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ABSTRACT 

 

 

 

This thesis looks at emerging uses of geospatial data for analysing the urban environment. As 

high-dimensional data becomes increasingly available, sophisticated spatial and temporal statistical 

estimation strategies can assess the minutia of environmental processes in a dynamic urban context. 

Each essay focuses on the improved measurement of high-resolution non-market environmental 

amenities and evaluating them using observed impacts on house prices or transportation networks. 

While valuation techniques for each amenity vary depending on context, these works all highlight a 

set of spatial methodologies for detailed urban analytics with a particular focus on urban greenery, 

seismic and flood risk, and pollution mitigation.
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PREFACE 

 
The overarching theme of this dissertation is the use of geospatial data and techniques 

to measure, value and explore the impacts and spill overs of urban environmental amenities 

and dis-amenities. In exploring these concepts each chapter uses frontier spatial and temporal 

statistical methods applied to high dimensional, multi-tiered big-data in a dense urban context. 

Advances in geographic data collection, storage and analysis has yielded significant 

improvements in the scale of detail available for sophisticated urban analytics. While 

techniques such as remote sensing and spatial interpolation improve the data and coverage 

itself, geographic discontinuities and spatial identification strategies can be used to estimate 

non-market benefits and costs related to environmental outcomes. 

As municipalities are at the forefront of managing environmental concerns from 

flooding or pollution, for example, better understanding the value and spill over impact of these 

types of urban amenities are crucial for tailoring best practices for local policy implementation. 

Spatial data advances thus have huge potential in the future of empirical urban research, 

especially as applied to the collection and use of novel environmental data. 

The first chapter of the dissertation focuses on the valuation of urban green amenities 

in Lisbon. Using a machine learning remote sensing algorithm, aerial images of Lisbon are 

classified to identify the distribution and sparsity of tree canopy, vegetation, and levels of 

greenness across the city. This measure more accurately portrays how residents perceive the 

ecology and greenness of their neighborhood. Hedonic regressions then value the 

classifications of greenness via the real estate market. Results show positive values for healthy 

vegetation and variation in the value of open space amenities conditional on size and greenery. 

The second chapter focuses on the impact that urban geohazard risks in the form of 

seismic or flooding susceptibility have on the property market. When persistent risks of an 

urban hazard exist, residents may significantly undervalue their properties accordingly. Here, 

the research makes use of a spatial regression discontinuity to identify these effects and 



 

 
 

xi 

measure the dis-amenity value that geohazard risks transmit, and whether this effect can be 

mitigated or exacerbated by locational amenities such as greenery or urban topography.  

The final chapter focuses on optimizing the interpolation of spatial-temporal air 

pollution to construct a space-time longitudinal database for the municipality of Lisbon 

tracking the distribution of air quality since 2000. A significant emphasis is put on determining 

the most appropriate means to conduct the spatial interpolations and aggregation of pollution 

point data and is based a series of generalizable algorithms and diagnostics which can be 

applied in varying urban contexts. 

Transit interventions in the form of metro station openings and low emission zones are 

then studied to estimate their pollution abatement influence across the city in the short and 

long-run. The application uses spatial-temporal difference-in-differencing, borrowing from the 

spatial regression discontinuity design framework to identify thresholds and decay effects. 

Results suggest that local pollution is significantly abated when transportation initiatives, in 

the form of metro stations or low emission zones, are opened. Further, these impacts are not 

equal across the city suggesting changes to the overall transport patterns. 

These applications highlight the advancement in how geographic data can be used for 

detailed urban analysis. Levering the spatial or temporal nature of high-dimensional data allows 

for a wide variety of cost and benefit valuations. 

Jacob L. Macdonald 

October 2019 
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CHAPTER 1: 

Machine Learning for Measuring and Valuing Urban Greenery 

 
This chapter explores the role of remote sensing in capturing urban environmental 

data in the form of tree canopy coverage and measures of greenery. A machine learning 
classification model is applied to high-resolution aerial photography of Lisbon, Portugal. 
Aggregating measures to a neighbourhood scale allows the exploration of the impact of 
greenness and vegetation on the residential property market, capturing the heterogeneity 
and complementarity relative to open spaces and other local environmental attributes. 

1 – 1. Introduction 

Urban green amenities range from planted street trees, manicured parks and gardens, 

natural forests, and green infrastructure such as green walls and roofs. The amenity value of 

these local public goods not only service residents and visitors but further have important 

interactions with the local ecology. In addition to contributing to neighbourhood aesthetics and 

appeal, benefits include the mitigation of storm water runoff and pollution, balancing the urban 

heat island effect and increased biodiversity, all of which spillover and influence human quality 

of life and health (Zupancic et al. 2015). The value of open spaces and greenness is tied to 

ongoing discussions within many municipalities regarding city-wide greening policies.1  

While there is extensive empirical work on the valuation of open spaces and green 

amenities, research in the context of the urban environmental literature is challenged by the 

necessity of highly detailed spatial data. Moreover, previous research on the amenity effects of 

open space on the real estate market have typically used distance to different categories of open 

space, permanency of open space, view of open space or proportion of open space within a 

dwellings neighbourhood as the primary variables to evaluate these land uses.  

These studies have helped in understanding how households value accessibility to 

alternative urban green amenities however there is still a need to fully understand how 

 
1 Since 2012 Lisbon has prioritized greening in their municipal guidelines with specific objectives to create new 
green spaces, transform existing spaces and infrastructure by planting street trees, linking the city through green 
corridors and the creation of community allotment gardens (Câmara Municipal de Lisboa 2015b). Further the 
municipality is targetting a 20% increase in biodiversity by 2020 (Câmara Municipal de Lisboa 2015a). 
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community greening efforts, especially those which do not require significant land 

commitments, may impact property values and subsequent tax revenue. This is particularly 

important in central areas of a city with scarce and expensive vacant land. In fact, community 

greening through planting trees, tailoring lawns, flower arrangements and other types of sparser 

visible vegetation, have the potential to increase the attractiveness of neighbourhoods through 

its aesthetics without the acquisition of large amounts of land.  

If households value the overall greenness of their residential neighbourhood, then there 

should be a positive capitalization through housing values of these landscape attributes. Yet, a 

valuation of the latter green amenities requires the development of measures of neighbourhood 

greenness that incorporate the various dimensions of green cover and also capture the extent of 

green coverage for residential properties in an urban neighbourhood context. 

This chapter examines the role of machine learning remote sensing techniques to create 

coverage measures for neighbourhood greenery from images that serve as explanatory 

variables in hedonic valuation models. Additionally, the work explore how such data can be 

interacted with other geospatial variables for enhanced measures of the urban environment.  

In particular, the results of a one-class support vector machine (SVM) supervised 

learning algorithm are used to capture urban tree canopy coverage and sparser vegetation, and 

a normalized difference vegetation index (NDVI) to measure green density and land-use 

diversity in close surrounding of properties using high resolution aerial photography.2 The 

technique is applied to Lisbon, Portugal, with the results incorporated into a hedonic framework 

that includes not only the traditional measurements of proximity to urban open space as 

explanatory variables of the impacts of urban greenness on property values, but also includes 

greenness variables that capture the extent and quality of greenspace coverage in a 

 
2 Tree canopies defined as the above ground biomass attributed to trees in the form of branches and foliage, 
forming the crown of the tree which covers a ground area when viewed from above.  
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neighbourhood.3 We test the hypothesis that the contribution of traditional open space measures 

to residential property values is conditional on the overall pleasantness of a neighbourhood by 

tree canopy cover or type of vegetation, and further explore the substitutability and 

complementarity of these types of green attributes with other urban features. 

Traditional methods of collecting data on urban tree canopies involve in situ sampling 

or the usage of municipal inventories that can be costly, time consuming or subject to data 

availability. Thus, machine learning algorithms applied to remotely sensed aerial photography 

is a valuable complementary tool to accurately classify urban tree canopy coverage and 

vegetation, increasing the dimensionality though which greening can be analyzed. Previous 

classifications for specific urban areas in the United States estimate that, on average from the 

cities sampled, approximately 27% of a city is covered by urban tree canopy (Watt and Gunther 

2010). Different studies use varying scales and resolutions which may overestimate coverage 

of tree canopy by classifying sparse contiguous tracts of trees as complete coverage. 

The remote sensing of urban tree canopy indicates that approximately 8% of Lisbon is 

covered directly by canopy with an overall accuracy rating of approximately 90%. These 

results are based on very high-resolution images, and can thus accurately capture the density 

and sparsity of tree canopy coverage. Moreover, the residential real estate market values the 

relative size of neighbourhood tree canopy coverage. We estimate the effect of neighbourhood 

tree coverage to be approximately 0.20% of a dwelling price, however there are positive 

ecological interaction effects between greenness and broader measures of the urban 

environment. Results indicate positive amenity value for vegetation in mitigating storm water 

runoff, complementary effects between historic conservation areas and lush vegetation, and 

yields some substitutable benefits to properties which are not located near the Tagus River.  

 
3 Urban open space is a term used generally to define areas of vacant lots, natural landscapes and public green 
space in cities. However, the definition of urban open space has evolved in time embracing various types of urban 
open space (such as playgrounds, parks and urban forests) and green elements. 



 4 

Proximity to urban forests are positively valued at 0.03% per kilometer decrease in 

distance with stronger effects from proximity to larger urban forests which provide the most 

recreational services. Alternatively, while residents may not value living near parks, there is a 

marginal premium for living closer to smaller parks compared to larger ones, potentially due 

to the heterogeneity of these parks and the congestion of visitors at the largest of them. Results 

suggest that residents value more the size of nearby open space rather than the greenness of the 

space, yet value overall greenness for their neighbourhood and surrounding areas.   

The remainder of the chapter is structured as follows. Section 2 positions this research 

in the economic literature, highlighting studies that have incorporated remote sensing to assess 

the impact of open space amenities and greenness on housing markets. Section 3 describes the 

study region and section 4 presents the data and describes the measurements of neighbourhood 

greenness. The results and accuracy assessment from the one-class SVM procedure are then 

presented in section 5 while section 6 applies these results within a hedonic model testing for 

spatial dependence and including interaction effects to value how open space and urban 

greenness influences property values. Finally, section 7 provides overall conclusions.  

1 – 2. Literature Review 

There is an extensive body of work on the urban environment and interactions with 

broader socioeconomic and ecological factors. Research however is challenged by limitations 

in accurately measuring environmental variables. With increasingly powerful data capturing 

techniques, such as remote sensing, the measurement of detailed environmental data is feasible 

and allows for increased work on the impacts of a range of environmental and green variables.  

The value of green and open spaces has been subject to a number of studies using 

hedonic and stated preference methods, as surveyed in McConnell and Wall (2005) and Waltert 

and Schläpfer  (2010). Within these studies, there are a range of different methodologies and 

scopes in how open spaces have been measured and categorized. In general, the results are 
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mixed as in the case with the valuation of urban forests, with positive, negative and 

insignificant effects found for similar amenities. Spatial dependence and interaction effects are 

important component of these studies and are addressed by modelling this spatial dependence 

or incorporating interaction effects to capture locational heterogeneity. 

Much of the early work focuses on evaluating the accessibility of open spaces including 

its permanency (Geoghegan 2002, Irwin 2002), the view of an open space (Tyrväinen and 

Miettinen 2000) or accessibility to different types of urban open spaces through distance to the 

amenity or a dummy variable indicating proximity within a buffer (Tyrväinen and Miettinen 

2000, Morancho 2003, Kaufman and Cloutier 2006, Voicu and Been 2008). Capturing 

measures of urban greening however is an ongoing challenge and a smaller subset of studies 

have evaluated different measures of urban greenness via the hedonic pricing methodology 

including tree cover (Anderson and Cordell 1988, Dombrow et al. 2000), landscaping attributes 

(Des Rosiers et al. 2002) and NDVI measurement of green density (Kestens et al. 2004).  

On the other hand, most recent work has focused on capturing the heterogeneity of 

different categories of open spaces, each with different amenities and benefits (or costs) to 

residents, while controlling for spatial autocorrelation. Fewer studies have explored the impacts 

of overall neighbourhood greenness. Sander and Polasky (2009) consider proximity to parks, 

trails, lakes and rivers, testing and rejecting for spatial autocorrelation in their data. 

Czembrowski and Kronenberg (2016) group open and green spaces into 9 different categories: 

small, medium and large parks and forests, the single largest forest, cemeteries and allotment 

gardens in Lodz, Poland. The authors correct for spatial dependence with a spatial 

autoregressive model with autoregressive disturbances and find that proximity to large parks 

and the Lagiewniki forest, which are well known in the city, have the strongest positive impacts 

on housing prices with property values increasing approximately 1.5% per square meter as 
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proximity increases. Cemeteries had the opposite effect with prices per square meter decreasing 

as dwellings were located closer in the range of 2%.  

To capture spatially varying amenity values of open spaces, certain studies have 

focused on the geographically weighted regression technique to allow the coefficient to vary 

across the study area with results indicating that there is significant variation in how different 

areas of a region value open spaces (Cho et al. 2006, Nilsson 2014). Cho et al. (2008) use a 

novel way to quantify open space and open space quality by exploring the effect of proximity 

to forest stands with different compositions of tree types (deciduous versus evergreens) and 

further by the shape of these stands. 

In addition to proximity to open space amenities, some works have also studied the 

impact of higher concentrations of open spaces at the parcel level as a measure of 

neighbourhood open space and, indirectly, neighbourhood greenness. Irwin (2002) measures 

the percentage of different types of open spaces (cropland, pastures, forestry, conservation 

areas, public parks or military lands) within a 400-meter buffer to estimate the marginal impact 

of different open spaces and in general find that non-developable open spaces tend to have a 

positive impact on housing. In Castellón, Spain, Morancho (2003) find that distance to open 

space is a more significant determinant than the size of the open spaces with a 100-meter 

increase in proximity yielding a premium of €1,800. 

Anderson and West (2006) consider both the proximity to different categories of open 

space as well as the size of the nearest open space to capture these influences for parks, 

cemeteries, golf courses, rivers and lakes and explore how the amenity values change under 

neighbourhoods with different characteristics. The authors include a range of interaction effects 

to estimate open space and its heterogeneous influence with neighbourhood demographics, 

crime rates, distance to central business district (CBD), income levels, density and lot size. 

Parks have positive impacts on housing prices, and the effect of being closer to a park is nearly 
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three or four times as high in neighbourhoods which are twice as dense as average and with 

twice as high income levels respectively.  

Donovan and Butry (2010) estimate a spatial hedonic regression of street trees on 

property values in Portland, Oregon. The authors collect data on the number of street trees 

fronting a house, tree crown area in the front and within 100 feet of the house, height, volume 

and whether the trees are flowering, fruiting, coniferous, deciduous, appears to be sick or 

poorly pruned. Of these variables only meaningful results are obtained with the number of trees 

and the area of tree canopies within 100 feet, suggesting that in-situ sampling of trees to collect 

detailed data may not be necessary. Remote sensing techniques can be used to obtain the most 

relevant characteristics such as tree location and canopy with lower costs.  

Machine learning methods are applied to satellite images or aerial photography, reading 

pixel level data and classifying ground objects based on patterns and relationships. While 

satellite images are freely available from various sources, they tend have a low spatial 

resolution which is unable to capture the heterogeneity of land use at the city level.4 In order 

to distinguish urban tree canopies, high spatial resolutions are needed or alternatively images 

can be obtained via aerial photography on a low flying plane or drone. Remotely sensing 

environmental data from external sources is well developed, and images have been used to 

classify changes in land cover and detect objects on the ground.5 Fewer studies, however, have 

incorporated the results of this classification into broader economic valuations, often favouring 

to use data from external sources which may or may not align with the scope of the research.  

Remote sensing of tree canopies has most commonly been applied to larger regions or 

country level images as for example in Iizuka and Tateishi (2015) or Karlson et al. (2015). 

 
4 Both the United States Geological Survey and European Space Agency host free satellite images for the globe 
from the Landsat and Sentinel programs respectively. 
5 Applied remote sensing work has been used for, among others, the collection of urban pollution data, the 
classification of automobiles for the study of traffic density, the study of urban sprawl via changes in lights, 
capturing changes in rooftops and capturing urban vegetation. 
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Some studies have focused on tree canopies in an urban setting which is complicated by the 

high quality of images required to accurately indentify canopies located among the mixture of 

residences, commercial buildings, public spaces and dense network of roads. In the urban 

context, Li et al. (2015) test different classification algorithms to determine urban tree canopy 

coverage in two areas of Beijing and conclude that a SVM algorithm is prefered.  

Parmehr et al. (2016) further highlight the power of remote sensing techniques by 

comparing remotely classified tree canopies with canopy coverage obtained from the i-Tree 

software, a software program developed to assist in the classification of trees, in a suburb of 

Melbourne, Australia. The authors determine that remote sensing techniques provide the 

flexibility of capturing continuous canopy coverage across a study area which is invaluable for 

research on the impacts of urban tree canopy.  

A smaller subset of articles tie-in remote sensing to a broader applied urban economic 

analysis. In Baltimore, Troy and Grove (2008) include proximity to parks and crime interaction 

effects to examine the heterogeneity of impacts from different parks using remote sensing to 

classify parks as minimum two hectares with a high NDVI index, a measure of vegetation 

obtained using the near-infrared and red pixel information of the satellite image. Parks are 

valued positively up until a certain threshold level of crime of over 400% the national average, 

after which there is a negative effect on housing prices. 

Troy, Grove and O'Neil-Dunne (2012) use 1 meter remote sensing data to estimate that 

a 10% increase in canopy coverage yields an approximate 12% decrease in crime rates. Wolfe 

and Mennis (2012) obtain a negative relationship between urban vegetation and crime with a 

decrease in levels of assault, robbery and burglary for census tracts with higher vegetation 

levels, as measured by the mean NDVI of the census tract based on 30 meter image resolution. 

Conway et al. (2010) explore urban greenery by estimating the impact of different 

amounts of greenspace within buffer rings of a dwelling, controlling for spatial autocorrelation 
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in their housing prices. Their results indicate that a 1% increase in the amount of greenspace 

within 200 to 300 feet of a dwelling would result in an increase of 0.07% in the sales price.  

Sander et al. (2010) obtained tree canopy coverage at a 30 meter resolution from the 

National Land Cover Database, a relatively low resolution which may limit the detail when it 

comes to identifying sparse or dense canopies of individual trees.6 The authors use the 

percentage of tree coverage within buffers up to 1000 meters, and further the distance to lakes, 

the nearest park and the nearest trail. Under a spatial error specification, the authors argue that 

tree canopies are valued in direct proximity to dwellings with little influence further away in 

the magnitude of a 0.48% and a 0.29% increase in dwelling prices for a 10% in tree coverage 

within 100 meters and 250 meters respectively. 

1 – 3. Study Region 

The study area is the capital city of Lisbon, Portugal, covering approximately 100 km2 

with a population of 552,118 and 2 million residing in the greater metropolitan area. Lisbon 

was founded on the banks of the Tagus river and is one of the oldest capital cities in the world. 

The city has a rugged topography built on seven historic hills extending from the riverfront and 

a dense central area and peripheral zones emerging from the original medieval foundations. 

The river, running along the western and southern portions of the city, is an important amenity 

to both residents and the economy. The port is a major trading hub and further hosts many 

cruise ships every year. For the residents the riverfront offers tracks for running and cycling, 

viewpoints, modern amenities like restaurants and coffee kiosks and access to the water. 

Today, Lisbon maintains its status as an economic and cultural hub in Europe and is 

the largest city in the country. The city has many of businesses with 311,000 firms primarily 

clustered across two predominant areas. The primary and historic CBD is known as Baixa 

 
6 A 30-meter resolution indicates that each pixel of the image represents 30 meters of ground coverage. 
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Pombalina and bordered by the river in the south. In 1998, Lisbon leveraged it's hosting of the 

World Expo to redevelop a previously idle area into a secondary CBD, known as Parque das 

Nações (or “Expo”), located further inland. This northern area of the city is also where the 

international airport is located. Two bridges connect the city to the alternate side of the river 

with many commuters entering the city each day. 

Administratively, the city is divided into census enumeration tracts which generally 

align with street divisions, while freguesias (or civil parishes) are representative of a broader 

area within the city. The city is divided into 53 freguesias which align with the historic and 

cultural evolution of distinct neighbourhoods in the city.7 Freguesias in Baixa Pombalina are 

among the smallest, on average 0.12 square kilometers, compared with the largest located out 

at the city periphery which is 11 square kilometers. Figure 1 shows aerial photography of the 

study region, key locations and freguesia level demarcations. 

Figure 1. Study Region Aerial Photography: Lisbon, Portugal 

 
 

7 In 2012 the municipal council approved the reorganization from 53 freguesias to 24, however the most recent 
Census 2011 and many data sources continue to make use of the former classification of 53.  
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Lisbon has a Mediterranean climate with two distinctive seasons: a hot dry summer 

where temperatures commonly exceed 30°C (86°F) and a cool wet winter with sometimes 

intense periods of rain causing significant flooding. Yearly, during the rainy winter months, 

many parts of Lisbon experience sometimes severe flooding. The topography of the city means 

that these occurrences are not limited to the riverfront and we observe heterogeneity in this 

urban risk. Trees are a significant tool used in mitigating storm water runoff, and the 

municipality has recently approved a €170 million drainage plan to combat future flooding.  

The diverse history has led to a diverse urban fabric across the city with a mixture of 

dense historic buildings and cobblestone streets juxtaposed against the newer buildings of 

modern Lisbon. Urban greening is a priority of the city, and there are many different types of 

green infrastructure including planted trees, open spaces, green corridors, and many different 

configurations of vegetation and flora. There are over 120 local parks and gardens ranging from 

small neighbourhood parks to those large and ornate. These amenities tend to be more 

manicured with walkways and flowerbeds, and may further be adorned with monuments or 

water features, often dating back to Portugal’s Age of Discoveries in the 15th and 16th centuries.   

There are 13 urban forests which are larger and offer denser and more natural tree 

stands and recreation facilities. The city skyline is dominated by the Monsanto Forest Park 

covering approximately 10% of the city and reaching 227 meters. This the largest urban forest 

in the region and offers many recreational amenities including trails, cycling, sport facilities 

and picnic areas, among others.  

1 – 4. Measurement of Urban Greenness 

The analysis is extended beyond traditional measures of proximity to open spaces by 

estimating variables via machine learning of remotely sensed, multi-spectral aerial 

photographs. This is done with georeferenced and orthorectified photographs covering 

Portugal taken by the Direção Geral do Território under the national Ministry of the 
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Environment. The images contain data in two important dimensions. Firstly, finer detail 

corresponds to a higher number of pixels in the image, known as a higher spatial resolution. 

The intensity of each pixel represents one unit of data in the form of a digital number, and thus 

more pixels translate to more data. It is from these digital numbers that a classification is built 

to identify high-detail greenness on the ground. 

Secondly, aerial cameras are able to capture light from different parts of the 

electromagnetic spectrum, including what may not be visible to the human eye such as near-

infrared (NIR). The different spectral bands capture the amount of light in each pixel 

representative of that specific part of the spectrum. When the visible bands (i.e. the blue, green, 

and red bands) are combined we have the image as would appear to the naked eye.   

Aerial images of Lisbon were captured between July 27 and August 23, 2007 from an 

Intergraph Digital Mapping Camera DMC01-0037 and UltraCam-D. The images are available 

with a very high spatial resolution in four spectral bands: blue, green, red, and NIR. Every pixel 

represents 50 centimetres on the ground and for each we have a value representing the intensity 

of the four bands. The high spatial resolution of these images is what makes the detection of 

detailed objects such as tree canopy feasible, while the spectral resolution is used to classify 

objects as vegetation based on their colour and energy radiation. 

1 – 4.1. Remote Sensing and Urban Greenness  

Using geospatial and remotely sensed data helps in capturing detailed environmental 

characteristics and turning them into measures of urban greenness that can be used in a hedonic 

framework. A generated continuum of urban greenness across the city can thus be aggregated 

to capture different forms of local vegetation concentration including aboveground tree canopy 

and sparser vegetation. Administrative boundaries in Lisbon are used to define the spatial scale  

at which different measures are constructed, the largest representing freguesias and the smallest 

representing the over 3,623 census enumeration tracts (indicative of city blocks). 
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The focus of the machine learning process is to identify aboveground tree canopy 

coverage as identified by the pixel level data and in part through the normalized difference 

vegetation index (NDVI), an index used to develop additional measures of urban greenness. 

Classifications on pixel level data and broader patterns of surrounding the pixels are leveraged 

to identify the unique aspect of the green infrastructure of interest. 

Vegetation Index 

The NDVI is a key feature in the classification of urban canopy, and is in itself an 

important measure. Using the red (R) and NIR spectral bands, the NDVI is a synthetic band 

and calculated as NDVI = [NIR-R] [NIR+R]⁄ .8 This index indicates the relative greenness of 

a pixel based on the reflectance of the red and the NIR spectral bands. Plants absorb visible 

(red) light during photosynthesis, with healthy plants absorbing more visible light. Further, the 

cell structure of plants reflect NIR thus the NDVI is a relative measure of healthy vegetation. 

Different land covers yield different values of NDVI ranging from -1, representative of 

water to, +1 representative of the healthiest and lushest vegetation. Moderate and sparser 

vegetation tend to have values greater than 0.2 with more lush vegetation having higher values 

closer to 0.6 or 0.8. At the neighbourhood level, a high mean NDVI is representative of greener 

areas with more trees and vegetation. There is clear heterogeneity in the level of vegetation 

across Lisbon with low mean NDVI values in highly developed areas such as the primary CBD, 

Baixa, (-0.02) compared to the rest of Lisbon with higher levels of average vegetation (0.05).  

Measures of Urban Greenness 

The NDVI highlights areas rich in vegetation, however it may be vague in its 

interpretation and represent amenities with very different ecological functions. For example, 

 
8 The digital numbers associated to each pixel within each band is represented on a scale of 0-255. The NDVI, 
although measured on a scale of 0-1, is converted to 0-255. This keeps all variables in 8-bit format so that they 
remain integers as opposed to floating points, which increases file size and computation time significantly. 
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while both a closed canopy urban park and a sport field may both yield relatively high NDVI 

values, trees in an urban parks have an important role to play in carbon sequestration and 

balancing the urban micro climate while sport fields are primarily recreational for residents. 

The NDVI measure is used in a remote sensing algorithm to obtain the tree canopy coverage 

which, unlike the NDVI itself, identifies a particular land cover class.  

This provides a measure of the pure canopy effect coming from the collection of above 

ground foliage from tree lined streets, public parks and private gardens. This is a valuable urban 

environmental variable given the important ecological function of trees including the 

mitigation of the urban heat island effect and storm water runoff and further for their aesthetic 

value and complementarity to the urban structure and in particular historic landscapes. 

For each census tract the mean value of the continuous NDVI measure is calculated 

and differencing is used to estimate the value of all non-canopy vegetation remaining to capture 

the impact of other types of flora such as lower lying shrubs, lawns and flowers. The pixel level 

percentage of a tract covered by different types of vegetation are classified by the NDVI in two 

categories: firstly the percentage of pixels with NDVI values between 0.2 and 0.5, and secondly 

the percentage of pixels above values of 0.5. These measures capture the composition of 

vegetation where 0.2 and 0.5 represent low lying sparse vegetation and values above 0.5 

represent healthy trees and greenness. Whether the local area of interest is the freguesia or the 

census tract, when the greenery is measured in percentages it can be interacted with the 

respective zonal area to determine the relative extent of average vegetation size in the area. 

These measures are used in valuing the marginal implicit price of a range of different 

types of neighbourhood greenness. When combined with interaction effects, results indicate 

the substitutability and complementarity of this neighbourhood greenness with proximity to 

other urban open spaces such as parks and forests, ecological dis-amenities such as flood risk, 

and further other neighbourhood attributes such as being in a designated historic area.  
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1 – 5. Machine Learning Remote Sensing of Tree Canopies  

With the increasing availability of high resolution satellite and aerial images, it is 

possible to distinguish detailed urban land use at a very fine scale. Examples of the types of 

urban features which can be extracted via remote sensing include, among others, pollution, 

vehicles and traffic, rooftops, land use and fragmentation, urban sprawl and green amenities. 

Here, machine learning remote sensing methods are used to classify urban tree canopies.  

Results yield highly detailed data which can be used to provide context to various urban 

greening policy discussions. Accurately quantifying the size and location of tree canopy in a 

city provides important foundations for improved research and decision making regarding their 

economic and social benefits and costs. Further, urban tree canopies are distinctive in 

comparison to other green amenities in that they are the primary sources of carbon 

sequestration in municipalities and significant in offsetting total carbon emissions.9  

1 – 5.1. One-Class SVM Learning Methodology and Training Sample Collection 

Land use classification categorizes the elements of an aerial image based on the 

underlying pixel information. Images are composed of the different spectral bands which, when 

layered together, produce the image visible to the naked eye. Each layer represents the 

intensity, at each pixel, of the respective band. This intensity is stored as a digital number 

between 0-255, providing a large database from which to classify objects. A one-class SVM 

supervised machine learning algorithm as outlined by Schölkopf et al. (2001) analyzes 

underlying patterns in spectral information (and the synthetic NDVI band) to classify pixels. 

In this context a specific (one-class) algorithm identifies the unique class of interest, canopy.  

