameters of ASSET in Section 3.2.1.2.

second column in both figures shows the radiances plotted point-by-point against each

other as a scattered heat map where the radiance from Himawari is on the x-axis, the

radiance from Landsat is on the y-axis, and the color representing the number of pixels

is in a hexagonal bin of radiances. For a perfect match (i.e. the Himawari and Landsat
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radiance were perfectly correlated), all points would lie along a line of slope one and

intercept zero, plotted in black. The red line represents a fit to the scattered data.

The third column in the figures is a side-by-side comparison of the two data sources

in units of radiance and on the same scale; this allows for a visual comparison of the

imagery and their corresponding radiance distributions. This information provides a

reasonable expectation of how similar the emulated Himawari data generated using

ASSET could be expected to be to the actual Himawari data. This essentially quantifies

the effect differences in bands of the source image and emulated sensor have, as well as

any errors in calibration between the two sources. The first set of images (Figure 20)

represents the best case scenario for a comparison of Himawari data to emulated Hi-

mawari data mentioned previously, while the second case (Figure 21) serves to quantify

the differences introduced by using an image taken out of band as the input to ASSET.

Figure 21. Comparison of Landsat-8 (dashed line) and Himawari-8 (solid line) data in neighboring
bands for the Southern Australia scene used for tuning the parameters of ASSET in Section 3.2.1.2.
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3.2.1.2 Determining Inputs to ASSET.

To determine the inputs to ASSET for the unknown Himawari parameters, a Landsat

data collect was chosen such that there were at least two nearly cloud free images

collected adjacent to each other (temporally and spatially) with at least one image

containing features that appear very bright as well as very dark in the band (for example,

sand and water). This high contrast scene was used to tune the ASSET parameters,

while the neighboring scene or scenes were the test scenes. Of the unknown Himawari

parameters, the well depth and dark current have the greatest effect on the emulated

data since they control the scaling and bias of the digital numbers output by ASSET

(although the same results could be achieved by adjusting other parameters, such as

the analog gain or integration time, as many parameters have similar effects on the

final result). With this choice, all other unknown parameters were decided first with

knowledge of typical values, while the well depth and dark current were then adjusted

to tune the configuration file to produce data that best matched the actual Himawari

data in the tuning scene (using the same comparison approaches described in Section

3.2.1.1). In order to ensure a best possible match, this process was done using the

calibration coefficients from the appropriate Landsat band (rather than by setting

reflectance or radiance bounds) to calibrate from digital number to top of atmosphere

spectral radiance. Figure 22 shows the final result of the comparison of ASSET to

Himawari after this tuning has been done.
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Figure 22. Comparison of ASSET (dashed line) and Himawari-8 (solid line) data in matching bands
for the Southern Australia scene after tuning.

3.2.1.3 ASSET Emulated Data Comparison.

Now that a baseline expectation for the differences between Landsat and Himawari

data has been established and the ASSET configuration parameters set, a number of

scenes were emulated in ASSET and compared to their corresponding Himawari data

without changing any of the configuration parameters determined using the tuning

scene in Section 3.2.1.2. Figure 23 shows the results of this comparison for the top scene

shown in Figure 19a when the Landsat coefficients were used to calibrate the top of

atmosphere radiance. This is the best case scenario for ASSET, i.e. when bands match

and calibration coefficients are available, and from Figure 23 it is clear that when given

all of this information, it is possible for ASSET to match the output of a real sensor very

closely in terms of per pixel radiance and overall data appearance. However, because

matching bands and calibration coefficients are not always available, Figure 24 shows

the results for a more realistic situation. In this case, a Landsat band neighboring to

the one ASSET is emulating was used as the source image, and the top of atmosphere
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Figure 23. Comparison of ASSET and Himawari-8 data in matching bands and using Landsat coef-
ficients for a Southern Australia test scene two Landsat rows above the tuning scene. The dashed
line shows the band for Himawari/ASSET while the solid line is the band in which the source Landsat
image was taken.

radiance calibration coefficients were determined by setting bounds on reflectance

(for the visible and SWIR bands) or radiance (for the LWIR band). In order to best test

ASSET, these bands were calculated directly from the Himawari data, representing the

situation where these bounds are known for the scene being emulated in ASSET. While

the emulated radiance values do not completely agree in this scenario, the SWIR and

LWIR bands match better than the out-of-band baseline. The radiance distributions

and overall appearance of the data are quite similar for all three bands.

ASSET is not intended to simulate a scene with absolutely correct radiance values,

but rather is meant to emulate real data, with the goal of producing truly representative

data quickly and easily. These comparisons to real satellite weather data show first, that

when radiometrically calibrated source imagery is available in the same band as that

being emulated, ASSET is able to emulate the sensor extremely accurately. Second, when

no such matching imagery is available, ASSET is still able to produce a result with the
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Figure 24. Comparison of ASSET and Himawari-8 data using a neighboring Landsat band source im-
age scaled by user input reflectance (visible and SWIR bands) or radiance (LWIR) bounds for a South-
ern Australia test scene two Landsat rows above the tuning scene. The rightmost scatter plot and
imagery compare the two sensors Himawari-8 and Landsat-8 directly.

same spatial characteristics of the real data, matching the overall shape of the radiance

distributions and visual appearance well, even though the absolute radiance values

differ. While this study showed that ASSET can match a single frame of a space-based

sensor with some tuning of parameters in the configuration file, ASSET is intended

to generate data cubes with a temporal dimension, so a second laboratory study was

needed to test performance in the temporal domain.

3.2.2 Laboratory Image Comparison.

In order to test ASSET’s temporal features and ability to emulate a specific camera

where nearly all parameters are known by the user, two cameras were used to collect

imagery in a controlled laboratory environment: a broadband MWIR Santa Barbara

Focalplane array (SB-FPA) camera with an indium antimonide (InSb) detector, and a

visible Canon Powershot G9 camera with a silicon detector operated in raw shooting

mode. Figure 25 shows the approximate relative spectral response curves for each
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camera based on the responses of a typical InSb detector and a typical visible camera

[35, 14]

Figure 25. Approximate relative spectral responses used in ASSET to emulate the MWIR (a) and visible
(b) cameras.

Both cameras were used to image a fixed scene in the laboratory which contained

a variety of objects with varying colors and temperatures to include a resolution bar

chart that was cut out of aluminum, painted matte white, and placed in front of a wide

area blackbody to provide a highly structured, high contrast object in both the visible

and mid-wave portions of the spectrum. Since ASSET requires a high resolution source

image and is meant to emulate low spatial resolution, wide field of view sensors, both

cameras were placed on the opposite side of the room, 15.24 meters from the scene,

when the data was collected. Figure 26 shows the view from the visible camera as well

as a single frame of data zoomed in on the region containing the scene.

Figure 26. The scene imaged by both cameras in the laboratory as viewed from the camera position.
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3.2.2.1 Visible Camera.

For the visible camera, data were taken (as shown in Figure 26) and an ASSET con-

figuration file was created to match the real camera settings as closely as possible.

Additionally, an iPhone 6S was used to take a closeup of the scene at a higher resolution

for use as the ASSET source image. Table 4 shows the known or calculated (black)

and estimated (gray) parameters for the scene and the Canon Powershot G9 camera

used for this comparison. The parameters used in this comparison were found using

four different methods. First, some of the camera parameters were set by the user or

listed in the camera manual, including the frame rate, integration time, focal length,

aperture diameter, and number of bits. Second, many parameters were obtained from

an open source camera testing site [11]which determined parameters experimentally

for a large number of cameras, including the Canon Powershot G9 used here. These

parameters include the read noise, quantum efficiency, analog gain and well depth.

Third, the scene parameters (including sample dimensions, GSD and distance), as well

as the dark current, were measured in the laboratory. For the dark current, 70 frames of

data were collected at the same integration time (125 µs) as the test data set and the

results were converted from digital counts to electrons using the parameters of Table 4.

Finally, the remaining unknown parameters (optical transmission, flicker noise, and

energy on detector) were estimated by analyzing the appearance of the emulated data

as compared to the real data and choosing values that produced a qualitatively similar

result and were physically reasonable.

Table 4. Canon Powershot G9 ASSET Parameters

Parameter Value Parameter Value Parameter Value

source image iPhone 6S Optical Transmission (τ) 0.99 Distance 15.24 m
Sample Dimensions 0.2 mm Aperture Diameter 2.64 mm QE (η) 0.5

Frame Rate 0.7 Hz Read Noise 5.7 e Dark Current 10 e/s
Frame∆t 125 µs Shot noise TRUE Analog Gain 1.86

GSD 4.1 mm Flicker Noise β = -1.3,σ = 50 e Well Depth 5562 e
Focal Length 7.4 mm Bits 8 Energy on Detector 0.8

51



Since ASSET was primarily designed to use top of atmosphere solar irradiance values

when calculating reflectance from a scene, and this test was performed indoors with

fluorescent lighting, the option to input radiance bounds was used for this test. While

the exact radiance limits were not known for the scene, rough starting estimates were

obtained using a lux meter and then adjusted to best fit the real data for each of the three

bands. The limits used for the results shown are (0.09,0.58), (0.11,0.72), and (0.11,0.85)

W
m 2−s r−µm for the red, green and blue bands, respectively.

Three approaches were taken to compare the emulated version of the visible data

with the real camera data: a comparison of the distribution of digital count values

for all frames, a comparison of the median subtracted digital count values for all 30

frames (which approximately represents sensor noise since all structured scene content

is removed), and a visual comparison of the two data sources. Figure 27 shows these

results for the camera settings of Table 4. It should be noted that small differences in the

scene were introduced through the use of a different camera at a closer position, slightly

altering the imaging perspective. However, even with this introduction in error, it can

be seen that the ASSET data match the overall distribution of the real data quite well

for all three bands. Additionally the noise distributions agree well, all having standard

deviations for each band within 6 digital counts (2.4% of the dynamic range) of the real

data. Finally, while there are visual differences in the two scenes, it is clear that ASSET

is able to capture many of the most prominent features in the real data, including the

cloudy and spatially correlated appearance caused by the flicker noise.
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Figure 27. Comparison of ASSET emulated Canon Powershot G9 data to the real data for the red,
green and blue bands from top to bottom in rows. From left to right: count values, difference of count
values (noise estimate); single frame of data.

3.2.2.2 Mid-wave Camera.

While the visible camera test was able to show that it is possible to closely match the

distribution of counts, noise counts, and overall appearance over a temporal window,

limitations in the measurements for the radiance in the scene introduce a significant

amount of error and a consequent need for user-adjusted input radiance parameters to

obtain a good match. In order to test ASSET with a more accurate at-sensor irradiance

input, a mid-wave camera was used in the same setup as the visible camera (Figure 26),

but the scene was cropped to just the resolution bar chart where the temperatures for

the white painted aluminum and blackbody are known. Additionally, in order to test

ASSET’s ability to accurately include jitter (and as a result clutter noise), the camera

was gently moved during the data collection to introduce slight pointing errors. To

determine the at-sensor irradiance in ASSET, binary temperature and emissivity maps

for the bar chart were defined, with one temperature and emissivity for the white

painted aluminum chart itself and another for the holes cut in the chart, revealing the

wide area black body. These maps replaced the single ground temperature and the

emissivity bounds normally used to estimate emissive radiance in ASSET, producing a

more accurate result for the at-aperture irradiance. Figure 28 shows these maps as they
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were input into ASSET.

Figure 28. Input temperature (left) and emissivity (right) maps used to emulate the MWIR Santa
Barbara Focal plane camera.

The temperature values were determined using an IR thermometer, and the emissiv-

ity values were approximated from emissivity tables [30] (for the white paint) and from

a past experiment to determine the emissivity of the blackbody using a spectrometer

[41]. While there is still some error inherent in the temperature and emissivity values,

it is significantly reduced over that of the visible scenario, allowing for the focus to

be primarily on ASSET’s ability to accurately propagate at-sensor irradiance through

to a digital count output. Table 5 shows all of the relevant configuration parameters

used to emulate the mid-wave camera at three different integration times. The black

parameters were obtained directly from the experiment (for the scene dimensions)

or the manufacturer-provided camera specifications, and the gray parameters were

estimated based on the sensor type and appearance of the frames of emulated data.

Table 5. Santa Barbara Focalplane Array (SB-FPA) ASSET Parameters

Parameter Value Parameter Value Parameter Value

source image Bar chart draft Optical Transmission (τ) 0.5 Distance 15.24 m
Sample Dimensions 0.12 mm Aperture Diameter 2.174 cm QE (η) 0.8

Frame Rate 72 Hz Read Noise 10 e Analog Gain 2
Frame∆t 521, 614, 733 µs Shot Noise TRUE Well Depth 7e6 e

GSD 6.89 mm 1/f Noise β=-1.3,σ = 100 e Energy on Detector 0.2
Focal Length 5 cm Bits 16 Thermal Noise 7000 e

p
s

In the case of the thermal noise, the approximate value was calculated from the

RMS thermal noise current using the formula it he r ma l =
p

4k T∆ f /R , where k is Boltz-

mann’s constant, T is the temperature of the detector (73.3K),∆ f is the noise electrical
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bandwidth (approximated as 1/2∆t where ∆t is the integration time), and R is the

detector resistance, chosen to be 1MΩ since the actual value is unknown. The results

were compared as was done for the visible camera with the addition of a comparison of

the offset (or aimpoint) error from the first frame and a visual comparison of the noise,

obtained by subtracting the median of the 850 frames collected from a single frame.

Figure 29. Comparison of emulated data to real mid-wave data for three different collects at three
different integration times and levels of jitter, from top to bottom in rows.

Figure 29 shows these results from top to bottom in rows for the three integration

times listed in Table 5 in increasing order. The first, second, and fourth columns are the

same as for the visible results of Figure 27, and the third and fifth columns show the aim-

point error and a single median-subtracted frame, respectively. While the distributions

do not exactly agree, they have the same overall shape, indicating that the emulated

data is a relatively good, if not absolutely radiometrically accurate, representation of

the real data. The offsets were computed from the first frame (in units of pixels) using

a Fourier transform-based cross-correlation technique developed for rigid, sub-pixel

image registration [17]. These results show that when given an input file containing

the row and column offsets of a sensor for each frame, ASSET can reproduce that same

sub-pixel aimpoint error in the emulated data. Finally, visually the two single raw and

noise frame images differ due to the differences in peak values (as can be seen in the
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histograms), but the structure and general appearances are again similar. This is both

an expected and acceptable result because ASSET is not intended to exactly reproduce

radiometric scenes, but rather to emulate a sensor and generate data that is plausible

and representative of that sensor for the purposes of efforts such as tracking and detec-

tion algorithm development, machine learning applications, and sensor configuration

studies.

3.3 Conclusion

ASSET is a physics-based, image-chain model used to generate synthetic wide

field of view EO/IR sensor data containing realistic characteristics and artifacts. It is

not intended to accurately reproduce radiometric real scenes or sensors but rather

to provide realistic data sets plausibly representative of a wide range of scenes and

sensors. Although ASSET includes the ability to model simple scenes, it focuses on the

propagation from the aperture through to the digital output, introducing many of the

imperfections inherent in real sensors, such as the imagers on unmanned aerial vehicles

(UAVs) or weather satellites. With this in mind, it has been shown that ASSET can match

single frames of the weather satellite Himawari-8 in the visible, NIR, and LWIR regions

of the electromagnetic spectrum under ideal conditions, and the effects of non-ideal

inputs have been quantified. Additionally, it has been shown that ASSET can emulate

specific sensors both spatially and temporally when provided the relevant input camera

parameters and scene information, to include temporally dependent elements such

as shot, thermal, and flicker noise sources as well as clutter noise produced by jitter in

the sensor. With the capability to quickly and simply generate large quantities of test

data for a wide range of scene and sensor parameters, ASSET can give students a tool to

better understand the relationships between sensor parameters and resulting imagery,

aid in the development of a variety of algorithms whose goal is extracting information
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from WFOV temporal imagery, and provide a starting point for designing new sensors

optimized to collect imagery or video more relevant to the intended application.
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IV. Moment Based Detection

Now that large quantities of realistic synthetic data can be generated quickly and

easily using ASSET, we turn to the problem of developing a near real-time detection

and tracking algorithm using statistical moments.

4.1 MBD Background and Theory

The DBT and TBD approaches described in Section 2.2 are not always distinct.

Recently, progress has been made in the development of hybrid methods that make use

of both spatial and temporal information simultaneously, but still follow the approach

of feeding candidate detections into a tracker that is characteristic of the DBT methods.

One such hybrid method is the moment based detection algorithm, which relies on the

promising results of HOMAD found by Borel et al. [8].

HOMAD relies on the fact that as a target passes through a pixel, it momentarily

perturbs the pixel’s intensity. In order to detect this small perturbation, statistical

moments are calculated. The first two statistical moments are the well known mean - a

measure of the center of a probability density function (PDF) - and variance, the spread

of the PDF. The third and fourth moments are known as skewness and kurtosis which

measure asymmetry and peakedness of the PDF respectively. Additionally, an infinite

number of higher order centralized moments can be computed using the equation

m n =

∫

(x −a )n P r (x )d x (13)

where a is the mean of the PDF and P r (x ) is the PDF itself. Odd higher order moments

are additional measures of asymmetry while even higher order moments are additional

measures of peakedness. Note that here and in the following chapters, moment refers to

a moment that is taken about some value a , not a raw moment. Figure 30 illustrates both

58



the potential power and difficulty in using higher order moments to detect anomalies.

