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A B S T R A C T

Mammalian Native Elongating Transcript sequencing (mNET-seq) is a recently developed technique that gen-
erates genome-wide profiles of nascent transcripts associated with RNA polymerase II (Pol II) elongation com-
plexes. The ternary transcription complexes formed by Pol II, DNA template and nascent RNA are first isolated,
without crosslinking, by immunoprecipitation with antibodies that specifically recognize the different phos-
phorylation states of the polymerase large subunit C-terminal domain (CTD). The coordinate of the 3′ end of the
RNA in the complexes is then identified by high-throughput sequencing. The main advantage of mNET-seq is
that it provides global, bidirectional maps of Pol II CTD phosphorylation-specific nascent transcripts and coupled
RNA processing at single nucleotide resolution. Here we describe the general pipeline to prepare and analyse
high-throughput data from mNET-seq experiments.

1. Introduction

The advent of high-throughput sequencing combined with in-
novative and diversified techniques to capture RNA molecules has en-
abled a new generation of genome-wide studies of transcription and co-
transcriptional RNA processing. Native Elongating Transcript sequen-
cing (NET-seq) was originally established in yeast to visualize the
genomic position of the active site of RNA polymerase II (Pol II) by
identifying the 3′ ends of the nascent RNA [1]. Because only the co-
ordinates of the 3′ end nucleotides are recorded, single nucleotide re-
solution is achieved. NET-seq relies on the intrinsic stability of ternary
transcription complexes (formed by Pol II, DNA template and nascent
RNA) to isolate Pol II elongation complexes by immunoprecipitation
without crosslinking. In the original study, a 3xFLAG epitope tag was
added to the C-terminus of the third Pol II subunit (Rpb3), yeast cells
were lysed and a crude whole-cell extract was used for im-
munoprecipitation using anti-FLAG antibodies [1,2]. Application of
NET-seq to yeast revealed pervasive polymerase pausing and back-
tracking throughout gene transcription [1] and advanced our under-
standing of promoter directionality [1,3]. The NET-seq strategy was
also used in bacteria to map the density of RNA polymerase, leading to

the identification of novel pause sites across the genome [4,5].
In contrast to yeast and bacteria, solubilisation of Pol II complexes

under native conditions is typically incomplete in metazoan cells [6]. A
practical solution to this problem was found by Nojima and Proudfoot
[7,8], who solubilized isolated native chromatin by extensive micro-
coccal nuclease (MNase) digestion and then immunoprecipitated elon-
gation complexes using antibodies that specifically recognize the dif-
ferent phosphorylation states of the polymerase large subunit C-
terminal domain (CTD). Although initially applied to mammalian cells,
and thus termed mNET-seq, the procedure can be adapted to any or-
ganism, as recently illustrated in plants [9].

In the mNET-seq method, RNA is purified from the im-
munoprecipitated Pol II complexes and used to prepare a cDNA library
for high-throughput Illumina sequencing (Fig. 1A). To enable directional
sequencing, the 5′ hydroxyl (OH) generated by MNase digestion of RNA
is first converted to a 5′ phosphate by T4 polynucleotide kinase. RNAs
isolated from Pol II complexes are then size-selected on denaturing
polyacrylamide gels before subsequent adapter ligation for PCR-based
preparation of the cDNA library. Specific adapters are then ligated to the
5′ P and 3′ OH ends of each RNA fragment (Fig. 1A). The adapters consist
of sequences used to amplify the library by PCR using generic forward
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and reverse primers, as well as sequences needed to associate the target
nucleic acids with the sequencing instrument (e.g. the flowcell in Illu-
mina sequencers) and, optionally, barcode sequences. After high-
throughput sequencing, data must be prepared for analysis. This includes
trimming of adapter sequences, mapping high quality reads to the re-
ference genome, identification of the 3′ end nucleotide in each RNA
fragment, and selection of genomic regions to be analyzed (Fig. 1B, C). In
the following sections, we describe and discuss the primary analysis pi-
peline that we apply to data from mNET-seq experiments.