Prior to the classification, a sample is used to train the algorithm in identifying canopies 

based on which pixels are true tree canopies as specified by the user. With the one-class SVM 

 
9 Nowak and Crane (2002) estimate that urban street trees in the USA store 700 million tons of carbon and 
sequester an additional 22.8 million tons annually, equivalent to $460 million per year.   
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methodology, it is necessary only to provide positive training samples (i.e. a training sample 

composed of known tree canopies in the image) rather than negative classes, representative of 

everything else besides canopy. A function using these positive training samples estimates a 

high dimensional hypersphere which separates the cluster of training samples from all others 

based on the spectral information of each pixel with the largest margin possible. 

A total of 506 positive training samples are collected across the region capturing a wide 

variety of tree canopy including individual trees planted in urban planters, clusters of trees in 

parks, forests and from a wide range of species with different vegetation levels (both healthy 

with strong green pigment or not). Visual detection at such high spatial resolution was used to 

classify the training samples, making use of underlying shadows to distinguish between trees 

and shrubs which have similar texture and comparison with satellite images from Google Earth. 

For every pixel, a number of variables estimate the hypersphere including the digital 

number of the blue, green, red, NIR and synthetic NDVI bands. With these five bands, 

additional information from each is used to classify and detect tree canopies versus all other 

land classes. The idea is to determine what about the object in question is identifiable based on 

the underlying pixel information. For each band, we estimate the mean value of surrounding 

pixels under a three-pixel window. This determines, for example, whether a pixel classified as 

vegetation is surrounded by additional pixels characteristic of vegetation. Such a measure is 

used to help in distinguishing the boundaries and interiors of ground objects.  

One important feature of tree canopies is the texture of the vegetation in comparison to 

other types of sparser vegetation such as grass and lawns. Again with a three-pixel window we 

estimate the standard deviation of the surrounding pixels. Green vegetation is detected based 

on the original bands and NDVI, and combined with the mean and standard deviation of 

surrounding pixels we narrow in and classify highly textured above ground biomass. 
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Thus there are 15 dimensions of digital numbers for each pixel in an image to use in 

the training and classification of the data: blue, green, red and NIR spectral bands, NDVI, and 

further the mean and standard deviation of surrounding pixels for each band. This methodology 

then takes an image pixel by pixel and, based on the pattern of digital numbers of the training 

sample, classifies each pixel as being either positive (i.e. the tree canopy class of interest) or 

negative (i.e. all other classes). 

1 – 5.2. SVM Canopy Classification Results 

To manage processing, images were clipped into 200 pixel by 200 pixel squares to 

which the algorithm was applied and the final products stitched together to create a seamless 

map of continuous canopy. Remotely sensed urban tree canopies are presented in figure 2. 

Estimates indicate that approximately 8% of Lisbon is covered directly by urban tree canopy. 

Figure 3. Neighbourhood Aggregate Urban Tree Canopy 

 
 
The algorithm successfully classifies both tree stands in urban forests or parks, and 

individual trees planted along the streets throughout the city. Thus, remote sensing of tree 

canopies can feasibly be implemented as means to obtain data on the urban ecology, including 
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all publicly and privately managed trees which may not have been accessible before under 

traditional in-situ methods.  Figure 3 amalgamates this continuous canopy coverage to the city 

block (tract) level and highlights the heterogeneity in coverage. Areas in the historic CBD have 

significantly less tree canopy coverage, which has been shown to have important influences on 

the urban heat island effect and localized pollution. 

1 – 5.3. Accuracy Assessment 

Assessing the accuracy of classification results is important to understand whether are 

potential measurement errors are introduced in the econometric estimation. The accuracy of 

the tree canopy variable is assessed in two different areas of the city, based on a sample of 500 

randomly drawn pixels from both. For each point the true land cover is determined by auxiliary 

images from Google Maps, Google Earth or Google Street View and compared to the output 

classification obtained from the SVM. It is possible to determine whether each point is 

classified correctly based on images from the same time frame. Figure 4 breaks down the results 

of the SVM algorithm cross-referenced with how that pixel appears in the auxiliary images. 

Through this error matrix, we can compare the relative proportion of tree canopies classified 

correctly as tree canopy or incorrectly as anything other (a negative class). Location and 

classification of tree canopy in the study area are presented in figure A1 – 1 of the appendix. 

 

Figure 4. Remote Sensing Accuracy Assessment 
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The overall accuracy is the proportion of both negative and positive output classes that 

are correctly identified as so, represented by the highlighted diagonal entries of figure 4. The 

first study area has an overall accuracy of 91.6% while the second has an accuracy of 87.6%.  

We can distinguish between two potential classification errors: the producer accuracy 

is a measure of the omission error, how many pixels on the land are not captured by the 

algorithm, while the user accuracy is a measure of the commission error, how many pixels from 

the classification are not truly what they should be classified as based on the auxiliary images. 

Focusing on the (positive class) tree canopy measure of interest, study area A indicates that the 

SVM algorithm classifies 38 positive tree canopy pixels, yet 37 actual tree canopies which 

should have been classified as so were not – a producer accuracy of 50.6%. However, of those 

pixels that the algorithm determined to be tree canopy, 88.4% are classified correctly. This 

pattern is seen also in study area B indicating that while we have a high accuracy related to 

those tree canopies correctly classified as so, there are situations in which not all tree canopy 

is captured, thus the variable represents an accurate lower bound on canopy coverage.  

It is important to have consistently high user accuracy for the classified coverage to 

ensure that the tree canopy measure created is accurate based on the classification results. 

While this is the case for the algorithm, we see some limited producer accuracy indicated some 

omission errors. This suggests that not all (true) tree canopies on the ground are classified as 

such, and both study areas highlight why this may be the case. Lower producer accuracy is 

related to the heterogeneity of the sparsity of tree canopy coverage, especially for younger trees 

with less canopy. Pixels of these canopy types within continuous tracts of trees may be 

classified as negative if the canopy is not opaque or green enough to be identified by the 

algorithm. This problem may be rectified by considering large tracts of continuous canopy as 

determined by algorithm and filling in negative pixels surrounded by positive pixels.  
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Caution should be taken however in filling in all tracts of continuous tree canopies. 

Given that the measure of tree canopy is the mean taken at the neighbourhood level, we do not 

fill in contiguous tracts since we wish to also capture the heterogeneity of sparseness in canopy 

coverage across neighbourhoods.  

1 – 6. Valuation of Open Spaces and Urban Greenness   

The output of the machine learning canopy classification are used in a hedonic 

valuation of open space and urban greenness. The hedonic framework decomposes housing 

prices across Lisbon to determine the marginal implicit price of accessibility to open spaces, 

neighbourhood vegetation and tree canopy coverage.   

1 – 6.1. Hedonic Pricing Data  

The dataset includes a sampled cross section of 11,617 georeferenced two bedroom 

apartments from 2007 with listing price and relevant structural characteristics obtained from 

Confidencial Imobiliário.10 These characteristics include area, the existence of parking, 

elevator, air conditioning, fireplace and whether the dwelling is new or not. 

 Census 2011 data is obtained from the Instituto Nacional de Estatística at the tract 

level representing the relevant sociodemographic and building characteristic variables. We 

control for the percentage of post-secondary educated, unemployed, residents above 65 and 

below 19 and population density. In terms of neighbourhood characteristics, the model includes 

the percentage of buildings built between different decades ranging back to 1919, the 

proportion of non-residential buildings and neglected or derelict buildings. Given the rich 

history of the city, we further control for the number of historic monuments. Accessibility to 

employment centers is captured by the weighted average commuting time to job centers.  

 
10 Although transaction prices are favored we are limited to listing prices, which may introduce a positive bias in 
the results. This bias is not expected to vary structurally by covariates, and estimation results remain meaningful. 
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Local urban amenities are obtained through the Lisbon City Service Development Kit 

API and Câmara Municipal de Lisboa, the municipal authority. Euclidean distance measures 

capture accessibility to a range of local amenities including the airport, hospitals, pharmacies, 

high schools, universities, train stations, shopping centers, galleries and museums, culture 

amenities, road infrastructure and metro stations. Ecological variables include proximity to the 

Tagus riverfront, a dummy variable for being located in an area of flooding risk and further we 

explore proximity to freeways and the impact of designated historic conservation areas. 

Variable descriptive statistics are located in table A1 – 1 of the appendix.   

This work focuses on the impact of proximity to different heterogeneous categories of 

urban open spaces and overall urban greenness as measured by the remotely sensed variables. 

The location of open spaces in Lisbon are obtained from the municipality and include parks 

and gardens, urban forests (including Monsanto Forest Park), playgrounds, cemeteries or 

recreational football fields. Parks, urban forests and cemeteries are then classified by their size 

and average level of NDVI in order to capture the heterogeneity within these amenities.  

1 – 6.2. Empirical Specification 

Spatial dependence in housing prices may occur with pricing techniques comparing 

similar dwellings in the neighbourhood such that a dwellings price is determined in part by the 

value of neighbouring dwellings through a signaling mechanism. This implies a direct spatial 

relationship between property values potentially yielding biased and inefficient OLS estimates. 

Alternatively, omitted or unobserved variables such as outdoor maintenance expenditures or 

public perception of certain areas may be correlated in space through an externality mechanism, 

which in turn can influence local property prices. With unobservable spatial dependence OLS 

tends to underestimate standard errors in hedonic models, and if these unobserved amenities 

are correlated with neighbourhood housing prices, OLS also yields biased coefficient estimates. 

We therefore model and test for spatial dependence in the data using the following framework: 
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where log housing price, !, for an observation is influenced by a vector of structural 

characteristics of the dwelling, %, neighbourhood attributes, (, measures of accessibility to 

local urban amenities, *, and the variables of interest, , and ., which represent respectively 

the proximity to green amenities and local green coverage from one of the various measures. 

A number of interaction effects are included, 0, between the measures of greenness and open 

space, environmental and local characteristics.  

In particular, measures of urban greenness are interacted with neighbourhood 

environmental variables in the form of proximity to the riverfront and location in a high 

flooding zone. Vegetation, and trees specifically, may have important pollution mitigating 

influences and thus we control for proximity to freeways. Finally, complementary effects may 

be found in conservation areas where these types of amenities are jointly valued.  

Further interaction effects capture influences between measures of greenness and 

accessibility to open spaces. In this context, we explore how prices may showcase a tradeoff 

between the greenness of the residents’ neighbourhood and proximity to different types of 

amenities including parks, forests and playgrounds. Additionally, greenness and area of these 

open spaces are categorized to capture how different green quality and size are valued 

differently by the residential real estate market. Although we control for relevant observable 

characteristics influencing housing prices, locational fixed effects are introduced at the 

freguesia level, E, to control for any potentially remaining omitted variables. 

Spatial Dependence 

Spatial dependence is evaluated from test statistics related to the parameters in the 

above specification where neighbouring prices and, or, the error term are weighted by a spatial 
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weight matrix, 6, defining a neighbouring relationship.11 From the above general 

specification, when 2345 = 0 we have a spatial error model (SEM) and with 2899 = 0, the 

spatial autoregressive model (SAR). With economic intuition for the inclusion of both such 

spatial dependencies, we further estimate the mixed spatial autoregressive model with 

autoregressive disturbances (SARAR). 

The spatial Lagrange multiplier (LM) test diagnostics compares the baseline OLS as 

the restricted model (null hypothesis) and the spatial model as the unrestricted model 

(alternative hypothesis) and can thus effectively consider differences between spatial and non-

spatial models, and whether spatial dependence is a result of an omitted spatial lag of the 

dependent variable or through the error component, ultimately indicating whether the SEM, 

SAR or SARAR models are appropriate. 

Without freguesia spatial fixed effects, results indicate positive spatial autocorrelation 

influencing both the dependant variable and the residuals. After introducing the spatial fixed 

effects we find that for all models the LM statistics are not significant. Given these results a 

standard OLS specification is estimated with spatial fixed effects at the freguesia level. Full 

spatial test results are in table A1 – 3 of the appendix. 

1 – 6.3. OLS Hedonic Estimates 

The characteristics (size and quality) and design of open spaces influence the way in 

which people use and visit these amenities, and further determine their impacts on the urban 

environment. Through the hedonic model we examine the value to residents of neighbourhood 

green cover and greenness of urban open spaces, the complementarity and substitutability 

between proximity to urban open spaces and a resident’s neighbourhood greenness, and the 

interaction between urban greenness and broader ecological and neighbourhood characteristics.  

 
11 Two spatial weight matrices are used to represent neighbour relationships between properties: an inverse 
distance and inverse squared distance weight for neighbours within 500 meters. Spatial weight matrices are 
summarized in appendix table A1 – 2. 
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It is important in the development of these urban environmental measures that the scope 

of measurement aligns with how these characteristics are perceived by local residents. We 

control for neighbourhood covariates at the tract (city block) level to capture differences in the 

demographic and building stock of a smaller collection of buildings, on average corresponding 

to approximately a 100 to 200-meter radius. However, the influence of urban canopy and 

vegetation is likely more far reaching than a few city blocks with contiguous canopies running 

throughout neighbourhoods valued by residents more than lesser patches. The measurement of 

greenness is introduced thus at the freguesia level. 

1 – 6.3.1. Baseline Models and Open Space Heterogeneity 

Table 1 presents the baseline models. Model 1 looks at the effect of standard structural 

and neighbourhood variables with the traditional measures of accessibility to alternative types 

of open space including parks, urban forests, cemeteries, football fields and playgrounds. 

Models 2, 3 and 4 explore how the size and greenness of different types of urban open spaces 

(parks, urban forests, and cemeteries) impact housing prices. Table 1 highlights the green 

variables of interest with full results for all structural, neighbourhood and accessibility 

characteristics in table A1 – 4 of the appendix.  

Based on model 1, the structural characteristics behave as expected with positive 

impacts on the price of a dwelling. The strongest drivers is whether the dwelling is newer, 

yielding a premium of 16.94%, whether the dwelling has parking, yielding a premium of 

7.37%, whether the dwelling has air conditioning, yielding a premium of 15.05% and the area 

of the dwelling, with a price premium of 0.79% per square meter increase. On the other hand, 

the neighbourhood characteristic that influences housing prices the most is income levels, 

increasing prices approximately 0.39% per percent increase in the neighbourhood average 

income. Higher commuting time has a consistently negative impact on price capturing the 

decreasing gradient from major employment centers. This is highlighted further by the increase 
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in prices for dwellings closer to train stations and metro stops, approximately 0.015% increase 

per kilometer increase in proximity. 

Table 1. Hedonic Valuation of Open Space Heterogeneity 
Dep. Variable: ln(Price)  Model 1 

 Open Space Heterogeneity 
  Model 2 Model 3 Model 4 

Intercept 4.95977**   4.50317** 4.93687** 4.49936** 
(2.21782)   (2.22333) (2.21808) (2.22362) 

Open Space Accessibility 

ln(Distance to football field) -0.01522**   -0.01464** -0.01601** -0.01500** 
(0.00623)   (0.00632) (0.00626) (0.00634) 

ln(Distance to playground) 0.00395   0.00273 0.00631 0.00348 
(0.00620)   (0.00653) (0.00634) (0.00668) 

ln(Distance to forest) -0.01892***   -0.02656*** -0.02675*** -0.02727*** 
(0.00270)   (0.00318) (0.00668) (0.00702) 

ln(Distance to park) -0.00139   0.04511*** -0.00027 0.04680*** 
(0.00450)   (0.01328) (0.00481) (0.01336) 

ln(Distance to cemetery) -0.00614*   -0.02002 0.00305 -0.00384 
(0.00353)   (0.01282) (0.01089) (0.01789) 

Open Space Heterogeneity 

ln(Forest size)     -0.00259   -0.0036 
    (0.00269)   (0.00279) 

ln(Park size)     0.01498***   0.01572*** 
    (0.00439)   (0.00444) 

ln(Cemetery size)     0.00382   0.00337 
    (0.00436)   (0.00460) 

ln(Distance to forest)	× ln(Forest size)     -0.00872***   -0.00920*** 
    (0.00182)   (0.00194) 

ln(Distance to park) × ln(Park size)     0.00960***   0.00956*** 
    (0.00259)   (0.00262) 

ln(Distance to cemetery)	× ln(Cemetery size)     -0.00741   -0.00699 
    (0.00542)   (0.00545) 

ln(Distance to forest)	× Forest NDVI       0.04997 -0.00009 
      (0.03942) (0.04399) 

ln(Distance to park)	× Park NDVI       -0.04924 -0.06486 
      (0.04420) (0.04471) 

ln(Distance to cemetery)	× Cemetery NDVI       -0.06613 -0.10653 
      (0.07088) (0.07535) 

Freguesia F.E. Yes  Yes Yes Yes 
Structural Characteristics Yes  Yes Yes Yes 
Neighbourhood Characteristics Yes  Yes Yes Yes 
Accessibility Characteristics Yes  Yes Yes Yes 
Local Environmental Characteristics Yes  Yes Yes Yes 
Observations 11,617  11,617 11,617 11,617 
Adjusted R2 0.6652  0.6661 0.6653 0.6662 
Notes: ***Significance at 1 % level; **Significance at 5 % level; *Significance at 10 % level. 
Heteroskedastic consistent errors. 

 
Model 1 yields significant and negative coefficients on three measures of open space, 

distance to football field, forest and cemeteries. This indicates that residential dwellings located 

closer to these open spaces have higher values and, for example, cemeteries increase prices in 

a range of 0.006% per kilometer increase in proximity. Moreover, residents value proximity to 

the Tagus river in the range of 0.015% per kilometer decrease in distance. 
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It is important to capture the heterogeneity of these amenities as determined by their 

size and vegetation level. In models 2, 3 and 4 we explore the impact of different types of parks, 

urban forests and cemeteries through interactions of distance and the size of the open space and 

also with the average value of NDVI for the open space. Comparing model 1 with model 4, 

adding both the open space size and level of greenness reduces slightly the size of the 

coefficients on the distance to the nearest open space of a particular type. In particular, 

proximity to football fields and urban forests tend to have a positive impact on housing prices 

with prices increasing by approximately 0.015% and 0.019% respectively for every kilometer 

decrease in distance. No significant marginal effect is found for proximity to parks, however 

these results may be driven by their heterogeneity as we obtain significant interaction effects 

when controlling for parks of different sizes. Dwelling prices capitalize on proximity to smaller 

parks while there tends to be a negative impact with proximity to the largest parks.  

Increasing the size of the nearest park marginally however is valued at approximately 

0.015% per square kilometer increase in park space. These results should be compared in 

combination with the interaction effects as an increased number of larger parks may tend to 

drive negative price effects. Given the variability in park sizes, from small neighbourhood 

parks to large landscaped gardens, this measure may capture congestion and noise effects 

associated with living next to the largest most visited spaces.  

When controlling for the size of the nearest forest proximity is valued at approximately 

0.03% per kilometer decrease in distance, larger when compared to the baseline model without 

accounting for size heterogeneity. This effect of proximity is compounded with additional 

benefits of living nearer to larger urban forests which tend to offer the most recreational 

facilities which are not readily available in the neighbourhood or park environment. 

Another interesting result from models 2, 3 and 4 is that residents clearly value size 

over vegetation for given urban open spaces, as the average NDVI of those open spaces is never 
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significant while area is. This seems to suggest that greenness of different types of urban open 

spaces may then be valued for their broader effects with the urban environment rather than for 

their complementarity with the spaces specific use by an urban resident. In fact, the view of 

urban planning for open spaces has been extended from an aesthetic view to consider social 

impacts related to recreation, health and psychology to environmental and ecological functions. 

1 – 6.3.2. Impact of Overall Urban Greenness 

Using model 4 as the base, different measures of urban greenness are introduced as a 

proxy for the overall natural environment of a neighbourhood. The marginal impact of urban 

greenness on the residential real estate market is estimated and interacts the three measures of 

freguesia level greenness with the size of the freguesia to capture the extent of green coverage. 

The measures include the percentage of canopy coverage, which when interacted with the 

natural log of the size of the freguesia yields the impact for increasing relative canopy coverage 

per square kilometer. The mean NDVI measure interacted with size captures the extent of the 

average quality of greenness of a neighbourhood and finally the percentage of NDVI pixels in 

between different values represent the percentage of sparse or dense and lush vegetation. When 

interacted with size, this percentage represents the impact of increasing the relative size of these 

types of vegetation coverages in the neighbourhood.  

Urban Greenness 

Table 2 introduces measures of urban greenness in three manners: firstly by percentage 

of canopy coverage, secondly by mean NDVI, and thirdly by percentage of NDVI 

representative of sparse or lush vegetation. As we move to including these measures, the 

explanatory power of the OLS model specifications 5 through 13 improve. We see a reduction 

in the sum of squared error and the AIC value which indicate better fit by controlling for 

additional elements of urban open spaces which are typically excluded from hedonic analyses 

estimating impacts on property values.
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 Overall, urban greenness has a positive effect on housing prices with results from table 

2 revealing that residents value to be in neighbourhoods with higher canopy coverage. While 

NDVI is unitless, it nonetheless indicates that dwellings have higher prices in neighbourhoods 

with higher levels of vegetation and is significant when interaction effects are included. 

Additionally, when decomposing the NDVI by levels, there is a positive amenity effect, 

yet much weaker than the effect of canopy coverage, for sparse vegetation coverage, which 

includes lawns and bushes. In terms of coverage of tree canopy and of sparse vegetation, this 

measure indicates that as we increase the relative size of either measure by a square kilometer, 

housing prices would increase, on average, by approximately 0.203% for increased tree canopy 

or 0.091% for increased sparse vegetation, after controlling for environmental interactions. For 

an average dwelling of €203,483 this corresponds to an increased price of slightly over €400 

per dwelling for more tree canopy or €185 for sparser vegetation. 

It should also be highlighted that the tree canopy coverage measure of greenness seems 

to perform better in general compare to the other measures of overall greenness. For all three 

specifications (models 5 to 8) the coefficients associated with the pure effects are always 

positive and significant. In contrast, the coefficients associated with mean NDVI and with 

NDVI by type are only positively significant when we introduce interaction variables between 

the overall measures of greenness and other elements of the urban environment such as flood 

risk or historic conservation zones. Moreover, the coefficients associated with distance to 

alternative urban spaces are also lower compared to model 4. This suggests that model 4 still 

tends to overestimate the value residents place on proximity to an urban open space, even when 

we control for urban open space heterogeneity. Thus, overall greenness of a neighbourhood 

seems to be an important green element that should also be taken into account when examining 

the impact of alternative urban open spaces and sizes of open space in housing prices. 
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1 – 6.3.3. Interactions of Urban Greenness with other Urban Variables 

Table 3 presents the interaction effects between open space accessibility and measures 

of greenness to explore the complementarity and substitutability between these two types of 

green amenities (full results available in table A1 – 5 of the appendix). This is accompanied by 

models on the interaction effects of urban greenness and broader neighbourhood environmental 

characteristics or historic zones. Though open spaces may provide recreational and relaxation 

opportunities to residents, the results indicate that such spaces may further have a wide range 

of influences on various facets of the urban environment such as controlling the risk of flooding 

and accentuating neighbourhood aesthetics through interactions with historic qualities. 

Complementary versus Substitutability with Other Types of Urban Open Space 

For each measure of urban greenness, we explore how proximity to different urban 

open spaces are complemented or substituted by the overall greenness of a resident’s own 

immediate area (represented by a collection of census tracts as opposed to the freguesia level). 

From model 6, higher residential canopy coverage appears to compensate for living at greater 

distance from a playground.  

On the other hand, higher canopy coverage may complement proximity to an urban 

park in some manner, whereby households who like trees choose zones of the freguesia that 

have lots of trees and are located closer to an urban park. This result may be justified because 

urban parks may offer more diverse vegetation in the form of grassland and large trees. Yet, 

when looking at the coefficient on the distance to a particular type of open space, we see that 

households prefer nevertheless to be closer to smaller rather than larger urban parks. The same 

qualitative conclusions can also be drawn if we consider the interactions between distance to 

an urban open space and the mean NDVI of the collection of census tracts (model 9). 
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Further, results from model 12 suggest that if a resident’s immediate area of residence 

is relatively more covered by sparse vegetation such as lawns and shrubs, then the trade-offs 

households are willing to make are different from above, stemming from the different measures 

of greenness. In particular, greater sparse vegetation coverage can substitute for living further 

away from urban parks (since it is likely that the same type of vegetation is found in both 

places) but it is complementary with proximity to an urban forest. This latter effect may once 

more possibly be explained because the type of vegetation found in both locations differ and 

residents may enjoy living in an area of sparse vegetation with proximity to urban forests where 

there are different types of vegetation coverages and recreational activities compared to the 

neighbourhood where this is lacking.  

Finally, when looking at model 13, proximity to the Tagus river is more valuable in 

areas with a high relative proportion of sparse vegetation, while the opposite is true for areas 

with high proportions of lush vegetation.  

Influences of Urban Greenness on the Urban Environment 

When examining the interaction variables of urban greenness with the urban 

environment (models 7, 10 and 13) open spaces have further significant positive effects in 

freguesias with high flood risk. Therefore, both levels of canopy coverage or urban greenness 

provide valuable amenity services in mitigating of flood, a common occurrence during the 

winter months. The residential real estate market successfully captures these environmental 

spillover effect that increased canopy coverage has in flooding areas.  

Moreover, increasing the freguesia relative proportion of tree canopy coverage or urban 

greenness in general in historic (conservation) areas of the city has a significant positive 

compounding effect and residents value the aesthetics and characteristics of their 

neighbourhood for the conjoined effect of historic and green amenities. This then seems to 

suggest that historic amenities and urban greenness are complementary in housing prices. 
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1 – 6.4. Policy Implications 

The results provide support for the claim that urban green amenities lead to higher 

housing prices suggesting that urban residents are willing to trade off higher prices for 

nonmarket amenities such as green spaces. Moreover, the interaction influences of urban 

greenness on the local environment highlight the importance of understanding the measure of 

urban greenness being used and the respective scale. 

 From a policy perspective, these results indicate the importance of considering not 

only the heterogeneity of different types of open spaces but also the heterogeneous interaction 

effects that these urban green spaces have on the local neighbourhood. Urban greening policies 

may benefit from focusing on the overall greening of a neighbourhood through increased tree 

canopy or vegetation as opposed to the development of new open spaces which require land, 

sometimes quite scarce and extremely expensive in central areas of historic cities. However, 

these green amenities, when bundled with natural or historic amenities, can further enhance the 

pleasantness and competitiveness of a city and boost tourism. Urban green amenities contribute 

to neighbourhood aesthetics and appeal and provide essential services that are critical to both 

urban ecological functioning and integrity, all of which influence human quality of life and 

health (Kahn and Walsh 2015, Zupancic et al. 2015).  

As urban quality of life and cross city competitiveness improves, property values rise. 

By raising city property values, private sector investments in upgrading buildings and better 

restaurants and retail shopping can also be triggered. In addition, property tax revenues rise 

and local governments can finance more urban projects that further enhance local quality of 

life and competitiveness for residents, workers or firms. This in turn creates incentives for 

cities, especially modern consumer cities, to invest in green infrastructure, expand their green 
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space resources near waterfronts, and adapt obsolete or underused infrastructure such as rail 

corridors into green infrastructures for walking and biking, exercise, and social interaction.12  

A good example is the Lisbon riverfront renewal focusing on beautifying and 

promoting tourism around the waterfront. In 2008, the municipality developed the Riverfront 

General Plan that has guided public projects along the 19 km Tagus waterfront over the last 

decade. Alongside this plan, some port and industrial coastal areas that were abandoned or 

obsolete were also released to public use and converted into urban parks and recreational areas 

associated to boating, cycling or pedestrian use as well as landscaping and paths connecting 

the river and city. The greening of the riverfront has been particular important in the central 

section where, due to the dense medieval urban structure, this area of the city had almost no 

green space. One interesting feature of Lisbon’s riverfront is nevertheless the lack of dense 

construction. The exception has been in the renewed Expo area, far from the historic center, 

where some residential construction has been allowed near the water line. Lisbon’s waterfront 

has become one of the most popular destinations in the city, attracting millions of people each 

year. This type of urban renewal is now also taking place in nearby neighbouring coastal 

municipalities such as Oeiras and Cascais. 

Yet, such urban green space strategies may have contradictory results (Wolch et al. 

2014, Kahn and Walsh 2015). If they are successful from the perspective of urban residents 

and businesses, they may ultimately exclude those whose need for access is most critical. Many 

studies further reveal that the distribution of urban green space and tree canopy often 

disproportionately benefits more affluent communities (Danford et al. 2014, Wolch et al. 2014, 

Watkins et al. 2016).  

 
12 Many coastal cities around the world have evolved from being producer cities to becoming consumer cities 
(Glaeser et al. 2001). Lisbon is an example of a coastal city that used to be a major hub of production and 
transportation that has evolved into a green area hub. Its limited land supply, due to its topography and building 
height restrictions, has also contributed to the high residential prices and to the development of endogenous local 
attributes that have further enhanced local amenities and the attractiveness of the city.  
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In many cities, including Lisbon, low income neighbourhoods often also have relatively 

poor access to safe and well-maintained parks and other open spaces. Thus, by simultaneously 

making older and typically low-income or industrial areas of existing cities more livable and 

attractive and therefore targets for new and more upscale development, as was the case in Expo, 

urban greening projects can set off rounds development and potential gentrifying pressures. 

Since higher-quality neighbourhoods and cities require rent premiums, this implies that 

such areas self-select a subset of firms and households, usually highly educated and wealthy 

individuals, to locate there. This market pressure in turn can substantially alter housing 

opportunities and the retail infrastructure that supports lower income communities, forcing 

poor residents out of improved neighbourhoods or city areas, only to resettle in neighbourhoods 

or communities with worse environmental quality but more affordable (Zukin et al. 2009).  