Figure 30. Comparison of the first four moments for 50 unperturbed (top left) and perturbed (top
right) Gaussian distributed values with 2σ error, and the sampling distributions for these moments
found by repeating the calculation 105 times (bottom).

On the top left is a histogram of 50 values from a Gaussian distribution with a mean of

zero and a variance of one. On the top right is a histogram of 48 of the 50 values, with the

2 remaining values replaced by values taken from a Gaussian distribution with a mean

of 5 instead of zero, representing an anomaly. It is clear from computing the first four

moments that the third and fourth moments show a much greater change than the first

and second. This is the principle upon which HOMAD and MBD are based. However,

while the change in values is higher for higher order moments, so is the uncertainty in

those values. The bottom of Figure 30 illustrates this uncertainty. The calculation used

in the top two plots was repeated 105 times and the distributions of those values are

shown in the bottom plot. In the case of the mean, this is the well known student’s t

distribution and in the case of the variance, this is the chi-squared distribution. Higher

order moments do not have a simple closed form equation representing the sample

distribution, but they can be investigated numerically as in [23]. The example in Figure

30 shows that even for a relatively large sample size of 50, the spread in the distributions
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of skewness and kurtosis values is significant. Thus while increasing the moment order

does produce a larger average change between the unperturbed and perturbed cases,

there will be a point where the uncertainty outweighs this benefit. In the initial HOMAD

publication, the first six moments were computed temporally for each spatially distinct

(r, c ) pixel in a simulated data cube containing embedded targets moving at a speed of

0.2 pixels per frame. The resulting images were displayed along with receiver operating

characteristic (ROC) curves for moments 3-6. Additionally, the results of the global

Reed-Xiaoli anomaly detector (RXD) defined as

δR X D = (x −a )TΣ−1(x −a ), (14)

where x is the sample vector, a is the sample mean and Σ−1 is the inverse of the sam-

ple covariance matrix, were shown both visually and as a ROC curve. It was found

that computing higher order moments (specifically moments 3-6) allowed for better

detection of anomalies than RXD or the variance, both second order methods. This

is a promising result, but at this point the moments were computed over the whole

temporal vector for each pixel and considered separately. No study was done as to the

relative performance of even higher order moments (n > 6), combinations of moments,

alternative methods of dividing the data temporally to compute the moments. The

MBD algorithm described in the following section allows for the adjustment of these

elements in an effort to improve the detection of low SNR targets using higher order

statistical moments.

4.2 MBD Algorithm

In the previous section the history and theoretical basis for the moment based

detection algorithm were presented. Here the algorithm itself is discussed in detail
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from beginning to end. Figure 31 shows the MBD algorithm process from the input,

consisting of the raw data cube described in Section 2.2, to the final binary data cube

output. The first step in the algorithm is to perform any necessary pre-processing of the

Figure 31. Flow chart of the MBD algorithm taking a frame stack as an input and outputting a final
binary detections cube.

data before entering the main portion of the algorithm. For most detection algorithms

this step involves a significant effort removing the background and correcting for non-

uniformities in the focal plane array. Because the MBD algorithm operates on single

spatial pixels independently, this is an optional step and is only necessary when there is

significant platform motion or aimpoint error, altering the portion of the scene imaged

by a particular pixel over time. In the case of the MBD algorithm, this is done using

singular value decomposition (SVD) to model the background and remove artifacts.

The next step is to compute the temporal moments for each spatial pixel. This

process is discussed in Section 4.2.1 and the output is a hypercube of moment values

with the same spatial dimensions as the input data but with a reduced number of

temporal frames P and a fourth dimension N for the number of moments computed.

Next, in order to put all values on the same scale for the detection process, the z-score for

each spatial pixel in the moments hypercube is computed with respect to its temporal

history. This allows for a single threshold to be set based on a significance level choice,
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producing a binary detections cube of the same dimensions as the z-scores hypercube.

This process of calculating z-scores and thresholding is discussed in detail in Section

4.2.2. Finally, the detections cube is filtered based on the spatio-temporal characteristics

of true targets and the moments are combined to produce a final three dimensional

binary detections cube. Section 4.2.3 discusses this filtering process in detail.

4.2.1 Computing Moments.

The MBD algorithm computes the n t h order moments M n
r,c of windows of W tempo-

ral frames independently for each spatial pixel, xr,c. However, rather than compute the

commonly used central moments (centered about the mean computed over the same

window of W temporal frames, as used previously in [40]) , the moment is computed

about an estimate of the background mean calculated using a larger super window WS

that is centered around but excludes the window W . Generally, this can be expressed,

M n
r,c =

1

W

W
∑

k=1

�

xrk ,ck
− µ̂Br,c

�n
(15)

where k is a temporal time step or frame, and µ̂Br,c
is the estimate of the background

mean,

µ̂Br,c
=

1

WS

� k−1
∑

i=k−d k

xi +
k+W +d k
∑

i=k+W +1

xi

�

with d k =
WS −1

2
(16)

For cases at the beginning and end of the frame stack, the window is extended towards

the center of the stack, keeping the same number of values but resulting in an off-center

super window. Figure 32a is a graphic representation of how this calculation is done

for a single spatial pixel with 33 frames, two different step sizes (S = 1 and 4), and two

different window sizes (W = 5 and 8). The black and red dots represent targets that are

present in the pixel at frames 4 and 17 respectively. Starting with the first pixel in the

frame, the moment is computed over a temporal window of W frames, shown in green,
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using the estimate of the background computed with the super window WS , shown in

gray, according to Equation 15. Next the window is slid S frames and the moment is

computed for this new window, again using its associated super window. In order to

perform this computation quickly and to minimize the number of calculations needed,

the algorithm uses a convolution to compute µ̂Br,c
first, then the data is reshaped and

replicated so that the moment computation can be done in just one line of code without

repeating the calculation of µ̂Br,c
. It was previously shown that choosing a step size larger

than one could decrease computation time at the expense of detection performance [40],

but with the implementation of a convolution approach to computing the moments,

this increase in speed is no longer a significant factor and a step size of S = 1 should

be used. The details of this convolution computation can be found in the moment

function of the MBD algorithm in Appendix B. The result of this process on every spatial

pixel is a new moments cube or moment frame stack containing a reduced number of

frames, P. This process is repeated for each moment order, n , separately, resulting in

the final four-dimensional hypercube of moment values. Due to the temporal windows,

targets that originally only appeared in one pixel and frame now appear as streaks, as

shown in the bottom half of Figure 32b. It is the spatially and temporally connected

nature of these streaks that will be exploited to filter out many of the false detections.
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(a) Method (b) Result

Figure 32. (a) Two examples of the temporal window moment computation used by the MBD algo-
rithm on a single spatial pixel, each with different algorithm parameters. The two dots represent tar-
gets present in the pixel at frames 4 and 17. (b) Candidate detections from a standard DBT method
(top) compared to candidate detections from MBD (bottom).

4.2.2 Detection.

Once the moments have been computed, the next step is to threshold the moment

cubes in a way that maximizes detection for a desired false alarm level. The first step in

this process is to compute the z-score for each moment pixel,

x z
mr,c
=

xmr,c
−µr,c

σr,c
, (17)
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where the mean and standard deviation are computed temporally and independent of

the other spatial pixels,

µr,c =
1

P

P
∑

i=1

xmri ,ci
(18)

σr,c =
1

P

P
∑

i=1

(xmri ,ci
−µr,c )

2. (19)

The result of this process is a new R ×C ×P ×N z-scores hypercube, where all values

in the four dimensional array are z-scores instead of moment values. By computing the

z-scores based on the temporal history of each pixel independently, each pixel is treated

as an independent detector and all spatial and temporal pixels are on a similar scale.

While some pixels will be better detectors than others, that is, a noisier pixel will not

detect a target as well as an adjacent clean pixel, this approach allows for a single global

threshold to be used to determine where detections are located. This threshold is set

by computing the cumulative distribution function (CDF) using all the z-score values

(R ×C ×P ×N ). The CDF, denoted Fn (x ), gives the probability that a particular pixel

in the z-score hypercube is less than or equal to x [38]. The last step in the detection

process is to set the significance level, αZ , based on the desired confidence level and use

it to determine a threshold value. All pixels in the z-scores hypercube exceeding that

threshold are considered cadidate detections and set to a value of one in the candidate

detections hypercube while all lesser values are set to zero. For example in Figure 33,

moments one and three were computed and the significance level was set to αz = 0.99.

The latter is shown with the dashed line dropping from the red curve that represents

the CDF, to the x-axis. In this case the z-score corresponding to the keeping of the top

1% of values is 2.46. This means that z-scores in the moment hypercube greater than

2.46 will be set to 1 (detects) while z-scores less than 2.46 will be set to zero.
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Figure 33. Histogram of z-scores using moments 1 and 3. The right axis and red line represent the
cumulative distribution function and the dashed line represents the significance level αZ = 0.99

.

4.2.3 Filtering.

The final step in the algorithm is the filtering step. The temporal window approach

to computing moments means that true targets will produce streaks that are connected

in both space and time, while false detections will be more isolated. The voxel filtering

employed in the MBD algorithm exploits this fact. First, the number of candidate

detections in a sliding voxel of dimensions d ×d ×d is computed. This results in an

array of the same dimensions as the original candidate detections hypercube, but each

element now contains the total number of detects in the voxel it is centered in. For

example, for the case where d = 4, the maximum value in this new voxel array would

be 43 = 64, representing the case where every pixel in every frame within the voxel was

a detect. Once this array has been computed, a second threshold is set based on the

expected number of counts in a voxel for a real target. As before, values in the voxel

array greater than the threshold are set to one and all others are set to zero. This creates

a mask, like the one shown fourth from the left in Figure 34, where regions that have

low numbers of detects are zeros and regions with higher numbers of detections are

ones. The final step is to take the voxel array and multiply it by the candidate detections

array. This has the effect of removing isolated candidate detections and leaving only

those that are potentially streaks. This process is done separately on each moment in

the candidate detections hypercube. The steps of this process are shown for a single
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moment and frame of data in Figure 34.

Figure 34. Filtering process frames from left to right, z-scores, detects after αZ , voxel array, voxel
mask after second threshold, and the final filtered detects for two targets with R = 1, SN R ≈ 3.5. The
algorithm parameters are W = 9, S = 1, d = 4, αZ = 0.025.

Within the filtering process are three main parameters that control the final maxi-

mum false alarm probability as well as impact the performance of the voxel filter. These

parameters are the initial significance level αZ , the second threshold creating the voxel

mask, TV , and the voxel dimension d . While the significance level and voxel dimension

are parameters specified by the user, the second threshold is chosen based on a calcula-

tion of the expected number of detects in a voxel for a target with a given dwell time and

signal to noise ratio, both of which are input by the user. A detailed discussion of these

parameters and how they are chosen is presented in Section 4.4.3, but because they dif-

fer depending on the moment order, the whole filtering process is done independently

for each moment. This results in N separate filtered binary detection cubes. The final

step in the algorithm is to combine these using a logical ’or’ operation. That is, a detect

in any of the filtered N moments will result in a detect in the final combined detections

binary data cube. While this does tend to increase the number of false alarms, it will be

shown in Section 4.4.2 that the power of a moment to detect a target depends heavily on

the target’s speed and SNR. Combining moments in this way allows the MBD algorithm

to work effectively for a broad range of target speeds and SNRs, making accurate a priori

target information less critical to the implementation of the algorithm.
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4.3 Parameter Optimization Approaches

Now that we have described how the MBD algorithm works, we turn to optimizing

the various parameters and determining how target and scene characteristics impact

those optimal choices. There are four main parameters that drive the performance of

the MBD algorithm and that need to be chosen intelligently. These are the larger super

window size WS , the smaller temporal window size W , the moment order n , and the

voxel dimension d . The optimal parameter choices will depend on a number of factors

including the target characteristics, scene characteristics, and the other parameters that

are chosen. A combination of theoretical development of equations for the expectation

values of target and background window moments, simple simulations using Gaussian

distributions, and ASSET simulations were used to optimize these parameters.

4.3.1 Theoretical Development.

To gain a clearer picture of how the various algorithm parameters relate and impact

the calculated moment values, we need equations that give the expected moment values

when a window contains only background, or background window moments, M n
B and

when a window contains both background and target, or target window moments M n
T .

Note that the spatial and temporal subscripts r , c , and k have been dropped here to

simplify notation, but the expressions developed for M n
B and M n

T are general and apply

to all pixels.

Equation 15 in Section 4.2.1 is the general form for the discrete moment of a temporal

window of length W taken about an estimate of the background mean, µ̂Br,c
. For a target

window of temporal length W with target present in R of those W frames, Equation 15

becomes

M n
T =

1

W

�

∑

k∈k0

(xbk
− µ̂B )

n +
∑

k∈kt

(xtk
− µ̂B )

n
�

(20)
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where R is the dwell time and is approximately equal to 1/v where v is velocity in pixels

per frame. In cases where the target is moving in a straight line, R is equal to inverse

velocity, but when the ground sample distance is large and the target is turning, this

relationship is a minimum. A target can dwell within a single pixel for longer of it follows

a less direct path across a pixel. In Equation 20 the first term is a summation over all

frames in the temporal window containing exclusively background (notated k ∈ k0)

and the second term is a summation over frames containing signal from the target in

addition to the background signal (notated k ∈ kt ). The two values xbk
and xtk

represent

the raw digital numbers of the frame k for the two cases, µ̂B is the sample mean of the

background window given by Equation 16, and n is the order of the moment. Similarly,

for a background window,

M n
B =

1

W

W
∑

k=1

(xbk
− µ̂B )

n . (21)

At this point the expressions for the moment values are in terms of individual frame

digital number values xbk
and xtk

. To simplify the problem and obtain more general

expressions, we apply the assumption that the values in each window can be approx-

imated with a Gaussian distribution. If we also assume that the sample background

mean µ̂B is representative of the population background mean µB , we can use the

formula for the central moment of a Gaussian distribution,

〈M n
B 〉=











σn
B (n −1)!!, n ∈N even

0, n ∈N odd,

(22)

to compute the expected value for a background window moment 〈M n
B 〉, whereσB is

the background standard deviation. For the target window case, if we let β represent

the signal to noise ratio of the target and εk be a frame-dependent perturbation due to
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noise drawn from a population with zero mean and standard deviationσB ,

xbk
=µB + εk (23a)

xtk
=βσB +µB + εk (23b)

and Equation 20 can be rewritten

〈M n
T 〉=

1

W

�

∑

k∈k0

(µB + εk − µ̂B )
n +

∑

k∈kt

(βσB +µB + εk − µ̂B )
n
�

. (24)

Again assuming that the sample background mean is an accurate estimate of the pop-

ulation mean (or in the case that it is not, that any deviation can also be included in

εk ), the first term in Equation 24 goes to zero for odd moments and can be represented

using the standard deviation of the background in the case of even moments,

〈M n
T 〉=











W −R
W σn

B +
1

W

∑

k∈kt
(βσB + εk )n , n ∈N even

1
W

∑

k∈kt
(βσB + εk )n , n ∈N odd,

(25)

where the W −R term in the numerator represents the number of background pixels

and replaces the summation. Finally, assuming the per frame perturbation εk is small

and using a binomial expansion, the expected value for the moment of a target window

is given by

〈M n
T 〉=











W −R
W σn

B +
R
W

∑n
i=0,2,4,...

�

n
i

�

(βσB )n−iσi
B n ∈N even

R
W

∑n
i=0,2,4,...

�

n
i

�

(βσB )n−iσi
B , n ∈N odd.

(26)

Here only even values of i are used because
∑

εi =σi
B for even i , and

∑

εi = 0 for odd i

due to the cancellation of positive and negative values.

In order to separate target windows from background windows, the goal is to maxi-
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mize the separation between target and background windows, that is, maximize the

expected moment difference∆〈M n 〉= 〈M n
T 〉− 〈M

n
B 〉. Subtracting Equation 22 from 26,

and looking at the first five moment orders,

∆〈M 1〉=
R

W
βσB (27a)

∆〈M 2〉=
Rσ2

B

W
(β 2+1)−σ2

B (27b)

∆〈M 3〉=
Rσ3

B

W
(3β +β 3) (27c)

∆〈M 4〉=
Rσ4

B

W
(1+6β 2+β 4)−3σ4

B (27d)

∆〈M 5〉=
Rσ5

B

W
(5β +10β 3+β 5) (27e)

From these expressions we can see that the expected moment difference depends on

a number of factors including the noise in the scene (σB ), the target speed and SNR

(R and β ), and the algorithm parameters (W and n). Up to this point these equations

were derived using a fairly intuitive approach that relates the variables clearly to the

physical scenario. For additional verification of the results presented in Equation 27, an

alternate derivation using moment generating functions is presented in Appendix A.