2. Methods

2.1. Quality control and adapter trimming

We use FastQC [10] for quality analysis of mNET-seq raw reads. As
an example, we use the following FastQC (version 0.11.7) command to
analyze data deposited in GSE106881 (GSM2856674 and
GSM2856677):

fastqc mNET_Long_S5P_rep1_1.fastq
fastqc mNET_Long_S5P_rep1_2.fastq

We further use FastQC to assess GC content, over-abundance of
adapters and over-represented sequence, from which an indication of
PCR duplication rate may be inferred [11]. Removal of adapter se-
quences and low quality reads is performed with Cutadapt [12]. We use
Cutadapt (version 1.18) with an error rate of 0.05, and allow it to match
‘N’s in the reads to the adapter sequence; reads that are shorter than 10
bases are discarded, and the adapter is removed only once from each
read. Example of Cutadapt command:

cutadapt -a TGGAATTCTCGGGTGCCAAGG -A GATCGTCGGACT
GTAGAACTCTGAAC –m

10 -e 0.05 –match-read-wildcards -n 1 -o mNET_Long_
S5P_rep1_1_tr.fastq.gz –p

mNET_Long_S5P_rep1_2_tr.fastq.gz mNET_Long_S5P_rep1_1.
fastq

mNET_Long_S5P_rep1_2.fastq

2.2. Mapping of reads to the reference genome

We initially used TopHat2 [13] for aligning mNET-seq reads to the
reference human genome [7]. However, the currently most popular

Fig. 1. Overview of mNET-seq. (A) Isolation of Pol II elongation complexes and library preparation. (B) Data processing. The orange asterisk denotes the nucleotide at
the RNA 3′ end. (C) Visualization of mNET-seq profile along the PRPF38B gene. Data from HeLa cells 8WG16 mNET-seq replica1 [7] was aligned to the hg38 genome
reference (GENCODEv28). Data visualized with UCSC genome browser. Blue and red arrows denote promoter bi-directionality. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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mappers for RNA-seq data are STAR [14] and HISAT2 [15]. For STAR
index generation, we set STAR (version 2.6.0b) to detect chimeric
alignments with the minimum mapped length of at least 20nt on each
end.

STAR index generation:

STAR –runMode genomeGenerate –genomeDir ./starIndex/
–genomeFastaFiles

/genomes/human/hg38/GRCh38.primary.genome.fa
–-sjdbGTFfile

/genomes/human/hg38/gencode.v28.annotation.gtf

Aligning paired-end reads:

STAR –runMode alignReads –genomeDir /genomes/human/
hg38/star/ –readFilesIn

./mNET_Long_S5P_rep1_1_tr.fastq.gz ./mNET_Long_S5P_rep1_
2_tr.fastq.gz–chimSegmentMin

20 –outSAMtype BAM Unsorted –readFilesCommand gunzip -
c –outFileNamePrefix

/alignments/mNET_Long_S5P_rep1_

The following command is used to obtain uniquely mapped reads
with SAMtools (version 1.7):

samtools view -H mNET_Long_S5P_rep1_Aligned.out.bam
> mNET_Long_S5P_rep1_header.sam

samtools view -q 255 mNET_Long_S5P_rep1_Aligned.out.
bam >

mNET_Long_S5P_rep1_unique.sam
cat mNET_Long_S5P_rep1_header.sam mNET_Long_S5P_rep1_

unique.sam >
mNET_Long_S5P_rep1_unique_H.sam
samtools view -Sb -h mNET_Long_S5P_rep1_unique_H.sam >
mNET_Long_S5P_rep1_unique.bam
rm -f mNET_Long_S5P_rep1_unique_H.sam
rm -f mNET_Long_S5P_rep1_unique.sam

An important mapping quality parameter is the percentage of
mapped reads, which should always be higher than 70% [16]. We
further use the RSeQC tool for quality control after mapping [17]. Only
uniquely mapped reads are considered for further analysis.

2.3. Identification of RNA 3′ ends

NET-seq achieves single nucleotide resolution by mapping ex-
clusively the nucleotide at the 3′ end of each immunoprecipitated RNA
fragment. The full-length read sequences are discarded and only the
coordinates of the 3′ end nucleotides are recorded as 1 M CIGAR strings.
The RNA 3′ end corresponds to the 5′ nucleotide of read 2 in each se-
quencing pair, with the directionality indicated by read 1 (Fig. 1B). We
do not use read 1 information because in sequencing-by-synthesis
techniques accuracy decreases towards the 3′ end [18].