It is then important that urban planners also develop urban green space strategies that 

protect social as well as environmental sustainability. One possible solution is green space 

interventions that are small-scale and scattered rather than large space projects that 

geographically concentrate resources and with limited localized benefits. These types of 

greening interventions such as the planting of street trees, flower beds, pocket parks and small 

neighbourhood playgrounds can be implemented in such a way as to distribute any pressures 

or influences of green amenities more consistently across a municipality, rather than having 

the impacts concentrated around larger dedicated green interventions.  

Moreover, these types of green initiatives can be complemented with anti-gentrification 

measures that include the provision of affordable housing so that existing residents may have 

a stake in an improving neighbourhood. While the pressures potentially exerted from the effects 

of urban green strategies is certainly an important topic that deserves further investigation, it is 

beyond the scope of this thesis. 
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1 – 7. Conclusions  

This chapter highlights how machine learning remote sensing of aerial images can 

generate measures to incorporate into broader economic valuations of urban environmental 

amenities. Specifically the remote sensing of tree canopy coverage and urban greenness is used 

in a hedonic framework to examine how open spaces and canopy coverage influence the local 

housing market via direct and interactive influences. Results indicate it is important to consider 

how enviornmental variables are measured and introduced into the empirical specification. 

These variables should be constructed so as to best reflect how they are perceived by residents 

and further, especially given the consideration of environmental characteristics, how they 

interact with other aspects of the built and natural environment. 

Through the use of interaction effects, the model estimates can be used to explore how 

green amenities relate to the broader environment and accesibility to open space. While 

housing prices tend to capitalize proximity to smaller neighbourhood parks, larger forests are 

prefered. Results indicate that different measures of green amenities provide consistent positive 

effects on dwelling prices. Estimates range that for a square kilometer increase in relative tree 

canopy coverage of a neighbourhood, the impact would average around €400 per dwelling. 

This effect is strong when compared to the effect due to proximity to various open spaces. 

By valuing urban greenness and canopy coverage, there is increased discussion to be 

had regarding the use of neighbourhood greening through increased vegetation and canopy as 

an alternative to the provision of large areas of green space. Further, the heterogeneity of the 

use value of these amenities is important in considering the types of recreational facilities 

provided by parks and forests.  

With increasingly detailed data and computational power, remote sensing and 

geospatial data continue to provide viable ways to explore urban policy analyses and assess the 

distribution and access of urban amenities such as tree canopy and urban green spaces. High 
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resolution aerial photography has shown itself to provide accurate data regarding the location 

of tree canopies, distinguishing them from all other land uses such as roads and buildings. 

Making use of this data we are able to extend the standard hedonic analysis to include tree 

canopy vegetation, an important urban environmental variable traditionally overlooked.  
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1 – Appendix 

Figure A1 – 1. Accuracy Assessment Study Area 
Area A: Eduardo VII Park and Area B: Praça de Espanha 

 

 

 

Table A1 – 1. Descriptive Statistics 
  N Mean St. Dev Min Max Unit 

Price (€) 11,617 203,483 84,391 35,000 1,100,000 Euro 
Square meters 11,617 85.04 23.29 25 240 Sq. m. 
New dummy 11,617 0.180 0.384 0 1 Dummy 
Pool dummy 11,617 0.008 0.086 0 1 Dummy 
Parking dummy 11,617 0.114 0.318 0 1 Dummy 
Fireplace dummy 11,617 0.025 0.157 0 1 Dummy 
Double windows dummy 11,617 0.207 0.405 0 1 Dummy 
Air conditioning dummy 11,617 0.119 0.324 0 1 Dummy 
Elevator dummy 11,617 0.228 0.420 0 1 Dummy 
% Non-residential buildings 11,617 0.025 0.116 0.00 1.00 Percent 
Neglected Buildings in 200 m 11,617 6.426 6.182 0.00 45.00 Count 
% Buildings built pre 1919 11,617 0.104 0.246 0.00 1.00 Percent 
% Buildings built 1919-1945 11,617 0.169 0.279 0.00 1.00 Percent 
% Buildings built 1946-1960 11,617 0.221 0.336 0.00 1.00 Percent 
% Buildings built 1961-1970 11,617 0.127 0.266 0.00 1.00 Percent 
% Buildings built 1971-1980 11,617 0.125 0.300 0.00 1.00 Percent 
% Buildings built 1981-1990 11,617 0.023 0.117 0.00 1.00 Percent 
% Buildings built 1991-1995 11,617 0.044 0.160 0.00 1.00 Percent 
% Buildings built 1996-2000 11,617 0.108 0.292 0.00 1.00 Percent 
% Buildings built 2000-2005 11,617 0.036 0.152 0.00 1.00 Percent 
Neighbourhood Mean Income 11,617 27,840 8,657 10,619 49,968 Euro 
Population density 11,617 0.015 0.013 0.00 0.08 Persons/ Sq. m. 
% Higher educated 11,617 0.268 0.184 0.00 1.00 Percent 
% Population over 65 11,617 0.280 0.165 0.00 1.00 Percent 
% Population under 19 11,617 0.159 0.093 0.00 0.80 Percent 
Average commute time 11,617 21.87 10.20 0.00 70.67 Minutes 
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# Neighbourhood Monuments 11,617 4.593 4.355 0.00 15.00 Count 
Distance to airport 11,617 4.489 1.795 0.59 10.65 Kilometer 
Distance to cultural amenity 11,617 0.639 0.632 0.02 4.17 Kilometer 
Distance to art gallery 11,617 0.950 0.662 0.01 3.45 Kilometer 
Distance to museum 11,617 0.673 0.402 0.01 2.48 Kilometer 
Distance to pharmacy 11,617 0.168 0.151 0.01 1.25 Kilometer 
Distance to hospital 11,617 0.938 0.577 0.01 3.19 Kilometer 
Distance to mall 11,617 0.640 0.695 0.01 5.97 Kilometer 
Distance to supermarket 11,617 0.208 0.162 0.01 1.23 Kilometer 
Distance to university 11,617 0.621 0.406 0.03 2.50 Kilometer 
Distance to high school 11,617 0.622 0.301 0.04 2.38 Kilometer 
Distance to stadium 11,617 1.841 1.112 0.00 4.56 Kilometer 
Distance to fire station 11,617 1.080 0.734 0.03 3.76 Kilometer 
Distance to police 11,617 0.622 0.324 0.02 1.90 Kilometer 
Distance to metro 11,617 0.611 0.719 0.03 6.25 Kilometer 
Distance to train 11,617 1.149 0.771 0.00 4.79 Kilometer 
Distance to parking 11,617 0.492 0.417 0.01 3.04 Kilometer 
Distance to freeway 11,617 1.520 1.006 0.00 4.06 Kilometer 
Conservation zone dummy 11,617 0.142 0.349 0 1 Dummy 
Flood risk dummy 11,617 0.097 0.296 0 1 Dummy 
View of the Tagus river 11,617 0.062 0.241 0 1 Dummy 
Distance to Tagus 11,617 2.433 1.802 0.00 7.40 Kilometer 
Distance to playground 11,617 0.424 0.181 0.02 1.19 Kilometer 
Distance to football field 11,617 1.141 0.686 0.06 3.68 Kilometer 
Distance to forest 11,617 1.098 0.675 0.00 2.75 Kilometer 
Distance to cemetery 11,617 1.275 0.704 0.00 2.99 Kilometer 
Distance to park 11,617 0.342 0.223 0.01 1.27 Kilometer 
Forest size 11,617 0.841 2.051 0.04 10.29 Sq. kilometer 
Cemetery Size 11,617 0.116 0.090 0.00 0.27 Sq. kilometer 
Park size 11,617 0.028 0.083 0.00 1.00 Sq. kilometer 
Cemetery NDVI 11,617 0.085 0.040 0.00 0.17 NDVI 
Forest NDVI 11,617 0.138 0.064 0.01 0.27 NDVI 
Park NDVI 11,617 0.051 0.055 -0.06 0.22 NDVI 
% Canopy Coverage 11,617 0.049 0.046 0.00 0.21 Percent 
Mean NDVI 11,617 0.063 0.049 -0.04 0.17 NDVI 
% NDVI [0.2, 0.5] Coverage 11,617 0.142 0.084 0.03 0.34 Percent 
% NDVI [0.5, 1.0] Coverage 11,617 0.012 0.013 0.00 0.05 Percent 

 
 
 

Table A1 – 2. Spatial Weights (SW) 
 

Description 
No. 

Locations 
No. Non-

zero Links 
% Non-zero 

Links 
Avg. No. of 

Links 
SW1 Inverse distance of all properties in 500m 11,616 4,617,282 3.42 397.49 
SW2 Inverse sq. distance of all properties in 500m 11,616 4,617,282 3.42 397.49 
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Table A1 – 3. Tests of Spatial Dependence 

  

Global 
Moran's 
I (Dep.) 

Z-Value 
(Dep.) 

Global 
Moran's 
I (Res.) 

Z-Value 
(Res.) 

LM 
Error 

LM  
Lag 

Rob. LM 
Error 

Rob. LM 
Lag 

Model 1 
SW1 0.1039*** 21.19 0.0051* 1.50 1.068 0.172 1.495 0.598 
SW2 0.1118*** 12.42 0.0082 1.18 0.832 0.054 1.352 0.573 
Model 2 
SW1 0.1039*** 21.19 0.0027 1.03 0.3082 0.5931 0.6976 0.9824 
SW2 0.1118*** 12.42 0.0055 0.88 0.3717 0.2949 0.9726 0.8958 
Model 3 
SW1 0.1039*** 21.19 0.0029 1.0770 0.3453 0.3553 0.6599 0.6699 
SW2 0.1118*** 12.42 0.0061 0.9590 0.4586 0.1553 0.9642 0.6609 
Model 4 
SW1 0.1039*** 21.19 0.0036 1.2200 0.5427 0.2111 0.8553 0.5237 
SW2 0.1118*** 12.42 0.0060 0.9392 0.4378 0.0861 0.8288 0.4771 
Model 5 
SW1 0.1039*** 21.19 0.0019 0.89 0.155 0.700 0.472 1.017 
SW2 0.1118*** 12.42 0.0051 0.86 0.326 0.367 0.953 0.994 
Model 6 
SW1 0.1039*** 21.19 0.0015 0.81 0.096 0.733 0.367 1.004 
SW2 0.1118*** 12.42 0.0046 0.80 0.259 0.394 0.840 0.975 
Model 7 
SW1 0.1039*** 21.19 0.0013 0.7661 0.0665 0.7979 0.3162 1.0480 
SW2 0.1118*** 12.42 0.0040 0.7382 0.1965 0.4518 0.7500 1.0050 
Model 8 
SW1 0.1039*** 21.19 0.0012 0.76 0.064 0.919 0.334 1.189 
SW2 0.1118*** 12.42 0.0043 0.77 0.229 0.520 0.868 1.159 
Model 9 
SW1 0.1039*** 21.19 0.0017 0.84 0.114 0.628 0.375 0.890 
SW2 0.1118*** 12.42 0.0048 0.82 0.282 0.320 0.825 0.863 
Model 10 
SW1 0.1039*** 21.19 0.0013 0.82 0.087 0.777 0.400 0.834 
SW2 0.1118*** 12.42 0.0060 0.70 0.290 0.420 0.600 1.053 
Model 11 
SW1 0.1039*** 21.19 0.0014 0.79 0.079 0.796 0.343 1.060 
SW2 0.1118*** 12.42 0.0046 0.81 0.264 0.438 0.883 1.058 
Model 12 
SW1 0.1039*** 21.19 0.0016 0.830 0.107 0.675 0.374 0.942 
SW2 0.1118*** 12.42 0.0047 0.816 0.275 0.352 0.838 0.916 
Model 13 
SW1 0.1039*** 21.19 0.0027 1.084 0.307 0.377 0.614 0.683 
SW2 0.1118*** 12.42 0.0059 0.966 0.430 0.169 0.936 0.675 

 

 

 

Table A1 – 4. Hedonic Valuation of Open Space Heterogeneity (Full Results) 
Dep. Variable: ln(Price)  Model 1 

 Open Space Heterogeneity 
  Model 2 Model 3 Model 4 

Intercept 4.95977**   4.50317** 4.93687** 4.49936** 
(2.21782)   (2.22333) (2.21808) (2.22362) 

Structural Characteristics 

ln(Sq. meter) 0.78928***   0.78878*** 0.78924*** 0.78859*** 
(0.00828)   (0.00827) (0.00828) (0.00827) 

New dummy 0.15645***   0.15644*** 0.15690*** 0.15687*** 
(0.00571)   (0.00570) (0.00571) (0.00571) 

Pool dummy 0.11721***   0.11572*** 0.11760*** 0.11678*** 
(0.02357)   (0.02355) (0.02358) (0.02355) 

Parking dummy 0.07115***   0.07156*** 0.07154*** 0.07190*** 
(0.00738)   (0.00737) (0.00738) (0.00738) 

Fireplace dummy 0.03117**   0.02920** 0.03084** 0.02891** 
(0.01303)   (0.01302) (0.01303) (0.01302) 
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Double windows dummy 0.01481***   0.01526*** 0.01477*** 0.01529*** 
(0.00555)   (0.00555) (0.00555) (0.00555) 

Air conditioning dummy 0.14027***   0.13860*** 0.14010*** 0.13850*** 
(0.00669)   (0.00668) (0.00669) (0.00669) 

Elevator dummy 0.01380**   0.01417** 0.01378** 0.01427** 
(0.00562)   (0.00561) (0.00562) (0.00561) 

Neighbourhood Characteristics 

% Non-residential buildings 0.0529   0.04347 0.06227* 0.05302 
(0.03326)   (0.03462) (0.03388) (0.03517) 

% Buildings built pre 1919 -0.02998   -0.02341 -0.02932 -0.02193 
(0.02265)   (0.02303) (0.02266) (0.02310) 

% Buildings built 1919-1945 -0.07547***   -0.05887*** -0.07971*** -0.06146*** 
(0.01853)   (0.01975) (0.01869) (0.01991) 

% Buildings built 1946-1960 -0.01211   -0.00813 -0.01661 -0.00746 
(0.01926)   (0.01985) (0.01965) (0.02003) 

% Buildings built 1961-1970 -0.05135**   -0.01663 -0.05004** -0.01519 
(0.02237)   (0.02365) (0.02259) (0.02392) 

% Buildings built 1971-1980 -0.02821   -0.0249 -0.03312* -0.03035 
(0.01961)   (0.02011) (0.01978) (0.02027) 

% Buildings built 1981-1990 -0.19881***   -0.18190*** -0.20910*** -0.18728*** 
(0.03549)   (0.03567) (0.03600) (0.03621) 

% Buildings built 1991-1995 0.04771   0.03876 0.04407 0.04162 
(0.03412)   (0.03495) (0.03448) (0.03528) 

% Buildings built 1996-2000 0.01675   0.03812 0.00505 0.02586 
(0.02351)   (0.02428) (0.02527) (0.02616) 

% Buildings built 2000-2005 -0.13415***   -0.11712*** -0.13749*** -0.11655*** 
(0.03600)   (0.03628) (0.03613) (0.03640) 

ln(Average income) 0.39090*   0.44002** 0.39286* 0.43938** 
(0.22304)   (0.22369) (0.22307) (0.22373) 

Population density 0.27617   0.31428 0.45275 0.49065 
(0.33709)   (0.34855) (0.35128) (0.36147) 

% Higher educated 0.01848   0.01295 0.01039 0.00108 
(0.02548)   (0.02695) (0.02610) (0.02797) 

% Population over 65 -0.05749   -0.0458 -0.05595 -0.05084 
(0.03958)   (0.04000) (0.03991) (0.04027) 

% Population under 19 0.01202   -0.04133 0.00584 -0.05178 
(0.06714)   (0.06822) (0.06740) (0.06883) 

Average commute time -0.00106**   -0.00054 -0.00095* -0.00037 
(0.00048)   (0.00050) (0.00049) (0.00051) 

No. Neglected Buildings in 200 m -0.00358***   -0.00298*** -0.00344*** -0.00291*** 
(0.00088)   (0.00092) (0.00089) (0.00092) 

No. Neighbourhood Monuments 0.00185   0.00314*** 0.00178 0.00312*** 
(0.00115)   (0.00118) (0.00116) (0.00118) 

Accessibility Characteristics 

ln(Distance to airport) -0.0153   -0.00957 -0.01752 -0.0118 
(0.01213)   (0.01261) (0.01223) (0.01274) 

ln(Distance to stadium) -0.00236   -0.00074 -0.00213 0.0007 
(0.00643)   (0.00649) (0.00652) (0.00658) 

ln(Distance to supermarket) 0.00278   0.0032 0.0031 0.00285 
(0.00548)   (0.00583) (0.00566) (0.00602) 

ln(Distance to cultural amenity) 0.00162   0.00027 0.00052 -0.00127 
(0.00730)   (0.00755) (0.00732) (0.00760) 

ln(Distance to art gallery) -0.02767***   -0.03079*** -0.02858*** -0.03172*** 
(0.00784)   (0.00800) (0.00789) (0.00804) 

ln(Distance to museum) -0.00258   0.00179 -0.00172 0.00322 
(0.00834)   (0.00861) (0.00838) (0.00864) 

ln(Distance to pharmacy) -0.00122   0.00265 0.00003 0.00248 
(0.00563)   (0.00607) (0.00576) (0.00610) 

ln(Distance to parking) 0.00447   0.00277 0.00464 0.00198 
(0.00483)   (0.00511) (0.00486) (0.00516) 

ln(Distance to train) -0.01583***   -0.01508** -0.01693*** -0.01587*** 
(0.00588)   (0.00608) (0.00591) (0.00613) 

ln(Distance to metro) -0.01580***   -0.01912*** -0.01622*** -0.02016*** 
(0.00524)   (0.00534) (0.00530) (0.00541) 

ln(Distance to high school) -0.00628   -0.00657 -0.01063 -0.00954 
(0.00734)   (0.00752) (0.00768) (0.00789) 
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ln(Distance to university) 0.01397**   0.01517** 0.01215* 0.01420** 
(0.00634)   (0.00640) (0.00641) (0.00650) 

ln(Distance to hospital) 0.01109*   0.01714** 0.01261* 0.01892*** 
(0.00641)   (0.00674) (0.00650) (0.00684) 

ln(Distance to mall) -0.0068   -0.00925 -0.00471 -0.00584 
(0.00663)   (0.00668) (0.00678) (0.00686) 

ln(Distance to police) 0.01433**   0.01272** 0.01554*** 0.01417** 
(0.00589)   (0.00597) (0.00593) (0.00602) 

ln(Distance to fire station) 0.03311***   0.02251*** 0.03158*** 0.02174*** 
(0.00710)   (0.00765) (0.00720) (0.00766) 

Local Environmental Characteristics 

Flood risk dummy -0.02952**   -0.03235*** -0.02919** -0.02658** 
(0.01204)   (0.01224) (0.01247) (0.01297) 

Conservation zone dummy -0.01507   -0.01254 -0.01512 -0.0137 
(0.01342)   (0.01355) (0.01349) (0.01359) 

View of the Tagus river 0.06401***   0.06511*** 0.06342*** 0.06455*** 
(0.00864)   (0.00863) (0.00864) (0.00864) 

ln(Distance to Tagus) -0.01560***   -0.01374** -0.01438** -0.01101* 
(0.00552)   (0.00563) (0.00569) (0.00582) 

ln(Distance to freeway) 0.02423***   0.01474** 0.02358*** 0.01495** 
(0.00724)   (0.00744) (0.00728) (0.00746) 

Open Space Accessibility 

ln(Distance to football field) -0.01522**   -0.01464** -0.01601** -0.01500** 
(0.00623)   (0.00632) (0.00626) (0.00634) 

ln(Distance to playground) 0.00395   0.00273 0.00631 0.00348 
(0.00620)   (0.00653) (0.00634) (0.00668) 

ln(Distance to forest) -0.01892***   -0.02656*** -0.02675*** -0.02727*** 
(0.00270)   (0.00318) (0.00668) (0.00702) 

ln(Distance to park) -0.00139   0.04511*** -0.00027 0.04680*** 
(0.00450)   (0.01328) (0.00481) (0.01336) 

ln(Distance to cemetery) -0.00614*   -0.02002 0.00305 -0.00384 
(0.00353)   (0.01282) (0.01089) (0.01789) 

Open Space Heterogeneity 

ln(Forest size)     -0.00259   -0.0036 
    (0.00269)   (0.00279) 

ln(Park size)     0.01498***   0.01572*** 
    (0.00439)   (0.00444) 

ln(Cemetery Size)     0.00382   0.00337 
    (0.00436)   (0.00460) 

ln(Distance to forest)	× ln(Forest size)     -0.00872***   -0.00920*** 
    (0.00182)   (0.00194) 

ln(Distance to park)	× ln(Park size)     0.00960***   0.00956*** 
    (0.00259)   (0.00262) 

ln(Distance to cemetery)	× ln(Cemetery Size)     -0.00741   -0.00699 
    (0.00542)   (0.00545) 

ln(Distance to forest)	× Forest NDVI       0.04997 -0.00009 
      (0.03942) (0.04399) 

ln(Distance to park)	× Park NDVI       -0.04924 -0.06486 
      (0.04420) (0.04471) 

ln(Distance to cemetery)	× Cemetery NDVI       -0.06613 -0.10653 
      (0.07088) (0.07535) 

Freguesia F.E. Yes   Yes Yes Yes 
Breusch-Pagan 486.62***   472.95*** 496.02*** 478.51*** 
Breusch-Godfrey 26.53***   24.03*** 26.36*** 24.02*** 
Durbin-Watson 1.90***   1.91*** 1.90*** 1.91*** 
AIC -3030.10   -3056.40 -3028.20 -3055.40 
SSE 514.62   512.93 514.44 512.71 
Observations 11,617    11,617  11,617  11,617  
Adjusted R2 0.66527   0.66619 0.6653 0.66625 
Residual Std. Error 0.21142   0.21113 0.21141 0.21111 
F Statistic 225.13***   213.68*** 218.82*** 208.03*** 
Notes: ***Significance at 1 % level; **Significance at 5 % level; *Significance at 10 % level. 
Heteroskedastic Consistent Errors 
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0.78736

*** 
  

0.78875
*** 

0.78429
*** 

0.78614
*** 

(0.00827) 
(0.00827) 

(0.00827) 
  

(0.00827) 
(0.00827) 

(0.00827) 
  

(0.00827) 
(0.00826) 

(0.00827) 

N
ew

 dum
m

y 
0.15687

*** 
0.15626

*** 
0.15678

*** 
  

0.15684
*** 

0.15662
*** 

0.15690
*** 

  
0.15679

*** 
0.15473

*** 
0.15583

*** 
(0.00571) 

(0.00571) 
(0.00570) 

  
(0.00571) 

(0.00571) 
(0.00570) 

  
(0.00571) 

(0.00570) 
(0.00570) 

Pool dum
m

y 
0.11637

*** 
0.11553

*** 
0.11639

*** 
  

0.11631
*** 

0.11566
*** 

0.11648
*** 

  
0.11628

*** 
0.11475

*** 
0.12115

*** 
(0.02355) 

(0.02355) 
(0.02354) 

  
(0.02355) 

(0.02355) 
(0.02354) 

  
(0.02355) 

(0.02351) 
(0.02352) 

Parking dum
m

y 
0.07173

*** 
0.07155

*** 
0.07187

*** 
  

0.07181
*** 

0.07163
*** 

0.07217
*** 

  
0.07184

*** 
0.07150

*** 
0.07191

*** 
(0.00738) 

(0.00737) 
(0.00737) 

  
(0.00738) 

(0.00737) 
(0.00737) 

  
(0.00738) 

(0.00735) 
(0.00736) 

Fireplace dum
m

y 
0.02853

** 
0.02835

** 
0.02811

** 
  

0.02866
** 

0.02835
** 

0.02788
** 

  
0.02844

** 
0.02630

** 
0.02698

** 
(0.01302) 

(0.01302) 
(0.01302) 

  
(0.01302) 

(0.01302) 
(0.01303) 

  
(0.01302) 

(0.01299) 
(0.01302) 

D
ouble w

indow
s dum

m
y 

0.01540
*** 

0.01592
*** 

0.01605
*** 

  
0.01551

*** 
0.01572

*** 
0.01652

*** 
  

0.01562
*** 

0.01633
*** 

0.01683
*** 

(0.00555) 
(0.00555) 

(0.00555) 
  

(0.00555) 
(0.00555) 

(0.00556) 
  

(0.00555) 
(0.00554) 

(0.00555) 

A
ir conditioning dum

m
y 

0.13832
*** 

0.13857
*** 

0.13871
*** 

  
0.13839

*** 
0.13836

*** 
0.13871

*** 
  

0.13821
*** 

0.13680
*** 

0.13815
*** 

(0.00669) 
(0.00669) 

(0.00668) 
  

(0.00669) 
(0.00669) 

(0.00669) 
  

(0.00669) 
(0.00667) 

(0.00668) 

E
levator dum

m
y 

0.01426
** 

0.01438
** 

0.01422
** 

  
0.01424

** 
0.01438

** 
0.01385

** 
  

0.01418
** 

0.01574
*** 

0.01502
*** 

(0.00561) 
(0.00561) 

(0.00561) 
  

(0.00561) 
(0.00561) 

(0.00561) 
  

(0.00562) 
(0.00560) 

(0.00561) 
N

eighbourhood Characteristics 

%
 N

on-residential buildings 
0.04832 

0.06627
* 

0.06559
* 

  
0.05398 

0.06464
* 

0.06575
* 

  
0.05243 

0.12519
*** 

0.08888
** 

(0.03528) 
(0.03595) 

(0.03562) 
  

(0.03517) 
(0.03577) 

(0.03590) 
  

(0.03517) 
(0.03651) 

(0.03657) 

%
 B

uildings built pre 1919 
-0.01241 

-0.01934 
-0.01 

  
-0.01311 

-0.02104 
-0.01537 

  
-0.01132 

-0.01526 
0.00227 

(0.02381) 
(0.02405) 

(0.02407) 
  

(0.02393) 
(0.02497) 

(0.02451) 
  

(0.02457) 
(0.02530) 

(0.02527) 

%
 B

uildings built 1919-1945 
-0.05543

*** 
-0.05164

** 
-0.04449

** 
  

-0.05675
*** 

-0.04730
** 

-0.05101
** 

  
-0.05506

*** 
-0.03023 

-0.03731
* 

(0.02024) 
(0.02057) 

(0.02075) 
  

(0.02019) 
(0.02043) 

(0.02068) 
  

(0.02060) 
(0.02094) 

(0.02118) 

%
 B

uildings built 1946-1960 
-0.00742 

-0.00314 
-0.00182 

  
-0.00798 

0.00066 
-0.00443 

  
-0.00856 

-0.01093 
-0.00619 

(0.02003) 
(0.02054) 

(0.02024) 
  

(0.02004) 
(0.02030) 

(0.02034) 
  

(0.02029) 
(0.02033) 

(0.02060) 

%
 B

uildings built 1961-1970 
-0.01597 

-0.00015 
-0.0111 

  
-0.01972 

-0.01436 
-0.02694 

  
-0.02142 

-0.01399 
-0.02169 

(0.02392) 
(0.02473) 

(0.02412) 
  

(0.02413) 
(0.02469) 

(0.02455) 
  

(0.02459) 
(0.02511) 

(0.02478) 

%
 B

uildings built 1971-1980 
-0.03467* 

-0.03313 
-0.02491 

  
-0.03283 

-0.02221 
-0.01808 

  
-0.03634

* 
-0.01061 

-0.0122 
(0.02044) 

(0.02096) 
(0.02128) 

  
(0.02034) 

(0.02086) 
(0.02143) 

  
(0.02054) 

(0.02104) 
(0.02153) 

%
 B

uildings built 1981-1990 
-0.18584

*** 
-0.14373

*** 
-0.16035

*** 
  

-0.18662
*** 

-0.18057
*** 

-0.17241
*** 

  
-0.18690

*** 
-0.12717

*** 
-0.15853

*** 
(0.03621) 

(0.03874) 
(0.03689) 

  
(0.03621) 

(0.03677) 
(0.03689) 

  
(0.03715) 

(0.03841) 
(0.03763) 

%
 B

uildings built 1991-1995 
0.0426 

0.03602 
0.04577 

  
0.04248 

0.02812 
0.03983 

  
0.04365 

0.02077 
0.06318

* 
(0.03529) 

(0.03572) 
(0.03572) 

  
(0.03529) 

(0.03587) 
(0.03559) 

  
(0.03533) 

(0.03551) 
(0.03609) 

%
 B

uildings built 1996-2000 
0.02688 

0.03205 
0.02886 

  
0.02774 

0.02233 
0.02493 

  
0.02799 

-0.00398 
0.03129 

(0.02617) 
(0.02653) 

(0.02644) 
  

(0.02619) 
(0.02659) 

(0.02672) 
  

(0.02620) 
(0.02650) 

(0.02694) 
 

 
 

 
 

 
 

 
 

 
 

 



 
48 

 
 

 
 

 
 

 
 

 
 

 
 

%
 B

uildings built 2000-2005 
-0.12570

*** 
-0.13233

*** 
-0.13063

*** 
  

-0.12209
*** 

-0.10846
*** 

-0.13161
*** 

  
-0.12380

*** 
-0.12265

*** 
-0.16197

*** 
(0.03682) 

(0.03704) 
(0.03704) 

  
(0.03661) 

(0.03703) 
(0.03677) 

  
(0.03698) 

(0.03964) 
(0.03875) 

ln(A
verage incom

e) 
0.43276

* 
0.44894

** 
0.39248

* 
  

0.42594
* 

0.45796
** 

0.39528
* 

  
0.42262

* 
0.30586 

0.35426 
(0.22375) 