From these equations it is clear that, as expected, targets with longer dwell times and

higher SNRs will be easier to detect and that increasing the window size will reduce the

moment difference. However, these are expectation values, and variation in estimated

moment values arising from finite sample size must also be taken into consideration.

Just as targets with high signal compared to the background noise in a data set are

easy to detect, when we take moments, optimal detection parameters will be those that

maximize signal and minimize noise. As a starting place, we will quantify the uncertainty
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in the background and target moment values using their associated variances,

V a r (M n ) =V a r
�

1

W

W
∑

k=1

(xk − µ̂B )
n
�

(28)

Note that µ̂B is an estimate of the background and xk is a single spatial pixel in frame k

that could contain only background or background plus target radiation. If we assume

that the pixels xk are independent and identically distributed, we can move the variance

operation into the summation and rewrite Equation 28,

V a r [M n ] =
1

W 2

W
∑

k=1

V a r [(x − µ̂B )
n ] (29a)

V a r [M n ] =
1

W
V a r [(x − µ̂B )

n ] (29b)

but we know from expanding the definition of the variance of some random variable A,

that V a r [A] = E [A2]−E [A]2. Here our random variable is (x − µ̂B )n and following the

approach in [15]we have

V a r [M n ] =
1

W
E [(x − µ̂B )

2n ]−
�

E [(x − µ̂B )
n ]
�2

(30a)

V a r [M n ] =
1

W
(M 2n − (M n )2). (30b)

Now that we have expressions for both the signal (Equation 27) and the uncertainty

in the moment window values (Equation 30b), we can write an expression for the new

signal to noise ratio after the moment computation,

〈SN RM n 〉=
∆〈M n 〉

q

1
W (M

2n
B − (M n

B )2)
, (31)

where the denominator is the standard deviation of the background moment, M n
B found

using Equation 30b. It is this signal to noise ratio that, when maximized, will produce
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the best detection results for the MBD algorithm. Writing out the first 5 terms as before,

〈SN RM 1〉=
βR
p

W

W
(32a)

〈SN RM 2〉=
p

W

W
p

2
(R (β 2+1)−W ) (32b)

〈SN RM 3〉=
R
p

W

W
p

15
(3β +β 3) (32c)

〈SN RM 4〉=
p

W

4W
p

6
(R (1+6β 2+β 4)−3W ) (32d)

〈SN RM 5〉=
R
p

W

3W
p

105
(5β +10β 3+β 5), (32e)

a several patterns are discernible. First, noting that the maximum value for R is always

the window size (there cannot be more target frames than total frames in the window),

the peak SNR will always occur when all frames in the window are target frames, or

when W =R . Second, the SNR will fall off like
p

W /W from that peak location as the

window size is increased. Third, as expected, higher dwell times and target SNRs will

result in higher expected moment SNRs. Fourth, the even moments will have lower

moment SNRs than the odd moments due to the subtracted value that appears in both.

This is because of the difference in even and odd background moments (Equation 22).

For odd moments, 〈MB 〉 is zero but for even moments, 〈MB 〉 is related to the variation in

the background. This decreases the expected moment difference and as a result lowers

the moment SNR. Finally, there is a significant dependence on the SNR of the target, β .

By setting the different moment SNRs equal to each other and solving for β , we can find

the SNR values at which using a higher order moment will result in a higher moment

SNR. For example, setting Equations 32a and 32c equal to each other, the dwell and

window sizes cancel each other and the result is that for β > 0.93, 〈SN RM 3〉> 〈SN RM 1〉.

Similarly, setting Equations 32c and 32e equal and solving for β , 〈SN RM 5〉> 〈SN RM 3〉

when β > 1.85. This suggests that for very dim targets, using a higher order moment
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will not help because there is not enough signal to enhance, while for brighter targets, a

higher order moment will amplify the signal better.

This information provides a starting place for further exploration of the impact and

interaction of the scene, target and algorithm parameters that will be explored in Section

4.4, but these are only expected values. While the expression for variance derived in

this section does hold when the underlying distribution is a mixture of Gaussians (as is

the case for a target window), the sample distributions of higher order moments can be

very skewed and as such are not well described by their associated mean and variance.

As a result, a different approach is needed to quantify the true expected performance of

the algorithm under a variety of target characteristics and algorithm parameters.

4.3.2 Gaussian Distribution Simulation.

A successful set of parameters in the MBD algorithm can be defined as one that

separates target windows from background windows effectively. This means that it is

not just the expected value of the moment SNR derived in the previous section that

is of importance, but also the distributions of background and target moment values.

To explore how various parameters impact this separation, background and target

windows were simulated using Gaussian distributions. Figure 35 shows an example

where the background is represented by a Gaussian distribution with a mean of 2150

and a standard deviation of 10, while the target distribution is the same, but shifted

by 40 representing an SNR 4 target. To form background windows, W samples are

pulled from the background distribution while to form target windows, a different set

of W −R values are pulled from the background distribution while R values are pulled

from the target distribution. Once the windows have been created, the moment over

the window is computed about an estimate of the mean, µ̂B , with WS samples pulled

from the background distribution (as in equation 15). This process is repeated 105 times
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Figure 35. Gaussian simulation of target and background windows. The parameters for this example
are W = 15, R = 3,σB = 10, and β = 4

for each group of parameters, varying the the target characteristics (SNR and R ) and

the moment order.

The result of this process is a new set of 105 target window and background window

moment values for each set of parameters, revealing the sample mean, variance, skew-

ness and higher order distributions. Figure 36 shows the first five target and background

moments for a target with an SNR of 3 at five different dwell times. The different colors

represent different window sizes (number of samples). Of note here are the shapes

of the different distributions. Looking at Figure 36b, it is clear that in the background

case, the distributions are fairly normal in appearance even at high moment orders,

and as such can be described effectively with the expected values and variances derived

in Section 4.3.1. In fact, the closed form expressions for the first two distributions are

known, even for small sample sizes (namely the student’s t distribution for sample mean

and the chi-squared distribution for sample variance). However, the distributions in

the target case (Figure 36a) have no such known expressions and can be very skewed,

especially at small window sizes. This is of critical importance because in Section 4.3.1 it

was shown that the moment SNR falls off with window size after W =R , indicating that

small window sizes will generally detect targets better, eliminating the option of simply
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(a) Target Moment Distributions (b) Background
Moment
Distributions

Figure 36. a) Target moment window distributions for the first 5 moments and dwell times 1-5σB = 1,
and β = 3 and b) Background moment distributions for the first 5 moments with the sameσB

using a large number of samples to obtain a normal distribution. Skewed distributions

are not effectively described by their means and variances, so while we can compute

these theoretically, a different metric is needed to truly understand the relationships

between target characteristics, algorithm parameters, and likely detection performance.

Since the goal of a detection algorithm is the separation of target and background

distributions from each other, a metric describing this separation is of great interest.

Figure 37 shows the background (blue) and target (orange) distributions together on

the same axes for a single case (β = 2.5, R = 2, n = 3, W = 10). The shaded black region

represents the combination of both type I and type II errors. A type I error is a false

positive (i.e. a pixel is shown as a detect in the absence of a target) while a type II error
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Figure 37. Background and target moment values for skewness with β = 2.5, R = 2, W = 10. The
overlapping region represents all errors while the other two regions represent true positives and neg-
atives

is a false negative, or missed detection (a pixel containing a target is not a detect). The

other two regions are the true negatives and true positives. A true negative occurs when

there is no target present and there is no detect, while a true positive occurs when a

target is present and is correctly identified as a detect. In the case of perfect detection,

there would be no overlap of the distributions and the combined error would go to zero.

Therefore, in order to evaluate the performance of a set of parameters using a single

metric, we compute the fraction of the total area that is contained in the shaded region

and look to minimize it. This is done by finding the intersection of the two histograms

(shown with a red dot in Figure 37) and integrating first from the left edge of the target

distribution to the intersection (shown in purple), and then from the intersection point

to the right edge of the background distribution (shown in yellow). The intersection

was found by using the edge and value outputs of the histogram to define the curves,

locating segments that intersect using [31], and then keeping only the intersection with

the highest associated PDF value. The combination of these two areas represents the

total error. Using this process, any set of target, scene and algorithm parameters can be
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compared to another using a single value, allowing for a large number of cases to be

looked at simultaneously. This is of particular interest when it comes to determining

which moments should be used, as will be discussed in Section 4.4.2.

4.3.3 ASSET Simulation.

The Gaussian simulation in Section 4.3.2 is helpful for determining how various

parameters increase or decrease the likelihood that a target will be detected as a result

of increasing the SNR after computing the moments. However, it does not provide

information on the potential impact of filtering based on expected target characteristics

as discussed in Section 4.2.3. For this, an approach that involves targets with realistic

motion across a range of speeds and SNRs was needed. To accomplish this, ASSET was

used to generate scenes containing sixteen targets with the same median dwell times of

R = 0.5, 0.75, 1, 2, 3 and 5 and median temporal SNRs of 2, 2.5, 3, 4 and 6 for a total of 30

scenes. Additionally, to maximize comparability across parameters, for each dwell time,

all 6 scenes with varying SNRs have the same target paths. Figure 38 shows the target

paths for each of these six speeds laid over a single frame of data. With these 30 scenes,

MBD can be run using a variety of parameters and the results tabulated using the truth

data available from ASSET, allowing for quantitative comparisons of different sets of

algorithm parameters.

Figure 38. Paths for the six different target speeds over a single frame from six of the 200×200×300
data cubes generated for the ASSET simulation approach to parameter optimization. These paths
are repeated at 5 different SNRs (changing only the target signal) for a total of 30 scenes.

While the scenes look quite crowded with targets, rarely do targets actually overlap
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in space and time due to the 300 frame time history. The large number of targets was

necessary to obtain enough truth points to keep the error at a level that will provide

meaningful results. Using this approach, all scenes contained at least 1000 truth points,

a minimum number set based on the results shown in Figure 15 of Section 2.4.

4.4 Parameter Optimization

4.4.1 Window Sizes.

In previous versions of the moment based detection algorithm such as [40] and [43],

only one window size was used to compute both the sample mean µ̂B and the moment

value itself. That is, the mean used in the moment computation was simply the mean

over the window W . This introduced an artificial limitation on the algorithm and led

to a window size choice based on balancing the need for enough samples to provide a

good estimate of the mean with the signal decrease associated with including too many

background samples in the window. Implementing two separate window sizes removes

this limitation by removing the need for this balance, allowing the super window size

WS to be chosen based entirely on the optimal number of samples for estimating the

sample mean for a scene, while the smaller window size W can be chosen based on

maximizing both the contrast between a target and background window and the length

of the streak.

4.4.1.1 Super Window.

The super window is used solely to compute the sample mean of the background

µ̂Br,c
given by Equation 16 in Section 4.2.1. If we assume that the time history of a pixel is

Gaussian distributed with a population standard deviationσB , then the equation for the

95% confidence margin of error given a super window size WS is given by E = 2σB/
p

WS .

If we define E in terms of the background standard deviation and a multiplicative factor,
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E = σB E f , we can rewrite this equation to get the necessary super window size for

the sample background mean to be within E f standard deviations of the population

background mean. That is,

WS =
4σB

E f
(33)

will give a sample mean that is within E f standard deviations of the mean with 95%

confidence. Figure 39 shows Equation 33 with a number of different background stan-

dard deviations plugged in. Clearly more samples will reduce the error and allow for

Figure 39. Super window size needed as a function of error in units of background standard deviation
for 14 different background standard deviations

better detection, however this is derived using the assumption that the values in the

super window are normally distributed and consistent over time. In cases where this

tends to hold true, using a larger super window will improve the overall estimate of

the background, however in cases where there is a lot of platform motion, bias drift, or

clouds moving through pixels, using too many samples will make the sample mean less

accurate. In these cases WS should be chosen to be as large as the expected consistent

number of frames.
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4.4.1.2 Moment Window.

While the super window is chosen to best estimate the mean of the background in a

pixel, the moment window W should be chosen to balance two factors: maximizing the

contrast between target windows and background windows, and maximizing the length

of the streak that is detected. Looking at Equation 32, the presence of the term
p

W /W

in the denominator makes it clear that increasing the window size will decrease the

expected moment difference,∆〈M n 〉. Figure 40 shows the moment SNR as a function

of window size for four different dwell times and three different moment orders. The

dashed lines represent the expected value using Equation 32 while the solid lines rep-

resent the mode of the distribution of moment SNRs from the simulation results in

Section 4.3.2. The mode is used here as opposed to the mean or median because it is

the most likely value and is a better representation than the mean or median when the

distribution has a heavy right tail, as is the case for the target moment window distribu-

tions with small window sizes (as shown in Figure 36a). The shaded regions indicate 95%

confidence bounds for the empirically estimated mode of the moment SNR from the

simulation. These were computed by finding the 0.025 and 0.975 fractional quantiles

for the target moment distributions numerically. As expected, due to the heavy right

tail in the target moment window distributions, the mode is a lower moment SNR value

than the expected value computed analytically. Additionally, as the moment order is

increased, the uncertainty also increases rapidly, again as expected due to the heavy

right tails of the distributions in Figure 36a. From the analytical development of the

problem, the peak moment SNR is expected when W =R , and this result is visible in

all four cases. If this were the only consideration, using a temporal window beyond

the expected target dwell time would seem to have little benefit, however Equation

27 represents only the expected moment difference under ideal conditions, where the

background estimate is accurate and all noise terms are very small, and does not take
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Figure 40. Moment SNR from from Equation 32 (dashed lines), using the mode of the distribution of
moment SNRs based on the Gaussian simulation approach (solid lines) with 95% confidence bounds
(shaded region) for an SNR 3 target.

into account the benefits of filtering. Choosing a larger window size will increase the

length of the streak produced, trading off contrast between target and background
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windows for streak length. Thus, the ideal window size for a target will be a balance

between maximizing the streak length within a voxel and minimizing the wash out

effect of adding additional frames after W =R .

The implementation of the voxel filtering introduces a maximum ideal window size,

since extending the streak length beyond the diagonal of a voxel will no longer increase

the detectability of the target. Thus, the first step in determining the optimal window

size, Wo p t , is to determine the expected spatial and temporal lengths of a streak for a

particular window size and dwell time. The spatial streak length, L s is the length of a

streak present in a single temporal moment frame, while the temporal streak length

is the number of moment frames associated with a target in a single spatial pixel. To

simplify the problem we will assume the target is moving in a straight line over the

dimension of the voxel and start by considering the distance traveled y for a linear

target in continuous space, y = v t where v is the velocity and t is time. Noting that

the distance traveled will be the spatial streak length L s , the velocity is the inverse of

dwell, and the time is the temporal window size W , this equation becomes L s =W /R .

However, the discrete nature of the problem means that both time and distance are

integer values.

Consider the two examples of targets moving in space (represented by the boxes)

and time (represented by the colored dots) in Figure 41. In the example on the left, the

dwell time is 4 so the target moves one quarter of a pixel per frame. This means that for

a window size of ten, it will have moved from the first red dot, to the second red dot, a

total distance of W −1
R = 2.25 pixels. For some starting points within the pixel, this will

result in the target being present for 4 total pixels (the yellow and gray cases) while for

others it will only appear in 3 pixels. For cases where the target is moving faster than

one pixel per frame (R < 1) like the example on the right, the total number of pixels it

appears in for a single moment frame will be W , but in some cases these pixels will not
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Figure 41. Graphical explanation of the spatial streak length L s for two different scenarios. Boxes
represent spatial pixels, colored dots represent the target position at the beginning and end of a tem-
poral window, and the different colors represent the temporal moment frames p .

be adjacent (as in the yellow moment frame three and purple moment frame 6). For

the purpose of determining the optimal window size, it is the extent of the streak that

matters, so we consider only L s and not the number of detects. Now the spatial streak

length is

L s =
¡

W −1

R
+1

¤

, (34)

where the ceiling operation is used to ensure this is an upper limit on the streak length.

For the temporal case, since it is the number of frames associated with a target in a

single spatial pixel, we multiply Equation 34 by the dwell time to get the temporal streak

length,

L t =
¡

W +R −1

S

¤

= dW +R −1e, (35)

where S is the temporal step size and is set to 1 as discussed in Section 4.2.1. Since the

filtering voxels are cubic and we generally want to maximize the fraction of a voxel that

is expected to contain a target, we will use the smaller spatial dimension to compute
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the optimal window size. This avoids adding additional spatial pixels to the filtering

voxel that will not contain a target. Setting L s = d
p

2 for the diagonal of the spatial box

with side length d used for filtering, and solving for W ,

Wo p t = dR (d
p

2−1) +1e. (36)

Equation 36 will give the optimal window size in cases where the target is bright enough

to remain detectable when the window size is increased past W =R . Figure 42 shows

this optimal window size as a function of dwell time and voxel dimension. While the

Figure 42. Optimal window size as a function of voxel dimension and dwell time based on equation
36

target’s speed cannot be controlled, the voxel dimension is a user parameter and can

be adjusted to help obtain an optimal window size that will maximize the target signal.

This will be discussed further in Section 4.4.3.