We developed a Python script for this purpose that is available in
(https://github.com/kennyrebelo/mNET_snr). Briefly, the input align-
ment file (.bam) provided together with the -f argument are converted
to .sam to ease subsequent parsing. For each pair of reads in the .sam
file only read 2 is considered; any read that contains deletions, inser-
tions or soft clipping information in the CIGAR string is disregarded.
After obtaining a SAM flag that identifies the nucleotide at the 3′ end
position, the CIGAR string is turned into “1M”. Finally, the single nu-
cleotide resolution .sam file is converted into a .bam file. 3′ end nu-
cleotides are obtained with Python (version 2.7.12) using the

command:

python get_SNR_bam_ignoreSoftClip.py -f mNET_Long_S5P_rep1_
unique.bam –s

mNET_Long_S5P_rep1 -d ./

2.4. Identification and removal of PCR internal priming and duplication
events

Occasionally, the primer for reverse transcription (RT) anneals to
the RNA fragment rather than to the adapter (Fig. 2A). When such in-
ternal priming occurs, the genomic sequence adjacent to the aligned
read is complementary to the primer (NTGG in Fig. 2A, right panel). In
order to remove reads that result from internal priming events, we
developed a script that identifies the presence of the 3′ OH adapter
sequence (for example, TGGAATTCTCGGGTGCCAAGG) downstream of
the aligned reads (Fig. 2B). The script, which was developed and tested
with SAMtools v1.7 and bedtoolsv2.27.1-1-gb87c465, is available in
(https://github.com/kennyrebelo/Filtering_InternalPriming). For
single-end reads, the input .bam alignment file is converted into a .bed
file. /; for paired-end reads, the second read from each pair is extracted
and added to a new .bam file that will then be converted to a .bed file.
Iterations through the .bed file reveal the genome coordinates down-
stream of the 3′ OH position (i.e., the last nucleotide of single reads or
the first nucleotide of the read 2 in paired reads). The number of nu-
cleotides analysed downstream of the 3′ OH position corresponds to the
adapter length provided together with the –a parameter. The next step
is extracting nucleotide sequence for each .bed entry (converting the
.bed file into a .fasta file). All entries matching the adapter sequence are
discarded. The remaining read IDs are saved into a .txt file and are used
to extract internal priming-free reads from the original alignment file.
Example run for paired reads:

python Filter_InternalPriming.py -f /alignments/mNET_Long_
S5P_rep1_unique_sorted.bam –s

paired -a TGG.. -g /genomes/human/hg38/GRCh38.primary.
genome.fa

We empirically determined that restricting the filter to the first
three nucleotides of the adapter sequence (TGG in Fig. 2) detected the
highest number of internal priming events. This is probably because
base pairing of only a few nucleotides is sufficient for priming.

Using a pool of adapters having randomized sequences (barcodes)
helps reducing PCR overamplification bias, as reads that align to the
same genomic position and contain identical barcodes are likely the
result of PCR duplication events. Duplicate reads can be removed using
BBmap/clumpify.sh [19].

2.5. Distinguishing Pol II density profiles from co-transcriptional splicing

Because the final (3′ OH end) nucleotide of a nascent RNA lies at the
active site of the polymerase, NET-seq provides nucleotide resolution
profiles of RNA Pol II along the genome (Fig. 3A). However, the mNET-
seq technique additionally detects the 3′ OH end of RNAs that are not
located at the polymerase active site but associate with the Pol II
elongation complex and are therefore co-immunoprecipitated [7,20].
This includes the 3′ OH ends generated by co-transcriptional cleavage
of splice sites (Fig. 3B) and the free 3′ OH ends of spliceosome snRNAs
(Fig. 3C). NET-seq reads mapping precisely to the last nucleotide of
spliced exons correspond to splicing intermediates that are formed by
cleavage at the 5′ splice site after the first splicing reaction, and reads
mapping to the last nucleotide of introns correspond to released intron
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lariats after completion of the splicing reaction (Fig. 3B). NET-seq reads
mapping to the end of snRNA genes correspond to mature snRNAs
engaged in co-transcriptional spliceosome assembly (Fig. 3C).

In order to determine RNA Pol II density profiles, only 3′ OH ends
corresponding to the nucleotide at the active site of the polymerase are
considered. To exclude signal from co-transcriptional splicing, reads
that map to the very last nucleotide of introns and exons are discarded
and the corresponding genomic positions are not considered. These
reads can be removed using bedtools (version v2.27.1-1-gb87c465)
together with SAMtools (version 1.7):

intersectBed -a mNET_Long_S5P_rep1_SNR.bam -b exons_lastNT.
bed -wa -v | samtools view - > mNET_Long_S5P_rep1_SNR_
noLastNT_temp.sam

cat mNET_Long_S5P_rep1_header.sam mNET_Long_S5P_rep1_
SNR_noLastNT_temp.sam > mNET_Long_S5P_rep1_SNR_
noLastNT.sam

samtools view -bS mNET_Long_S5P_rep1_SNR_noLastNT.
sam > mNET_Long_S5P_rep1_SNR_noLastNT.bam

rm -f mNET_Long_S5P_rep1_SNR_noLastNT_temp.sam
rm -f mNET_Long_S5P_rep1_SNR_noLastNT.sam