(0.22392) 
(0.22423) 

  
(0.22392) 

(0.22456) 
(0.22418) 

  
(0.22391) 

(0.22401) 
(0.22473) 

Population density 
0.47014 

0.25258 
0.42851 

  
0.50885 

0.47531 
0.598 

  
0.50099 

0.78272
** 

0.86416
** 

(0.36165) 
(0.38309) 

(0.36534) 
  

(0.36168) 
(0.36793) 

(0.36385) 
  

(0.36161) 
(0.37469) 

(0.37739) 

%
 H

igher educated 
0.01125 

0.00272 
0.01471 

  
0.01272 

-0.00833 
0.01837 

  
0.01295 

0.02626 
0.02442 

(0.02864) 
(0.02906) 

(0.02908) 
  

(0.02916) 
(0.02996) 

(0.02982) 
  

(0.02954) 
(0.03070) 

(0.03006) 

%
 Population over 65 

-0.05144 
-0.06985

* 
-0.05347 

  
-0.04624 

-0.08938
** 

-0.05148 
  

-0.04769 
-0.04884 

-0.06852 
(0.04026) 

(0.04082) 
(0.04091) 

  
(0.04040) 

(0.04273) 
(0.04064) 

  
(0.04043) 

(0.04199) 
(0.04237) 

%
 Population under 19 

-0.06296 
-0.09203 

-0.05304 
  

-0.05795 
-0.0785 

-0.05615 
  

-0.06568 
-0.07705 

-0.09379 
(0.06916) 

(0.07176) 
(0.07186) 

  
(0.06896) 

(0.07101) 
(0.06900) 

  
(0.06943) 

(0.07161) 
(0.07156) 

A
verage com

m
ute tim

e 
-0.00046 

-0.00024 
-0.0005 

  
-0.00049 

-0.00047 
-0.00059 

  
-0.00045 

-0.00064 
-0.00049 

(0.00051) 
(0.00052) 

(0.00051) 
  

(0.00051) 
(0.00052) 

(0.00052) 
  

(0.00051) 
(0.00052) 

(0.00052) 

N
o. N

eglected B
uildings in 200 m

 
-0.00286

*** 
-0.00279

*** 
-0.00235

** 
  

-0.00276
*** 

-0.00271
*** 

-0.00215
** 

  
-0.00288

*** 
-0.00176

* 
-0.00245

** 
(0.00092) 

(0.00094) 
(0.00094) 

  
(0.00092) 

(0.00095) 
(0.00099) 

  
(0.00093) 

(0.00095) 
(0.00097) 

N
o. N

eighbourhood M
onum

ents 
0.00216 

0.0018 
0.0019 

  
0.00201 

0.00206 
0.00167 

  
0.00152 

0.00119 
0.00082 

(0.00132) 
(0.00133) 

(0.00137) 
  

(0.00142) 
(0.00154) 

(0.00144) 
  

(0.00144) 
(0.00148) 

(0.00155) 
Accessibility Characteristics 

ln(D
istance to airport) 

-0.01055 
-0.00912 

-0.00905 
  

-0.00972 
-0.02298

* 
-0.00823 

  
-0.00987 

-0.01008 
-0.02722

** 
(0.01276) 

(0.01331) 
(0.01285) 

  
(0.01283) 

(0.01389) 
(0.01295) 

  
(0.01282) 

(0.01332) 
(0.01370) 

ln(D
istance to stadium

) 
-0.00027 

-0.00213 
-0.00256 

  
-0.00087 

-0.00075 
-0.00213 

  
-0.00122 

-0.00449 
-0.00507 

(0.00661) 
(0.00665) 

(0.00664) 
  

(0.00668) 
(0.00673) 

(0.00671) 
  

(0.00665) 
(0.00680) 

(0.00673) 

ln(D
istance to superm

arket) 
0.00163 

0.00017 
-0.00185 

  
0.00187 

0.00284 
0.00015 

  
0.00029 

0.00403 
-0.00451 

(0.00606) 
(0.00613) 

(0.00617) 
  

(0.00605) 
(0.00609) 

(0.00610) 
  

(0.00633) 
(0.00649) 

(0.00648) 

ln(D
istance to cultural am

enity) 
-0.00074 

-0.001 
0.00066 

  
-0.00018 

0.00123 
0.00257 

  
-0.00061 

0.00624 
0.00285 

(0.00760) 
(0.00769) 

(0.00761) 
  

(0.00764) 
(0.00770) 

(0.00771) 
  

(0.00761) 
(0.00773) 

(0.00769) 

ln(D
istance to art gallery) 

-0.03101
*** 

-0.03281
*** 

-0.02755
*** 

  
-0.03053

*** 
-0.02390

*** 
-0.02458

*** 
  

-0.02982
*** 

-0.01821
** 

-0.02075
** 

(0.00805) 
(0.00819) 

(0.00835) 
  

(0.00808) 
(0.00842) 

(0.00838) 
  

(0.00809) 
(0.00839) 

(0.00863) 

ln(D
istance to m

useum
) 

0.00253 
0.00324 

0.00068 
  

0.00206 
-0.00191 

0.00103 
  

0.00139 
0.00333 

0.00585 
(0.00865) 

(0.00868) 
(0.00871) 

  
(0.00868) 

(0.00878) 
(0.00873) 

  
(0.00871) 

(0.00877) 
(0.00890) 

ln(D
istance to pharm

acy) 
0.00316 

0.00231 
0.00291 

  
0.00344 

0.00187 
0.00363 

  
0.00457 

-0.00392 
0.00326 

(0.00611) 
(0.00616) 

(0.00611) 
  

(0.00614) 
(0.00618) 

(0.00614) 
  

(0.00627) 
(0.00642) 

(0.00636) 

ln(D
istance to parking) 

0.00219 
0.00367 

0.00102 
  

0.00084 
0.00231 

-0.00179 
  

0.00124 
0.0013 

0.0007 
(0.00516) 

(0.00531) 
(0.00522) 

  
(0.00522) 

(0.00534) 
(0.00530) 

  
(0.00517) 

(0.00522) 
(0.00522) 

ln(D
istance to train) 

-0.01690
*** 

-0.01620
*** 

-0.01286
** 

  
-0.01790

*** 
-0.01704

*** 
-0.01816

*** 
  

-0.01762
*** 

-0.01111
* 

-0.00773 
(0.00616) 

(0.00627) 
(0.00637) 

  
(0.00629) 

(0.00634) 
(0.00647) 

  
(0.00619) 

(0.00629) 
(0.00653) 

ln(D
istance to m

etro) 
-0.01943

*** 
-0.01914

*** 
-0.01698

*** 
  

-0.01935
*** 

-0.01749
*** 

-0.01766
*** 

  
-0.01879

*** 
-0.01335

** 
-0.01854

*** 
(0.00542) 

(0.00545) 
(0.00548) 

  
(0.00544) 

(0.00556) 
(0.00549) 

  
(0.00545) 

(0.00555) 
(0.00583) 

ln(D
istance to high school) 

-0.00955 
-0.00496 

-0.00916 
  

-0.00888 
-0.0088 

-0.01142 
  

-0.00809 
-0.0031 

-0.01119 
(0.00789) 

(0.00808) 
(0.00797) 

  
(0.00791) 

(0.00797) 
(0.00797) 

  
(0.00794) 

(0.00821) 
(0.00804) 

ln(D
istance to university) 

0.01496
** 

0.01657
** 

0.01282
* 

  
0.01447

** 
0.01392

** 
0.01375

** 
  

0.01481
** 

0.0016 
0.01363

** 
(0.00651) 

(0.00675) 
(0.00678) 

  
(0.00650) 

(0.00666) 
(0.00675) 

  
(0.00651) 

(0.00721) 
(0.00682) 
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ln(D
istance to hospital) 

0.01907
*** 

0.01836
*** 

0.01635
** 

  
0.01867

*** 
0.01654

** 
0.01395

** 
  

0.01891
*** 

0.01266
* 

0.00636 
(0.00684) 

(0.00692) 
(0.00700) 

  
(0.00684) 

(0.00696) 
(0.00699) 

  
(0.00685) 

(0.00705) 
(0.00734) 

ln(D
istance to m

all) 
-0.00573 

-0.00509 
-0.00574 

  
-0.00518 

-0.00952 
-0.00703 

  
-0.00646 

-0.00566 
-0.00125 

(0.00686) 
(0.00711) 

(0.00709) 
  

(0.00688) 
(0.00723) 

(0.00725) 
  

(0.00709) 
(0.00751) 

(0.00739) 

ln(D
istance to police) 

0.01334
** 

0.01293
** 

0.01133
* 

  
0.01297

** 
0.01247

** 
0.01116

* 
  

0.01348
** 

0.01139
* 

0.01229
** 

(0.00604) 
(0.00611) 

(0.00612) 
  

(0.00608) 
(0.00622) 

(0.00624) 
  

(0.00610) 
(0.00669) 

(0.00626) 

ln(D
istance to fire station) 

0.01904
** 

0.01916
** 

0.01798
** 

  
0.02052

*** 
0.01870

** 
0.02254

*** 
  

0.01866
** 

0.01101 
0.00545 

(0.00783) 
(0.00791) 

(0.00790) 
  

(0.00771) 
(0.00788) 

(0.00795) 
  

(0.00782) 
(0.00794) 

(0.00828) 
Local Environm

ental Characteristics 

ln(D
istance to T

agus) 
-0.01114

* 
-0.01244

** 
-0.00763 

  
-0.01068

* 
-0.01580

** 
-0.00847 

  
-0.01141

* 
0.00193 

0.00895 
(0.00582) 

(0.00606) 
(0.00603) 

  
(0.00582) 

(0.00615) 
(0.00609) 

  
(0.00583) 

(0.00716) 
(0.00753) 

ln(D
istance to freew

ay) 
0.01438

* 
0.01545

** 
0.02774

*** 
  

0.01508
** 

0.01390
* 

0.02164
* 

  
0.01383

* 
0.01309

* 
0.04429

*** 
(0.00746) 

(0.00759) 
(0.00971) 

  
(0.00746) 

(0.00773) 
(0.01149) 

  
(0.00753) 

(0.00763) 
(0.01300) 

Flood risk dum
m

y 
-0.02579

** 
-0.02017 

-0.06991
*** 

  
-0.02551

** 
-0.03261

** 
-0.05494

*** 
  

-0.02570
** 

-0.02999
** 

-0.08334
*** 

(0.01298) 
(0.01322) 

(0.02115) 
  

(0.01299) 
(0.01324) 

(0.01808) 
  

(0.01300) 
(0.01316) 

(0.02479) 

C
onservation zone dum

m
y 

-0.01511 
-0.01702 

-0.07279
*** 

  
-0.01515 

-0.01782 
-0.09139

*** 
  

-0.01705 
0.01464 

-0.06881
** 

(0.01362) 
(0.01421) 

(0.02088) 
  

(0.01363) 
(0.01383) 

(0.02638) 
  

(0.01371) 
(0.01470) 

(0.02726) 

V
iew

 of the T
agus river 

0.06451
*** 

0.06391
*** 

0.06378
*** 

  
0.06454

*** 
0.06424

*** 
0.06384

*** 
  

0.06450
*** 

0.06384
*** 

0.06193
*** 

(0.00864) 
(0.00864) 

(0.00863) 
  

(0.00864) 
(0.00864) 

(0.00863) 
  

(0.00864) 
(0.00861) 

(0.00863) 
O

pen Space Accessibility 

ln(D
istance to football field) 

-0.01581
** 

-0.01639
** 

-0.01611
** 

  
-0.01547

** 
-0.01893

*** 
-0.01814

*** 
  

-0.01596
** 

-0.02034
*** 

-0.01704
*** 

(0.00636) 
(0.00643) 

(0.00642) 
  

(0.00635) 
(0.00651) 

(0.00643) 
  

(0.00636) 
(0.00646) 

(0.00641) 

ln(D
istance to playground) 

0.00409 
-0.01099 

0.00306 
  

0.00303 
0.00273 

0.00169 
  

0.00423 
-0.00461 

0.0037 
(0.00669) 

(0.00793) 
(0.00670) 

  
(0.00669) 

(0.00716) 
(0.00671) 

  
(0.00669) 

(0.01136) 
(0.00677) 

ln(D
istance to forest) 

-0.02777
*** 

-0.03119
*** 

-0.01997
*** 

  
-0.02723

*** 
-0.02988

*** 
-0.02227

*** 
  

-0.02755
*** 

0.02276 
-0.02455

*** 
(0.00703) 

(0.01142) 
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CHAPTER 2:  
Housing Price Boundary Effects From Flooding and Seismic Risk Zones 
 

This chapter considers the capitalization of urban hazard information via the 
residential real estate market. A spatial hedonic framework with geographic regression 
discontinuities is used to estimate the impact of being located across areas with different 
levels of urban flood risks or seismic hazards. Special attention is given to capturing 
heterogeneity via varying local amenities and characteristics within and between the 
different zones, or differing effects along the distribution of housing prices. 

2 – 1. Introduction 

As population increasingly take up residency in urban areas and create denser living 

areas, a growing number of individuals are exposed to a variety of environmental hazard risks 

on a daily basis. Earthquakes, floods, landslides, avalanches and tsunamis are all examples of 

such hazards impacting cities across the globe and presenting severe threats to humans, 

property and the natural or built environment. Landslides can be caused by any number of 

factors including heavy rainfall and floods, earthquakes, or human activities, and are the most 

common natural hazards on land. In terms of casualties however, earthquakes and floods are 

often considered to be among the most significant. Tsunamis, many times a by-product of 

seismic events, are another type of geohazard that are relatively rare but as the 2004 deadly 

Indian Ocean tsunami tragically illustrated, their impacts can be devastating.1  

In 2002, across the globe over 500 natural disasters were recorded with a total estimated 

direct damage of $55 billion and $13 billion in insurance losses, further killing 10,000 people 

and impacting 600 million more (United Nations 2004). The risk of being exposed to 

environmental hazards vary greatly according to location, climate, topography and the built 

environment. Cities must obey the particularities of their urban risks as they vary across the 

globe and consider these factors as they design and implement resilient policies, assess costs 

 
1 Geohazards are conditions relating to geology that have the potential to cause harm and damage, often involving 
some form of ground motion or instability. Examples include earthquakes, volcanic eruptions, landslides, flooding 
and tsunamis. 
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and support the local community. Each time these natural hazard events and their devastating 

losses occur, however, the same questions arise about the necessity of better managing urban 

development in areas prone to natural hazard. 

The need to account for geological factors in land-use planning has often been urged 

by the United Nations. This is especially the case in coastal lowlands and more so for urban 

centers, most of which are located in earthquake zones or other hazard prone areas. Today, as 

more than half of the world’s population live in urban areas, and coupled with the impacts of 

climate change, risk reduction strategies in urban areas are key to building resilient 

communities. The reach and potential impacts of natural hazards increase significantly in 

denser and growing urban areas and have important consequences for public policies 

supporting infrastructure, safety, mitigation strategies, cleanup or rebuilding (Lall and 

Deichmann 2010, Gencer 2013). Furthermore, many urban areas are confronted with a 

multitude of natural hazard risks and anthropogenic hazards such as accidents, pollution, 

explosions and fire. For instance, using a sample of 52 European cities representing 15% of the 

EU population, the PanGeo-project shows that an average sized European city could have four 

different types of geohazards covering an area of 186 km2 and, exposing 626,000 people. 

Compressible-ground was identified by the PanGEo-project as the largest urban geohazard, by 

area, affecting the sampled European cities.2 This is not surprising considering that most 

European cities have grown near rivers or coasts where compressible sediments and alluvium 

often accumulate. Therefore, identifying the spatial distribution and concentration of hazard 

risks in urban areas is crucial to understanding where and how preventative and corrective 

actions can reduce levels of vulnerability and exposure of urban inhabitants. 

 
2 Certain types of ground contain layers of very soft materials like peat and clays. These layers are often likely to 
compress if they are loaded by overlying structures, or if the groundwater level changes around them. This 
compression may result in depressions appearing in the ground surface or under structures, potentially damaging 
foundations and infrastructure. There are a number of problems that may affect properties built in such types of 
ground, including structural damage to foundations and to the fabric of the building, strains or break in service 
connections to water, gas and electricity or, cracks in walls, floors or ceilings of a building. 
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The goal of this chapter is to study the effects of localized natural hazard vulnerability 

on housing prices. In particular, to examine the direct effects that hazard risk zones (flooding 

or seismic) have on prices in Lisbon, Portugal, and further whether there exists any interactions 

with local amenities or spillover effects along the distribution of prices. 

While many direct costs can be measured in relation to cleanup efforts, the estimated 

economic impact of urban hazard events often omit important effects such as persistent 

influences on the real estate market. When the location and occurrences of events can be 

predicted and made available to the general population through hazard risk maps or the media, 

residents can supposedly react accordingly and these risks may illicit important behavioral 

responses with impacts on the real estate market. In general, the market absorbs these 

behavioral responses through the price that households and firms are willing to pay for real 

estate in a particular location. Existing housing price studies on urban natural hazards usually 

deal with the effect of a single hazard and show that the residential real estate market responds 

to a natural hazard with depressed property prices in flood zones (Bin and Landry 2008, Bin 

and Landry 2013, Rajapaksa et al. 2016, Rajapaksa et al. 2017a, Rajapaksa et al. 2017b) and 

in areas with high seismic risk (Naoi et al. 2009, Naoi et al. 2010, Hidano et al. 2015).  

Yet, little research has examined the spillover effects of high-risk areas on nearby real 

estate values nor the price impacts of multiple natural hazard risks and their interactions with 

local amenities and the built environment. This is surprising as many urban properties are 

vulnerable to multiple hazards and the continuous nature of spatial interactions yield contagion 

effects from high-risk areas to low-risk areas within close proximity. In addition, the variability 

of local amenities within hazard zones may mitigate or exacerbate the effects of their risks, 

translating to effects in their property value.  

Finally, the degree of capitalization into property prices of different and multiple types 

of natural hazards can reveal not only the residents’ risk beliefs but also the perceived potential 
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private property damage of these dis-amenities. Even if hazard risk maps are publicly available 

and media mentions occur, residents may still be apt to underestimate or even ignore these 

risks. For instance, people can feel either apathetic or optimistic about their risk of death, injury, 

or property damage due to a natural hazard (Bakkensen and Barrage 2018), or act as if a very 

low probability of an extreme event is zero by believing that it will not harm them or their 

property (Lindell 1997). Moreover, residents may expect they will be provided with disaster 

relief from governments and nonprofit organizations in case a natural disaster occurs (Burby 

1998). Therefore, understanding the capitalization into housing prices of natural hazard risks 

can help local governments to be more aware of their residents’ risk beliefs and behavior with 

regards to urban natural hazards and how mitigation measures may contribute to housing 

prices. It can also provide valuable information to value insurance contracts, to design resilient 

development strategies and to determine future urban development locations.  

Lisbon provides an interesting context for studying the impact of natural hazard risks 

in an urban setting given its topography, coastal location and climate. Flooding occurrences 

are yearly events in the city and with its varied topography, with many valleys and hills, the 

areas of high flooding risk in Lisbon are not constrained to the riverfront like in many cities. 

On the other hand, seismic events are far less common, though the risk is still present and 

supposedly known to many residents. The country’s history inflects on the date of the 

devastating category M9 Great Lisbon Earthquake of 1755, and this event remains much 

ingrained in modern culture and urban planning.  

As such, the within city spatial heterogeneity of seismic and flooding risks is expected 

to be capitalized into Lisbon’s residential property prices. A spatial hedonic framework is used 

to decompose the price of a residential dwelling into its value bearing attributes, paying 

particular attention to location within the city and relative to amenities and important areas of 

the city. The variability of georeferenced dwellings across zones of different risks in the city 
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allows for the estimated impact of being located in areas of a municipality exposed to greater 

hazards. If the residential real estate market capitalizes on these risks, then we would expect 

negative impacts on prices for dwellings located within or near such zones.  

The empirical specification is chosen based on spatial diagnostics from the Moran’s I 

and Lagrange multiplier statistics which test the spatial heterogeneity of the dependent variable 

and spatial autocorrelation of the error term. Results indicate the presence of significant spatial 

influences which may impact standard OLS results, and thus a spatial error (SEM) specification 

is employed to mitigate this potential bias.   

The analysis further take spatial influences and locational spillovers into consideration 

in a number of ways. First, in constructing measures of location and neighbourhoods we forgo 

the use of pre-defined administrative boundaries and construct proper measures based on 

distances reflective of how residents perceive their neighbourhood. This mitigates potential 

biases from the modifiable aerial unit problem which may arise by using inconsistently sized 

administrative boundaries to represent neighbourhood and locational realities which may be 

delineated according to political or topographic considerations. 

Second, to ensure that the estimated effects are not driven by underlying locational 

features, a geographic regression discontinuity (GRD) framework is used whereby the 

boundaries of areas with greater natural hazard risks are used as a geographic threshold. Results 

on the inside of the zones can thus be considered as treatments, while those located nearby on 

the other side of the boundary and in a non-hazard zone may be considered valid controls. A 

propensity score matching is also used to find valid control properties conditional on key 

locational features, and shows that results are robust when considering a range of potential 

underlying locational mechanisms which may be driving estimates. 

Estimates indicate that the residential real estate market in Lisbon responds negatively 

to areas of increased natural hazard risk. Being located in areas with very high flooding 
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potential or damage from seismic risk yields a reduction in dwelling prices on average of 3.5% 

and 1.1%, respectively. Evidence also suggests that residents respond to the severity of the 

potential impacts with larger estimates for very high risk areas compared to high risk areas. 

While the potential damage effect of seismic events is significantly greater than flooding 

events, the estimated housing price impacts tends to be smaller. This signals that the real estate 

market underestimates the potential risk of this type of geohazard event, likely due to their 

scarcity relative to flooding which are seasonal occurrences. Further, given the topography of 

the city it is possible to have areas of both high seismic and high flooding risks. As expected, 

these joint hazard zones have stronger negative impacts on dwelling prices in the range of 

3.8%. Using a quantile regression shows that the impact of flood risk is the largest for higher 

priced dwellings. Dwellings priced above the 70th percentile are more negatively impacted by 

hazard risks, with those located at the 80th percentile having negative impacts around 4.2%.   

Another contribution of this work is related to capturing the heterogeneity of hazard 

zones, not only conditional on the variability of local amenities within the zones which may 

mitigate or exacerbate their impact, but also conditional on the relative location between zones 

across the city. Results show the impact of proximity to flood zones yield negative effects on 

housing prices which is mitigated when dwellings have greater accessibility to local urban 

green spaces. Urban green infrastructure has important implications for a city’s storm water 

and flood management as they help absorb rainfall and localized riverine floods, preventing 

water from overwhelming pipes and pooling in streets or basements. The negative impact of 

being in flood zones is compounded by nearby lakes and increased impervious surfaces in the 

neighbourhood. Being in seismic risk zones on the other hand has marginally less of a negative 

impact conditional on the built and demographic characteristics of the neighbourhood, with 

mitigating effects coming from having more low-rise buildings and more owners or educated 

residents, which may serve as a signal for how well taken care the dwellings in the zone are.  
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Not only does the within variation of local amenities influence the relative effect of 

hazard risks on housing prices, but it is important to consider the location of the hazard zones 

across the city and their spillover effects to nearby areas. While being located in flooding zones 

yield negative average price effects, this is dependent on location in the city. Coastal properties 

have a net positive impact, even after controlling for the multitude of flood zones in these areas. 

This positive effect of being located near the Tagus river suggests that residents believe the 

amenity value of riverfront proximity outweighs potential flood risk and associated damages. 

The structure of this chapter is as follows. Section 2 explores the previous literature of 

urban natural hazards with an emphasis on flooding and seismic events or risks. Section 3 

outlines urban hazards in the context of Lisbon, Portugal, and presents the data. Section 4 

describes the empirical strategy emphasizing the importance of considering spatial influences 

in the variable measurement and estimation. Results are presented in section 5 with final 

conclusions presented in section 6. 

2 – 2. Literature Review 

There is a range of literature on the impact that urban hazards and information plays 

into dwelling prices and the decision making process of residents. This can broadly be 

categorized into two types, some focusing on the impact of individual geohazard events and 

others accounting for the information regarding geohazard risk zones. The valuation of specific 

seismic or flooding events are common, however these likely underestimate the true impact if 

the potential reoccurrence of these events cause behavioral changes in other markets that are 

not accounted for. In general, results indicate that the real estate market responds negatively to 

potential risk due to urban natural hazards and prices are depressed in such zones of higher 

hazard risk, and can thus be used to inform on true economic impacts of these event risks.  

Given the prominence of flooding events across the globe, a number of works have 

focused on the impact that flooding risk, flooding occurrences and flash floods have on the real 
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estate market. Many works value the ex-ante effect of how flooding risk information is taken 

into account and influences property values, however, there are further many ex-post studies 

which focus on the economic impact due to occurred flooding events.  

In North Carolina, Bin and Landry (2008) and Bin and Landry (2013) highlight both 

the estimation of impacts from flood risk information and the impact of specific events. The 

average effect of being in a flood plain is an approximate discount of 7.3% when evaluated 

using a spatial error hedonic specification (Bin and Landry 2008). Using the events of major 

hurricanes in the area however, Bin and Landry (2013) estimate the impact of being located in 

flooding plains while controlling for spatial influences from positive amenity values related to 

water proximity. In particular, the authors use distance measures of proximity to the water in 

their estimations. Following recent hurricane and flooding events, the authors estimate that 

prices decreased 5.7% following Hurricane Fran and 8.8% following Hurricane Floyd. 

Atreya and Czajkowski (2016) disentangle the countervailing impacts of flood risk and 

water-related amenities by interacting distance to the nearest coastline and flood risk to account 

for these impacts acting jointly on housing sale prices in Galveston County, Texas. They further 

vary flood return periods to allow for an interaction between negative and positive amenities 

related to proximity to water. The study shows that properties located in high-risk areas 

command a price premium up to 146% for up to nearly a quarter mile from the nearest coastline 

and the expected distance effects vary by flood risk type. In particular, housing premiums to 

higher risk homes decay at a faster rate the further one moves away from the water.  

Rajapaksa et al. (2016) employ a difference-in-difference methodology to identify the 

impact of flood risk information and flood occurrences on housing prices in Brisbane, 

Australia. The authors conduct both OLS and spatial maximum likelihood estimation which 

accounts for significant spatial dependence in housing prices, making use of temporal variation 

in regards to when flood hazard information was made available and when actual floods 
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occurred. This work uses the impact of the release of flood risk map information in 2009 and 

the impact of actual flooding events which occurred in 2011, comparing the sale time of 

dwellings and their spatial exposure to each. Estimates indicate that the impact of public flood 

information being released led to price depressions in flood zones between 1 to 4% while actual 

flooding occurrences had impacts on prices by detracting between 18 and 19%.  

Rajapaksa et al. (2017a) further explore whether the impact due to flood risk areas are 

conditional on locational or sub-market attributes. Using a spatial quantile regression under the 

difference-in-difference framework, the variation of risk impact conditional on areas of high 

value or low valued homes is explored. Flood risk is found to have the largest impacts on high 

valued property sub-markets in the range of a 4% to 8% decrease in prices while little to no 

significance was found to indicate that flood risk impacted lower value properties.  

Also under a spatial quantile regression framework, Zhang (2016) find that in the North 

Dakota and Minnesota area, the average impact of being in a flood zone on dwelling prices is 

around 6% while lower-valued properties are more impacted than higher valued properties. 

Using the time of flooding events and time of sale, the author further concludes that the impact 

of a flood event depresses dwelling prices, but that this effect dissipates over time.  

Along the lines of heterogeneity, Rajapaksa et al. (2017b) highlight the importance of 

considering proximity to major waterways in terms of flood risk capitalization. Using a semi-

parametric model allows the authors to capture the non-linearity of impacts over space as they 

relate to proximity to the river. The estimated average impact of flooding zones is a depression 

of 5% of prices in these areas, however the benefits of being closer to the river outweighs 

potential risks of urban hazards and the effect is non-linearly related to proximity to the river.  

Using similar methodologies the impact of seismic risk zones has been studied by 

exploiting discontinuities in time or over space as they pertain to known hazard zones, seismic 

activities and the impact on dwelling prices. While regular seismic activity is relatively 
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uncommon in any municipal area, unlike flooding occurrences, the housing market in the few 

areas with significant risk capitalizes on living in zones with higher potential damage.  

With regular seismic activity and occurrences in Japan, much research has been 

dedicated to understanding the influence of hazard information on property values in this 

region. Naoi et al. (2009) find that the price impact of seismic zones on dwellings is larger 

following a large event and thus that the real estate market potentially undervalues the impact 

of these events until they occur. While seismic activity is negatively capitalized, the effect is 

heterogeneous according to local characteristics. The negative impact of seismic risk is 

influenced by dwelling characteristics, age and the local built environment (Naoi et al. 2010).  

Using a two-dimensional spatial regression discontinuity, Hidano et al. (2015) value 

the difference between areas with high seismic risk or high risk of building collapse and their 

respective low risk areas. Under such approach, the authors find a dwelling premium for those 

that are located in low risk areas ranging from ¥13,970 to ¥17,380.  