To verify Equation 36, the approach described in Section 4.3.3 was used, varying

the window size, voxel dimension, and significance levels to create ROC curves for

each scene and set of parameters. To better compare the results, the probabilities of
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detection at a number of false alarm points were examined. Figure 43 shows these

results for a false alarm percentage of 1.25 (PF A = 0.0125) for all six dwell times and two

different SNRs using a voxel dimension d = 3 (which will be discussed in Section 4.4.3)

for moments one, three and five.

Figure 43. Probability of detection at a single false alarm level of 1.25% for six different dwell times
and four different SNRs using moments n = 1, 3 and 5 with d = 3 for a range of window sizes.

From this figure it is clear that the optimal window size depends heavily on the dwell

time as expected. Additionally, while there is some variation in the optimal window size

across moments, these are also fairly consistent. The theoretical optimal window sizes

from Equation 36 are represented by the arrows in the figure. For the brighter scene

(second row), the predicted optimal window sizes are generally accurate for the slower

targets (R ≥ 1), but they are over predictions for the faster targets. This is as expected

based on the theoretical and Gaussian simulation approaches. Looking at Figure 40,

the moment SNR falls off faster after the W =R point with window size for targets with

shorter dwell times. This means that a smaller window size is needed to maintain a

high moment SNR for the target to be detected. For the dimmer scene, only the slowest

target has a peak window size that matches well with the prediction. For the rest of the
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targets, Equation 36 is consistently over predicting. This is likely because for dimmer

targets, the washout effect of using additional frames past W =R is dominating, and it

suggests that an adjustment must be made to the window size when looking for fast

targets with low SNRs. Specifically, for very fast targets with an SNR less than six and a

dwell time of 0.5 or less, a window size of one should be chosen because the target is

not bright enough to be detected in the skipped adjacent pixels, significantly reducing

the number of detects within a voxel. When the number of skipped pixels decreases,

as is the case for 0.5<R < 1, the window size can be increased slightly for targets with

SNRs of about 3 to 6. Once the target is bright enough that these skipped pixels are

detects, the optimal window size equation becomes accurate. For targets with a dwell

time R = 1, no pixels are skipped, so a slightly larger window size should be chosen.

Figure 44 shows the results from the ASSET simulation for n = 3 and all five SNRs at

the two middle dwell times, R = 1 and R = 2. The optimal window sizes from Equation

36 for these two cases are Wo p t = 5 and Wo p t = 8, indicated by the red arrows. The green

arrows indicate which window size actually has the highest probability of detection.

It is clear that for R = 1, the target would need to be very bright for Equation 36 to

give the true optimal window size. In this case the streak length cannot be extended

significantly without reducing the moment SNR to the point where it cannot be detected,

and a smaller window size of W = 3 should be chosen instead of the value suggested by

Equation 36. For the R = 2 targets, the same explanation holds and a smaller window

size of W = 5 should be chosen for a target SNR less than 3. For the brighter targets,

while there is a difference between PD at W = 7 and W = 8, it is not significant and

Equation 36 can be used to compute the window size. Table 6 summarizes these results.
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Figure 44. Probability of detection at a single false alarm level of 1.25% for two dwell times and five
SNRs using n = 3 and d = 3. The red arrows show the theoretical optimal window size to maximize
streak length from Equation 36 while the green arrows and labels indicate which window size pro-
duces the highest probability of detection.

Table 6. Window size for different target dwell times and SNRs. Wo p t indicates the value can be calcu-
lated by inputting the dwell and voxel dimension into Equation 36

SNR \R ≤ 0.5 (0.5,1) [1−2) [2−3] > 3

< 3 1 1 3 5 Wo p t

3−6 1 3 Wo p t Wo p t Wo p t

> 6 Wo p t Wo p t Wo p t Wo p t Wo p t

To test how accurate the recommendations in this table are, the optimal window size

was computed based on Table 6 for all of the 30 scenarios run and a voxel dimension

of 3. For each SNR and dwell time pair, the window size that produced the highest

probability of detection is shown in Table 7. The probability of detection at this window

size and a false alarm level of 1% was found, along with the probability of detection

at the window size predicted by Table 6. The percent difference in these values was

computed and used for the color code. A green cell indicates this value was less than

or equal to 1%, yellow indicates a value between 1% and 5%, orange indicates a value

between 5% and 10%, and red indicates a larger difference.
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Table 7. Optimal window sizes based on Table 6 color coded by their accuracy.

n = 1 n = 3
SNR\R 0.5 0.75 1 2 3 5 0.5 0.75 1 2 3 5

2 1 1 3 5 7 14 1 3 3 5 9 16
2.5 1 1 3 5 9 16 1 3 3 5 9 18
3 1 1 3 5 5 16 1 3 3 7 9 18
4 1 1 3 6 10 14 1 3 3 7 12 18
5 1 1 4 6 10 24 1 3 4 7 12 12

In the next section the relationship between moment order and dwell time will be

discussed, but to put the results in Table 7 in context, n = 1 will be used for slow targets

and n = 3 will be used for fast targets. With this information, there are only two orange

cells, (the SNR 2.5, R= 0.75 and SNR 3, R= 1 cases) in relevant positions. The remaining

cells of interest are green and yellow, indicating that this is an acceptably accurate

way of determining the appropriate window size. While the optimal window sizes are

theoretically the same across moment orders, the rate of change in PD as a function of

window size depends on both the target dwell time and the moment order, suggesting

that while the detection performance for the optimal window size is approximately the

same across moments, there are more factors to consider.

4.4.2 Moment Order.

Now that the two window sizes have been explored, the relationships between the

moment order and relevant target and algorithm parameters are needed. To explore

these, both the theoretical approach of Section 4.3.1 as well as the Gaussian distribution

simulation approach of Section 4.3.2 will be used. First, looking at Equation 32, the

different moment orders can be set equal to each other and solved for β , resulting in the

expected target SNR at which one moment would be expected to out perform another.

For example, setting Equations 32a and 32b equal to each other and solving yields

β = 0.5, which indicates that on average, n = 2 will detect targets with an SN R > 0.5
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better than n = 1. However, this is only in terms of the expected SNR, and as we saw

in Figure 36a, the expected target moment value often will not be a good indicator of

the actual target moment value in a real scenario with a small window size. This in

turn means that the expected moment SNR is also not giving the full picture as to the

relationship between moments. To better explore this, the method of Section 4.3.2 was

used. Figure 45 shows the results of running such a simulation with a range of SNR and

window sizes for four different dwell times. The z-axis here represents the probability

of a true outcome, or in other words, the sum of the probabilities of a true positive and

a true negative. Each star represents a single window size; SNR combination and the

colored surfaces are a simple surface fit to these data points for moments 1-9. These

plots confirm the initial result of the previous section (that the optimal window size

prior to filtering will occur at W = R ), but they also show that for brighter targets, it

is possible to use a larger window size without decreasing the probability of a true

outcome by using a larger odd moment order. Additionally, the color that is visible in

each surface plot indicates which moment will produce the highest probability of a true

outcome for the corresponding window size, target SNR and dwell.

In the previous section the optimal window size was determined including the

impact of filtering based on spatially and temporally connected streaks. Using a filtering

voxel with dimension d = 3 and assuming dim targets with SNRT < 3, these values for

R = 1, 2, 3 and 5 are W = 3, 5, 11 and 18 and are represented by the blue surfaces in the

plots. In the case of the last three plots (R = 2,3 and 4 ), the surfaces are green and

transition to red as the SNR is decreased. This indicates that for brighter targets, using

the 3rd order moment will produce better results while for dimmer targets, using the

mean will work better. For the R = 1 case, a similar transition occurs but this time

between the 5th order moment and the 3rd. The even moments produce consistently

lower detection results as expected based on the theoretical development, and should
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Figure 45. Probability of a true outcome surface fits for the first nine moment orders as a function
of moment window size W and target SNR for four different dwell times. The blue surface represents
the ideal window size for a voxel dimension d = 3 based on table 6.

not be used.

These conclusions are drawn solely from the Gaussian simulation. To verify these

conclusions and provide additional insight into the appropriate choice of moment

order, the ASSET simulation approach was also used. In Section 4.4.1.2 the probability
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of detection was found at a constant false alarm level for a range of window sizes and

this was used to determine the optimal window size when filtering using the voxel

filter. The results shown in Figure 43 also contain important information with respect

to choosing a moment order. Figure 46 is the same type of plot as before, but for SNRs

of 2.5 and 4 and only moments 1 and 3. Moment 5 was not included because there is no

statistically significant difference between the detection performance of the higher odd

moments. While theoretically increasing the moment order will increase the moment

SNR, the corresponding increase in uncertainty in the target moment SNR negates this

benefit. However, there are significant differences between using the mean (n = 1) and

using the skewness (n = 3). The red lines in Figure 46 indicate the linear portion of

Figure 46. Probability of detection at a 1.25% false alarm level for two SNRs and six different dwell
times. The lines highlight the linear portion of the change in PD as a function of window size.

the decrease in PD as the window size is changed. For the fastest 4 targets, the slopes

are favorable for the 3rd order moment, while the R = 3 cases are quite similar, with

only the lower SNR showing a less rapid decrease than the mean. For the slowest target,

the slopes are steeper for the 3rd moment, indicating that the mean is actually less

sensitive to an incorrect window size choice. Examining the target and background

sample moment distributions in Figure 36 of Section 4.3.2 provides insight into why this

is the case. For all odd moments, the background distributions remain centered at zero
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and become more peaked as the moment order increases. For the mean, short dwell

times keep the target sample moment distribution fairly normal with a peak not far from

zero, and the overlap of the background and target cases is significant. However, for

longer dwell times, the peak of the sample moment distribution shifts away from zero

significantly while maintaining a fairly Gaussian shape. The result is that now the target

and background distributions overlap significantly less, making the mean an effective

metric to use. For faster targets, the higher order odd moments have a heavy right tail

that allows the targets to be amplified more than the noise, which has a much more

peaked distribution centered at zero. This insensitivity to window size is an important

factor because the target’s speed is often only known to within an approximate range

and not exactly, and while an assumption about the general brightness of a target can

be made, its true SNR is also frequently unknown. In order to account for this level of

uncertainty when using the algorithm, multiple moments can be used in combination,

allowing a detection to be in any single moment and thus reducing the algorithm’s

dependence on accurate a priori target information. For slow targets with dwell times

greater than about R = 2, a combination of moments 1 and 3 should be used, while for

faster targets only moment 3 is needed.

4.4.3 Filtering Parameters.

The final set of MBD parameters to optimize are those associated with filtering.

There are essentially three filtering parameters: the voxel dimensions d , the initial

significance level αZ which controls the initial threshold set to produce candidate de-

tections, and the secondary threshold TV , the minimum number of detects in a voxel for

that voxel to be kept. Because the initial significance level controls the maximum false

alarm probability in any given moment, it’s optimal value will depend on the acceptable

false alarm probability for a given application. As such, the other two parameters will
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be optimized after a choice for αZ has been made.

The number of detects within any given voxel is the number of detects due to noise

plus the number of detects due to a target. In order to separate voxels that are purely

noise from those containing target energy, the expected number of detects from each

source is needed. This number of detects will depend on the initial significance level

αZ and the voxel dimension d . Figure 47a shows the detects due to noise in a single

100× 100 frame of data for four different significance levels while Figure 47a shows

probability normalized histograms of the number of detects in a voxel for 7 different

voxel sizes and 4 different significance levels. The problem of counting noise detections

(a) Noise (b) Voxel Sums

Figure 47. (a) Noise in a single 100 × 100 frame with significance level α and (b) the distribution of
sums within a voxel of volume d 3 with significance level αZ

within a voxel can be framed as a sequence of d 3 independent experiments with a true

or false result, and thus the distributions in Figure 47b are binomial. The number of

detects due to noise can then be found by finding the inverse of the binomial cumulative

distribution function with d 3 samples at some probability threshold. Choosing this

threshold to be 0.5 would give the average noise in any given voxel, but since the goal

of the filtering process is to remove voxels that do not have a high enough density of
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detects to contain a target, this probability threshold should be set very low. The default

in the MBD algorithm is 0.05, but this can be increased to filter more aggressively at the

risk of removing voxels that contain a target but also have lower than average noise.

Now that the noise contribution to a voxel has been determined, it is necessary

to determine the minimum expected number of detects in a voxel from a target. To

determine this value, two components are needed: the streak length produced by a

target with a given speed, and the fraction of the streak that is expected to be detected

under a given set of algorithm parameters.

To determine the latter parameter, we use the approach outlined in Section 4.3.2 to

generate the PDFs and CDFs for background moments and target moments, like the

example shown in Figure 35. These CDFs were then used to generate ROC curves as

described in Section 2.4. Using this approach, ROC curves for any given set of target

and algorithm parameters can be computed. To help speed up the algorithm, a large

set of these parameters were run and stored in a large table with the algorithm code.

Figure 48a is an example of the data obtained from this approach. It shows probability

of detection as a function of SNR and dwell time for three different significance levels

for a window size of 8 and the third order moment. As expected, higher SNRs and

significance levels result in a higher probability of detection and increasing the dwell

time increases probability of detection up until R =W , or in this case R = 7. Additionally,

the smoothness of these surfaces indicates that in cases where the desired parameters

do not match exactly with the pre-run values, these results can be interpolated to find

an approximate value.

Now that we know the probability of detection as a function of target and algorithm

parameters, if we know the number of detects in a voxel under perfect detection con-

ditions, we can multiply that value by PD to determine a filtering threshold. This was

done in two different ways, first mathematically and second using the ASSET simulated

95



(a) Probability of detection (b) Target detects per voxel

Figure 48. a) Probability of detection as a function of SNR and dwell time for skewness with a window
size of 7 at three different significance levels b) Maximum number of counts/voxel as a function of
dwell and window size computed using Equation 37 and via simulation (lines)

data. There are 3 parameters that will impact the number of detects in a voxel: the voxel

size d , the window size W , and the target dwell time R . Since we are attempting to

derive a minimum threshold for the number of detects in a voxel, we will consider the

case of a target that moves in a straight line through the voxel, as this represents the

shortest distance across the voxel and will therefore be the minimum number of ideal

detects for a given set of parameters. In order to determine the number of detects in a

voxel, the lengths of the streak both spatially and temporally are needed. These were

derived in Section 4.4.1.2 and are given by Equations 35 and 34. However, these are

based on the extent of the streak and include potential skipped pixels for targets that

move more than one pixel per frame. To account for this, if a target has a dwell time

less than one, L s =W instead of the previously derived equation. This gives the actual

number of detects instead of the extent of the streak. This is necessary because the

goal of the voxel filtering is to remove voxels that do not contain a target due to a low

density of pixels. Fast targets will inherently have a lower density of detects in a voxel,

so without this adjustment they would be far more likely to be filtered out incorrectly.
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With this modification, the total number of detects in a voxel can be computed as,

Target Detects=











































L s × L t L s , L t < d

d × L t L s > d , L t < d

L s ×d L s < d , L t > d

d 2 L s , L t > d ,

(37)

where the piecewise function is needed to cap the temporal and spatial streak lengths

at the voxel dimension.

To verify this calculation using an ASSET simulation, the truth data for scenes with

targets moving in straight lines at various speeds were used to create binary truth

cubes. That is, for each set of parameters, instead of running MBD, the truth data was

processed in the same manner, producing a binary data cube with a one where the

target is expected in the output of MBD, and zeros elsewhere. This cube was then put

through the voxel summation in the MBD algorithm, resulting in a new cube containing

the voxels for perfect detection. In each case, the maximum number of detects in a

voxel was found and stored. Figure 48b shows an example of these results for a voxel size

d = 4 as a function of dwell time and window size while Figure 49 shows an example of

what this calculation looks like visually for a single target. In Figure 49 blue represents

truth after MBD processing (the denominator of the formula for PD ), green represents

truth in the raw data cube (the true target position), and the color map shows how

many counts there are in a voxel with d = 4 for this target. It is clear that the true target

positions overlap with the largest values in the summation. This is as expected since

the voxel sum is done by sliding one pixel at a time, resulting in voxels around the edges

capturing only a small portion of the target. It is for this reason that the maximum value

from the voxel summation of the truth data is used in the final calculation.
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Figure 49. Result of MBD and voxel processing for single target with a dwell time of R = 3 using a
window size of 7 and a voxel size of 4. The color map represents the number of detects in a voxel
for a perfectly detected target. Green indicates the true target position while blue indicates perfect
detection using MBD.

The next step is to multiply the probability of detection by the maximum expected

number of detects per voxel to get the expected number of detects due to a target within

a voxel. In scenarios where the initial thresholdαZ is small, using this value for TV would

work well, but as the initial threshold is raised, the number of false detects in a voxel

also increases. To account for this, the final filtering threshold is obtained by adding the

expected number of additional false detects due to noise discussed previously to the

expected number of detects due to a target. While the filtering step does require inputs

for the target dwell time and SNR, these are only best estimates and should be set at the

low end of the range of targets of interest. This results in less aggressive filtering but is

less likely to eliminate a real target of interest by accident.