2.6. Selection of transcriptionally active genes

One approach to identify which genes are being transcribed in a
particular cell type is to use RNA-seq data of polyadenylated RNA.
Alternatively, mNET-seq read density over genes can be used to mea-
sure transcriptional activity. However, because many inactive genes
maintain high levels of Pol II paused near the promoter, thus generating
promoter-proximal reads, quantification of mNET-seq signal should be
restricted to the gene body region. In order to identify transcriptionally
active genes based on mNET-seq signal, we use a strategy adapted from
GRO-seq analysis [21] that relies on read density in gene desert regions
as background reference for absence of transcription. Very large inter-
genic regions (gene deserts) are divided into 500 kb windows, and read
densities are calculated by dividing read counts in each window by the
window length (in bp). Read counts per window are obtained with

bedtools (version v2.27.1-1-gb87c465) using the command:

coverageBed -a intergenic_regions_500kb_Windows.bed –b
Filter_IP/mNET_Long_S5P_rep1_noInternalPriming.bam

-counts >
intergenic_regions_500kb_Windows_cov.bed

A density threshold is arbitrarily defined as the 90th percentile of
the total read density (Fig. 4A). This threshold is then used to identify
which annotated genes are transcriptionally active, based on mNET-seq
signal (in RPKM) over the gene body (Fig. 4B).

2.7. Data visualization

Several visualization tools are available to depict mNET-seq profiles
in specific genomic regions and with strand directionality. These in-
clude VING [22], IGV [23] and UCSC genome browser [24].

2.8. Metagene analysis

Metagene plots provide visual representations of the average mNET-
seq signal at specific genomic regions. For example, to visualize Pol II
density at the intron-exon boundary, we use deepTools [25] to integrate
mNET-seq signal over the last 200 nucleotides of introns and the first
200 nucleotides of adjacent exons (Fig. 5A). By defining a window of
200 bp upstream and downstream of the intron-exon junction (i.e., the
3′ splice site), the analysis must be restricted to introns and exons
longer than 200 nucleotides. Further biological constraints can be im-
posed on the genomic regions selected for metagene analysis, such as
only intron-exon boundaries of transcriptionally active genes or only
intron-exon boundaries of constitutively spliced exons (identified in
RNA-seq poly(A) data). For comparisons between regions (for example,
intron-exon boundaries of spliced versus non-spliced exons) or experi-
mental samples (for example, intron-exon boundaries in control cells
versus cells treated with a drug that inhibits splicing), normalizations
should be implemented. For normalization, we divide the number of
reads at each nucleotide by the total number of reads in the entire
genomic region under analysis. These values are then used to calculate

Fig. 2. Identification and removal of internal priming events. (A) Diagram depicts the expected base-pair complementarity between the RT primer and the adapter
(left panel). Internal priming occurs when the RT primer hybridizes to the RNA sequence (right panel). (B) Visualization of mNET-seq profile along the FSCN1 gene.
The arrow denotes a spike resulting from internal priming. Data from HeLa cells long reads S5P mNET-seq replica1 [20].
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Fig. 3. Distinguishing mNET-seq signal from nascent RNA and co-transcriptional splicing. (A) A large fraction of mNET-seq signal corresponds to 3′ OH ends of
nascent RNAs (orange asterisk, top panel). The bottom panel depicts nascent transcript profile along the TRA2A gene. Data from HeLa cells short reads S5P mNET-seq
replica1 [20]. (B) A fraction of mNET-seq signal corresponds to 3′ OH ends of either splicing intermediates or excised intron lariats (orange asterisk, top panel). The
bottom panel depicts nascent transcript profile along the ACTB gene using data from HeLa cells long reads S5P mNET-seq replica1 [20]. (C) An additional fraction of
mNET-seq signal corresponds to 3′ OH ends of spliceosome snRNAs (orange asterisk, top panel). The bottom panel depicts nascent transcript profile along the snRNA
U5 gene. Note that in contrast to the snRNA U5 profile, no accumulation of mNET-seq signal is detected at the end of snRNA U6 gene, as expected since U6 snRNA
contains a phosphate terminal group at the 3′ end. Data from HeLa cells long reads S5P mNET-seq replica1 [20]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. Identification of transcriptionally active genes based on mNET-seq signal along the gene body. (A) Frequency distribution of read density in intergenic regions
(gene deserts). A total of 724 windows (each 500 Kb in length) were defined in the RefSeq NCBI hg38 downloaded from UCSC table browser (accessed on the 3rd
March 2019). The red dashed line represents the 90th percentile of read density in all regions analysed. (B) Frequency distribution of gene read density (RPKM)
represented in Log2 scale. The 90th percentile of read density over gene deserts is set as threshold (red dashed line). A total of 13,426 genes are classified as
transcriptionally active (blue area). Dataset from HeLa cells long reads S5P mNET-seq replica1 [20] (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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the mean for each nucleotide, and the results are plotted in an arbitrary
unit ranging from 0 to 1 (Fig. 5B).