While natural seismic activity can be rare, new on land technologies have been 

introduced in recent decades that have exacerbated seismic events, primarily to facilitate oil 

and natural gas extraction. These induced seismic activities have become a standard by-

produce of human ground interventions, and have important consequences on the real estate 

market in line with natural seismic occurrences. Metz et al. (2017) use the spatial and temporal 

variation of these events to identify the impact of drilling-induced seismic activity in 

Oklahoma. The effect translates to an approximate decrease in prices of 3.09% in affected 

areas, and the authors show that this result is robust using a number of spatial sub-setting of 

the data conditional on important locational characteristics. In the Netherlands, Koster and van 

Ommeren (2015) compare earthquakes felt by residents with those which have not been felt by 

residents to identify the impact of induced seismic activity. Dwellings which have experienced 

a noticeable earthquake sold on average at a price reduced by 1.9%.  
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2 – 3. Urban Hazard Risks and Measurement  

2 – 3.1. Seismic and Flooding History of Lisbon 

The name Baixa Pombalina is in reference to the Pombaline style of architecture and 

urban design, widely introduced in the area during the rebuilding which followed the Great 

Earthquake of 1755. Previously narrow medieval streets were rebuilt as open avenues, and 

buildings were constructed in a specific design to allow more flexibility in the case of a 

repeated seismic event. This caged-style building design is one of the first widespread 

architectural seismic policy initiative in a major urban area. Though a vast majority of the city 

was destroyed during the earthquake and subsequent tsunami, Portuguese history emphasizes 

this period due to the events importance as a catalyst to implement a wide range of frontier 

urban designs from the time in redesigning the city. 

The devastation of the 1755 Earthquake is still evident in modern Lisbon through the 

stock of historically significant buildings, churches, palaces and amenities which have survived 

and remain a testimony to the past.3 Estimates of the impact of this singular event on Portuguese 

history is massive, with a value ranging from 32% to 48% of GDP at the time, and a lower 

bound estimate of almost 23,000 completely destroyed or substantially damaged buildings 

(nearly 70% of Lisbon’s dwellings at the time) and 30,000 – 40,000 lives lost by the combined 

effects of the quakes, fire and tsunami (Pereira 2009). Under current housing stock and urban 

design, an earthquake of that magnitude and characteristic would have an impact of 

approximately €11.4B, or 8% of GDP (Tang et al. 2012).  

The 1755 earthquake was not, however, the first devastating earthquake to hit the city. 

The Tagus river follows a fault line, and large earthquakes can and do occur along it. In 1531, 

the city was hit hard when an earthquake along this fault struck the center of Portugal, northeast 

 
3 The Carmo Convent (located in Baixa Pombalina) for example now houses an archeological museum and stands 
out as a defining feature of the city skyline. The main drawing point of this site however is the partially destroyed 
arches and surviving pillars of the ancient church caused by the earthquake, which serves as a reminder to locals 
and tourists alike of the events destruction.   
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of Lisbon, with an estimated magnitude of M7. There was also a severe earthquake in 1321, 

again with widespread destruction, and other significant quakes occurring 1147 (also leaving 

the city, just captured from the Moors, in ruins), 1334 (destroying the cathedral roof) and 1356. 

In 1909 a quake hit north-east of Lisbon with a magnitude of M6.5, however since then the 

region has been seismically calm. There have been, however, occasional earthquakes of much 

lower magnitude briefly felt in the city. Recent examples include the M4.3 quake in the region 

of Sobral de Monte Agraço on August 17th, 2017, and the M6 earthquake located near the St. 

Vicent Canyon, offshore to the south-west coast of Portugal on December 17th, 2009.  

While there have been many discussions of the chances of a re-occurrence of the 1755 

event, such an event may only occur every 5,000 years or so, leaving imminent danger out of 

the mindset of the local population. However, a more immediate danger is a potential repeat of 

those medieval quakes in the near future. In addition, the more critical source of concern is the 

Lower Tagus Valley region which could produce an M6 to M7 earthquake with a return period 

as short as 150 to 200 years. This proximate seismic zone, combined with the city’s large 

number of old masonry buildings and a fraction of reinforced concrete frames designed with 

limited lateral resistance, presents the most significant potential for large scale loss.  

The city’s intimate history with earthquakes, and awareness of their significance and 

destructive capacity, has thus become ingrained in the current culture. The residential 

population is therefore aware of the inherent risks that come with living in certain areas of the 

city with higher potential hazard occurrences and subsequently larger damages. While seismic 

activity tends to be few and far between, flooding is a regular occurrence in the city.4 Yearly, 

during the rainy winter months, many parts of Lisbon experience sometimes severe flooding. 

 
4 Since 2007 Portugal has experienced twelve seismic events of varying magnitude (four in the Lisbon region), 
while in 2014 alone there were a total of 1,336 flooding incidents reported throughout the city.  
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The rugged topography of the city means that these flooding occurrences are not limited to the 

riverfront and we thus observe heterogeneity of this urban risk across the city.  

Catastrophic flooding events are not frequent, however, from time to time Lisbon 

suffers extreme meteorological events such as heavy rains causing flash floods and landslides. 

The two most well-known extreme rainfalls include the flooding of November 25th, 1967, and 

February 18th, 2008. In particular, the floods of 1967 claimed 464 lives, making it the worst 

natural disaster to hit Portugal since the earthquake of 1755 and the fourth deadliest flash flood 

in world history. The severity of flooding events occurring in the city is expected to escalate 

with the rising of sea level and more severe rainfall patterns due to climate change.    

The risk of these hazard events therefore are likely to be realized by residents at some 

point in their lifetime and act as dis-amenities to specific areas of the city where the risks and 

potential for damages are greatest. The value of these urban dis-amenities can be estimated by 

geo-locating dwellings inside of these zones and comparing prices while controlling for other 

important locational features which vary across the city.  

Figure 5. Urban Hazard Risks in Lisbon, Portugal 
Panel A: Flood Risk Zones 

 

Panel B: Seismic Risk Zones 

 
Figure 5 shows Lisbon’s flood and seismic risk zones maps. Much of the flooding and 

seismic risk zones appear near the Tagus riverfront or are linked to the city’s topography, and 

thus distance to the river and elevation are important aspects to take into consideration along 

with urban hazards. About 6% of the city is zoned under the high or very high flood risk 

categories, while 24% of the city falls into the high or very high seismic risk categories. While 
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different properties across an earthquake prone area are equally likely to experience the same 

large earthquake, there is significant local variation in the likely damage that would result from 

that earthquake over small distances due to variation in soil geology. In terms of the number of 

dwellings, around 45% of the homes in the data set are in high and very-high seismic risk zones 

while 14% of the homes are in high and very-high flood risk zones. There are 11% of the homes 

located within areas with high risk of both hazards.   

2 – 3.2. Data and Sources 

Residential property data from 2002 to 2007 is obtained from Confidencial 

Imobiliário.5 While year fixed effects are included to capture variability in housing prices over 

time, it is important to note that the data is cross-sectional and without repeated observations. 

The database contains list price, structural characteristics and location identifiers for 32,420 

dwellings which allow for the assignment to any neighbourhood or hazard zone. 

The municipality of Lisbon, Câmara Municipal de Lisboa, maintains a wide range of 

publicly available geo-referenced data regarding local amenities, ecological characteristics, 

transportation infrastructure, urban hazards and the city’s built environment. The municipal 

urban planning strategy (Plano Diretor Municipal) provides the size and location of urban 

hazard zones in the city, which are classified hierarchically based on the potential risk to 

residents as seen in figure 5. Areas of the city can be categorized according to the severity of 

risk (moderate, high or very high) of flooding or seismic risk.  

In the case of seismic risk, studies from the city highlight these areas according to soil 

quality and type, fault lines, topography and the potential for damages in terms of the built and 

population density. Seismic studies led to the development of the risk map in 2001, informing 

the public of these locations (Instituto Superior Técnico 2005). Given the regular flooding, 

 
5 32,420 observations 65.9%, or 21,353 observations, are from 2007 with 0.3%, 0.9%, 2.4%, 7.5% and 23.1% of 
the data from 2002 to 2006 respectively. 
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areas of flooding risk are easily determined and heavily influenced by the slope and elevation. 

Online platforms and active local authorities make it easy for residents to report flooding 

occurrences with the municipality keeping a logged archive of these floods for recent years.6 

The locations of urban amenities in Lisbon come from the city’s open data platform. 

Using these geospatial databases, we can measure proximity to employment centers and other 

areas of the city such as the riverfront, determine proximity to and neighbourhood 

concentrations of transportation infrastructure and spaces such as parks or forests. Census 2011 

data further captures neighbourhood level socio-demographic and building stock variables. 

Table 4. Key Descriptive Statistics  
  N Mean St. Dev. Min Max 
Price (€) 32,420 243,500 € 148,503 25,000 2,500,000 

Locational Characteristics 
Located 3 km from the Riverfront 32,420 0.480 0.500 0 1 
Located 100 m from Tagus Riverfront 32,420 0.007 0.084 0 1 
Located 500 m from Tagus Riverfront 32,420 0.116 0.320 0 1 
Located 500 m outside Very High Seismic Risk Areas 32,420 0.633 0.482 0 1 
Located 500 m outside Very High Flood Risk Areas 32,420 0.408 0.491 0 1 

Open Spaces and Ecological Urban Hazards 
Located in High or Very High Seismic Risk Area 32,420 0.454 0.498 0 1 
Located in High or Very High Flood Risk Area 32,420 0.140 0.347 0 1 
Located in Very High Seismic Risk Area 32,420 0.196 0.397 0 1 
Located in Very High Flood Risk Area 32,420 0.062 0.242 0 1 
 

The Agência Portuguesa do Ambiente maintains data on the elevation and 

topographical profile of the city. The measure of elevation also conveys flood risk by 

measuring altitude relative to the sea. Data on greenness, including tree canopy and normalized 

difference vegetation index (NDVI) is obtained from chapter 1. Descriptive statistics for key 

variables are presented in table 4 with all variables presented in table A2 – 1 of the appendix. 

2 – 4. Empirical Analysis 

2 – 4.1. Spatial Hedonic Specification 

The empirical specification is built on the seminal work of hedonic valuation from 

Rosen (1974). If a household has preferences across local amenities, the implicit value of these 

 
6 Geo-referenced data on reported flood locations is only available for recent years since 2011, and thus cannot 
be merged with dwelling observations from 2007.  
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amenities can be imbedded in real estate prices. A hedonic estimation is able to decompose the 

price of a dwelling into its value bearing attributes. Using a range of geospatial databases, the 

standard set of covariates for each dwelling are enhanced with neighbourhood amenities, 

locational attributes, and the areas ecological and topographical profile.  

The baseline hedonic model is extended to consider potential important underlying 

spatial dependence. Such dependence in the data may influence the estimation associated with 

dwelling prices which are closely related to their neighbors or commonly influenced by omitted 

neighbourhood characteristics. The most general form of the framework decomposes housing 

prices into its value bearing attributes as follows: 

!!" = #!$# + &!$$ + '!$% + ("$& + )' ∙ +!$( + &! ∙ ,!$) + -.!!" + /!" Eq. 2 – 1 /!" = 0./!" + 1!"  ;         1!"~334(6, 8$Ι*) 
 
where log price, !!", for an observation at location 3 and time ; is decomposed into a vector of 

time-invariant covariates, #!, including the constant and a range of structural characteristics or 

neighbourhood attributes. When appropriate, concentrations of local neighbourhood attributes 

are calculated using individual buffer radii surrounding each dwelling so as to limit any 

influences from the modifiable aerial unit problem. Census tract neighbourhood characteristics 

are measured as the area weighted concentration within 500 meters of a dwelling. The variable 

of interest is captured in the vector	&! which includes a dummy variable for whether a dwelling 

is located in an area of respective flood, seismic or a jointly hazardous zone, as well as spillover 

effects occurring to directly adjacent dwellings.  

Fixed effects for both year, (", and space, '!, are included. '! is used to mitigate 

potential biases due to omitted locational factors resulting from time-invariant unobserved 

neighbourhood characteristics that contribute to dwelling prices, however, it is important to 

consider the scale of these units in order to appropriately capture these underlying influences. 

The introduction of spatial fixed effects using administrative boundaries (e.g. civil parishes or 
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freguesias) may provide an inconsistent definition of one’s neighbourhood and inaccurately 

capture the influence from the concentration of local amenities or the locational realities at an 

observation point. The size of administrative freguesia boundaries varies greatly and using 

these units as controls for a location in the city may not be refined enough to be effective. 

Moreover, if dwellings are on the edge of the spatial unit, they may further receive some 

spillover from a neighboring unit’s unobserved characteristics. As in chapter 2 and Franco and 

Macdonald (2018), spatial fixed effects '! are introduced according to a dwellings location in 

a constructed 500 meter by 500 meter grid superimposed over the city. This improves the model 

specification by more accurately capturing very localized potentially omitted spatial influences 

while addressing the modifiable areal unit problem. 

Including a large range of spatial fixed effects at such detailed resolution is feasible 

given the size of the data, and further relegates neighbourhood and locational characteristics to 

these spatial controls. This limits the need to control for an abundance of locational 

characteristics such as distance to all types of local urban amenities or proximity to business 

districts. An additional benefit of this methodology is the reduction of multicollinearity which 

may come from controlling, for example, for distance to the main city center and important 

urban amenities which may be located in this area such as the river.7  

Although spatial fixed effects capture omitted location influences across the city, 

spatial dependence in prices or the error term of the models may have significant effects if the 

chosen fixed effect units do not accurately reflect or align with the underlying data generating 

process (Anselin and Arribas-Bel 2013). It is therefore important to test and incorporate, where 

necessary, spatial dependence in the form of either the spatially lagged dependent variable, 

.!!", with coefficient -, or modeling the error /!" as an autoregressive error term accounting 

for spatial correlation, ./!", with coefficient 0. 

 
7 To ensure no multicollinearity, the variance inflation factor (VIF) for the estimates of interest is below 10. 
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The general econometric specification in equation 2 – 1 nests multiple spatial models 

where the chosen empirical models are decided on via the results of the spatial diagnostics. 

From this specification, when - = 0 we have a spatial error model and with 0 = 0 a spatial 

autoregressive model. . represents the > × > weight matrix defining the extent and strength 

of spatial spillovers between dwellings. Six weights are used, ranging from quite local to more 

spatially broad, to ensure estimates are not the product of the chosen matrix. These spatial 

weights include an inverse distance weight for all neighbors within 500 meters (SW1); an 

inverse squared distance weight for all neighbors within 500 meters (SW2); a binary weighting 

schemes to indicate all neighbors within 500 meters (SW3); a binary weighting scheme to 

indicate all neighbors within 100 meters (SW4); neighbors based on the 100 nearest dwellings 

(SW5); and neighbors based on the 10 nearest dwellings (SW6). Table A2 – 2 of the appendix 

summarizes the properties of these	weights. 

2 – 4.2. Identification and Robustness of Results 

Although the estimation of spatial hedonic models may alleviate estimation biases, it 

does not address concerns regarding the identification of impacts. The locations of hazard 

zones are exogenously determined via ecological and topographical processes, and thus not 

conditional on dwelling prices, however there may exist some significant underlying locational 

influences driving the estimated impacts near these areas.  

The robustness of the estimates are checked via a geographic regression discontinuity 

(GRD) framework, a type of regression discontinuity with a geographic treatment assignment 

comparing treated (hazard prone) properties to valid control properties nearby but not in a 

hazard risk zone.8 The methodology behind the GRD framework and choosing valid treated 

 
8 The GRD methodology has previously been employed to study area wide impacts from media market zones on 
political turnout (Keel and Titiunik 2015), police surveillance zones on crime (MacDonald et al. 2016) and historic 
conservation areas on property values (Franco and Macdonald 2018). One of the prerequisites for a GRD is to 
identify the geographic boundary where a discontinuity exists in how the treatment is assigned. We use municipal 
defined boundaries representing the locations of high flood risk or high seismic risk as our regression 
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and control properties in nearby geographic sub-sets is highlighted in figure A2 – 1 of the 

appendix for the example of flood risk areas.  

The data is homogenized by sub-setting around hazard zone boundaries. In the relevant 

geographic subset, all other locational attributes such as accessibility to the CBD, accessibility 

to the riverfront, and other natural amenities are likely to be similar and thus provides a quasi-

experimental design. The locational similarity of properties in all other aspects will be greater 

for bordering dwellings located at the geographic boundary that separates the two zones.  

We test the use of a variety of spatial sub-setting thresholds, conditional on the hazard 

zone of interest which include sub-setting to all properties within 500 meters from very high 

risk flood zones and 500 meters from very high risk seismic zones. We further subset the data 

conditional on being located within 3 kilometers of the Tagus riverfront, and estimate our 

parametric GRD hedonic pricing model again to ensure that the impacts from these hazard 

zones for example are not being driven by properties being located near to the Tagus river. 

While this methodology ensures that the estimated impacts come from a relatively 

homogeneous set of observations from which potentially important neighbourhood effects are 

not driving the results, it may be the case that relative location along the hazard zone boundary 

also has significant variability. To compensate, a propensity score match is used to examine 

distance as defined by covariates and homogenize the data by finding controls conditional on 

important locational characteristics. 

Figure A2 – 2 of the appendix highlights the geographic discontinuity in prices 

occurring at either hazard boundary. These figures suggest that dwellings within hazard zones 

sell at a lower price with dwelling prices increasing as we move from these boundaries. The 

discontinuity at the flood risk boundary suggest some indication of higher prices the further 

 
discontinuities, where the treatment jumps discontinuously along these geographic borders. Another prerequisite 
is that we compare similar properties in the control and treatment groups on either side of the geographic boundary 
and that enough variability along that boundary exists.  
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inside very high risk flood zones. Since the majority of the very high risk flood zones are 

located along the Tagus river however, this figure highlights the importance of distinguishing 

between the negative zonal effect of being in an area of higher flood risk and the positive 

amenity value of being closer to the riverfront. 

Placebo Tests of GRD Hazard Boundary Effects 

A set of placebo tests are used to make sure the identification strategy is capturing the 

true effects reported. If the hypothesis is that hazard zone boundaries have significant impacts 

on the local real estate, a placebo test applies this hypothesis on a subset of data where this 

treatment boundary effect is known to be zero. We follow the methodology of Rischard et al. 

(2018) to identify placebo treatment and control observations within this data’s setting. 

The first requirement is to consider observations which are located in high risk zones 

and those which are not separately. By estimating a boundary treatment effect on observations 

from only high risk properties or from only non-risk properties, we eliminate heterogeneity in 

this respect and thus would expect the placebo results to return null effects. For robustness, we 

consider all subsets of the dataset according to any combination of high or very high seismic 

or flooding risk. Once the data is split into high risk and non-risk properties, a number of 

constructed placebo boundaries are introduced to test whether the GRD framework captures 

other underlying locational effects. 

The placebo threshold boundaries are drawn to mimic a random pattern splitting an area 

into a new treated and non-treated set. The boundaries are drawn in a zig-zag pattern to increase 

the randomness and distribution of properties into our placebo treated and non-treated 

categories. If straight lines were used there is the risk that this would align with topographical 

aspects of the city, such as the location of valleys or other clearly defined sub-regions, and thus 

the placebo boundaries would capture this effect. Figure A2 – 3 of the appendix shows a map 

of Lisbon with various of the constructed placebo boundary thresholds introduced. 
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This exercise is repeated various times, bisecting the study region with constructed zig-

zag boundary delineations to define placebo treated and non-treated observations in different 

ways. With the placebo boundary introduced, a GRD is built around the boundary using cut-

off thresholds of 500 meters, 1 kilometer and 3 kilometers. We should not expect the GRD 

methodology to pick up significant effects across the introduced boundary, given the 

randomness in the assignment of local placebo treated and non-treated observations. 

We estimate the effect under various GRD specifications with differing thresholds and 

placebo boundaries. All specifications include the same structural characteristics, year fixed 

effects and location fixed effects and covariates as in the fully estimated models. Table A2 – 2 

of the appendix shows that no significant estimated effect is observed using the constructed 

thresholds, highlighting three of the placebo boundaries that bisect the study region and cut the 

municipality in half. Results from different boundaries and subsets are all in line and show no 

significant estimated effect. This indicates that our GRD framework, focusing on properties 

straddling the boundary of either type of hazard risk zone, is not identifying spurious effects of 

the zone’s impact on housing prices.  

2 – 4.3. Within and Between Heterogeneity of Urban Hazard Zones 

This research concerns itself with capturing not only the direct effect of how urban 

hazard zones impact residential property prices, but further how this effect is conditioned on 

the heterogeneity of local amenities found across the different zones, the relative location of 

these hazard zones across the city, and how the impact of these zones may depend on the 

distribution of dwelling prices.  

The baseline empirical model is thus estimated with and without the inclusion of the 

terms )' ∙ +! which represents the within variation, and &! ∙ ,! which represents the between 

variation. Here )' measures the accessibility to a hazard zone as the distance to the border of 
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the nearest hazard risk, while +! represents a range of local amenities, and ,! represents a 

dummy for being located in notable areas of the city.  

Since we measure the impact from flooding risk and seismic risk through proximity of 

the dwelling to the boundary of hazard zones,  dwellings located inside these zones and in 

particular if located at the center of the zone, are exposed to larger external effects. However, 

as we move towards the boundary (if located inside) or away from the boundary (if located 

outside) we expect the negative effects of these dis-amenities to decline. Hence the measure 

)' captures the relative strength of being located further inside either of these hazard areas. In 

particular, dwellings located outside of a hazard area take a positive geographic distance value 

while those located inside a hazard area take a negative geographic distance value. 

On the other hand, the within variation is interpreted relative to the global average 

impact of being in a hazard zone, &!. We estimate the average marginal impact of being closer 

to a hazard zone border as conditioned by local amenities. A positive estimate of $( would 

therefore signal marginally higher house prices further away from a hazard zone conditional 

on higher levels of the local amenities, and thus an exacerbating effect, while negative values 

would indicate a mitigating influence of local amenities with marginally higher prices for 

dwellings closer to hazard zones conditional on higher levels of the local amenities. If residents 

trade off the urban dis-amenity value from hazard zones according to benefits coming from 

other local urban amenities, we expect there to be variation in the estimate of $( according to 

the type of local amenities considered.  

This measure of variation in &! focuses on how the heterogeneity of a dwelling’s local 

amenities can mitigate or exacerbate the impact of proximity to these zones. We focus on how 

the interaction between proximity to hazard zones and urban green areas, the local built 

environment or neighbourhood crime levels influence a dwellings price. If these local 

amenities or dis-amenities can be used to make an otherwise risky zone marginally better, or 
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worse, then we expect this interaction to capture this effect and the residential real estate market 

to respond. 

The between variation captures how the relative location of these hazard zones in a city 

can influence their impact on housing prices. If housing prices are representative of a bundle 

of attributes, then residents may give more or less importance to urban hazard zones if the local 

area compensates in other aspects. While the location of flood and seismic risks are in many 

cases concentrated along the river and in the downtown core, the amenity value of proximity 

to the river may outweigh the negative dis-amenity of being in a flood zone. Interacting dummy 

variables to represent whether a dwelling is located in a hazard zone while simultaneously in 

direct proximity to the riverfront would thus capture this potential impact representing the 

relative costs and benefits that residents accept by living in certain areas of the city.  

This hazard indicator is further interacted with dwellings which are simultaneously 

located in historically preserved conservation areas which are also located along the riverfront 

and in historically important areas of the city. These historic areas of the city are preserved for 

their historic charm and the combination of aesthetically pleasing buildings, open spaces and 

neighbourhood allure. If these areas are more preserved relative to other areas nearby, then the 

benefit of living here may outweigh the cost of being in a zone of increased urban risk. In the 

case of these between hazard zone effects, it is important to consider the net effect coming from 

$$ + $) when ,! = 1. 

2 – 5. Results  

The baseline results focus on three categories of models of urban hazards for flooding 

risk, seismic risk and jointly hazardous areas (simultaneously in a zone of flooding and seismic 

risk), each introduced separately so as not to introduce conflicting impacts in the effects on 

housing prices. All models include structural characteristics with magnitudes in line with 

previous literature and all providing positive price effects on dwellings, the largest impact 
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coming from its size with a price effect of 0.86% per percentage increase in square meterage, 

and more luxury type amenities such as pools, air conditioning or a view of the Tagus river 

drawing premiums of 15.9%, 12.5% and 5.8% respectively. 

All models are tested for spatial dependence of the dependent variable and spatial 

autocorrelation of the error term. Diagnostic results from the spatial tests are presented in table 

A2 – 3 of the appendix. Global results on the Moran’s I statistic indicate significant spatial 

dependence influencing the estimates which should be accounted for. Using the Lagrange 

multiplier (LM) tests to better identify the source of the spatial influences indicate that a SEM 

is appropriate to control for the underlying spatial autocorrelation in the error term, while no 

significant spatial influence is found from the spatially lagged dependent price variable. 

Therefore, according to our empirical model specification presented in section 4, we conclude 

that - = 0 and there is no significant spatial lag effect, while 0 is a significant parameter and 

a SEM specification should be estimated. Results from a spatial Breusch-Pagan test indicate 

the presence of heteroscedasticity, and thus robust standard errors are presented.  

Using the AIC model selection criteria, SEM models outperform their OLS counterpart 

and further all have reduced sum of squared errors (SSE). Diagnostics suggest, based on a 

combination of the AIC, SSE, robust LM tests and variable significance, the preferred model 

is the SEM with weight matrix using all properties within 100 meters as neighbors (SW4), and 

subsequent analyses use this specification. We note also that SEM coefficients of hazard 

covariates are smaller than in OLS models, showing the bias induced by not controlling for 

spatial autocorrelation.  

2 – 5.1.  Flood and Seismic Risks Average Price Impacts 

Spatial hedonic results presented in table 5 indicate that the residential real estate 

market negatively capitalizes on hazard risks. All specifications include an interaction effect 

between elevation and distance to the riverfront so as to ensure that the price impact for location 
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in a hazard risk zone is not biased by these important locational features. Often homes located 

in high risk zones are also the most desirable in terms of their proximity to the water. Thus it 

is important to allow for the joint impact of the potential negative housing price effects of 

higher risk (whether flood, seismic or both) and the potential positive housing price effects of 

living close to the water. Moreover, there is an inherent variation in flood risk within a given 

region that can be associated to the elevation in relation to the sea. This measure of elevation 

has its zero value at the level to which stormwater flows, and from where water would pool. 

Thus, elevation is used in relation to the sea-level in addition to a flood risk indicator variable 

to account for the spatially inherent variation of topography within a risk zone. 

While dwelling prices are positively influenced by being at a higher elevation, this 

effect is stronger the closer a dwelling is to the riverfront. The negative coefficient estimate on 

the interaction term indicates that dwelling prices increase as the distance to the river decreases, 

and this effect is stronger for dwellings at higher elevations. This may be associated with better 

access to water-related amenities and views while having a lower flood risk from being located 

at higher elevation in relation to the base flood elevation level. The model further controls for 

average distance to all parks and gardens in the city as a form of concentration of green spaces, 

as well as the number of urban forests nearby, with results indicating that these green amenities 

are also positively valued by residents.  

The per dwelling price impact of being located in a designated very high risk flood 

zone (model 1) is a decrease of approximately 3.5%. For an average priced dwelling, this 

corresponds to an approximate price discount of €8,500. The price impact due to flooding risk 

is the largest taking into consideration the other different urban hazards studied. This is likely 

due to the fact that flooding is a common occurrence in the city and happens yearly. Residents 

looking to purchase or sell their dwelling are well aware of the flooding risk of their 

neighbourhood, given the nearby slopes, elevation, whether it is in a valley or near the river.  
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Table 5. Estimated Impacts of Urban Hazard 

Dep. Variable: ln(Price) Model 1 Model 2   Model 3 Model 4   Model 5 Model 6 

No. of Urban Forests in 500 m 0.01540** 0.01520*   0.01535** 0.01587**   0.01590** 0.01548** 
(0.00781) (0.00780)   (0.00780) (0.00781)   (0.00781) (0.00781) 

ln(Average Distance to all Parks) -1.19597*** -1.17027***   -1.18900*** -1.15547***   -1.18652*** -1.16523*** 
(0.16812) (0.16747)   (0.16861) (0.16752)   (0.16805) (0.16744) 

Elevation 0.00130*** 0.00139***   0.00149*** 0.00156***   0.00143*** 0.00142*** 
(0.00028) (0.00028)   (0.00027) (0.00027)   (0.00027) (0.00027) 

ln(Distance to Tagus River) -0.03037* -0.02392   -0.02499 -0.02109   -0.03000* -0.02578 
(0.01769) (0.01736)   (0.01767) (0.01733)   (0.01771) (0.01732) 

Elevation ×  
ln(Distance to Tagus River) 

-0.00054** -0.00062**   -0.00064** -0.00067***   -0.00056** -0.00062** 
(0.00026) (0.00025)   (0.00025) (0.00025)   (0.00026) (0.00025) 

  Flood Risk   Seismic Risk   Joint Hazards 
  Very High High   Very High High   Very High High 

Urban Geohazard Risk -0.03513*** -0.01612**   -0.01114* -0.01118*   -0.03786*** -0.02474*** 
(0.01128) (0.00731)   (0.00647) (0.00631)   (0.01419) (0.00802) 

Lambda 0.15503*** 0.15801***   0.16021*** 0.16128***   0.15532*** 0.15600*** 
(0.03744) (0.04114)   (0.01360) (0.02077)   (0.03940) (0.03389) 

Year F.E. Yes Yes   Yes Yes   Yes Yes 
500 m F.E. Yes Yes   Yes Yes   Yes Yes 
Structural Characteristics Yes Yes  Yes Yes  Yes Yes 
AIC -3990.9 -3984.6   -3982.7 -3982.9   -3987.6 -3989.0 
     AICSEM ÷ AICOLS 1.00500 1.00520   1.00540 1.00550   1.00500 1.00510 
Log Likelihood 2241.5 2238.3   2237.3 2237.4   2239.8 2240.5 
     L.L.SEM ÷ L.L.OLS 1.00490 1.00510   1.00520 1.00530   1.00490 1.00500 
SSE 1652.5 1652.8   1652.9 1652.9   1652.7 1652.6 
     SSESEM ÷ SSEOLS 0.99897 0.99897   0.99891 0.99891   0.99903 0.99897 
Residual Std. Error 0.22577 0.22579   0.22580 0.22580   0.22578 0.22578 
     Res. ErrorSEM ÷ Res. ErrorOLS 0.99572 0.99572   0.99572 0.99572   0.99572 0.99572 
Adj. VIF for Hazard Variable 1.99 2.01   2.07 2.54   2.10 2.04 
Spatial Breusch-Pagan 1208.6*** 1205.2***   1206.9*** 1208.1***   1207.5*** 1208.3*** 
Wald Test 17.15*** 14.75***   138.87*** 60.28***   15.54*** 21.18*** 
Likelihood Ratio Test 21.70*** 22.70***   23.28*** 23.65***   21.78*** 22.07*** 
Observations 32,420 32,420   32,420 32,420   32,420 32,420 
Notes: ***Significance at 1 % level; **Significance at 5 % level; *Significance at 10 % level.  
Heteroskedastic consistent errors  

The impact on housing prices for being located in designated flood risk zones is 

sensitive to the strength of the risk, with very high flood risk zones yielding significantly larger 

impacts than the more dispersed combination of high or very high flood risk zones, with 

negative impacts of 3.5% and 1.6% respectively (model 1 and model 2). This suggest that on 

average residential prices reflect differently to the relative variability and strength of flooding 

risk areas across the city.  