To verify this approach to automatically choosing the threshold TV , the ASSET simu-

lation approach was used, running the algorithm first with the automatically chosen
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threshold for TV , and then again but this time varying TV . Figure 50 shows a sampling

these results for four different dwell times and the lowest and highest SNRs. For the

(a) n = 1

(b) n = 3

Figure 50. ROC curves using different filtering thresholds TV plotted with the curve using the auto-
matic filtering approach (green) for n = 1 (top) and n = 3 (bottom). Error bars represent 95% bounds
using equation 7

bright target, the automatically chosen filtering curves are equal to or outperforming

all the chosen thresholds in every scenario. For the dimmer target, for a false alarm

probability greater than about 0.0001, all but the R = 1 case perform as well as or better
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than the test thresholds. The jogs in the ROC curves occur because the filtering thresh-

olds depend on the significance level. At very low significance levels and SNRs, the

thresholds stop changing as a function of αZ because the end of the background CDF

used to determine PF A (the end of the histogram in Figure 37 is reached). This isn’t of

great concern because such a low false alarm level does not produce a high enough

probability of detection to be reasonably useful for low SNR targets, thus this is a regime

in which the algorithm will rarely, if ever, operate.

The final filtering parameter to optimize is the voxel dimension. In Section 4.4.1.2 it

was shown that using a large voxel meant that the optimal window size also was large.

Since increasing the window size tends to wash out the target, a small voxel size will

likely work best, allowing the streak length within a voxel to be maximized for a larger

range of target SNRs and dwell times than would be the case for a large voxel. To help

determine how small this voxel should be, the ASSET simulation approach of Section

4.3.3 was used. Figure 51 shows the probability of detection at PF A = 0.01 for n = 3 at four

different dwell times for a target with an SNR of 2.5. While this figure only shows a few of

Figure 51. PD at PF A = 0.01 as a function of voxel dimension d and moment window size W for n = 3
and a target with an SNR of 2.5 based on the ASSET simulation approach.

the data points, in nearly every case, the d = 3 voxel tied or exceeded the probability of

detection of the other voxels across the window size, dwell time, SNR parameter space.

This is because it is a small enough region that the streak can be maximized within it

even for fairly dim, fast targets. The d = 2 voxel likely did not work as well because in
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such a small volume (8 total pixels), the distinction between noise and target is more

difficult to make as it is far more likely for there to be a target equivalent number of

false detects due to noise.
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V. Results

Now that the parameters for the MBD algorithm are known for various target charac-

teristics, it is possible to compare MBD to other methods. To summarize, the guidelines

for optimizing MBD are:

1. The super window (WS ) should be chosen to be as large as possible while all

frames included are expected to remain consistent (elements such bias drift,

sensor motion and clouds will reduce the number of frames)

2. The optimal moment window (W ) depends on the expected SNR and dwell of

the target and can be found using Table 6, repeated here, where

Wo p t = dR (d
p

2−1) +1e (38)

Table 8. Window size for different target dwell times and SNRs. Wo p t indicates the value can be calcu-
lated using Equation 38

SNR \R ≤ 0.5 (0.5,1) [1−2) [2−3] > 3

< 3 1 1 3 5 Wo p t

3−6 1 3 Wo p t Wo p t Wo p t

> 6 Wo p t Wo p t Wo p t Wo p t Wo p t

3. For fast targets with dwell times less than about 2, skewness (n = 3) should be

used by itself. For slower targets, a combination of the mean (n = 1) and skewness

should be used.

4. The significance level αZ controls the number of false alarms allowed prior to

filtering and should be chosen based on an acceptable maximum false alarm

probability
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5. The best dimension of a voxel for filtering is d = 31. The filtering threshold is

determined automatically based on the user input SNR and dwell time, so these

should be chosen on the low end of the desired range of targets to prevent filtering

out true detections.

To put the results in perspective with respect to existing track-before-detect methods,

the idealized scenario presented by Davey in [12]will be replicated so that the results of

MBD using the optimized parameters can be directly compared to the reported results

for four TBD algorithms. However, the idealized scenario is not truly representative

of real data. To put the performance of MBD on realistic data in the context of other

DBT methods, a direct comparison to the two other detect-before-track approaches

described in Section 2.3 is made. This will be done both in terms of computation time

and detection performance for a range of target characteristics and a number of different

scenes to make the results as relevant as possible to the real problem of detecting targets

in a variety of scenarios automatically and without analyst intervention.

5.1 Idealized Comparison

To see how the performance of the MBD algorithm compares to current approaches

to detection and tracking, it is necessary to look at the detection performance of leading

track-before-detect approaches. To compare to the results of [13], the MBD algorithm

was run using the same approach as described in the book, generating similar scenarios

using ASSET. Davey ran twelve scenarios consisting of four target speeds repeated

at three different SNRs. The metric Davey used to define SNR is the peak maximum

global SNR, SNRM X of Section 2.4, where the noise in all 12 scenarios has a Gaussian

distribution with standard deviation σB . This metric was also used to ensure a true

1For unresolved, point-like targets blurred across a 3 x 3 region with peak energy on detector (EOD) of
about 0.25 - 0.8)
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comparison, but the local temporal median SNR was also calculated to put the results in

the context of the work in the previous sections. While Davey’s example was for a radar

system, the returns of such a system when grouped into spatial cells are equivalent to

spatial pixels. That is, once the returns or imagery from each system (radar or staring

optical) have been converted to digital numbers, they can be treated the same. While

this is not always the case, this scenario ignores elements such as artifacts due to sensor

motion that might cause data from these two sources to appear different to a detection

or tracking method.

Figure 52 shows an example of a single frame of the data used in this comparison for

each target speed. Each target is present for 20 frames of data so the faster targets travel

Figure 52. The 100 target paths over a single frame of data for each of the 4 speeds (R = 0.5, 1, 2 and 4)
from left to right.

a greater distance than the slower targets. While the scenario presented by Davey only

included 20 frames, because MBD relies on the temporal history of a pixel, each data

cube was created with an extra 80 frames of target free data. To make the comparison,

MBD was run on these 12 data sets using the parameters found in 4.4. Since the H-

PMHT, particle filter, Bayes and Viterbi algorithms are all tracking methods, they have

an inherent filtering step that is not present in MBD, namely using the motion of targets

as a filtering mechanism. This makes the comparable operating point for MBD difficult

to determine. To account for this, results at six different operating points are shown

along with the TBD results in Figure 53.

The false alarm percentage shown is the percent of false alarms F A = 100×PF A. To
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Figure 53. Comparison of detection performance and run time for 4 TBD methods and MBD and
coadd at the 0.0125 percent false alarm operating point. The four different shadings above the MBD
line represent four different higher false alarm levels while the shading below the line represents the
lower 0.00125 percent false alarm operating point. The dashed line is the 1% level for coadd and the
dotted line is the 15% level. Error bars are computed using Equation 7 as described in Section 2.4.
The run time is for all 100 scenarios, or 203×100 pixels

determine a number of false alarms that is comparable to Davey, P̂F A can be multiplied

by the number of pixels in the 2000 frame noise scenario, 800,000. While the very

low false alarm operating points do not always produce a probability of detection

that is comparable with the TBD methods, allowing even 1% false alarms results in a

comparable probability of detection, outperforming the particle filter and H-PMHT in

nearly every scenario. While this level of performance in itself is a promising result, it is

the difference in algorithm run times that presents the most notable difference. The

histogram in Figure 53 shows the run-times for all 100 scenarios on a logarithmic scale.

The H-PMHT algorithm is by far the fastest of the TBD algorithms (about 40 times faster

than the particle filter), but MBD is over 1000 times faster. Finally, while coaddition is

the fastest algorithm, it generally requires a much higher acceptable false alarm level to

achieve the same results as the MBD algorithm. Even for very bright targets, to achieve

the same probability of detection as MBD, the false alarm threshold for coadd must be
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increased by a factor of four.

Due to the large large focal plane arrays and increasing time histories of today’s

data sets, computation speed is a critical element to consider when discussing the

performance of an algorithm. Figure 54 shows algorithm run time as a function of

number of pixels for two of the detect-before-track comparison methods, the MBD

algorithm, and the two DBT approaches, coadd and PCA. These values were found

Figure 54. Algorithm run-time in seconds computed directly for coaddition, running PCA and MBD
along with a conservative estimate (linear scaling) for the H-PMHT algorithm discussed in section
2.2.2

by running the algorithms for four different focal plane array sizes (64 × 64, 128 ×

128, 256 × 256, and 512 × 512) varying the number of frames from 100 to 1000. The

black lines, solid and dashed, represent very conservative estimates that assume linear

scaling of the computation time for the track-before-detect H-PMHT algorithm and

particle filter discussed in Section 2.2.2 based on the values reported by Davey [12].

Since the methods considered are fairly linear with respect to the number of pixels, and

we assumed linearity for the H-PMHT and particle filter to give the most optimistic

(albeit very generous) estimates, we can compute a time/pixel metric for each algorithm.

These values are shown in Table 9. Additionally, the last two columns of the table show
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the frame rates at which the algorithms could achieve real time performance for a 5122

and a 2562 pixel focal plane array respectively. The three different MBD times represent

Table 9. Algorithm Times

Algorithm Time per pixel (µs ) 512 RT FR(Hz) 256 RT FR (Hz)

MBD Only 1.43 2.67 10.67
Coadd 1.3 2.93 11.74
Running PCA 37.8 0.10 0.40
MBD1 + BG 2.4 1.59 6.36
MBD2 + BG 5.48 0.70 2.78
H-PMHT 525 0.0073 0.029
Particle Filter 20,750 1.84×10−4 7.35×10−4

MBD without any background suppression, MBD with one moment and background

suppression, and MBD with two moments and background suppression. While the

MBD algorithm is slightly slower than coaddition, it clearly has the potential to operate

in the near-real time realm. It is also important to note that while we assumed for

calculation purposes that everything scaled linearly, elements of the DBT algorithms

including MBD will actually scale much slower with array size due to the potential

for parallelization. For MBD and coadd, all operations are on either single pixels (in

the case of the moment computation), or on small regions (in the case of the voxel

filtering approach). For the background suppression, since the MBD algorithm does not

compare spatial pixels across a large area, the data can be segmented and the principle

components computed in small spatial regions in parallel as well. As a result of this

parallelization, with enough computational resources, the run time and associated real

time frame rate for a larger focal plane array will be nearly the same as for a much smaller

focal plane array, limited only by the number of processors available. For example, if

there are 16 processors available, each with enough memory to hold the data when it is

divided into 128 × 128 data cubes, the new achievable real time frame rate for a single

moment with background suppression would be about 25Hz. Whether or not this can
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actually be achieved will depend on the overhead involved, but such overhead is likely

to be small enough that run time will scale much slower than linearly for the paralellized

version of the MBD algorithm. Finally, it should also be noted that the MBD, PCA and

coadd algorithms are in the form of research Matlab code that has not been optimized

for speed, while “significant effort” was spent in optimizing the TBD methods for speed

in the work done by Davey et. al in [12].

5.2 Realistic Comparison

Now that the MBD algorithm performance has been put in the context of existing

algorithms in terms of detection performance and run-time, the next step is to move

from an idealized scenario with simple target paths, no clutter, and normally distributed

noise, to one with realistic scene elements. For this comparison, the two DBT algorithms

described in Section 2.3 were run and compared to MBD for a large number of realistic

scenes generated using ASSET.

5.2.1 Optimization of DBT Comparison Algorithms.

Because the MBD algorithm parameters have been optimized based on target and

scene characteristics, to make a fair comparison between algorithms, the coadd and

running principle components algorithm parameters also need to be optimized. While

some elements of this optimization are relatively straight forward, such as matching

the number of frames in the signal block to the target dwell time, others are less clear.

While it is beyond the scope of this research to dive deeply into the optimization of

these parameters, an understanding of the optimal choices can be gained using a brute

force approach and a large quantity of simulated data. For both algorithms, the key

parameters are the background block size WS , the buffer gap size G and the signal block

size W . To keep computation times reasonable, a small selection spanning the most
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likely best choices for these parameters were chosen and implemented. These values

are shown in Table 10. The algorithms were run for every possible combination of these

Table 10. Coadd and running principle components algorithm parameters

Parameter Values

Background Block (WS ) 3 5 7 10 15 20 30 40 50
Gap Block (G ) 1 3 5 7

Signal Block (W ) 1 2 3 4 5 6

19 different values for a total of 216 runs. In each case, the threshold for detection was

varied to obtain ROC curves. In order to determine which set of parameters produced

the best ROC curve, the minimum distance to the top left corner (as discussed in Section

2.4) was used.

Twenty four variations of the same realistic scene were created in ASSET, varying

the target SNR and speed in each scene in order to obtain the relationship between the

optimal parameters, target speed and SNR. Figure 55 shows a single frame of data along

with the target paths for the four different dwell times. Also shown is the offset from the

first frame for one of the sets of data. This second plot shows the amount of drift and

jitter present in the scene and is approximately the same for all 24 scenes.

Figure 55. Target paths for dwell times R = 1,2,3 and 5 from left to right (top) and pixel offset from
the first frame of data (bottom).
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Tables 12 and 11 show the parameter sets that resulted in the smallest distance to the

upper left hand corner of the ROC curves for the PCA and coadd algorithms respectively.

For both algorithms, but especially for the PCA algorithm, the SNR of the target had

little to no impact on the optimal set of parameters. While there appears to be some

variation in the background block size with SNR for the coadd algorithm, P̂D for values

of five, seven and ten are within the error of each other across the four different dwell

times.

Table 11. Optimal parameters for coadd

Background Block Gap Block Signal Block

SNR \ R 1 2 3 5 1 2 3 5 1 2 3 5

2.5 7 10 7 5 1 1 3 5 1 1 2 3

3 7 10 7 7 1 1 3 5 1 1 2 3

3.5 10 10 10 7 1 1 3 5 1 1 2 3

4 10 10 10 7 1 1 3 5 1 1 2 3

4.5 7 10 10 7 1 1 3 5 1 1 2 3

5 10 10 10 5 1 1 3 5 1 1 2 3

Table 12. Optimal parameters for PCA

Background Block Gap Block Signal Block

SNR \ R 1 2 3 5 1 2 3 5 1 2 3 5

2.5 15 15 15 15 1 1 3 5 1 1 2 3

3 15 15 15 15 1 3 3 7 1 1 1 3

3.5 15 15 15 15 1 1 3 7 1 1 1 3

4 15 15 15 15 1 1 3 7 1 1 1 3

4.5 15 15 15 15 1 1 3 7 1 1 1 3

5 15 15 15 15 1 1 3 7 1 1 1 3

There is a clear and consistent dependence in the gap and signal block sizes on the dwell

time for both algorithms, making it necessary to choose different algorithm parameters

based on the expected dwell times of targets within the scenes.
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5.2.2 Comparison Scenes and Results.

Now that the parameters for the two comparison algorithms have been determined,

a fair comparison can be made to the MBD algorithm. To ensure that this comparison

is realistic, seven different source images were used with ASSET and a variety of targets

included. Because it is reasonable to assume some knowledge of a target’s speed, frame

stacks were generated with narrow ranges of target speeds but a broad range of SNRs.

For each of the seven source images, six data sets with dimensions 400×400×400 were

generated, two for each grouping of target speeds, for a total of 42 scenes. Figure 56

shows histograms for the dwell time and target SNRs by these groupings.

Figure 56. Distribution of target dwell times (left) and SNRs (right) for the three speed groupings of
targets in the realistic set of scenes

The fast group has targets from R = 0.75 to R = 2.25, the medium group overlaps slightly,

with most of the targets ranging from R = 1.75 to about R = 3.5, and the slow group

ranges from R = 3 to R = 6. The SNRs for all three speed groups range from zero to

about 5.5. Figure 57 shows examples of these target paths over a single frame of data

from a frame stack using each of the seven different source images. The labels indicate

the general geographic region for the Landsat 8 image used to generate the data. These

locations were chosen with the intent of obtaining a wide variety of scene content to

test the MBD algorithm across the scene parameter space. For all 42 scenes, the jitter
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and drift profiles are on the order of those used to optimize the algorithm parameters in

Section 5.2.1. This was done to ensure these parameters remained close to the optimal

choices to keep the comparison fair.

Figure 57. Examples of randomly generated target paths over single frames of data from the seven
different scenes used in the final comparison. From left to right and top to bottom, the fist 3 are fast
examples, the next two are medium speed examples, and the final two are slow examples.

Table 13 shows the parameters chosen for the two DBT algorithms for each of

the three speed groups based on the results of Section 5.2.1. The MBD parameters

were chosen based on the results in Section 4.4 using dwell times of 4, 3, and 1 for

the slow, medium and fast groups respectively, and an input SNR of 2. This value for

SNR seems high (shifted from the minimum) based on Figure 56 because these scenes

contains jitter and drift, so the computed median temporal SNR actually includes clutter,

therefore the background suppression step will help raise the SNR before the moments

are computed. For the slower two groups, both the mean and skewness were used,

while for the fastest group only skewness was included. To compare the detection

performances of the algorithms, the detection thresholds were varied to obtain ROC

curves for each individual target in all 42 scenes for a total of 840 separate ROC curves.