2.9. Peak calling

Spikes in the density of 3′ ends at the active site of the polymerase
are indicative of Pol II pausing. To identify Pol II pause positions along
any given gene, Churchman and Weissman developed an algorithm that
finds nucleotides where the NET-seq read density is at least three
standard deviations above the mean in a local region [1]. As we sys-
tematically found significant accumulation of mNET-seq signal at the
last nucleotide of spliced exons (Fig. 3B, bottom panel), we adapted this
peak identifier strategy to quantify the prevalence of splicing inter-
mediates and excised introns at genome-wide level [20]. The algorithm
that we designed compares the number of reads mapping to the last
nucleotide of exons and introns to the mean read density across the
corresponding exon or intron. Only positions with coverage of at least 4
reads are considered. The script that is available in (https://github.
com/kennyrebelo/NET_snrPeakFinder), was used with the following
command:

python NET_snrPeakFinder.py -i mNET_Long_S5P_rep1_SNR.bam
-g gene_list.bed -s paired

Using this algorithm on mNET-seq datasets from HeLa cells, we
found that approximately 90% of efficiently spliced exons had a 5′
splicing intermediate peak, whereas 3′ splice site peaks were rare [20].
Accumulation of mNET-seq signal corresponding to 5′ splicing inter-
mediates and excised introns can be viewed as a proxy for co-tran-
scriptional splicing kinetics, as the intensity of each peak depends on
the lifetime of that particular RNA product. According to this view,
mNET-seq reveals a significant time lag between the first and second
splicing steps, whereas excised introns are rapidly degraded or dis-
sociated from Pol II after completion of splicing.

3. Conclusions and perspectives

To date, the mNET-seq technique has been used in human
[7,20,26], mouse [20] and plant cells [9]. In all cases, antibodies spe-
cific for Pol II with the CTD phosphorylated on serine 5 residues (S5P)
immunoprecipitated abundant RNA fragments mapping precisely to the
last nucleotide of exons, as expected for intermediates formed after the
first splicing reaction. This suggests that the catalytically active spli-
ceosome forms a tight complex with S5P Pol II and highlights the dis-
covery potential of mNET-seq compared to previous techniques such as

ChIP. Indeed, based largely on ChIP data, the established view was that
the CTD was phosphorylated on serine 5 near the transcription start
site, but shortly after transcription initiation and RNA capping these
phosphates were removed [27]. According to mNET-seq data, serine 5
phosphorylation is not restricted to transcription initiation but is also
present during elongation and co-transcriptional splicing. Noteworthy,
a splicing-related accumulation of S5P Pol II along gene bodies was
observed by ChIP in HeLa cells [28] and in yeast [29,30].

In addition to Pol II, other antibodies could in principle be used for
mNET-seq. For example, mNET-seq analysis of complexes im-
munoprecipitated with antibodies to RNA processing factors could be
useful for further studies on transcription-coupled pre-mRNA proces-
sing. Antibodies to Pol I and Pol III could also be used to determine the
genomic distribution and nascent transcript profiles of these poly-
merases.

As an antibody-based technique, mNET-seq relies on the availability
of antibodies that are specific and capable of precipitating the protein of
interest. Problems related to antibody binding to off-target epitopes and
differential accessibility of epitopes should always be considered,
namely when investigating nascent transcripts associated with different
phospho-isoforms of RNA Pol II. Another limitation of mNET-seq is
treatment with MNase, which in our hands digests nascent RNA into
30–60 nucleotide-long fragments [20]. Developing new approaches to
preserve longer stretches of nascent RNA associated with specific Pol II
complexes is crucial for understanding how splicing kinetics is co-
ordinated with transcription. Another challenge will be to adapt nas-
cent RNA analysis to third generation sequencing technologies, which
allow sequencing long molecules and avoid biases introduced by PCR
amplification.
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