Seismic risk on the other hand, yields smaller magnitude price discounts in the order 

of 1.1% (model 3) with little difference between the impact of being located within a designated 

very high seismic risk zone relative to being located within a high risk or very high seismic 

risk combined zone. Seismic activity in Lisbon is quite rare. Even if a property is located near 

a fault line and the potential for damage is catastrophic, the low magnitude of the estimate 
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likely stems from the undervaluation of seismic risk that residents have given the scarcity of 

these events and low chances of any occurrence on the same magnitude as in the past, even if 

located in a seismic zone. Evaluated at an average priced dwelling, the impact of being within 

designated seismic risk zones on property values detracts from prices by approximately €2,700. 

Although these price estimates are relatively conservative, given that they are per-

dwelling effects and a potentially large number of dwellings are located in these areas, the total 

effect of urban hazards on the residential market of Lisbon is potentially quite large. Within 

our sample, 6.2% of the homes are located in an area of very high flooding risk while 19.6% 

of homes are located in areas of very high seismic risk. The aggregate effect across all 

dwellings exposed to these risks therefore is large.  

Given the heterogeneity and overlap of these urban risks, it is possible to examine the 

impact of being jointly in designated areas of flooding risk and seismic risk. Dwellings located 

in both types of very high risk zones have a negative impact on prices on the order of 3.8%, or 

around €9,250 evaluated at the value of an average priced dwelling (model 5). While the market 

responds to urban natural hazard risks, there seems to be heterogeneity across how the risk 

from different types of natural hazards are capitalized into dwelling prices.  

Hazard Risk Zone Spillover Effects  

The spillover impacts of hazard zones are presented in table 6. While there is a negative 

price impact of being located in a hazard zone, this effect is not restricted to the boundaries of 

the hazard zone itself. Results suggest that the negative effect of flood risk zones extend beyond 

the boundary of the zone and impact properties adjacent and within 50 or 100 meters of the 

boundary as well. For dwellings located just outside a very high risk zone (whether in terms of 

flood, seismic or both), there is a negative effect on price of approximately 1.5%. This effect 

is driven by properties that are located adjacent to very high risk flood zones and 

simultaneously located in a non-risk area (model 7 and 8). 
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This suggests that nearby dwellings capitalize on the dis-amenity value of being located 

near to high risk flood zones, with no significant impact coming from seismic zones. Flooding 

is regular in the city and the path of water runoff is not limited to any boundaries, and we would 

expect these negative direct spillovers to occur for flooding events and not for seismic events.   

Table 6. Hazard Zone Spillover Effects 

Dep. Variable: ln(Price) Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 

In V. High Risk Flood Zone -0.04424*** -0.05174*** -0.04533*** -0.05279***       
(0.01259) (0.01344) (0.01258) (0.01326)       

50 m from V. High Risk Flood Zone -0.01422* -0.01132 -0.01414* -0.01197       
(0.00806) (0.00820) (0.00805) (0.00810)       

In V. High Risk Seismic Zone         -0.01048 -0.00588 -0.0115 
        (0.00911) (0.00933) (0.00912) 

100 m from V. High Risk Seismic 
Zone 

        0.00072 0.00836 0.00500 
        (0.00709) (0.00799) (0.00742) 

100 m from V. High Risk Flood Zone 
× In a Non-Flooding Risk Zone 

  -0.01496*           
  (0.00889)           

100 m from V. High Risk Flood Zone 
× In High Risk Flood Zone 

    -0.13299*         
    (0.07532)         

100 m from V. High Risk Flood Zone 
× In High Risk Seismic Zone 

      -0.04200**       
      (0.01842)       

100 m from V. High Risk Seismic 
Zone × In a Non-Flooding Risk Zone 

          -0.01593**   
          (0.00803)   

100 m from V. High Risk Seismic 
Zone × In High Risk Seismic Zone 

            -0.02150* 
            (0.01098) 

Lambda 0.15404*** 0.15312*** 0.15280*** 0.15429*** 0.16035*** 0.16116*** 0.15891 
(0.02346) (0.03819) (0.02619) (0.02090) (0.03373) (0.02915) (0.10038) 

Year F.E. Yes Yes Yes Yes Yes Yes Yes 
500 m F.E. Yes Yes Yes Yes Yes Yes Yes 
AIC -3991.9 -3992.8 -3991.6 -3995.9 -3980.7 -3982.2 -3982.3 
     AICSEM ÷ AICOLS 1.00490 1.00480 1.00480 1.00490 1.00540 1.00550 1.00530 
Log Likelihood 2243.0 2244.4 2243.8 2246.0 2237.4 2239.1 2239.1 
     L.L.SEM ÷ L.L.OLS 1.00480 1.00470 1.00470 1.00480 1.00520 1.00530 1.00520 
SSE 1652.4 1652.2 1652.3 1652.1 1652.9 1652.7 1652.7 
     SSESEM ÷ SSEOLS 0.99903 0.99903 0.99903 0.99903 0.99891 0.99891 0.99891 
Residual Std. Error 0.22576 0.22575 0.22576 0.22574 0.2258 0.22578 0.22578 
     Res. ErrorSEM ÷ Res. ErrorOLS 0.99572 0.99572 0.99572 0.99572 0.99572 0.99563 0.99568 
Mean Adj. VIF for Hazard Variables 1.82 1.83 1.73 1.81 2.54 2.38 2.33 
Max Adj. VIF for Hazard Variables 2.23 2.39 2.24 2.33 2.94 3.04 2.94 
Spatial Breusch-Pagan 1212.2 1212.5 1212 1212.3 1207.2 1210.5 1206.7 
Wald Test 43.11*** 16.07*** 34.03*** 54.51*** 22.60*** 30.57*** 2.51 
Likelihood Ratio Test 21.35*** 21.12*** 21.18*** 21.43*** 23.30*** 23.62*** 23.00*** 
Observations 32,420 32,420 32,420 32,420 32,420 32,420 32,420 
Notes: ***Significance at 1 % level; **Significance at 5 % level; *Significance at 10 % level.  
Heteroskedastic consistent errors  

 
These spatial spillover results also reveal that hazard zones compound each other and 

that being located in areas of high concentrations of either types of hazards impact housing 

prices. When a dwelling is located in a high flood risk zone which is adjacent to a very high 

flood risk zone, it is surrounded by these risk areas and residents perceive the combined effect 

of these zones together. Prices in high risk zones that are directly adjacent to very high risk 
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zones are detracted by approximately 13.3% (model 9), indicating that being in and around 

many flood-prone areas provides even higher dis-amenity values. These compounded 

spillovers also occur between flood risk and seismic risk zones with negative impacts of 4.2% 

for dwellings adjacent to very high risk flood zones which are simultaneously located in high 

risk seismic zones (model 10).  

The direct spillover effect from seismic zones is less pronounced than flood risk zones, 

yet suggests that being adjacent to very high risk seismic areas while simultaneously in high 

risk seismic areas has a compounded negative price effect of 2.2% (model 13). Being adjacent 

to a seismic zone which has no risk of flooding further indicates a negative price impact of 

1.6% highlighting that these dis-amenity values are not constrained directly to the boundaries 

of the zones and, dwellings located nearby, even without and direct risk themselves, are further 

subject to the impact stemming from natural hazards. 

2 – 5.2. Hazard Risks Quantile Price Effects 

To capture the potential impact of natural hazards conditional on the distribution of 

dwelling prices, a quantile regression for model 1 and model 3 is estimated with results plotted 

in figure 6. This highlights whether specific portions of the distribution of prices are more or 

less impacted from the very high risk of hazards. Dwellings at different points in the 

distribution of housing prices may have coefficient values which vary from the average if 

properties are inherently more susceptible to these risks or sensitive to the dis-amenity value.  

Results for very high flood risk areas suggest that dwellings at the higher end of the 

distribution, above the 70th percentile, are more negatively impacted by these hazard risks. For 

these priced dwellings, large floods have the potential to have more relative damaging costs 

and residents in such properties capitalize more on these perceived risks and costs. For a 

resident in a higher priced dwelling located in a very high flood risk, their potential for loss is 

greater than for cheaper dwellings. Above the 85th percentile, the impact on dwelling prices 
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increases significantly to approximately 4.2%, compared to the average value estimated under 

model 1 at 3.5%. At the 10th percentile of dwelling prices on the other hand, the impact of flood 

risk reduces to 2.0%. While flood risk impacts differently dwelling prices at different ends of 

the distribution, we find little evidence that seismic risk has similar heterogeneous effects. 

Figure 6. Very High Flood and Seismic Risk Quantile Estimates 

 

2 – 5.3. House Price Response to Hazard Risks Conditional on Other Urban Features 

Within Variation of Hazard Risks  

If residents value differently hazard zones conditional on local amenities, then we 

would expect there to be within variation in very high flood risk or very high seismic risk areas. 

It is important to capture this heterogeneity across areas conditional on their local context to 

better understand the interaction of hazard zones with broader municipal infrastructure and 

amenities. Model 1 and model 3 are estimated with a range of local dwelling and 

neighbourhood attributes which relate to each risk with results presented in tables 7a and 7b.  

In general, results indicate that local green infrastructure plays an important role in 

mitigating the dis-amenity value of being located in high risk flood zones. The average 

marginal impact of being closer to very high risk flood zones is mitigated if a dwelling has a 

higher concentration of urban forests nearby or a higher average level of neighbourhood 

greenery as determined by the NDVI (model 15 and 16). Urban forests and large tree stands 
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are important aspects of a city in terms of storm water runoff management and flood mitigation 

strategies, and general vegetation also plays a similar role. These urban green amenities provide 

ample pervious surfaces that allow excess water to drain off easily and thus cause less flood 

dis-amenity to residents.  

Table 7a. Flood Risk Interaction Effects 
Dep. Variable: ln(Price) Model 14 Model 15 Model 16 Model 17 Model 18 

Located in V. High Risk Flood Zone -0.03489*** -0.03507*** -0.03569*** -0.03601*** -0.03208*** 
(0.01128) (0.01128) (0.01129) (0.01128) (0.01129) 

Distance to V. High Flood Risk Zone 
× No. of Lakes in 100 m 

0.01008**         
(0.00435)         

Distance to V. High Flood Risk Zone 
× No. of Urban Forests in 100 m 

  -0.02492**       
  (0.01144)       

Distance to V. High Flood Risk Zone 
× Average NDVI in 100 m 

    -0.14395*     
    (0.08410)     

Distance to V. High Flood Risk Zone 
× ln(Average Slope in 100 m) 

      -0.00598***   
      (0.00228)   

Distance to V. High Flood Risk Zone 
× ln(Length of Roads in 100 m) 

        0.00551*** 
        (0.00152) 

Lambda 0.15388*** 0.15431*** 0.15489*** 0.15299*** 0.15238*** 
(0.02309) (0.03935) (0.06793) (0.02869) (0.02569) 

Year F.E. Yes Yes Yes Yes Yes 
500 m F.E. Yes Yes Yes Yes Yes 
AIC -3993.5 -3991.0 -3992.5 -3996.3 -3999.7 
     AICSEM ÷ AICOLS 1.00490 1.00490 1.00490 1.00480 1.00480 
Log Likelihood 2243.7 2242.5 2243.3 2245.2 2246.9 
     L.L.SEM ÷ L.L.OLS 1.00480 1.00480 1.00480 1.00470 1.00470 
SSE 1652.3 1652.4 1652.3 1652.2 1652.0 
     SSESEM ÷ SSEOLS 0.99903 0.99903 0.99897 0.99903 0.99903 
Residual Std. Error 0.22576 0.22576 0.22576 0.22575 0.22573 
     Res. ErrorSEM ÷ Res. ErrorOLS 0.99577 0.99572 0.99572 0.99577 0.99572 
Mean Adj. VIF for Hazard Variables 2.39 1.92 3.85 2.66 4.79 
Max Adj. VIF for Hazard Variables 2.79 1.99 5.71 3.33 7.58 
Spatial Breusch-Pagan 1208.6*** 1208.9*** 1210.8*** 1207.7*** 1204.0*** 
Wald Test 44.42*** 15.38*** 5.20** 28.44*** 35.19*** 
Likelihood Ratio Test 21.37*** 21.58*** 21.65*** 21.14*** 20.91*** 
Observations 32,420 32,420 32,420 32,420 32,420 
Notes: ***Significance at 1 % level; **Significance at 5 % level; *Significance at 10 % level. 
Heteroskedastic consistent errors 

 
While urban green infrastructure can mitigate some of the negative dis-amenity values 

associated with being in an area of high flooding risk, compounding negative effects come 

from being located nearby to lakes and impervious surfaces (model 14 and model 18). The 

pooling of storm water can be significant in these areas and result in high surface runoff and 

reduction in lag time.9 Dwellings with higher concentrations of lakes or a denser road network 

 
9 Surface runoff is water, from rain, snowmelt, or other sources, that flows over the land surface, and is a major 
component of the water cycle. Lag time is defined as the time difference between peak runoff and the mass center 
of rainfall excess. 
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nearby therefore have higher prices for being located further away from flood risk zones with 

prices increasing with higher concentrations of these amenities further away from the hazard. 

The built environment can therefore have profound influence on how residents value 

the relative impact of these urban hazards, and thus has important implications for 

municipalities and developers to create more amenities which may mitigate the negative impact 

of urban natural hazards. If neighbourhoods in risky areas of a city can be developed in such a 

way as to provide residents with these mitigating amenities, then the results suggest that this is 

captured and capitalized by the residential real estate market.  

Table 7b. Seismic Risk Interaction Effects 
Dep. Variable: ln(Price) Model 19 Model 20 Model 21 

Located in Very High Risk Seismic Zone -0.00044* -0.00058** -0.00074*** 
(0.00026) (0.00026) (0.00026) 

Distance to Very High Seismic Risk Zone × % Neighbourhood Property Owners -0.26412***     
(0.06317)     

Distance to Very High Seismic Risk Zone × % Neighbourhood Educated   -0.18500**   
  (0.09163)   

Distance to Very High Seismic Risk Zone × % Buildings with 1 or 2 Stories     -0.33073*** 
    (0.11074) 

Lambda 0.16013*** 0.16114*** 0.15865*** 
(0.04145) (0.01857) (0.01717) 

Year F.E. Yes Yes Yes 
500 m F.E. Yes Yes Yes 
AIC -4001.1 -3985.1 -3991.3 
     AICSEM ÷ AICOLS 1.00540 1.00540 1.00520 
Log Likelihood 2247.6 2239.6 2242.7 
     L.L.SEM ÷ L.L.OLS 1.00520 1.00530 1.00510 
SSE 1651.9 1652.7 1652.4 
     SSESEM ÷ SSEOLS 0.99897 0.99897 0.99879 
Residual Std. Error 0.22573 0.22578 0.22576 
     Res. Std. ErrorSEM ÷ Res. Std. ErrorOLS 0.99572 0.99568 0.99563 
Mean Adj. VIF for Hazard Variables 4.22 4.11 6.00 
Max Adj. VIF for Hazard Variables 6.29 6.07 9.90 
Spatial Breusch-Pagan 1215.4*** 1218.1*** 1218.7*** 
Wald Test 14.92*** 75.34*** 85.37*** 
Likelihood Ratio Test 23.30*** 23.58*** 22.82*** 
Observations 32,420 32,420 32,420 

 
In terms of seismic risk zones, neighbourhood characteristics have important mitigating 

behaviors. In neighbourhoods where there is a higher percentage of owner-occupiers or 

educated individuals (model 19 and model 20) the dis-amenity value of being located nearer to 

seismic risk areas is attenuated. These indicators may serve as a proxy to indicate how well 

homes in an area are maintained with property owners specifically having a larger incentive to 

provide protection for their properties and for themselves and their relatives against such risk. 
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Moreover, in general educated people tend also to be better informed about general topics 

including urban hazards and thus, be potentially more engaged in preparedness activities such 

as collecting survival items such as food and water, undertaking mitigation actions such as 

retrofitting buildings, securing household items, making a household emergency plan or simply 

learning survival skills.10 

In terms of the built environment, our results seem to suggest that there is a price 

premium for being located closer to seismic risk zones in which there are higher percentages 

of low-lying buildings with one or two stories (model 21). This result should be interpreted 

with caution as it may be related to the residents’ perception that in the case of an earthquake, 

these buildings tend to be the most stable with higher risks coming from larger structures or 

high-rise buildings. However, damages during an earthquake results from several factors 

including strength and length of the shaking, type of soil and type of building. Buildings of 

different heights tend to respond differently in an earthquake. Aside from architectural 

constraints (i.e., how well built the structure is) the particular resonance of an earthquake can 

knock down a small building and spare the skyscraper.11 Small building are more affected, or 

shaken, by high-frequency waves (short and frequent). On the other hand, large structures or 

high rise buildings are more affected by long period, or slow shaking. 

Between Variation of Hazard Risks 

While the average price impact of hazard zones is negative, residents may trade off this 

risk if other aspects of their location have benefits which outweigh these risks. In table 8, 

 
10 It should be noted that the infrequent nature of seismic hazard events means that people often also lack personal 
experience of such a hazard (Becker et al. 2017). They will, however, have indirect experience (e.g. experience 
of small seismic events that did not impact them directly), vicarious experience (e.g., media reports of national or 
international events, accounts of prior events from relatives), and challenging life event experience (e.g., of 
accidents, crime etc.), all of which could play independent and interdependent roles in future preparedness 
decision making and actions. 
11 The resonance is the oscillation (up-and-down or back-and-forth motion) caused by a seismic wave. During an 
earthquake, buildings oscillate. If the frequency of this oscillation is close to the natural frequency of the building, 
resonance may cause severe damage. 
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dwellings which are located in very high risk areas are interacted with indicators to represent 

being located in attractive areas of the city as determined by proximity to the riverfront or 

historic conservation areas. If the benefits of these zones outweigh the costs, then we would 

expect a mitigating effect on the price impact risk of urban hazards. 

Table 8. Locational Interaction Effects 

Dep. Variable: ln(Price) Model 22 Model 23 Model 24 Model 25 

Located in Very High Risk Flood Zone -0.04069*** -0.03680*** -0.05462***   
(0.01173) (0.01132) (0.01604)   

Located in Very High Risk Seismic Zone       -0.01509** 
      (0.00673) 

Located in Very High Risk Flood Zone × Located in Conservation Area 0.04246*       
(0.02537)       

Located in Very High Risk Flood Zone × Located 100 m from Tagus   0.09123*     
  (0.05540)     

Located in Very High Risk Flood Zone × Located 500 m from Tagus     0.03798*   
    (0.02141)   

Located in Very High Risk Seismic Zone × Located in Conservation Area       0.03581* 
      (0.02005) 

Lambda 0.15216*** 0.15407*** 0.15421*** 0.15806*** 
(0.05108) (0.04272) (0.05458) (0.01841) 

Year F.E. Yes Yes Yes Yes 
500 m F.E. Yes Yes Yes Yes 
AIC -3993.0 -3992.9 -3992.5 -3984.9 
     AICSEM ÷ AICOLS 1.00470 1.00490 1.00490 1.00520 
Log Likelihood 2243.5 2243.5 2243.3 2239.5 
     L.L.SEM ÷ L.L.OLS 1.00470 1.00480 1.00480 1.00510 
SSE 1652.3 1652.3 1652.3 1652.7 
     SSESEM ÷ SSEOLS 0.99903 0.99903 0.99897 0.99897 
Residual Std. Error 0.22576 0.22576 0.22576 0.22578 
     Res. Std. ErrorSEM ÷ Res. Std. ErrorOLS 0.99577 0.99572 0.99572 0.99568 
Mean Adj. VIF for Hazard Variables 1.66 1.69 2.51 1.86 
Max Adj. VIF for Hazard Variables 2.06 2.00 2.79 2.16 
Spatial Breusch-Pagan 1212.6 1211.1 1210.0 1209.1 
Wald Test 8.88*** 13.00*** 7.98*** 73.72*** 
Likelihood Ratio Test 20.87*** 21.43*** 21.44*** 22.63*** 
Observations 32,420 32,420 32,420 32,420 
Notes: ***Significance at 1 % level; **Significance at 5 % level; *Significance at 10 % level.  
Heteroskedastic consistent errors  

Conservation areas are shown to positively mitigate the dis-amenity value of both 

flooding and seismic risk. These areas are maintained by the municipality in order to preserve 

their charm and character, and thus are likely to be more prepared for the eventual floods which 

occur each year and with priority clean ups occurring after significant events. Even with these 

significant hazard risks, the net effect of being located in a simultaneous flood hazard and 

conservation area is 0.2%, or approximately €500 (model 22). This effect is more pronounced 

for seismic risk zones with a net effect of approximately 2.1% (model 25). 
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While flooding risk is highest near the riverfront, it is important to disentangle the 

impact due to the dis-amenity value of the urban hazard risk and the amenity value of the 

riverfront, which is sought after by residents. If the benefits of being located nearer to the 

riverfront, for recreational or aesthetic purposes, outweigh the costs of being in a risk zone, 

then we would expect this trade-off to be capture in dwelling prices.  

Very localized effects are found coming from dwellings directly at the riverfront and 

located within 100 meters of the Tagus. The positive impact of being on the riverfront 

outweighs the negative cost associated to being in a very high risk hazard zone with a net 

benefit of approximately 5.4% (model 23). Residents therefore capitalize on direct proximity 

to the riverfront even if these areas have inherently large risk, a result consistent with the 

previous literature. These results however appear to be fairly localized with net negative 

impacts still occurring if a dwelling is only located within 500 meters of the riverfront (model 

24). This suggests that the amenity value of the riverfront is strongest for those directly in the 

line of sight, and residents are willing to trade-off the risk of flooding to be in this zone. 

2 – 5.4. Geographic Regression Discontinuity Robustness 

From the baseline results, we check the robustness of estimates by considering spatial 

subsets around each type of hazard zone boundary. The GRD estimates are presented in table 

A2 – 4 of the appendix and show that the estimated price impacts of being located within a 

designated flood risk or seismic risk zone is consistent and robust to a variety of spatial subsets.  

We consider the effects from very high hazard risks (Models 1, 3 and 5 in table 5), and 

consider a subset of properties 500 meters outside of the respective hazards geographic 

boundary as the control group. Nearby properties should have similar local amenities and 

underlying influences, and by removing properties located at some farther distance of the 

geographic boundary we remove potential locational influences which may be driving the 

results. We further directly consider the clustering of hazard zones near the river, by showing 
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that estimated effects are robust to considering a subset of dwellings 3 kilometers from the 

riverfront. This, along with explicitly including covariates measuring proximity to the river and 

its interaction with elevation ensures that the price impacts of flood risk are not driven by 

significant locational characteristics which may be attributed to proximity to the Tagus.  

The choice of distance outside a boundary to consider in a GRD however may be 

subjective, and so further models draw control properties using a propensity score matching 

process to match properties located in hazard zones to those located outside of these areas 

conditional on important locational influences. Flood prone properties are matched to non-

flood prone properties based on their distance to the nearest urban green infrastructure in the 

form of urban forests, on neighbourhood population density, and on the amount of impervious 

road surface within 100 meters of an observation. Seismic risk properties on the other hand are 

matched conditional on the average slope within 100 meter of a dwelling. By comparing similar 

properties in these respects, we are removing potential mechanisms which may be related to 

and influence the estimated price impact of being in such hazard zones.  

2 – 6. Conclusions 

This chapter investigates the capitalization of urban hazards on residential property 

values in Lisbon, Portugal, with specific emphasis on spillover effects and the heterogeneity 

within and between areas of urban hazards. Results indicate that housing prices are negatively 

impacted by being located in areas of very high flooding risk or very high seismic risk, however 

these results may be mitigated or exacerbated conditional on a dwellings local environment.  

While location in a flood zone detracts from housing prices, this effect is found to be 

mitigated by proximity to urban green spaces and greenery and exacerbated by nearby lakes 

and impervious surfaces. Seismic risk on the other hand is significantly mitigated by 

characteristics of the neighbourhood in terms of more owner-occupiers and educated 

individuals, and more low-lying buildings. 
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Further, although being located in an urban hazard zone has negative impacts results 

suggest that not only are there negative spillover effects to nearby non-risk areas, but residents 

may trade off the dis-amenity value from flood zones for the benefit of being located in 

desirable areas of the city, namely at the riverfront or in historically protected zones.   

Although the location of hazard risk zones in the city are not driven by housing prices, 

there may be some underlying influencing impacting the estimates. In implementing a GRD 

design, we ensure that the estimated impacts of hazard zones are not driven by significant 

locational differences. Sub-setting the data around hazard borders removes locational or 

neighbourhood differences that could be a driving mechanism from which the estimates are 

obtained. The GRD design shows that results are robust and not driven by this heterogeneity. 

These results have important policy implications for municipalities. Not only does it 

provide a value for how the risk of these events impact residential real estate markets, and 

subsequently property tax collection, but further provides an indication as to what amenities 

and neighbourhood characteristics either attenuate or compound the negative effects of natural 

hazard risks. As the risk of these hazard events capture their persistence and local residents’ 

exposure, better understanding the true value of their impacts is important.  

By showing that the impact of flooding zones is conditional on urban green 

infrastructure, these results provide an indication that the variability in flood risk zone is 

conditional on local green amenities. Such amenities could thus be implemented in high risk 

flooding zones to attenuate the negative effects experienced by residents. Similarly, 

considering the types of buildings in high risk seismic areas should be a priority for developers 

and the municipalities’ point of view, with low-lying structures not only safer in the event of 

seismic activity, but also valued by local residents.  

The estimates suggest that the per dwelling average price impact of being located in a 

flood risk zone or a seismic risk zone is €8,500 and €2,700 respectively. This effect however, 
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especially for flood risk areas, is not the same across the distribution with higher priced 

dwellings having a stronger impact. These properties appear to react to the threat of flood risk 

more than seismic risk, and higher valued properties may be relatively more damaged with 

greater price influences in the case of floods. Aggregated across all residents exposed to such 

risk suggests that the overall impact of these natural hazard risks are quite large. By understand 

the impacts that these hazards can have on the real estate market, the municipality and planners 

are better able to prepare and plan for the occurrences of these hazards and better respond to 

the needs of residents.       
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2 – Appendix 

Table A2 – 1. Descriptive Statistics 
  N Mean St. Dev. Min Max 
Price 32,420 243,500  148,503 25,000 2,500,000 

Structural Characteristics 
Sq. Meters 32,420 98.900 45.970 15 420 
New Construction 32,420 0.200 0.400 0 1 
View of Tagus River 32,420 0.060 0.230 0 1 
Swimming Pool 32,420 0.010 0.100 0 1 
Parking Spaces 32,420 0.120 0.330 0 1 
Fireplace 32,420 0.040 0.190 0 1 
Double Windows 32,420 0.210 0.410 0 1 
Air Conditioning 32,420 0.130 0.340 0 1 
Elevator 32,420 0.230 0.420 0 1 

Locational Characteristics 
Located within 3 km of the Riverfront 32,420 0.480 0.500 0 1 
Located 100 m from Tagus Riverfront 32,420 0.007 0.084 0 1 
Located 500 m from Tagus Riverfront 32,420 0.116 0.320 0 1 
Located 500 m outside of an Area of Very High Seismic Risk 32,420 0.633 0.482 0 1 
Located 500 m outside of an Area of Very High Flooding Risk 32,420 0.408 0.491 0 1 
Located in Conservation Area 32,420 0.182 0.386 0 1 

Neighbourhood Characteristics 
% Neighbourhood Property Owners 32,420 0.506 0.163 0.117 0.849 
% Neighbourhood Educated 32,420 0.300 0.107 0.012 0.571 
% Buildings with 1 or 2 Stories 32,420 0.283 0.175 0.006 0.884 
Length of Roads in 100 m 32,420 648.000 325.24 0 2071 
Average Slope within 100 m 32,420 8.176 4.240 1.500 26.224 
Neighbourhood Crimes per Person 32,420 0.030 0.031 0.005 0.421 
Neighbourhood Thefts per Person 32,420 0.023 0.026 0.005 0.376 

Open Spaces and Ecological Urban Hazards 
Elevation 32,420 66.900 29.710 0 145 
Distance to Tagus Riverfront 32,420 2.590 1.975 0.009 7.43 
No. of Urban Forests in 500 m 32,420 0.367 0.609 0 3 
Average Distance (km) to Parks 32,420 4.713 0.883 3.504 7.429 
No. of Lakes in 100 m 32,420 0.133 0.524 0 10 
Average NDVI in 100 m 32,420 0.061 0.056 -0.064 0.284 
Located in an Area of High or Very High Seismic Risk 32,420 0.454 0.498 0 1 
Located in an Area of High or Very High Flooding Risk 32,420 0.140 0.347 0 1 
Located in an Area of Very High Seismic Risk 32,420 0.196 0.397 0 1 
Located in an Area of Very High Flooding Risk 32,420 0.062 0.242 0 1 

 
 

Table A2 – 2. Spatial Weight Properties 

  
Description No. 