To visualize these results, two false alarm levels, P̂F A = 0.005 and P̂F A = 0.01 were chosen
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Table 13. DBT Algorithm parameters for the three target speed groups

Background Block Gap Block Signal Block
Fast Med Slow Fast Med Slow Fast Med Slow

Coadd 10 10 7 1 3 5 1 2 3
PCA 15 15 15 1 3 7 1 1 3

and the corresponding P̂D for each target determined. These values were plotted as a

function of the target’s average dwell time and SNR and a surface was fit to the results.

Figure 58 shows these two plots.

Figure 58. P̂D at two different false alarm levels as a function of dwell time and local temporal me-
dian SNR prior to background suppression. The different colored surfaces represent the results for
different versions of the 3 algorithms. All PCA refers to computing PCA over the whole data cube and
then thresholding as in the running PCA algorithm. Raw indicates no background suppresion was
done prior to running the algorithm.

Clearly, for all but the very slow targets the MBD algorithm is outperforming all other

approaches in nearly every case. For the 0.05% false alarm level, MBD outperforms

all of the other methods for 82% of the targets while for the 1% false alarm level, MBD

produces the highest P̂D for 77% of the targets. Additionally, at a false alarm level of 1%,

nearly all of the targets are detected with a probability of detection very close to one.

Figure 59 quantifies this by showing first what fraction of the 840 targets represented by

the surface in Figure 58 were detected better using MBD (with the blue bars) than each

of the other methods, and second, by indicating on average how much better MBD

detected these targets than each of the other methods (black).
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Figure 59. Fraction of the 840 targets in the 42 realistic scenarios used to make the surface in Figure
58 that are detected better using MBD (blue) for each detection method, and by how much in terms
of P̂D (black) at each false alarm level.

For example, for the lower false alarm percentage of 0.05%, of the 840 targets in the 42

scenarios run, MBD detected 754 (90%) of the targets better than running principle

components with an average probability of detection 0.55 higher than running PCA.

As the false alarm level is increased to 1%, MBD still detects 79 % of the targets better

than running principle components, but the average improvement in probability of

detection over running PCA drops to 0.12. The majority of the targets that are detected

by a method other than MBD are those with long dwell times. This is due to the blocked

background suppression approach used and could be mitigated by adding frames

together to increase the target’s speed and signal prior to running MBD. These results

indicate that MBD is still effective when complicating elements such as fixed pattern

noise, bad pixels, jitter, drift and clouds are present, showing clear improvement over

other DBT methods, especially at low false alarm levels.

Finally, by summing all frames, or a large subset of frames in the final binary detec-

tions cubes that are output by these DBT detection methods, an additional advantage

of MBD is evident. Figure 60 shows an example of a super frame made from the fast

realistic scenario with the New Zealand background for MBD (left) and for running PCA

(right).
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Figure 60. Super frames for the fast New Zealand scene (detects summed over all frames) for MBD
(left) and running PCA (right).

Because MBD produces streaks, the target trajectories are more solid and easier

to pick out at a much lower false alarm level than in those in a single point detection

approach like running PCA. In the example, the target trajectories in the super frame

computed from MBD detects are still more solid than those from the running principle

components method, even though running PCA has over 30 times as many false alarms.

At this point this super frame approach is useful as a tool for an analyst to quickly identify

if there is a target like trajectory in the data, however this step could be automated with

an algorithm that looks for such trajectories.

5.3 Implications for Sensor Design

At this point the relationships between the MBD algorithm parameters, target char-

acteristics, and detection performance have been thoroughly examined. With this

information, it is possible to understand generally the characteristics of a sensor that

will work well with MBD based on parameters such as the target’s speed, intensity and
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area, and the sensor’s frame rate and ground sample distance (GSD). As expected, the

SNR and dwell time of a target have a significant impact on detection performance

when using MBD. It is intuitive that maximizing SNR will maximize detection perfor-

mance, but because of the way that MBD approaches detection, there is a more nuanced

relationship between dwell time and ideal performance of MBD. Very fast dim targets

(R < 1) will appear as dashed streaks, making filtering difficult, while very slow targets

can be integrated into the background during background suppression, making them

difficult to detect. Looking at Figure 58 this upper bound on dwell time is at about

R = 5, suggesting that ideally targets will have dwell times 1<R < 5, with the middle of

this range (2<R < 4) providing the best performance as this is where streak length is

maximized for dimmer signals and sensitivity to window size becomes less significant

(as shown in Figure 43). Of these two parameters, SNR will tend to drive detection

performance more than dwell time, but only as long as the dwell time is within MBDs

optimal range. These two parameters describe the end appearance of a target to a

sensor, but they are consequences of a sensor’s design

The intensity of a target, its area, the sensor integration time (related to frame

rate), and the sensor GSD all impact the final SNR of a target. As discussed in Chapter

I, MBD was developed to detect dim, unresolved moving targets and because MBD

operates on single spatial pixels individually, extended targets do not significantly

increase the algorithm performance. Thus, an ideal sensor in terms of target SNR is one

that maximizes the signal of a target within a single pixel, matching the area of the target

to the GSD of the sensor. Improving spatial resolution beyond this point will only serve to

reduce the intensity of the target within the pixel and lower its detectability. Integration

time also has a significant impact on a target’s apparent SNR, but an ideal choice will

depend heavily on the target’s speed, as integrating for a longer is not beneficial if the

target has moved out of the pixel.
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The dwell time of a target depends on three main factors, the GSD and integration

time of the sensor, and the target’s velocity. The latter cannot be controlled, but the two

sensor parameters could be tailored to specific classes of target speeds. For example,

consider a target with an area approximately equal to the GSD of a sensor moving at

a speed that covers a quarter of a pixel every second. MBD will operate best if the

integration time is chosen to be about 2 seconds, putting the target’s dwell time at R = 2.

This choice strikes a balance between increasing SNR through a longer integration time

and obtaining a target dwell time that works well for the MBD algorithm. This is a

specific example, but generally choices that increase the target’s SNR while keeping the

dwell time in the middle of the range of ideal dwell times will result in better detection

performance.

Finally, all of these choices assume that sensor alignment has been done well. The

most problematic element for MBD is the case where the sensor has moved enough

that a pixel is imaging a significantly different portion of the scene, making the estimate

of the background, µ̂B used in the moment calculation inaccurate. For MBD to work

well, pixels must image the same portion of scene for a reasonably large number of

frames. In practice this was found to be about 50 frames, but as indicated by figure 39,

if the noise in the scene is high, this number will increase.
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VI. Conclusion

6.1 Summary of Accomplishments

The goal of this research effort was to contribute a solution to the problem of de-

tecting small, unresolved, low SNR targets automatically in near real-time, reducing

the burden on analysts and making better use of the ever increasing quantity of data

collected by today’s sensors. The key accomplishments of this effort are:

• Demonstrated that ASSET simulation data was spatially and temporally repre-

sentative of real imagery collected in the electro-optical spectrum (0.4-15µm),

making it a viable source of data for detection algorithm development, testing,

and evaluation (Chapter III)

• Derived expected MBD performance using a physical sensor model and validated

the expressions found with both numerical simulations and a separate moment-

generating function derivation (Section 4.3.1, Appendix A)

• Determined optimal MBD parameters for detection performance as a function of

the target’s physical characteristics: radiometric intensity (via SNR) and velocity

(Section 4.4, summarized in Chapter V)

• Demonstrated that MBD was capable of detecting targets with comparable de-

tection performance — at 1/1000th the computational cost — of the fastest TBD

approaches, particle filter and H-PMHT (Section 5.1)

• Established that MBD can reliably detect targets with an SCNRT down to 0.5

under realistic imaging conditions (drift / yaw, jitter, cloud motion) with limited a

priori target information, and typically outperformed optimally-tuned PCA and

coaddition algorithms (Section 5.2)
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• Developed a method of using the filtered MBD results to enable analysts to quickly

determine the presence or absence of a moving target in a frame stack

6.2 Conclusion

Using a theoretical approach, a simple target and background moment window

simulation, and a brute force approach using a large quantity of simulated data, it is

clear that intelligent choices can be made for the algorithm parameters in MBD. It was

found that when these rules were used to implement the MBD algorithm for an idealized

scenario with targets moving linearly embedded in normally distributed noise and a

1% false alarm level, MBD outperformed both the histogram probabilistic multiple

hypothesis tracker and the particle filter for targets with dwell times ranging from R =

0.5 to R = 4 and local temporal SNRs down to SN RT md = 1.5 with computation times

1337 and 52,854 times faster respectively. This puts MBD firmly in the category of a near

real-time approach. However, real data is much more complicated with non-Gaussian

artifacts introduced by platform motion combined with clouds and differences in pixel

responses.

To test MBD under more relevant conditions, a large quantity of realistic data con-

taining targets with a range of speeds and signal levels as well as a variety of backgrounds

was of critical importance. To fill this need, ASSET was developed, tested, and imple-

mented to generate these data sets quickly and easily. Data generated with ASSET was

shown to be truly representative of real data through comparisons of lab camera data

and weather satellite data with their simulated versions. While the simulated data is not

necessarily radiometrically accurate, it does capture the relevant sensor motion and

resulting artifacts that impact detection performance, such as cloud edges and coast

lines that create clutter noise. Through the use of ASSET data containing a variety of

artifacts that frequently pose problems for detection, MBD was tested under realistic
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conditions and shown to reliably detect (PD > 0.9) targets with a temporal signal to

clutter plus noise ratio, SC N RT , down to about 0.5 for dwell times from about 0.75 to

5. The MBD algorithm has been shown to have great potential for automatically and

reliably detecting dim targets in near real-time, without the intervention of an analyst.

With further proliferation of high resolution, high frame rate sensors into a large number

of department of defense and intelligence community applications, the demand for

automatic detection and tracking methods will only grow. The thorough analysis of

the potential for moments to contribute to this problem space is just one step in the

journey to achieving a fast and reliable automatic detection and tracking process for

dim targets.

6.3 Future Work

The next steps in continuing the development of the MBD algorithm include three

areas: code efficiency and speed improvements, further development of the filtering,

and exploration of how best to use the final streaks produced by the MBD algorithm.

The version of the code in Appendix B is research code and while the moments were

computed using a convolution approach to reduce run-time, most of the code is not

optimized for speed and it does not include parallelization using a GPU. With the

combination of parallelization and a focus on improving code speed, the algorithm

run-time could be greatly reduced.

The automatic filtering thresholds developed in Section 4.4.3 are only lower thresh-

olds and were found and tested under ideal conditions, with no jitter or clouds. The

MBD algorithm does have the capability of putting an upper cut off on voxels as well, but

to do this, a clear understanding of the maximum expected number of detects within

a voxel due to a target is needed. This will require factoring in the PSF of the imager

and the SNR of the target in order to avoid removing voxels that simply have very bright
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or large targets with energy spread across multiple pixels. Additionally the voxel size

may also need to be adjusted in order to include a large enough region to differentiate

between such targets and regions that contain many detects due to clutter. Thus, a

large scale study using realistic data across a wide range of target, sensor and scene

characteristics is needed to further tune the filtering thresholds in order to remove more

clutter artifacts while preserving the targets. Possible avenues of exploration include

using two filtering steps, one with a lower threshold and smaller voxel and one with an

upper threshold and a larger voxel, and studying the clutter artifacts common in real

data to determine features specific to clutter noise that can be used to differentiate them

from real streaks. Additionally, super frames made from MBD detects make determining

the general location of a target trajectory over time quick for an analyst, but automating

the process of determining the potential presence or absence of a target based on these

super frames is a logical next step.

Finally, at this point in the research process, the output of MBD is a filtered de-

tections cube containing streaks where targets are likely to appear. The next step in

the development of this algorithm is to implement a form of tracking to combine the

individual streaks into tracks. Because the streaks contain many detections per target,

the assumption that each detect is associated with a single target made by most trackers

is violated, requiring the development of an alternative approach. Additionally, as a

part of this tracking process, it will be necessary to determine where within the streak

the target actually is in any given frame. This has been determined to be a function

of a frame’s position in the frame stack, with the target appearing at the head of the

streak for the first frames, and the tail of the streak for the last frames, but a method

to determine this for the filtered detections is needed in order to determine the true

position of a detected target in any given frame. For cases where the target is moving

linearly with constant velocity, this problem is relatively straightforward, but for targets
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with both axial and lateral acceleration, the problem becomes more complicated.

These are the three main areas for the future development of MBD, however there

are two smaller items that could help improve the performance of MBD. First, it was

shown that because of the block background suppression method, MBD has an upper

limit on the dwell time of a target for which it will work well. One potential improvement

is to combine frames together to enhance signal and speed up the target in situations

where the target is expected to be slow. Ensuring that this process does not alter the

statistics in a way that will reduce detection performance and implementing this change

will remove the upper limit on the dwell time of a target for MBD. Second, since large

sensor motion is one of the most significant challenges for MBD, implementation of

fast and accurate frame registration prior to using MBD will help remove many of the

clutter artifacts that currently cause most false detects.
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IMPROVING DETECTION OF DIM TARGETS:

OPTIMIZATION OF A MOMENT-BASED DETECTION ALGORITHM

A. Expected Moment Equations using Moment Generating Functions

The moment generating function m (t ) for a random variable X is defined as

m (t ) = E [e t X ]. (39)

Additionally, if m (t ) exists, the nth moment of the random variable X taken about the

origin, E [Y n ] =M n can be found by taking the derivative of m (t )with respect to t and

evaluating at t = 0,
d n m (t )

d t n

�

�

�

�

t=0

=m n (0) =M n . (40)

As a result, if the probability distribution function for the random variable X is known,

equations 39 and 40 can be used to find its moments. In the case of pixels belonging to a

background window or a target window, these PDFs are described by a single Gaussian

distribution and a mixture of Gaussians respectively,

XB ö
1

p
2πσ

exp
−(x −µB )2

2σ2
(41a)

XT ö
f

p
2πσ

exp
−(x −µB )2

2σ2
+

1− f
p

2πσ
exp
−(x −µT )2

2σ2
. (41b)

where f represents the fraction of background pixels in the smaller temporal window

(size W ). In terms of dwell time, (the time a target spends in a single pixel, R ) f = W −R
W .

Using equation 39, the two moment generating functions for background and target
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windows are given by

m (t )XB
=

∫ ∞

−∞
e t xN (µB ,σ2

B )d x (42a)

m (t )XT
=

∫ ∞

−∞
e t x

�

W −R

W
N (µB ,σ2

B ) +
R

W
N (µT ,σ2

B )
�

d x . (42b)

For the simple background case, this integral is easily solved and produces the well

known moment generating function for a normal distribution. For the target case,

the integral can be separated into two integrals, one for each normal distribution.

Additionally, equations 39 and 42 are for the moments taken about the origin, but for

the MBD algorithm, central moments are taken about an estimate of the background

mean µ̂B . To account for this difference, we center the normal distributions by setting

µB = 0. Noting that µT = µB + βσB and evaluating the integrals, the final moment

generating functions for the target and background window cases are

mXB
(t ) = exp(

1

2
σ2

B t 2) (43a)

mXT
(t ) =

W −R

W
exp(

1

2
t 2σ2

B ))+
R

W
exp(

1

2
(2βσB t +σ2

B t 2). (43b)

Finally, to get from equation 43 to equation 27 in section 4.3.1, apply equation 40 to

equation 43 and subtract the background case from the target case,

∆〈M 1〉=
R

W
βσB (44a)

∆〈M 2〉=
Rσ2

B

W
(β 2+1)−σ2

B (44b)

∆〈M 3〉=
Rσ3

B

W
(3β +β 3) (44c)

∆〈M 4〉=
Rσ4

B

W
(1+6β 2+β 4)−3σ4

B (44d)

∆〈M 5〉=
Rσ5

B

W
(5β +10β 3+β 5) (44e)
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B. MBD Matlab Code

The MBD algorithm is called using RunMBD:

1 function [DetsF ,opts ,Moms ,Dets ,F] = RunMBD(Frames ,opts ,varargin)
2 % [DetsF ,opts ,Moms ,Dets ,F] = RunMBD(Frames ,opts ,varargin)
3 %
4 % Main code to run the Moments -Based Detection algorithm
5 %
6 % --- Inputs ---
7 % Frames - 3D array of staring frame data
8 % opts - options structure controlling how MBD works
9 %

10 % --- Outputs ---
11 % DetsF - filtered detections
12 % opts - updated options structure
13 % Moms - moments array
14 % Dets - unfiltered detections
15 % F - processed frame data that was fed into moment comp
16 %
17 % ---------------------------------
18 % Shannon R. Young
19 % POC: Bryan J. Steward
20 % POC: Kevin C. Gross
21 % Air Force Institute of Technology
22 % Wright -Patterson AFB , Ohio
23 % Kevin.Gross@afit.edu
24 % (937) 255 -3636 x4558
25 % Version - Dissertation
26 % 10-0ct -2018
27 % ---------------------------------
28

29 opts = parse_pv_pairs(opts ,varargin);
30 [Moms ,opts ,F] = mbd2_moms(Frames ,opts);
31 [Dets] = mbd2_detect(Moms , opts);
32 [~,DetsF] = BoxFilter2(Dets ,opts ,0);
33 end
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These functions and their necessary sub-functions are printed here. First the options
function is called to set the default options and change any user input options:

1 function opts = mbd2_opts(varargin)
2 % opts = mbd2_opts(varargin)
3 %
4 % Function MBD2_OPTS generates the default options structure used for
5 % detecting statistically signficant pixels in frame arrays using running
6 % windows of moments.
7 %
8 % OPTS = mbd2_opts () with no input arguments returns the default OPTS
9 % structure for use in MBD. OPTS = mbd_opts(FIELD ,VALUE) generates the

10 % default OPTS structure and replaces the default value in FIELD with VALUE.
11 % Multiple FIELD VALUE pairs are allowed.
12 %
13 % --- Inputs ---
14 % field , value pairs - see code for full set of adjustable options
15 %
16 % --- Outputs ---
17 % opts - options structure
18 %
19 % ---------------------------------
20 % Shannon R. Young
21 % POC: Bryan J. Steward
22 % POC: Kevin C. Gross
23 % Air Force Institute of Technology
24 % Wright -Patterson AFB , Ohio
25 % Kevin.Gross@afit.edu
26 % (937) 255 -3636 x4558
27 % Version - Dissertation
28 % 10-0ct -2018
29 % ---------------------------------
30

31 % Prepare Inputs
32 if nargin == 0 || ~isa(varargin {1},'struct ')
33 opts.gpuFlag = 0; % Set to 1 to compute on GPU
34

35 % Preprocessing options
36 opts.bg_suppress = []; % RxCxK chunk size for BG removal; no removal if empty
37

38 % Postprocessing options
39 opts.zscore = 1; % zscore the moments after computation
40 opts.std_norm = 0; % divide moments by sigma^n after computation
41 opts.power_norm = 0; % raise moments to 1/order power
42 opts.alpha = 0.01; % threshold for quantiles
43 opts.verbose = 1; % display feedback at command line
44 opts.SNRguess = 3; % Guess at SNR of target , for window size calculation
45 opts.moments = [1,3]; % moments to calculate
46 opts.dwell = 1.25; % Guess at # frames a target spends in a single pixel
47 opts.window_size = []; % will be calculated later
48 opts.super_window = []; % Number of frames to use for mean computation
49 opts.step_size = 1; % step between start frames --> DO NOT CHANGE
50 opts.frame_size = []; % NxMxP size or frame array
51 opts.moment_size = []; % NxMxQ size or moment array
52 opts.precision = 'single '; % Not used everywhere yet...
53 opts.data_mean = []; % Field to store average temporal mean
54 opts.data_std = []; % Field to store average temporal std
55

56 % box filtering parameters
57 opts.box = 3; % size of box for summation filtering
58 opts.FinalFilt = 1; % turns on 2D convolution with summed dets at the end
59 opts.upper_thresh = 1; % threshold for upper cutoff - 1 for no upper cutoff
60 opts.lower_thresh = 0.05; % threshold for lower cutoff (detn 's noise detects in box)
61 end
62

63 % window size as a function of dwell and maximum moment order:
64 opts.window_size = getBestW(opts);
65

66 % update with user inputs:
67 opts = parse_pv_pairs(opts ,varargin);
68

69 % re -calculate window size if necessary
70 if (any(strcmp(varargin (:),'dwell ')) || any(strcmp(varargin (:),'SNRguess ')))
71 opts.window_size = getBestW(opts);
72 end
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Now that the options have been set, the moments are computed:

1 function [Moms ,opts ,F] = mbd2_moms(Frames ,opts ,varargin)
2 % [Moms ,opts ,F] = mbd2_moms(Frames ,opts ,varargin)
3 % MBD2 function to do preprocessing , compute moments , and postprocessing
4 %
5 % --- Inputs ---
6 % Frames - Frame stack (ASSET or other data , N x M x K 3D cube format)
7 % opts - opts structure generated with mbd2_opts
8 %
9 % --- Outputs ---

10 % Moms - 4D moment array with dims [Row , Col , Moment Value , Moment Order]
11 % opts - opts structure updated with mean and stdev of pre -processed frames
12 % F - processed frames data that was fed into the moment computation
13 %
14 % ---------------------------------
15 % Shannon R. Young
16 % POC: Bryan J. Steward
17 % POC: Kevin C. Gross
18 % Air Force Institute of Technology
19 % Wright -Patterson AFB , Ohio
20 % Kevin.Gross@afit.edu
21 % (937) 255 -3636 x4558
22 % Version - Dissertation
23 % 10-0ct -2018
24 % ---------------------------------
25

26 % process options
27 opts = parse_pv_pairs(opts ,varargin);
28 opts.frame_size = size(Frames);
29

30 % preprocess as dictated by opts
31 if ~isempty(opts.bg_suppress)
32 % Apply background suppression
33 F = BG_suppress(Frames , opts.bg_suppress , 0,[],[],opts);
34 else
35 if ~opts.zscore
36 % Mean subtraction if no zscore later
37 F = bsxfun(@minus , Frames , mean(Frames ,3));
38 else
39 % Do nothing if it will be z-scored
40 F = Frames;
41 end
42 end
43

44 % update opts structure to include average per pixel mean and std
45 opts.data_mean = mean(vec(mean(F,3)),'omitnan ');
46 opts.data_std = mean(vec(std(F,[],3)),'omitnan ');
47

48 % set super -window parameter if not / inappropriately supplied
49 test1 = isempty(opts.super_window)
50 test2 = opts.super_window >=( opts.frame_size (3)-opts.window_size)
51 if test1 || test2
52 % calculate super window so error is less than 0.1 std
53 opts.super_window = ceil (4* opts.data_std /0.1);
54 if opts.super_window >= opts.frame_size (3)
55 opts.super_window = opts.frame_size (3)-opts.window_size;
56 % set a minimum super window size of 5
57 elseif opts.super_window < 5
58 opts.super_window = 5;
59 end
60 end
61

62 % Compute moments
63 W = opts.window_size;
64 BigW = opts.super_window;
65 [Data ,dims] = rs2D(F);
66 nT = dims(end);
67 nK = nT-W+1;
68 ix = repmat (0:W-1,nK ,1)+cumsum(ones(nT-W+1,W));
69 ix = ix(1: opts.step_size:end ,:);
70 nK = size(ix ,1);
71

72 % reshape to N*M by P by W (row times col , reduced moment frames , window)
73 dat = reshape(Data(:,ix),prod(dims (1:2)),nK,W);
74
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75 % First copy BigW/2 frames to the front and back to extend window to center
76 DataPlus = cat(2,cat(2,Data(:,W+1+ ceil(BigW /2):W+1+BigW -1),Data),...
77 Data(:,end -(W+BigW -1):end -(W+floor(BigW /2))));
78

79 % compute mean using convolution with or without gpu
80 kernel = [ones(floor(BigW /2) ,1); zeros(W,1); ones(ceil(BigW /2) ,1)];
81 sm = conv2(DataPlus , kernel ', 'valid ')./BigW;
82

83 % compute std over super window if needed
84 if opts.std_norm
85 if opts.gpuFlag
86 sd2 = conv2(DataPlus .^2,kernel ','valid ')./BigW -sm.^2;
87 % remove (set to zero) negative values and take the square root
88 sd2(sd2 <0) = 0; sd2 = sqrt(sd2);
89 sd2 = gather(sd2(:,1: opts.step_size:end));
90 sd2 = repmat(sd2(:,1: size(dat ,2)) ,1,1,size(dat ,3));
91 else
92 sd2 = conv2(DataPlus .^2,kernel ','valid ')./BigW -sm.^2;
93 % remove (set to zero) negative values and take the square root
94 sd2(sd2 <0) = 0; sd2 = sqrt(sd2);
95 sd2 = sd2(:,1: opts.step_size:end);
96 sd2 = repmat(sd2(:,1: size(dat ,2)) ,1,1,size(dat ,3));
97 end
98

99 end
100 sm = sm(:,1: opts.step_size:end);
101

102 % repeat mean to match size of x
103 sm = repmat(sm(:,1: size(dat ,2)) ,1,1,size(dat ,3));
104

105 m = opts.moments;
106 Moms = zeros(prod(dims (1:2)),nK,numel(m),'like',Data);
107 % split number of pixels up into 12 groups?
108 for mm = 1:numel(m)
109 % compute moment
110 if opts.std_norm
111 Moms(:,:,mm) = mean (((dat -sm)./sd2).^m(mm) ,3);
112 else
113 Moms(:,:,mm) = mean((dat -sm).^m(mm) ,3);
114 end
115 if opts.verbose
116 fprintf('Moment %d done\n',m(mm));
117 end
118 end
119

120 if length(m) == 1
121 Moms = rsND(Moms ,[dims (1:2) nK]);
122 else
123 Moms = rsND(Moms ,[dims (1:2) nK numel(m)]);
124 end
125

126 [N,M,K,P] = size(Moms);
127 opts.moment_size = [N,M,K,P];
128

129 % Normalize / standardize moments
130 if opts.power_norm
131 L = N*M*K
132 p = repmat (1./ opts.moments ,L,1)
133 f = @(x,m) sign(x)*abs(x).^m
134 Moms = reshape(f(reshape(Moms ,L,P),p),N,M,K,P)
135 end
136 if opts.zscore , Moms = myzscore(Moms ,3); end
137 end
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If background suppression is turned on, svd is used to remove the background:

1 function [Fn,Fb,out] = BG_suppress(F,BS,CompFactor ,k,minK ,opts)
2 % [Fn,Fb,out] = BG_suppress(F, BS, k, minK)
3 %
4 % Function to model and remove static background (BG) from image stack. Can
5 % operate on entire stack or break image into spatio -temporal blocks for
6 % parallel processing of BG modeling. Uses SVD to model and remove BG
7 % artifacts from the data in order to reveal dim moving targets. Unless k
8 % specified , number of singular values kept for BG model is determined
9 % automatically.

10 %
11 % --- Inputs ---
12 % F - frame stack [nRow ,nCol ,nFrame]
13 % BS - (*) block size [iRow , jCol , kFrame]
14 % k - (*) number of singular vectors for BG model {[], i.e. auto -detn 'd}
15 % minK - (*) minimum number of singular vectors to use in BG model {[1]}
16 %
17 % --- Outputs ---
18 % Fn - BG-suppressed , standardized data [nRow ,nCol ,nFrame]
19 % Fb - BG model [nRow ,nCol ,nFrame]
20 % out - output structure with details about computation
21 %
22 % ---------------------------------
23 % Shannon R. Young
24 % POC: Bryan J. Steward
25 % POC: Kevin C. Gross
26 % Air Force Institute of Technology
27 % Wright -Patterson AFB , Ohio
28 % Kevin.Gross@afit.edu
29 % (937) 255 -3636 x4558
30 % Version - Dissertation
31 % 10-0ct -2018
32 % ---------------------------------
33

34 % Handle optional arguments
35 if nargin < 3, BS = []; end
36 if nargin < 4, k = []; end
37 if nargin < 5 || isempty(minK), minK = 1; end
38

39 % Estimate and remove background
40 ll = 1;
41 tic; % track timing
42 if isempty(BS) % Process the entire frame stack
43 [Fn,Fb,K] = estimate_bg(F,k,minK);
44 else % Loop to build indices for spatio -temporal blocks
45 S = size(F);
46 for ii = 1:BS(1) -1:S(1)
47 for jj = 1:BS(2) -1:S(2)
48 for kk = 1:BS(3) -1:S(3)
49 ixR{ll} = ii:min([ii+BS(1) S(1)]);
50 ixC{ll} = jj:min([jj+BS(2) S(2)]);
51 ixT{ll} = kk:min([kk+BS(3) S(3)]);
52 BLK{ll} = double(F(ixR{ll},ixC{ll},ixT{ll}));
53 ll = ll+1;
54 end
55 end
56 end
57 nBlk = ll -1;
58 BLK = BLK(1: nBlk);
59

60 % Parallel loop to perform background estimation on independent blocks
61 K = zeros(1,nBlk);
62 parfor ii = 1:nBlk
63 [FN{ii},FB{ii},K(ii)] = estimate_bg(BLK{ii},CompFactor ,k,minK);
64 end
65

66 % Reassemble blocks into background -suppressed frame stack
67 [Fn,Fb] = deal(zeros(S,'like',F)); % Pre -allocate
68 for ii = 1:nBlk
69 Fn(ixR{ii},ixC{ii},ixT{ii}) = FN{ii};
70 Fb(ixR{ii},ixC{ii},ixT{ii}) = FB{ii};
71 end
72 end
73

74
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75 % Build output structure
76 out.k = K;
77 out.ixR = ixR;
78 out.ixC = ixC;
79 out.ixT = ixT;
80 out.nBlk = nBlk;
81 if opts.verbose , time = toc; fprintf('BG suppress took %.3f s\n',time); end
82 end
83

84

85 % ---------------------------------------------------------------------
86 % subfunction estimate_bg
87 % ---------------------------------------------------------------------
88

89 function [Fn,Fb,k] = estimate_bg(F,CompFactor ,k,minK)
90 % code to estimate / suppress background for spatio -temporal chunk
91

92 % Handle optional input
93 if nargin < 4 || isempty(minK), minK = 1; end
94

95 % Use SVD to remove background
96 [F,dims] = rs2D(F);
97 if CompFactor >0
98 [U,S,V] = rsvd(F,round(dims(end)/CompFactor));
99 else

100 [U,S,V] = svdecon(F);
101 end
102

103 % Automate finding the number of singular vectors needed to model BG
104 if isempty(k) % but only do this if k not supplied by user
105 try
106 s = diag(S);
107 ix = find(s >= median(s) + 2*1.486* mad(s,1)) ';
108 ix = [ix max(ix)+1];
109 if isempty(ix), ix = 1:minK; end
110 catch
111 fprintf('Error finding number of vectors , default to all\n')
112 ix = 1:size(F,2);
113 end
114 else
115 ix = 1:min([k round(dims(end)/2)]);
116 end
117 k = numel(ix);
118

119 % Hard -coded hack if k too big
120 if k>round(dims(end)/2)
121 ix = 1:10;
122 end
123

124 % Another check if k too big
125 if k>size(U,2) || k>size(S,2) || k>size(V,2)
126 k = size(U,2);
127 ix = 1:k;
128 end
129

130 % Compute background and remove it
131 Fb = U(:,ix)*S(ix,ix)*V(:,ix) '; % BG model
132 Fn = F - Fb; % remove BG
133 Fn = rsND(Fn,dims); % reshape
134 Fb = rsND(Fn,dims); % reshape
135 end
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Randomized SVD code used in background suppression:

1 function [U,S,V] = rsvd(A,K)
2 % Code written by Antoine Liutkus and posted on MathWorks FileExchange.
3 % 15-Sep -2014
4 % https://www.mathworks.com/matlabcentral/fileexchange/47835-randomized-singular-value-decomposition
5 %
6 %-------------------------------------------------------------------------------------
7 % random SVD
8 % Extremely fast computation of the truncated Singular Value Decomposition , using
9 % randomized algorithms as described in Halko et al. 'finding structure with ...

randomness
10 %
11 % usage :
12 %
13 % input:
14 % * A : matrix whose SVD we want
15 % * K : number of components to keep
16 %
17 % output:
18 % * U,S,V : classical output as the builtin svd matlab function
19 %-------------------------------------------------------------------------------------
20 % Antoine Liutkus (c) Inria 2014
21

22 [M,N] = size(A);
23 P = min(2*K,N);
24

25 X = randn(N,P);
26

27 Y = A*X;
28 W1 = myorth(Y);
29 B = W1 '*A;
30 [W2 ,S,V] = svdecon(B);
31 U = W1*W2;
32 K=min(K,size(U,2));
33 U = U(:,1:K);
34 S = S(1:K,1:K);
35 V=V(:,1:K);
36 end
37

38 function Q = myorth(A)
39 %ORTH Orthogonalization.
40 % Q = ORTH(A) is an orthonormal basis for the range of A.
41 % That is, Q'*Q = I, the columns of Q span the same space as
42 % the columns of A, and the number of columns of Q is the
43 % rank of A.
44

45 [Q,S] = svdecon(A); %S is always square.
46 s = diag(S);
47 tol = max(size(A)) * eps(max(s));
48 r = sum(s > tol);
49 Q(:, r+1: end) = [];
50 end
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Economic SVD code used in background suppression:

1 function [U,S,V] = svdecon(X)
2 % Code written by Vipin Vijayan and posted on MathWorks FileExchange.
3 % 07-Jul -2014
4 % https://www.mathworks.com/matlabcentral/fileexchange/47132-fast-svd-and-pca
5 %
6 % Input:
7 % X : m x n matrix
8 %
9 % Output:

10 % X = U*S*V'
11 %
12 % Description:
13 % Does equivalent to svd(X,'econ ') but faster
14 %
15 % Vipin Vijayan (2014)
16

17 % X = bsxfun(@minus ,X,mean(X,2));
18 [m,n] = size(X);
19

20 if m <= n
21 C = X*X';
22 [U,D] = eig(C);
23 clear C;
24

25 [d,ix] = sort(abs(diag(D)),'descend ');
26 U = U(:,ix);
27

28 if nargout >=2
29 V = X'*U;
30 s = sqrt(d);
31 V = bsxfun(@(x,c)x./c, V, s');
32 S = diag(s);
33 end
34 else
35 C = X'*X;
36 [V,D] = eig(C);
37 clear C;
38