Locations 
No. Non-

zero Links 

% Non-
zero 

Links 

Avg. No. 
of Links 

Locations 
Without 

Links 
SW1 Inverse distance of all properties in 500 meters 32,420 32,175,894 3.06 992.47 5 
SW2 Inverse sq. distance of all properties in 500 meters 32,420 32,175,894 3.06 992.47 5 
SW3 All properties in 500 meters 32,420 32,175,894 3.06 992.47 5 
SW4 All properties in 100 meters 32,420 22,211,752 2.11 685.13 115 
SW5 100 nearest neighbors 32,420 3,242,000 0.31 100.00 0 
SW6 10 nearest neighbors 32,420 324,200 0.03 10.00 0 
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Figure A2 – 1. Geographic Regression Discontinuity: Flood Risk Zones 

 

 
 
 

Figure A2 – 2. Price Discontinuity at Urban Hazard Boundaries 

Panel A: Flood Risk Zones 
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Figure A2 – 2. Price Discontinuity at Urban Hazard Boundaries 
Panel B: Seismic Risk Zones 

 
 

Figure A2 – 3. Various Placebo Threshold Boundaries
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Table A2 – 4. Spatial Diagnostics 

  

Global 
Moran's I 

(Dep.) 

Z-Value 
(Dep.) 

Global 
Moran's I 

(Res.) 

Z-Value 
(Res.) 

LM 
SEM 

LM 
SAR 

Rob. LM 
SEM 

Rob. LM 
SAR 

Model 1: Very High Flood Risk 
SW1 0.1292*** 49.50 0.0048** 2.18 3.38* 0.83 2.57 0.02 
SW2 0.0971*** 244.10 0.0015*** 6.04 13.41*** 0.14 13.27*** 0.00 
SW3 0.1192*** 164.90 0.0030*** 5.34 15.99 1.20 14.99*** 0.20 
SW4 0.1292*** 145.10 0.0042*** 6.02 22.72*** 0.21 22.56*** 0.05 
SW5 0.1213*** 162.10 0.0013*** 2.85 2.85* 2.42 1.67 1.23 
SW6 0.1300*** 54.80 0.0033** 1.78 1.99 0.33 3.988** 2.33 
Model 3: Very High Seismic Risk 
SW1 0.1292*** 49.50 0.0050** 2.25 3.645* 1.00 2.684 0.04 
SW2 0.0971*** 244.10 0.0015*** 6.25 14.78*** 0.12 14.66*** 0.00 
SW3 0.1192*** 164.90 0.0030*** 5.51 17.32 1.27 16.26 0.21 
SW4 0.1292*** 145.10 0.0044*** 6.20 24.43*** 0.23 24.25*** 0.06 
SW5 0.1213*** 162.10 0.0014*** 3.02 3.451* 2.64 2.092 1.28 
SW6 0.1300*** 54.80 0.0035** 1.84 2.169 0.21 3.997** 2.04 
Model 5: Very High Joint Hazards 
SW1 0.1292*** 49.50 0.004837** 2.20 3.435* 0.91 2.56 0.03 
SW2 0.0971*** 244.10 0.001506*** 6.16 14.16*** 0.13 14.03*** 0.00 
SW3 0.1192*** 164.90 0.0029*** 5.36 16.17 1.22 15.16 0.21 
SW4 0.1292*** 145.10 0.004242*** 6.02 22.78*** 0.24 22.6*** 0.07 
SW5 0.1213*** 162.10 0.001307*** 2.90 3.039* 2.54 1.79 1.29 
SW6 0.1300*** 54.80 0.003315** 1.77 1.948 0.27 3.796* 2.12 
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CHAPTER 3: 
Metro Stations, Low Emission Zones and the Spatial-Temporal Dynamics of Air Pollution 
 

This chapter uses geostatistical interpolation and clustering to process high-
frequency and high-resolution open source pollution data. A longitudinal neighbourhood-
scale database is generated to evaluate monthly pollution levels and the mitigating impacts 
of urban public transportation infrastructure. Short and long-run localized reductions 
around the city are estimated and attributed to the expansion of the underground metro 
system of Lisbon, Portugal, and the introduction of a targeted low emission zone in the city 
centre. 

3 – 1. Introduction 

Broad and efficient transportation networks and infrastructure are core characteristics 

of an attractive and liveable city. Public transit initiatives, such as the opening of new 

underground metro stations or the introduction of zonal traffic restrictions, not only influence 

the daily movement of residents, workers and visitors, but indirectly have important spill-over 

effects by impacting spatial and temporal patterns of urban air pollutants. In 2010, 

transportation accounted for almost a quarter of all emissions generated across the globe, of 

which 40% was from urban transportation specifically (Sims et al. 2014). Local urban transport 

policies and best practices can therefore yield important contributions to larger scale pollution 

mitigation and abatement. 

Estimating how the introduction of various transit initiatives influence an area’s 

pollution dynamics enables planners and local authorities to evaluate non-monetary 

environmental benefits and further enact best practices. Challenges exists however in studying 

such spatially and temporally granular urban dynamics using available open source data. 

This chapter uses geostatistical methods to process high-frequency and high-resolution 

open source pollution measures to value various transit initiatives in terms of their contribution 

to the reduction of airborne pollutants. A large focus is on how fixed-point measures can be 

interpolated and aggregated across space and time. Under hyperparameter optimization, 

enhanced by the inclusion of temporal lags of predicted pollution, Kriging and Inverse Distance 
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Weight (IDW) families of interpolation are used to generate neighbourhood level monthly 

pollution concentrations. A variety of parameter, variable and specification choices for each 

model are compared to ensure the strongest prediction, and generalized sets of diagnostics and 

algorithms are used to select the best, most consistent, model for each. 

The spatial and temporal nature of pollution monitoring is used to generate a 

neighbourhood level monthly longitudinal database to explore how neighbourhood pollution 

concentration has been affected by transportation policy over the past two decades. This high-

dimensional database is used to estimate the pollution abating impacts of urban public 

transportation infrastructure. In particular, the short and long-run localized pollution reductions 

surrounding the expansion of the underground metro system of Lisbon, Portugal, and the 

introduction, of a series of traffic based configurations and a targeted low emission zone (LEZ) 

in the city centre aimed at limiting congested flows of high polluting vehicles. 

Long-run effects are estimated under a spatial-temporal difference-in-difference 

strategy to obtain the average treatment effect of a transit intervention on neighbourhoods in 

key areas of the city. With limited observations in shorter-run time spans surrounding an 

intervention, bootstrapping is conducted to provide valid difference-in-difference estimates for 

immediate effects. This allows for the estimation of month-to-month decaying impacts 

following the introduction of transit initiatives and further highlights this behaviour over space. 

Results indicate that the expansion of new metro stations have decreased pollution 

primarily in the city centre and around newly opened stations. Short run localized reductions 

of PM10 immediately following the opening range up to 2% with longer run reductions of 

0.18%. Metro openings had a particularly large impact on decreasing nitrogen-based 

combustion emission along the riverfront with short-run reductions of 20%, dissipating over 

time and space. 
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Interventions surrounding the LEZ by comparison decreased pollution in and around 

its boundary and into the city centre with immediate reductions in subsequent months up to 4% 

of PM10 and long-run impacts of 0.43%. Some evidence suggests however that the introduction 

of the LEZ may have shifted pollution patterns with increases just outside its boundary and 

along the Tagus river. The LEZ had significant reductions on SO2 where metro openings did 

not, capturing the policy’s aim of reducing the heaviest polluting vehicles, often running on 

diesel fuel. 

Granular data, from a spatial and temporal dimension, will increasingly continue to 

shape the valuation of detailed urban-environmental processes. This chapter develops a set of 

generalizable criteria and diagnostic selections from which sophisticated geostatistical and 

temporal methods are used to generate measures of the urban environment. Increasingly 

detailed data yields increasingly detailed applications, and this work highlights the benefit, in 

the resolution of spatial and temporal impact evaluations, that can be had by leveraging the use 

of geostatistical methods in the urban context.  

3 – 2. Literature Review 

Underground metro systems, and regional public transit in general, have a wide range 

of impacts and spill-over effects as accessibility increases. Not only do network expansions 

have positive impacts on ridership (Baum-Snow and Kahn 2000, Baum-Snow and Kahn 2005, 

Goetzke 2008, Zhang et al. 2017) and congestion (Anderson 2014, Adler and van Ommeren 

2016), but additional influences are often felt in other markets. This could include impacts to 

local property prices (Bowes and Ihlanfeldt 2001, Martinez and Viegas 2009, Mohammad et 

al. 2013, Mulley and Tsai 2016, Li 2018, Mulley et al. 2018), land use and spatial distributions 

(Cervero and Kang 2011, Roukouni et al. 2012, Gonzalez-Navarro and Turner 2018), or even 

local labour markets (Sanchez 1999, Kawabata and Shen 2007).   
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From an environmental perspective, one of the most important spill-over impacts of 

public transit accessibility is change to local pollution. The evaluation of these impacts at a 

detailed spatial and temporal resolution however is challenged by the limitations of accurate 

and timely data. Many works have examined this relationship at varying scales ranging from 

in-situ sampling (Meinardi et al. 2008, Pereira et al. 2013) or more model-based framework 

(Anselin and Gallo 2006, Chen and Whalley 2012, Bertazzon et al. 2015). 

A common theme across the literature is the identification of shocks to the transit 

system, often in the form of station openings, in order to estimate the resulting change in 

pollution as a proxy for the contribution of public transit. Gendron-Carrier et al. (2018) exploit 

cross-city variation in subway systems to estimate the impacts on particulate matter one year 

and a half before and after the opening of respective stations. Across cities, results indicate 

average reductions of 4% extending 10-kilometres from the city centre. In Granada, the 

expansion and restructuring of the public transportation network reduced PM10 concentrations 

by up to 33% (Titos et al. 2015). In terms of opening of new stations in an urban setting, Zheng 

et al. (2019) estimate a difference-in-difference reduction effect on carbon monoxide in the 

areas surrounding the new subway lines. 

 One of the most common municipal transport policies used to mitigate pollution is the 

introduction of zonal based traffic restrictions in key congested areas of a city. Currently across 

Europe there are total of 264 LEZ’s varying in scope and extent (Santos et al. 2019). These 

zones are geographically delineated areas with targeted enforcement focused on restricting 

heavy polluting vehicles. Different versions of this type of policy have been enacted in different 

contexts and could vary based the scope (e.g. restriction based on time of day, year or type of 

car, or licence plate number) or based on the manner of enforcement (e.g. ticket citations, 

camera detection, seriousness of fine) (Wolff and Perry 2010, Holman et al. 2015, Zhang et al. 

2017).  
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In general, the introduction of LEZ’s in different contexts has led to reductions in local 

pollution levels. However, the outcome and mechanisms through which pollution is potentially 

changed is not straightforward. While we would expect direct pollution abatement due to the 

restriction of vehicles in these zones, the introduction of regulations could have unintended 

consequences altering commuter or broader transport networks and resulting in behavioural 

change which can be difficult to capture with available data. 

Many studies focus on comparing monitored values inside and outside of LEZ 

boundaries to estimate differences in pollution (Nunes da Silva et al. 2014). Following the five 

years after the implementation of the LEZ in London, Ellison et al. (2013) estimate average 

reductions from 2.46% to 3.07% using point estimates from four monitoring stations 

comparing those inside and out of the boundary. Results suggest that effects may be temporary 

with concentrations reverting towards original levels after some period. 

Complementing many studies of LEZ is in-situ measurement of vehicle fleet data to 

better link underlying pollution reductions to specific mechanism (Ellison et al. 2013, Ferreira 

et al. 2012). In the Lisbon context, Ferreira et al. (2012) estimate the impact of the LEZ on 

PM10 and NO2 between 2011 and 2013 by comparing observed effects from the Avenida da 

Liberdade (inside), Entrecampos (boundary) and Olivais (outside) stations. The reduction in 

pollution is linked to observed vehicle distributions and ages at different points in time in or 

around the LEZ. The primary mechanism through which pollution is influenced is more from 

changes to the traffic composition, removing old fuel-inefficient cars, rather than reductions in 

traffic volume.  

Further behaviour style changes have been noted after the introduction of a LEZ which 

can be linked to urban pollution. Across Germany, Wolff (2014) estimate an average decline 

in pollution of around 9% in urban areas, primarily attributed to shifting to greener and less 
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polluting transport modes. Xu et al. (2015) meanwhile highlight the substitution behaviour as 

people may switch to public transit following the introduction of private driving restrictions. 

At a more macro-scale, Boogaard et al. (2012) estimate the average impact of LEZ’s 

introduced in five Dutch cities targeting heavy-duty trucks by comparing urban and suburban 

monitoring station values pre and post introduction. While estimated effects show a general 

overall decline in pollution, considering specifically the urban and suburban stations showed 

no significant differences. Viard and Fu (2015) use a multivariate regression to model 

aggregate city-level pollution in Beijing controlling for temporal breaks, weekends, holidays, 

weather patterns and different transport policies introduced. The authors estimate a decrease in 

average pollution around 21% from the introduction of a one-day-a-week driving restriction.   

Santos et al. (2019) look at relative reductions in pollution levels in Lisbon following 

the introduction of the LEZ via a multi-dimensional factor design considering a temporal and 

a spatial dynamic to compare areas before and after the introduction. Estimates indicate that 

pollution levels from Avenida da Liberdade and Entrecampos experienced significantly larger 

declines in ambient pollution between 2009 to 2012. This was estimated via a treatment 

interaction on zone and time effect, with estimated impacts ranging between a reduction of 

22% to 25% for PM10 concentration, yet no discernible impacts for NO2 or NOX levels.  

While many studies provide estimates of pollution impacts from mass public transit 

and traffic restricting zones, the majority are based on city-level averages or simple mean 

differences between fixed-point stations. These methods are thus unable to estimate average 

treatment effects as they may vary across locations in an urban area, and further any differences 

at the neighbourhood level over time. This lack of heterogeneity can be addressed by making 

use of more geostatistical interpolation and spatial-temporal modelling. 

Anselin and Gallo (2006) incorporate spatial heterogeneity and autocorrelation into a 

hedonic model of housing prices as influenced by local levels of pollution. The authors 
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highlight the importance of robust interpolation and diagnostics of pollution data prior to any 

modelling and, in the context of Southern California, conclude that Kriging interpolation 

techniques provides the best fit for eventual spatial econometric modelling. Significant bias 

can be introduced into econometric specifications by not using the most appropriate spatial 

interpolation to generate data (Anselin and Lozano-Garcia 2008). 

In an urban setting, limited data availability and detail make comparable transit 

intervention analyses difficult. It is in this context that this chapter estimates the within-city 

spatial and temporal decaying patterns of urban air pollution. Often, the spatial detail comes at 

the expense of the temporal detail but using high-dimensional data and differencing estimation 

this work contributes to better understanding the high-resolution and high-frequency dynamics 

and trajectories of pollution levels following transit interventions. 

The analysis merges robust geostatistical frameworks and diagnostics on interpolated 

air pollution with spatially detailed urban transportation policy. This allows for a focus on more 

than just city-wide impacts of various policies and evaluates any potential neighbourhood level 

disparities and environmental inequalities which may occur following changes to public transit 

or traffic limiting features. 

Further, the discussion is built entirely on open sourced georeferenced data. With 

current computational abilities it is feasible to do spatially and temporally detailed, robust 

urban policy analyses. As municipalities are at the forefront of climate change and pollution 

mitigation, detailed evaluations of transportation interventions can be used to implement best 

practices to maximize positive spill-over benefits. 

3 – 3. Pollution Monitoring and Transport Infrastructure 

As the capital city and economic hub of the country, the city of Lisbon is densely 

populated and busy with people, traffic and commerce. In 2017 there were 384,535 firms in 

the capital, representing around 30% of all those in the country. These businesses attract many 
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workers and visitors with daily increases to the city population of around 70% coming from 

those commuting into the city centre. The economy is service oriented and heavily driven by 

accommodation and transport, retail and trade, technology and communication (Câmara 

Muncipal de Lisboa 2018a). 

Local economic activity and further, environment patterns, are driven by the city’s 

important location along the Tagus river, with many ports facilitating the trade and transports 

of goods and people. While the city had a history of manufacturing, agricultural and industrial 

practices, particularly along the riverfront, in modern times the bulk of these firms have all but 

moved out of the urban area and have been replaced by increasingly service and technology-

oriented industries. The clustered density around economic hubs of the city, in terms of 

commerce, population, buildings and traffic, mean that key areas of the city can at times 

become highly congested leading to high levels of airborne pollutants. 

3 – 3.1. Local Pollutants and Trends 

The intermittent monitoring of various pollutants across the region began in 1995, 

tracking high-frequency concentrations of common air and ground level pollution. The 

collection of pollution data in Portugal is managed by QualAr, maintained within the Agência 

Portuguesa do Ambiente. There are 68 monitoring stations across the country of which 20 are 

located in the immediate vicinity of the greater Lisbon region, as seen in figure 7. This grouping 

of stations represents a density of approximately one station for every 40 km2 in the greater 

metro region and one for every 15 km2 considering only stations located within the municipal 

boundaries. 

There is variation in the timing of when stations began tracking different pollutants, but 

full coverage daily measures are in general available for six pollutants over 15 years. These 

include particulate matter (PM10) since 2002, nitrogen emissions (NO, NO2, NOX) since 2000, 
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1999 and 2004 respectively, carbon monoxide (CO) since 2000 and sulfur dioxide (SO2) since 

2001.1 

Figure 7. Air Pollution Monitoring Stations in Greater Lisbon, Portugal 

 
 

The European Commission has developed a set of air quality standards and regulations 

which are based on health related research on pollution impacts and are legally binding for 

member countries (Directive 96/62/EC and subsequent daughter directives). In the case of 

failing to meet targets, local authorities are then responsible for developing and implementing 

air quality management plans. Since monitoring began, readings indicated that the Lisbon area 

consistently exceeded threshold limits for particulate matter and combustion emissions, with 

high concentrations of PM10 across the city and NO2 particularly to the north. This has led to 

poor rankings in pollution planning and outcomes relative to other large European cities, 

 
1 Measures of different pollutants may be available for earlier years (starting in 1995) at some stations. To ensure 
a sufficient base upon which to interpolate, the empirical analysis interpolates only when there is a minimum of 
six active monitoring stations. 
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however, has also led to a significant investment and focus into local municipal environmental 

concerns.2 

Figure 8 shows the proportion of days per month that various pollutants have exceeded 

their respective regulated maximum threshold limit. We see both particulate matter (PM10) and 

combustion-based pollution (especially NOX) consistently fail to meet regulated limits, 

however significant improvements in particulate matter are seen over time. Decreases in PM10 

correspond to the development of the 2006 Air Quality Action Plan for Lisbon and Tagus Valley 

which had a goal of ensuring the compliance of legal limits of air pollution set out by regulatory 

authorities. 

Figure 8. Proportion of Days per Month Exceeding Pollution Threshold Limits 

 

 
Pollution from PM10 is a concern for the region given its serious health implications, 

especially with regards to respiratory health. While there are no safe levels, a daily maximum 

threshold of 50 µg/m3 is deemed to represent the limit of harmful concentration not to be 

exceeded 35 days out of the year. High concentrations of PM10 is a common problem, 

 
2 European City Ranking 2015: Best practices for clean air in urban transport 
http://www.sootfreecities.eu/sootfreecities.eu/public/ 
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particularly in the main transport corridor leading to the primary business and historic district, 

Avenida da Liberdade.  

Particulate pollution however can be highly influenced by regional and larger scale 

continental trends. Estimated decompositions of local pollution in 2009 indicate that around 

half of the PM10 concentration that year was attributed to external forces. Specifically, in the 

Lisbon context, particulate levels can be driven by large air masses coming from North African 

deserts. In 2015, when the region experienced 48 days of atmospheric intrusion by African air 

masses, there was a significant spike in the monitored values of PM10 (Câmara Muncipal de 

Lisboa 2018b).       

The other family of pollutants common across Lisbon are nitrogen based and primarily 

attributed to the combustion of fossil fuels and transportation. These include NO and NO2 

which can be more generally measured as NOX. While these pollutants could be driven by 

natural combustion forces, at ground level their concentration is attributed to man-made 

processes and transportation. There are thresholds set for the level of NO2 mandating that daily 

maximum levels not to exceed 200 µg/m3 more than 18 times per year. 

As the largest city in the country through which much trade and transport occurs, many 

heavy vehicles and marine transport pass through Lisbon. These types of transportation often 

use higher amounts of diesel fuel. Additionally, industrial processes related to manufacturing 

and trade in the city can be large contributors to SO2 which is commonly associated with acid 

rain. Both heavy and light vehicle transportation further contribute to levels of CO emissions 

in the region.  

Figure 9 shows the normalized monthly trends of all pollutants in Lisbon using 2000 

as a base year for indexing. In 2016 the average concentration of PM10 was 24.96 compared to 

a low (high) of 23.15 (60.99) in 2014 (1995); NO was 21.76 compared to a low (high) of 18.41 

(57.89) in 2013 (1996); NO2 was 33.48, its lowest value compared to a high of 60.90 (1996); 
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NOX was 66.25, its lowest compared to a high of 85.08 in 2007; SO2 was 1.23, its lowest value 

compared to a high of 14.46 in 1995; and CO was 0.27 compared to a low (high) of 0.25 (0.89) 

in 2014 (1995). 

Figure 9. Standardized Monthly Air Pollution Levels in Lisbon 

 

 
Partially in response to high levels for some pollutants local environmental quality has 

become a priority for the municipality. In recent years a significant focus has been dedicated 

to municipal environmental improvements across many fronts. The city has undertaken 

ambitious projects in developing urban greenery in the form of tree planting and the provision 

and maintenance of open spaces, among them the Tagus riverfront running along the South-

East edge of the city. Large planned green corridors further aim to link the entire city in an eco-

friendly way. 

Traffic measures directed specifically at pollution include the introduction of the LEZ 

around 2012, road restrictions and other residential traffic limitations, the promotion of eco-

driving, cycling and public transport. The city has outlined a comprehensive air quality 

management plan in recent years and based on improvements and planned strategies for the 

future, Lisbon and the municipal authority, Câmara Muncipal de Lisboa, was awarded the 

European Green Capital 2020. 
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3 – 3.2. Municipal Transportation Infrastructure and Interventions 

Two different transportation initiatives are studied in this work, the opening of new 

metro stations and the introduction of Lisbon’s LEZ in the city centre. While the first looks at 

the marginal expansion of a public transport network, the second is a traffic limiting policy 

targeting private ridership and aims to decrease high polluting vehicles in the city centre. Both 

have the potential to influence the behaviour of drivers in the city by switching to alternative 

modes of transport or changing their commuting patterns and further, both have the implicit 

aim of improving transit flows and local pollution levels. Although general comparisons 

between the resulting pollution reductions can be made, it is important to note how different 

both types of transit interventions are in terms of their costs, purpose, planning, administration 

and function.  

The Lisbon metro was inaugurated in 1959 with eleven stations running North to South 

from the historic central business district. Since its inception, stations have been adorned with 

local art and designed with culturally significant tiles and statues. Different stations, with 

widely different themes and aesthetics, are known around the world for their uniqueness and 

attractiveness, and especially for showcasing renowned Portuguese artists and craftspeople. 

Construction on the metro continued with nine additional stations opening between 

1963 and 1972 after which no new stations were built for almost two decades. Following the 

political revolution in 1974, the transit system was nationalized in 1975 and has since been run 

as a public institution. After the nationalization, the metro experienced a revival towards the 

late 1980’s with the construction of new stations and significant expansions to the existing 

network. 

Since 2000, 14 stations have been added to the network, most recently focusing on 

connecting the international airport and urban peripheries. Currently, the metro consists of 56 

stations and 44.5 km of track divided among four lines, with the construction of two additional 
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stations underway for inauguration in the early 2020’s. The system services an average of 

600,000 riders per day and in 2018 total ridership was 169 million (Grupo ML 2019).  

As with most underground systems Lisbon’s metro is electric and the carriages 

themselves do not release any direct combustion emission. Further, as this system is removed 

from the aboveground road network, congestion is less of an issue. This is compared to other 

forms of mass public transit like busses which release exhaust as they travel the city, 

contributing to local pollution levels. Pollution reductions from alterations to the metro 

network are thus less related to direct changes to public transit exhaust and more related to 

spill-over and structural changes caused by increasing accessibility and decreasing 

aboveground private ridership. 

Commuters in the city predominantly use private vehicles for transportation, around 

47.7% of residents compared to 19.4% who use busses and 11.63% who use the metro (INE 

2011). This contributes significantly to pollution as motor vehicles are primary sources of CO, 

NOX, SO2 and PM10, among other. Vehicle sales in Lisbon are not only much higher, around 

71 new vehicle purchases per 1,000 inhabitants compared to the national of 25 per 1,000 in 

2017, but further, since 2012, new sales in the capital have risen substantially faster than the 

national average (INE 2018). 

In response to deteriorating pollution levels in the downtown city core, the municipal 

authority implemented a LEZ in the area with the aim of restricting the worst heavy-polluting 

transportation fleets. This was part of the larger Air Quality Action Plan introduced in 2006. 

The current LEZ boundaries cover approximately 30% of the city and are shown in figure 10. 

The zone was implemented in three phases starting in 2011. From July of that year to 

March 2012, during phase one, vehicles from before 1992 were unable to enter an area 

concentrated around Avenida da Liberdade, the primary artery of the city (Zone 1 with a total 

area of approximately 0.7 km2). From April 2012, and until January 2015, regulations were 
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strengthened. The original boundary now restricted vehicles manufactured prior to 1996, and 

an extended area around the city core was introduced, restricting vehicles from before 1992 

(Zone 2 with a total area of approximately 25 km2). Finally, the last alteration came in January 

2015, only allowing vehicles from after 2000 in Zone 1 and 1996 in Zone 2. 

Figure 10. Lisbon Transit Interventions: Low Emission Zones and Metro Stations 

 

 
In terms of enforcement, the LEZ restrictions are upheld by the local traffic. The 

enforcement fine during the first phase amounted to between €25 and €125 for non-compliance. 

During the first phase, around 20 fines per month were recorded. Given the relatively ad hoc 

manual enforcement policies, plans were made during the last phase of the LEZ 

implementation to introduce a network of traffic cameras within Zone 2 with license plate 

reading capabilities in order to increase enforcement and compliance of the regulations 

(Gonçalves 2014).  

Of particular importance for this study is the fact that Lisbon’s LEZ was implemented 

in conjunction with other policy measures. As the LEZ was introduced, so to were other traffic 

changes, for example altering road axes to remove parking spaces or restructuring the main 
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roundabout (Marques de Pombal), to manage traffic volumes and congestion (occurring in 

September 2016). This implies that isolating the impact directly from the LEZ policy is difficult 

since the resulting effect could come from the variety of transport policies introduced around 

the same time. For this reason, any estimated effects are likely to be representative of the 

broader collection of transit policies introduced in and around the LEZ and surrounding areas. 

3 – 4. Spatial Interpolation and Aggregation of Sequential Pollution Monitoring 

Any analysis and discussion surrounding potential spill over environmental costs or 

benefits of an urban transport intervention must necessarily involve accurate, representative 

and adequately detailed data in terms of the spatial and temporal resolution, often one at the 

cost of another. While the temporal resolution of pollution data in Portugal is very detailed, in 

many instances down to the hour, geostatistical interpolation and aggregation is used to expand 

the spatial dimension for each time interval, allowing for detailed within-urban policy 

evaluation. 

A relatively large body of work has been developed along the lines of statistical 

interpolation and modelling methods for environmental pollutants over space and time, 

predicting unknown pollution levels in areas and time where no data is observed. Sophisticated 

spatial, temporal and, or spatial-temporal interpolations have all been employed, in addition to 

more deterministic models conditional on external influences such as elevation, the built 

structure of the city or weather patterns, for example in a geographically weighted regression. 

The primary goal of this work however is not the creation of multi-dimensional 

deterministic pollution models, but rather to employ a battery of diagnostics and selection 

criteria to those interpolation methods most commonly used in applied urban-scale 

environmental work. This gives rise to a set of generalizable criteria and algorithms for 

selecting the best method for the generation of a high-frequency and high-resolution 

longitudinal urban pollution database. With statistically robust and comprehensive pollution 
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data, it is then possible to evaluate the effects of transit interventions on neighbourhood 

pollution with sufficient spatial and temporal detail. 

3 – 4.1. Interpolation Methods and Techniques 

In its raw form the air pollution data represents the concentration of a pollutant (PM10, 

NO, NO2, NOX, CO, SO2) observed at 20 monitors from inside the study region, as well as 

those in the immediate proximity in all directions (figure 7). The chosen base temporal 

frequency to which hourly station level observations are first aggregated is at monthly intervals, 

balancing the granularity of capturing short-term spatially detailed effects while 

computationally feasible.  