39 [d,ix] = sort(abs(diag(D)),'descend ');
40 V = V(:,ix);
41

42 U = X*V; % convert evecs from X'*X to X*X'. the evals are the same.
43 % s = sqrt(sum(U.^2,1)) ';
44 s = sqrt(d);
45 U = bsxfun(@(x,c)x./c, U, s');
46 S = diag(s);
47 end
48 end
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Use the significance level to determine which pixels are detects:

1 function [Dets]= mbd2_detect(Moms ,opts ,varargin)
2 % Dets = mbd2_detect(Moms ,opts ,varargin)
3 %
4 % MBD function to take moments from mbd2_moms and find detects based on a
5 % global threshold , treating each pixel as a detector
6 %
7 % --- Inputs ---
8 % Moms - Moments array
9 % opts - options structure with field alpha and zscore

10 %
11 % --- Outputs ---
12 % Dets - threshold -based detections
13 %
14 % ---------------------------------
15 % Shannon R. Young
16 % POC: Bryan J. Steward
17 % POC: Kevin C. Gross
18 % Air Force Institute of Technology
19 % Wright -Patterson AFB , Ohio
20 % Kevin.Gross@afit.edu
21 % (937) 255 -3636 x4558
22 % Version - Dissertation
23 % 10-0ct -2018
24 % ---------------------------------
25

26 % process extra inputs
27 opts = parse_pv_pairs(opts ,varargin);
28

29 % zscore if it hasn 't been done already
30 if ~opts.zscore , Moms = myzscore(Moms ,3); end
31

32 % get pixels that are above the threshold based on alpha
33 Dets = Moms >= quantile(Moms (:), 1-opts.alpha);
34 end
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Filter the detections using the voxel filtering approach:

1 function [Summed ,DetsF] = BoxFilter2(Dets , opts , FigFlag , Summed)
2 % [Summed ,DetsF] = BoxFilter2(Dets ,opts ,FigFlag ,Summed)
3 %
4 % Function to perform box filtering.
5 %
6 % --- Inputs ---
7 % Dets - binary data hypercube or cube with detections
8 % opts - opts structure from mbd2_opts used to generate Dets
9 % FigFlag - if 1, make histogram of the summed data

10 % Summed - (*) if input , skips summing step and uses this instead
11 %
12 % --- Outputs ---
13 % Summed - the array containg the sum of detects in each voxel
14 % DetsF - Filtered detections
15 %
16 % ---------------------------------
17 % Shannon R. Young
18 % POC: Bryan J. Steward
19 % POC: Kevin C. Gross
20 % Air Force Institute of Technology
21 % Wright -Patterson AFB , Ohio
22 % Kevin.Gross@afit.edu
23 % (937) 255 -3636 x4558
24 % Version - Dissertation
25 % 10-0ct -2018
26 % ---------------------------------
27

28 % get ideal lower and upper thresholds for the given options
29 [Lower ,Upper] = getBxThresh3(opts);
30

31 % handle case of VERY bright target (blur across pixels causes this problem)
32 if opts.SNRguess > 9, opts.upper_thresh = 1; end
33

34 % change Dets to single to save space on the GPU
35 Dets = single(Dets);
36

37 % if user didn 't supply Summed , we need to compute it
38 if nargin < 4
39 Box = opts.box;
40 BS = [Box , Box , Box];
41 kernel = ones(BS);
42 Summed = zeros(size(Dets));
43 for ii = 1:size(Dets ,4)
44 Summed(:,:,:,ii) = convn(Dets(:,:,:,ii),kernel ,'same');
45 end
46 end
47

48 % prepare figure , if necessary
49 if FigFlag , figure; hold on; end
50

51 % threshold
52 SubArray = zeros(size(Dets));
53 for ii = 1:size(Dets ,4)
54 SubArray (:,:,:,ii) = Summed(:,:,:,ii)>Lower(ii) & Summed(:,:,:,ii)<Upper(ii);
55 if FigFlag , histogram(Summed(:,:,:,ii),'BinWidth ',1,'linestyle ','none'); end
56 DetsF = any(Dets.*SubArray ,4);
57 end
58

59 % apply final filtering , if necessary
60 if opts.FinalFilt && nargout > 1
61 Box = opts.box;
62 BS = [Box , Box , Box];
63 % check that initial alpha is low enough for this to work:
64 if opts.alpha > 0.5 && opts.verbose
65 fprintf('Final 2D summed filter not used; initial threshold too high\n')
66 else
67 Map = sum(DetsF ,3);
68 FlatSum = conv2(Map ,ones(BS(1:2)),'same'); % convolve box size over 2D map
69 DetsF = bsxfun(@times ,DetsF ,FlatSum >min(Lower));
70 end
71 end
72 end
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Use a helper function to determine the filtering threshold:

1 function [Lower ,Upper ,Ls,Lt] = getBxThresh3(opts)
2 % [Lower ,Upper ,Ls,Lt] = getBxThresh3(opts)
3 %
4 % Function to compute lower and upper bounds for filtering box detects
5 % based on the mbd2_opts structure (the only input).
6 %
7 % --- Inputs --- (required fields from the opts structure)
8 % window_size - moment temporal window
9 % dwell - guess as to how long target spends in a pixel (choose

10 % R = 1 if totally unknown)
11 % upper_limit - qunatile of binomial distribution used to set upper
12 % threshold. Set to 1 if no upper threshold is desired
13 % box - dimension of voxel over which detects are summed
14 % SNRguess - used to calculate how much of streak should be detected
15 %
16 % --- Outputs ---
17 % Lower - lower threshold for detects
18 % Upper - upper threshold for detects
19 % Ls - spatial streak length
20 % Lt - temporal streak length
21 %
22 % ---------------------------------
23 % Shannon R. Young
24 % POC: Bryan J. Steward
25 % POC: Kevin C. Gross
26 % Air Force Institute of Technology
27 % Wright -Patterson AFB , Ohio
28 % Kevin.Gross@afit.edu
29 % (937) 255 -3636 x4558
30 % Version - Dissertation
31 % 10-0ct -2018
32 % ---------------------------------
33

34 % rename important variables
35 W = opts.window_size;
36 R = opts.dwell;
37 Bx = opts.box;
38

39 % define the necessary streak length functions
40 Lspat = @(R,W) (W+R-1)/R;
41 LspatFast = @(R,W) W; % don 't divide by R yet if R<1
42 Ltemp = @(R,W) W+R-1;
43 LtempFast = @(R,W) W+R-1;
44

45 if R < 1
46 if LspatFast(R,W)>=Bx
47 Ls = Bx;
48 else
49 Ls = LspatFast(R,W);
50 end
51 if LtempFast(R,W)>= Bx
52 Lt = Bx;
53 else
54 Lt = LtempFast(R,W);
55 end
56 else
57 if Lspat(R,W)>=Bx
58 Ls = Bx;
59 else
60 Ls = Lspat(R,W);
61 end
62 if Ltemp(R,W)>=Bx
63 Lt = Bx;
64 else
65 Lt = Ltemp(R,W);
66 end
67 end
68

69 % total expected detects for a straight line
70 ExpectedMin = Ls.*Lt;
71

72 % total expected detects for a diagonal target
73 % (assume stair style , not solid diagonal)
74 ExpectedMax = Ls.*Lt*2;
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75

76 % now load in data and compute expected percent detected
77 try
78 % try to use pre -generated data for speed
79 load('PercDetStats5.mat','MomVec ','Rvec','SNRVec ','AlphaVec ',...
80 'WindowVec ','truePositive ')
81 if opts.alpha < 0.001
82 Error('need to recompute ')
83 end
84

85 % set limits to the edges of computed zone
86 if opts.dwell <1
87 opts.dwell = 1;
88 end
89

90 PercMn = interpn(AlphaVec ,MomVec ,Rvec ,WindowVec ,SNRVec ,truePositive ,...
91 double(opts.alpha),double(opts.moments),double(opts.dwell),...
92 double(opts.window_size),double(opts.SNRguess),'spline ');
93

94 catch
95 % if not available , compute PercMn from scratch
96 W = opts.window_size;
97 SNR = opts.SNRguess;
98 Dwell = opts.dwell;
99 Std = opts.data_std;

100 muB = opts.data_mean;
101 NumRuns = 10^5; NumBins = 5*10^3; Ws = opts.super_window;
102 TgtMean = muB+SNR*Std;
103 BkgPix = randn(NumRuns ,1)*Std+muB;
104 TgtPix = randn(NumRuns ,1)*Std+TgtMean;
105 PercMn = zeros(length(opts.moments) ,1);
106 for nn = 1: length(opts.moments)
107 IdxBkg = randi(length(BkgPix (:)),NumRuns ,Ws);
108 X_Bkg = BkgPix(IdxBkg);
109 IdxTgtBkg = randi(length(TgtPix (:)),NumRuns ,int32(Dwell));
110 tmp2 = TgtPix(IdxTgtBkg);
111 X_Tgt = cat(2,X_Bkg (:,1:end -Dwell),tmp2);
112 smBkg = mean(X_Bkg ,2);
113 smTgt = smBkg; % Exclued target window completely in mean calc
114 stdBkg = std(X_Bkg ,[],2);
115 stdTgt = stdBkg;
116 Mom = opts.moments(nn);
117

118 BkgMom = mean ((( X_Bkg (:,1:W)-repmat(smBkg ,1,W))./...
119 repmat(stdBkg ,1,W)).^(Mom) ,2);
120 TgtMom = mean ((( X_Tgt(:,end -W+1: end)-repmat(smTgt ,1,W))./...
121 repmat(stdTgt ,1,W)).^(Mom) ,2);
122

123 % set bins based on quantiles?
124 Bins = linspace(quantile(BkgMom (:) ,.001),quantile(TgtMom (:) ,.99),NumBins);
125

126 [Values1 , Edges1] = histcounts(BkgMom ,Bins ,'normalization ','cdf');
127 [Values2 , Edges2] = histcounts(TgtMom ,Bins ,'normalization ','cdf');
128 [~, Edges3] = histcounts ([ TgtMom;BkgMom],Bins ,'normalization ','cdf');
129 tmp1 = interp1(Edges1 (1:end -1),Values1 ,Edges3 (1:end -1),'linear ','extrap ');
130 tmp2 = interp1(Edges2 (1:end -1),Values2 ,Edges3 (1:end -1),'linear ','extrap ');
131

132 tmp1(tmp1 <0)=0;
133 tmp1(tmp1 >1)=1;
134 tmp2(tmp2 <0)=0;
135 tmp2(tmp2 >1)=1;
136

137 PF = 1-tmp1 '; PD = 1-tmp2 ';
138 if ~isempty(find(PF<opts.alpha ,1,'first '))
139 PercMn(nn) = PD(find(PF<opts.alpha ,1,'first '));
140 else
141 PercMn(nn) = PD(end);
142 end
143 end
144 end
145

146 % Now add in the opts.lower_thesh quantile noise for the minimum and
147 % opts.upper_thresh noise for the maximum
148 Lower = PercMn .* ExpectedMin + binoinv(opts.lower_thresh ,Bx^3,opts.alpha);
149 Upper = PercMn .* ExpectedMax + binoinv(opts.upper_thresh ,Bx^3,opts.alpha);
150 end

137



Function to apply a z-score transformation of the data:

1 function [z,mu,sigma] = myzscore(x, dim)
2 % [z,mu,sigma] = myzscore(x, dim)
3 %
4 % Function that returns standardized (z-score) data , but modified to throw
5 % out outliers in the standard deviation to prevent wild fluctuations when
6 % clouds are present in BG-suppressed data.
7 %
8 % --- Inputs ---
9 % x - array to be standardized

10 % dim - dimension along which standardization occurs
11 %
12 % --- Outputs ---
13 % z - standardized data
14 % mu - mean of x along dim
15 % std - std of x along dim
16 %
17 % ---------------------------------
18 % Shannon R. Young
19 % POC: Bryan J. Steward
20 % POC: Kevin C. Gross
21 % Air Force Institute of Technology
22 % Wright -Patterson AFB , Ohio
23 % Kevin.Gross@afit.edu
24 % (937) 255 -3636 x4558
25 % Version - Dissertation
26 % 10-0ct -2018
27 % ---------------------------------
28

29 % compute mean and standard deviation
30 mu = mean(x, dim);
31 sigma = std(x,[],dim);
32

33 % handle data values that might have almost no variance
34 Thresh = quantile(vec(sigma), 0.01);
35 sigma(sigma <Thresh) = Thresh;
36

37 % handle data values that have no variance
38 sigma0 = sigma;
39 sigma0(sigma0 ==0) = 1;
40

41 % apply z-score transform
42 z = bsxfun(@rdivide , bsxfun(@minus ,x, mu), sigma0);
43 end
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Convenience functions for reshaping data:

1 function x = vec(x)
2 % reshape to vector
3 x = x(:);
4 end

1 function [y,dims] = rs2D(y)
2 % reshape to 2D array
3 dims = size(y);
4 y = reshape(y,[prod(dims (1:end -1)) dims(end)]);
5 end

1 function y = rsND(y,dims)
2 % reshape to ND array
3 dims(end) = size(y,ndims(y));
4 y = reshape(y,dims);
5 end
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Helper function for parsing optional field/value pairs:

1 function params=parse_pv_pairs(params ,pv_pairs)
2 % Code written by John D'Errico and posted on MathWorks FileExchange.
3 % 16-Jan -2006
4 % https://www.mathworks.com/matlabcentral/fileexchange/9082-parse_pv_pairs
5 % Small modification made by Kevin Gross 13-Oct -2007 on lines 67-71
6 %
7 % parse_pv_pairs: parses sets of property value pairs , allows defaults
8 % usage: params=parse_pv_pairs(default_params ,pv_pairs)
9 %

10 % arguments: (input)
11 % default_params - structure , with one field for every potential
12 % property/value pair. Each field will contain the default
13 % value for that property. If no default is supplied for a
14 % given property , then that field must be empty.
15 %
16 % pv_array - cell array of property/value pairs.
17 % Case is ignored when comparing properties to the list
18 % of field names. Also , any unambiguous shortening of a
19 % field/property name is allowed.
20 %
21 % arguments: (output)
22 % params - parameter struct that reflects any updated property/value
23 % pairs in the pv_array.
24 %
25 % Example usage:
26 % First , set default values for the parameters. Assume we
27 % have four parameters that we wish to use optionally in
28 % the function examplefun.
29 %
30 % - 'viscosity ', which will have a default value of 1
31 % - 'volume ', which will default to 1
32 % - 'pie ' - which will have default value 3.141592653589793
33 % - 'description ' - a text field , left empty by default
34 %
35 % The first argument to examplefun is one which will always be
36 % supplied.
37 %
38 % function examplefun(dummyarg1 ,varargin)
39 % params.Viscosity = 1;
40 % params.Volume = 1;
41 % params.Pie = 3.141592653589793
42 %
43 % params.Description = '';
44 % params=parse_pv_pairs(params ,varargin);
45 % params
46 %
47 % Use examplefun , overriding the defaults for 'pie ', 'viscosity '
48 % and 'description '. The 'volume ' parameter is left at its default.
49 %
50 % examplefun(rand (10) ,'vis ',10,'pie ',3,'Description ','Hello world ')
51 %
52 % params =
53 % Viscosity: 10
54 % Volume: 1
55 % Pie: 3
56 % Description: 'Hello world '
57 %
58 % Note that capitalization was ignored , and the property 'viscosity '
59 % was truncated as supplied. Also note that the order the pairs were
60 % supplied was arbitrary.
61

62 if nargin == 1, return; end
63

64 npv = length(pv_pairs);
65 n = npv/2;
66

67 % MODIFIED KCG 13-Oct -2007
68 if npv == 1 && isstruct(pv_pairs)
69 params = pv_pairs;
70 return;
71 end
72

73 if npv == 1 && iscell(pv_pairs) && isstruct(pv_pairs {1})
74 params = pv_pairs {1};
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75 return;
76 end
77

78 if n~= floor(n),
79 error 'Property/value pairs must come in PAIRS.'
80 end
81 if n<=0,
82 % just return the defaults
83 return
84 end
85

86 if ~isstruct(params)
87 error 'No structure for defaults was supplied '
88 end
89

90 % there was at least one pv pair. process any supplied
91 propnames = fieldnames(params);
92 lpropnames = lower(propnames);
93 for i=1:n
94 p_i = lower(pv_pairs {2*i-1});
95 v_i = pv_pairs {2*i};
96

97 ind = strmatch(p_i ,lpropnames ,'exact ');
98 if isempty(ind)
99 ind = find(strncmp(p_i ,lpropnames ,length(p_i)));

100 if isempty(ind)
101 error (['No matching property found for: ',pv_pairs {2*i-1}])
102 elseif length(ind)>1
103 error (['Ambiguous property name: ',pv_pairs {2*i-1}])
104 end
105 end
106 p_i = propnames{ind};
107

108 % override the corresponding default in params
109 params = setfield(params ,p_i ,v_i);
110 end
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