Spatial interpolations are conducted at every month rather than using spatial-temporal 

interpolations or deterministic modelling across multiple dimensions. This is in part due to the 

application of interest, using temporal cross sections to estimates changes before and after 

transit interventions. Increased modelling variables or sophisticated temporal dynamics may 

smooth the data series too much to observe effects, and the final longitudinal database 

implicitly accounts for the sequential and cross-sectional nature of pollution. 

Each sequence of monthly interpolations is estimated varying the underlying 

parameters, specifications and variables, comparing diagnostics and practical concerns. The 

methods are compared based on their predictive power and the continuity and consistency of 

estimates over space and time. Subsequent aggregation to observational units for the 

econometric specification further yields diagnostic information regarding the interpolation fit 

for applied modelling. 

Two commonly employed families of spatial interpolation methodologies are used to 

go from the fixed-point static measures of pollution to a continuous distribution over space for 

each month. Both the Inverse Distance Weight (IDW) and Kriging models are geo-spatial 

interpolations able to fill in spatially missing values using only the observed concentration of 
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pollution and relative distance between observations. Each family differs however in the 

underlying assumptions, statistical techniques and customization by the user.  

The varying forms of all models are compared according to a range statistics and 

diagnostics evaluating the predictive power and fit of the interpolated estimates. The main 

diagnostic to compare models is the root mean square error (RMSE) of prediction obtained via 

a cross validation approach. More practical concerns focus on the distribution of the 

interpolated values relative to the observational unit size and further representing adequate 

heterogeneity across space and time. 

Selection of Grid for Interpolation and Neighbourhood for Aggregation 

It is important a priori to determine the base spatial resolutions onto which the 

interpolated and aggregated data will be projected. For interpolated data this includes the pixels 

and their sizes representing the continuity of ground truth. The choice of aggregating unit 

however is conditional on the research question and the model of interest. In this case, we are 

interested in evaluating how average neighbourhood level pollution levels have changed, and 

so the observational units should represent spatial neighbourhoods across the city.  

A discrete grid of high-resolution pixels is used as a canvas when interpolating from 

the monitoring station locations. The choice of grid size must ensure an adequately continuous 

ground distribution of values which accurately represents marginal changes in pollution 

moving in any direction. The most important of the criteria is that the size of the interpolation 

grid is smaller than the observational neighbourhood units of interest, yet large enough for 

feasible computation. Pixels of 100 meters by 100 meters are chosen, and spatially detailed 

enough within the study region to capture continuous heterogeneity of pollution.3  

 
3 Lisbon has a total size of 100 km2, and a pixel length of 100 m would represent approximately 1% of the city’s 
horizontal or vertical distance. 
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For this study, 3,623 census enumeration tracts are used to represent the neighbourhood 

unit of analysis to which interpolated data is then aggregated and modelled. Census tracts in 

Lisbon are typically delineated along roadways and other natural barriers of the city and thus 

implicitly separate areas according to the built environment and natural boundaries. These are 

broadly aligned with the idea of a small-scale city-block neighbourhood capturing the spatial 

heterogeneity of pollution across the area. 

The distribution, size and boundaries of neighbourhoods in an area may be 

endogenously determined. Any selection of neighbourhood extent however is based on some 

a priori assumptions conditioning the neighbourhood definition on the size of local population 

or building density, geodemographics, topography, geographic area, or based on the historic 

and cultural evolution of the city.  

Table 9. Size and Density of Lisbon Neighbourhoods 
  Min. Median Mean Max. St. Dev. 
Size (km2) 0.00 0.01 0.02 3.70 0.09 
Elevation (m) 0.00 70.38 64.51 201.60 31.95 
Building Density (per km2) 0.00 1,199 2,052 20,976 2,478 
Population Density (per km2) 0.00 12,644 15,214 99,456 13,148 
Dist. to Nearest Metro Station (km) 0.02 0.70 1.30 6.70 2.43 
Dist. to LEZ Boundary (km) -0.18 3.08 3.25 7.97 2.22 
Dist. to Baixa (km) 0.04 4.15 4.25 9.44 2.43 
Dist. to Tagus (km) 0.00 1.75 2.46 8.08 2.06 
Dist. to Nearest Freeway (km) 0.00 0.39 0.49 2.78 0.42 
Census Tract Level Data (N = 3,623 neighbourhoods) 

 
If neighbourhood units are not structurally dissimilar in terms of their relative size and 

density over space and time, then model estimates can capture average effects by controlling 

for these spatial and temporal differences. Table 9 gives some underlying statistics regarding 

the neighbourhood units chosen for the aggregation of pollution in terms of neighbourhood 

size, density and locational features. 

Inverse Distance Weight Interpolation 

The IDW family of interpolations predict pollution values at locations for which no 

observed measure exists based on weighing observed values from a location proportional to 
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the distance between the locations and some weighting parameter. The general formula for 

obtaining the interpolated values from the IDW is as follows, where the predicted interpolated 

value ℙ at a location " (pixel) for which no data exists is determined according to: 

ℙ(") = &
∑ [1 *(", "!)"⁄ ]#
!$% ⋅ ℙ("!)
∑ [1 *(", "!)"⁄ ]#
!$%

ℙ("!)
   if   
   if   

*(", "!) ≠ 0
*(", "!) = 0 Eq. 3 – 1 

 
If the distance between the pixel location and any of the monitoring stations 1 is equal 

to zero (*(", "!) = 0), then the pixel is exactly at a monitoring location and is assigned that 

value, ℙ("!). Otherwise, if there is some positive distance between the observed value and the 

pixel, then the interpolated predicted value is conditional on two parameters: the choice of the 

number of nearest neighbours, 2, and the inverse distance power, 3. The value of pollution 

from neighbours (monitoring stations) is weighted according to the respective distance between 

the observed location and the interpolated pixel of interest.  

Given the infinite possible combinations of 2 and 3 parameters, hyperparameter fine-

tuning is done to select among different combinations of realistic parameter sets representing 

the most commonly used and extreme limit cases. Selecting the best model by varying 

parameters among a select few within a pre-determined group greatly improves the speed and 

efficiency in determining the best model. This fine-tuning is done by running all combinations 

of the interpolation (and respective aggregation) of values and comparing the predictive power 

among all choices of parameters. How each of the parameter combinations effect the different 

variants of pollutants over time can help in better understanding the dynamics of pollution in 

terms of its relative decay and continuity over space from the observed monitored locations.  

Four choices for each parameter represent the de facto commonly used values and limit 

cases. The possible values of each parameter are given in table 10. The 16 combinations of all 

parameters capture some extreme cases, for example, using all monitoring stations 2 and no 

decay, 3 = 0, attributes to every pixel the average pollution level from across Lisbon. While a 
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combination of parameters like this is acceptable from a geostatistical point of view, this would 

not provide any spatial variability and would not be of any use for evaluating high-resolution 

and high-frequency urban policy initiatives.  

Table 10. IDW Nearest Neighbour and Weight Parameter Combination 
! = 1 

The singular nearest monitoring station. 
$ = 0 

A weight of zero indicating no decay in the value 
moving away from the observed location. 

! = 3 
The three nearest monitoring stations aimed at capturing 
a broad triangulation around the pixel. 

$ = 1 
A linear decay proportional to the distance between the 
observed value and the prediction location. 

! = '(( 
All monitoring stations in the study region. 

$ = 2 
Squared inverse distance weight assigning higher 
weight to closer observed values relative to the linear. 

! = *+,-.. 
A cross-validated determined optimal number of 
neighbours.  

$ = *+,-.. 
A cross-validated determined optimal weight parameter. 

 
Given the relatively small sample size of monitoring stations with observed values, the 

cross-validated (CV) optimal versions of each respective parameter are obtained using a leave 

one out cross-validation (LOOCV) approach. This method iteratively uses all the data, 

removing one observed value at a time and running the IDW model sequentially through each 

removal of an observation. For each sequence, an optimization function determines the values 

of 2 and 3 which minimize the RMSE.4 

This generates a set of optimized values and RMSE criteria for each iteration (removal) 

of a monitoring station. For each pollution-month interpolation there is a vector of LOOCV 

RMSE estimates with length equal to the number of monitoring stations. The selected CV 

optimized set of parameters are the median within-value of all the 2 and 3 estimates which 

minimize their respective iteration of the RMSE. The median is chosen so that selected 

parameters are not sensitive or driven by outliers or any spurious training sample chosen. When 

comparing results, most frequently the minimum RMSE is attributed to the median parameter 

values. 

 
4 The optimization searches for the combination of ! and $ parameters which will minimize the RMSE function 
according to the Nelder–Mead methodology with initial parameter values of ! = 3 and $ = 2. 



119 
 

Kriging Interpolation 

The Kriging family of models are similar to the IDW in that they both interpolate values 

at areas for which no observations are observed conditional on the locations from which there 

are measurements. Differences arise however in the underlying assumption regarding how to 

weight the contribution of measurements from different locations. While the IDW bases this 

weight on the relative distance between a location and its neighbours for which there are 

observations, the Kriging prediction bases this weight on a Gaussian process. The general 

format of the Kriging process in in line with the IDW process and can be represented according 

to equation 4.2. 

ℙ(") =45!
#

!$%
ℙ("!) Eq. 3 – 2 

 
where the inverse distance weights are replaced by a series of optimized weights, 5, 

minimizing the square deviation between predicted and observed values, much like a 

regression specification. 

The underlying assumptions related to the structure of the expectation of the observed 

monitoring station values, ℙ("!), will influence the choice of model specification and 

complexity. The Ordinary Kriging specification is used if the underlying pollution variable is 

assumed to come from a random data generating process where the mean is a constant unknown 

value with random disturbances, ℙ("!) = 6 + 8!. This would imply that the underlying 

pollution data follows a spatially stationary process.  

If the underlying process varies deterministically, then a trend component can be 

included. This assumption forms the basis of Universal Kriging specifications, where the 

expected value of pollution varies deterministically according to other processes, ℙ("!) = 6! +

8!, where the expectation, 6!, can be expressed in terms of covariates 6! = ∑ 9&:("!)& , for ; 

potential predictors in vector :, conditional on location "!. 
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The baseline Universal Kriging specifications here is the inclusion of latitude and 

longitude of the prediction locations as determinants of the predicted value. This would be an 

appropriate model if we expect some underlying trend where the average pollution varies 

deterministically across space – potentially due to some external, unobserved spatial factors 

such as the variability in wind speed and direction. So, while the set of Ordinary Kriging 

specifications use an underlying Gaussian process to estimate predicted values, the Universal 

specifications include a deterministic component. If we expect location to be significant, then 

the Universal Kriging models should outperform the Ordinary counterparts.  

While high-dimensional Kriging specifications can be developed, the goal of this work 

is not the sophisticated modelling of interpolated air pollution. Additional auxiliary variables 

can be included to enhance the Universal Kriging model; however, their inclusion is outside 

the scope of this work. This would require that additional external variables are available at a 

complete spatial coverage such that each pixel of interest onto which we want to interpolate 

has underlying data from which to build a model. 

There is however one exception which does not require any additional data beyond 

what is openly available. Given that a sequence of temporal interpolations is conducted at every 

month, important auxiliary influences can be included in the model in the form of the lagged 

values of pollution without the burden of having to obtain data on external factors. This could 

potentially result in significant prediction accuracy increases with minimal additional data 

processing. 

At each time period both baseline Ordinary Kriging and Universal Kriging 

specifications are enhanced by the inclusion of up to two periods of lags of predicted values. 

If there is some residual temporal dynamics involved in the prediction of pollution, as would 

be expected given the continuous nature of these variables over time and space, then the 

inclusions of past prediction values could improve upon the baseline versions.  
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Thus, six specifications of Kriging are estimated. The standard Ordinary Kriging 

specification, which considers that pollution has a random unobserved mean, the Universal 

Kriging model which considers that pollution is deterministically influenced by the inherent 

location across space, and further two additions to each of these base specifications which look 

at the inclusions of one and two temporal lags.  

3 – 4.2. Spatial Interpolation Diagnostics and Choice 

Spatial interpolation and aggregation are statistical concepts and so the choice of 

model, sequences and methods to follow can vary widely in different contexts and with 

different data. There are however a series of diagnostic tools and practical ideas which can be 

implemented to ensure that the choice of interpolation produces the best and most robust 

statistical series for each pollutant. This further ensures that any discussions or inferences 

regarding transit interventions are not driven by the choice of model. 

This section outlines the series of criteria and diagnostic inferences guiding the choice 

of interpolation for generating high-frequency spatial and temporal pollution measures. There 

is a separate series of interpolations conducted for every pollutant at each month interval since 

the beginning of their series. This includes 1,307 pollution-month combinations, omitting those 

with missing values or fewer than six active monitoring stations. Diagnostics are compared 

between all combinations of methods described, 16 variants of IDW and six variants of 

Kriging, proving a wealth of information from which to draw conclusions. 

One additional point of note is the choice of variable on which to interpolate, namely 

whether to interpolate directly on the concentration of pollution or whether there are efficiency 

gains by interpolating directly on the log value of the pollution.5 With certain interpolation 

 
5 Because the econometric variable of interest is the log of pollution (to estimate percentage change) there is no 
need to do any post-interpolation transformation and therefore is less alteration to the data. If the final variable of 
interest is not in log form, then additional cross-validation should be conducted on the post-transformation to 
check deviations from the original non-transformed ground truth. 
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methods, namely the Kriging specifications, relying on an assumption of Gaussian residuals, 

the pre-transformation of pollution concentrations to log form may provide a better fit and 

distribution of the observed values to interpolate. 

Decision Criteria 

Several different diagnostics are used to evaluate the overall model performance based 

on type, parameter selection and variable of interpolation. Given that a temporal sequence of 

spatially interpolated and aggregated values are generated, no one singular diagnostic value 

can adequately evaluate the overall model performance across the entire spectrum of 

interpolations. Diagnostics generated for every month, pollution and model combination will 

be evaluated using linear regressions to determine how different parameters or model selection 

influences predictive power. 

The criteria for selecting the appropriate interpolation is based on several conditions, 

however the driving decision should be selecting models with the highest accuracy. The first 

step is disregarding any observations with inadequate representation, here by removing 

interpolations with less than six active monitoring stations or missing values.  

The predictive accuracy is evaluated using the RMSE.6 Given the relatively small 

number of monitoring stations, the overall RMSE for each model is estimated using a LOOCV 

approach, systematically removing one monitoring station at a time and evaluating the RMSE 

between the predicted value and the observed value left out. The average of these RMSE across 

all the sequentially left-out monitoring stations provides the index upon which we compare all 

model specifications. A low RMSE indicates that the model more accurately predicts the 

ground truths. 

 
6 The general formula for the RMSE evaluates the difference between some value of x and it’s expected (or 
predicted) value: 0123 = √[678((: − :̅)!)] 



123 
 

The distribution of the interpolated values is also important to consider, specifically 

whether the distribution of values obtained correspond to the distribution of values following 

the aggregation to the neighbourhood (census tract) level units. This is important for 

considering whether the results from the interpolation have a spatial resolution which is 

detailed enough to accurately be aggregated without changing the underlying structure of the 

pollution values. 

A mismatch between these distributions would signal an additional skew being added 

to the data in moving from the interpolated values to the aggregated values, potentially biasing 

any results. The is evaluated using the Kolmogorov-Smirnov test statistic to determine if the 

interpolated and the aggregated series are drawn from the same continuous empirical 

distribution. 

The distributional concern should further be complemented by looking at the continuity 

and variation of interpolated values. As is particularly the case with IDW models with zero 

weights, the interpolated value could lack spatial variation if the predictions represent simple 

unweighted averages. This is evaluated by considering the number of unique values obtained 

from interpolation and ensuring this is at least as large as the number of observational units so 

as not to introduce further alterations to the data. 

Finally, it is important to have temporal consistency in the choice of specification. Since 

different pollutants are entirely different series the choice of model can vary depending on 

pollution but within, there should be a consistent method for generating the data across the time 

span. Selecting different specifications at different intervals will change the underlying 

assumptions in the data series. Given the interest is in estimating temporal breaks, it is 

necessary to reduce any time inconsistencies from different methodologies.  
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Diagnostics and Final Selection of Interpolated Data 

To guide the choice of interpolation model, a set of linear regressions are performed to 

see how different parameters, specifications, and variables influence the overall prediction 

accuracy and fit of the interpolated values. For every pollutant-month combination, this 

diagnostic information is available for all interpolations and further for comparing each 

specification using interpolation on the direct concentration and interpolation on log values.7  

A regression model estimates the impact that model specification, number of active 

stations, time and distribution of value variability (as measured by the number of unique 

interpolated values) have on the RMSE of prediction. A pooled model first controls for these 

characteristics, and further for each pollutant and respective pollutant-specification interaction. 

Subsequent pollution-specific models are estimated to determine the best specification for each 

data series. Results on these diagnostics are presented in table 11.8  

The full specification with control variables significantly determines the variability of 

the prediction power of models with an R2 of 82.5%. As the number of monitoring stations 

increase, the variation in the RMSE decreases (t-value of -28.38), and this is also seen as we 

consider observations occurring in later years (decrease in t-value from -10.42 in to -39.43 in 

2013-2016). While robust and accurate modelling can significantly enhance the prediction, 

these results show that inherently the power of any model is conditioned by the external 

availability of data.9 

 
7 This gives 1,307 ⋅ (16 + 6) ⋅ 2 = 57,508 sets of parameter combinations and resulting accuracy measures.  
8 t-values estimate how many standard deviation reductions (or increase) each specification has on the RMSE 
from the study-wide average value. Direct effects shown only and full values for all diagnostics available upon 
request.  
9 While not shown here for brevity, similar results are found when considering as a dependent variable the 
Kolmogorov-Smirnov test statistic. The more monitoring stations and later collection time, for example, relatively 
reduces the KS statistic, indicating no significant difference between the interpolated and respectively aggregated 
distribution of values. This captures the idea that the interpolated values must be well suited for the observational 
units, and a lower KS statistic indicates a closer correspondence between the interpolated and aggregated values.   
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Table 11. Interpolation M
odel D

iagnostics: Full and Sub Linear Regression t-Values 

  
Full (M

odel 1) 
PM

10  (M
odel 2) 

N
O

 (M
odel 3) 

N
O

2  (M
odel 4) 

N
O

X  (M
odel 5) 

C
O

 (M
odel 6) 

SO
2 (M

odel 7) 
D

ep. Variable: RM
SE of Prediction 

Level's 
Log's 

Level's 
Log's 

Level's 
Log's 

Level's 
Log's 

Level's 
Log's 

Level's 
Log's 

Level's 
Log's 

N
earest N

eighbour: 1; W
eight: 0 

0.00 
-90.99 

17.12 
-40.90 

7.89 
-23.89 

8.16 
-39.36 

10.00 
-35.72 

1.28 
17.09 

1.32 
-12.62 

N
earest N

eighbour: 1; W
eight: 1 

0.00 
-90.99 

17.12 
-40.90 

7.89 
-23.89 

8.16 
-39.36 

10.00 
-35.72 

1.28 
17.09 

1.32 
-12.62 

N
earest N

eighbour: 1; W
eight: 2 

0.00 
-90.99 

17.12 
-40.90 

7.89 
-23.89 

8.16 
-39.36 

10.00 
-35.72 

1.28 
17.09 

1.32 
-12.62 

N
earest N

eighbour: 1; W
eight: C

V
 

0.00 
-90.99 

17.12 
-40.90 

7.89 
-23.89 

8.16 
-39.36 

10.00 
-35.72 

1.28 
17.09 

1.32 
-12.62 

N
earest N

eighbour: 3; W
eight: 0 

-13.86 
-91.24 

7.11 
-41.33 

4.43 
-24.31 

1.30 
-39.63 

3.05 
-35.83 

0.64 
14.91 

-2.47 
-13.16 

N
earest N

eighbour: 3; W
eight: 1 

-12.47 
-71.08 

-0.95 
-16.88 

0.12 
-11.86 

-1.09 
-18.17 

3.01 
-4.86 

1.69 
8.17 

-0.97 
-6.06 

N
earest N

eighbour: 3; W
eight: 2 

-12.38 
-71.07 

-0.78 
-16.87 

-0.29 
-11.85 

-1.31 
-18.17 

3.02 
-4.86 

1.70 
8.24 

-0.55 
-6.02 

N
earest N

eighbour: 3; W
eight: C

V
 

-12.28 
-71.09 

-1.26 
-16.89 

-0.27 
-11.87 

-1.40 
-18.18 

3.04 
-4.86 

1.68 
8.00 

-1.12 
-6.11 

N
earest N

eighbour: A
ll; W

eight: 0 
Ref. 

-91.30 
Ref. 

-41.54 
Ref. 

-24.48 
Ref. 

-39.61 
Ref. 

-35.88 
Ref. 

12.49 
Ref. 

-13.09 
N

earest N
eighbour: A

ll; W
eight: 1 

-15.77 
-71.14 

-2.83 
-16.95 

-1.01 
-11.92 

-1.36 
-18.18 

2.57 
-4.87 

1.50 
7.30 

-0.90 
-6.09 

N
earest N

eighbour: A
ll; W

eight: 2 
-15.73 

-71.13 
-2.09 

-16.92 
-1.13 

-11.89 
-1.82 

-18.19 
2.57 

-4.87 
1.57 

7.56 
-0.64 

-6.07 
N

earest N
eighbour: A

ll; W
eight: C

V
 

-15.41 
-71.13 

-3.16 
-16.96 

-1.40 
-11.93 

-1.36 
-18.17 

2.62 
-4.87 

1.54 
7.26 

-0.61 
-6.13 

N
earest N

eighbour: C
V

; W
eight: 0 

-14.80 
-91.25 

6.15 
-41.35 

2.94 
-24.35 

0.38 
-39.65 

2.58 
-35.83 

0.51 
14.60 

-2.52 
-13.23 

N
earest N

eighbour: C
V

; W
eight: 1 

-13.07 
-71.09 

-1.17 
-16.89 

-0.29 
-12.00 

-1.39 
-18.38 

2.93 
-4.86 

1.66 
8.21 

-1.00 
-6.13 

N
earest N

eighbour: C
V

; W
eight: 2 

-12.82 
-71.08 

-0.92 
-16.88 

-0.50 
-11.99 

-1.50 
-18.37 

2.96 
-4.86 

1.68 
8.30 

-0.56 
-6.08 

N
earest N

eighbour: C
V

; W
eight: C

V
 

-12.81 
-71.10 

-1.48 
-16.90 

-0.37 
-12.01 

-1.61 
-18.38 

2.96 
-4.86 

1.65 
8.06 

-1.21 
-6.19 

O
rdinary K

riging 
-17.63 

-71.95 
-3.32 

-16.91 
-1.07 

-12.27 
-1.79 

-18.90 
2.33 

-5.08 
1.51 

7.52 
-0.72 

-7.23 
O

rdinary K
riging: 1 T

em
poral L

ag 
-46.68 

-71.80 
-8.15 

-17.11 
-7.03 

-12.51 
-8.88 

-18.90 
-1.60 

-5.00 
0.75 

4.79 
-3.70 

-7.94 
O

rdinary K
riging: 2 T

em
poral L

ags 
-46.09 

-71.65 
-8.18 

-17.08 
-6.94 

-12.46 
-8.84 

-18.84 
-1.52 

-4.97 
0.81 

4.88 
-3.57 

-7.85 
U

niversal K
riging 

-9.92 
-71.00 

-1.95 
-17.94 

0.25 
-11.81 

0.77 
-18.06 

3.35 
-4.85 

1.80 
8.30 

0.56 
-5.74 

U
niversal K

riging: 1 T
em

poral L
ag 

-45.27 
-71.52 

-8.11 
-17.78 

-6.74 
-12.26 

-7.75 
-18.34 

-1.40 
-4.93 

0.87 
4.28 

-2.58 
-6.77 

U
niversal K

riging: 2 T
em

poral L
ags 

-43.77 
-71.40 

-8.03 
-17.69 

-6.65 
-12.24 

-6.50 
-18.27 

-1.20 
-4.92 

1.00 
4.55 

-2.24 
-6.62 

O
bservations 

56,996 
7,864 

8,656 
9,292 

6,808 
8,300 

8,212 
Pollution C

ontrols 
Y

es 
N

o 
N

o 
N

o 
N

o 
N

o 
N

o 
Pollution-Specification Interactions 

Y
es 

N
o 

N
o 

N
o 

N
o 

N
o 

N
o 

A
djusted R

2 
0.8241 

0.8667 
0.6449 

0.7949 
0.8206 

0.4301 
0.3636 

R
esidual Std. E

rror 
3.2602 

1.3260 
4.5601 

2.5763 
6.4886 

0.2555 
1.6824 

F Statistic 
853.85

*** 
1,044.70

*** 
321.79

*** 
735.75

*** 
636.44

*** 
128.83

*** 
96.72

*** 
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The choice of model specification for each pollutant is done by estimating pollution-

specific sub-models with relevant time and active station controls. The reference interpolation 

category used is all nearest neighbours with a weight of zero – or in other words the Lisbon 

level average of the respective pollution at any month in time. The negative t-value attributed 

to each model specification therefore represents the relative decrease in the average RMSE, 

resulting in a better prediction power for that give specification over the alternative simple 

average.  

Clear gains are seen when using the log version in terms of reduced RMSE. This is 

particularly the case when comparing the Kriging specification of models which are conditional 

on an underlying Gaussian distribution. This suggests that, when possible, conducting pre-

transformation of the data should be done to create a more standard distributed variable.  

Overall, Kriging specifications are superior for most pollutants and the inclusion of one 

temporal lag provides the better fit. While the inclusion of a secondary temporal lag in the 

prediction yields strong results, compared to one temporal lag it appears that these models may 

be overfitting the data series. In terms of the IDW family of models, it is always best to include 

all observations in generating the predicted value rather than a localized subset of monitoring 

stations. 

The RMSE of prediction for PM10 is well described by the choice of model, with an R2 

value of 86.67%. For the interpolation of PM10 values, similar gains in prediction power come 

from using all the available data in an IDW model and using the Kriging specification. Still, 

however, the Kriging family of models have a clear gain over the IDW with better fit and 

significantly larger reductions in the RMSE of prediction. The preferred PM10 specification is 

the Universal Kriging using one temporal lag. This specification is also the best choice for 

modelling of SO2, consistently better than any of the IDW models. Suggesting a spatial 

deterministic component in the distribution of these series. 
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In terms of combustion-based pollutants, NO and NO2, the Kriging specifications using 

log pollution values are superior to the alternatives. In order to choose between potential 

specifications, the top general two best IDW and Kriging interpolations are estimated, 

including both the Universal and Ordinary Kriging with one temporal lag and the IDW using 

an optimally determined weight parameter with three and all nearest neighbours. Across the 

entire time series, a tabulation of which model has the lowest RMSE at every month out of the 

potential top candidates shows that for NO and NO2 the Ordinary Kriging model with a 

temporal lag has the best prediction 119 times out of 198 and 137 times out of 213 respectively.  

No consistent model had any significant improvement in the prediction power of CO 

pollution relative to using the study-wide average value. The different specifications explain 

little of the variation in RMSE with an R2 of 43.01%. This suggests that the interpolation may 

not accurately be capturing the true spatial dynamic of this series and more complex underlying 

features may be influencing local CO values.  

Even though the average spatial interpolation does not generate robust predictions, this 

does not mean that the empirical strategy will not be able to capture the temporal dynamics 

before and after a transit intervention. The Kriging specification of models remain relatively 

those with the smallest RMSE. This allows us to have some spatial variability compared to the 

city-wide average yet provides some level of predictive power over the alternatives. The 

Ordinary Kriging with one temporal lag is the best prediction 119 times out 191 and is chosen 

as the preferred specification for CO. Care is taken with these results however, and limited 

inferences are made with discussion focused on general trends and patterns. 

Not all pollutants are well predicted by the Kriging models, and results indicate NOX 

is best predicted using models with weights of zero. This would seem to suggest that this 

pollutant is also better predicted by localized averages without any weighting or Gaussian-

based interpolation, and thus has less decay over space and inherently less spatial variability. 
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To balance the need for concentration heterogeneity with choosing the model minimizing the 

RMSE, the three nearest neighbours are chosen with a weight of zero. This uses the local 

average of the closest monitoring stations without any spatial decay. 

Figure A3 – 1 of the appendix shows selected pollution-month interpolated spatial grid 

and corresponding aggregated neighbourhood observation units for the respectively chosen 

preferred interpolation model. 

3 – 5. Empirical Spatial-Temporal Impact Estimates of Urban Transit Initiatives 

The mean aggregation of the preferred interpolated data to the neighbourhood level 

observation units across monthly intervals yields a high-dimensional spatial-temporal 

longitudinal panel database with the same neighbourhood’s pollution concentration repeated at 

every month. The empirical methodology employed makes use of this structure comparing 

different neighbourhoods across space before and after the introduction of the transit initiatives.  

Under a panel data difference-in-difference econometric strategy the long-run average 

reduction impacts for various pollutants can be estimated. This is further complemented by a 

non-parametric bootstrapping procedure to estimate an equivalent short-run difference-in-

difference average treatment effect for each impact. This bootstrapping overcomes the limited 

short-run sampling allowing us to further estimate temporal decays. These estimated spatial-

temporal impacts are based on taking the temporal introduction of the transit initiatives and 

comparing the differences before and after while accounting for the varying spatial orientation 

of neighbourhoods, namely by considering those that are closer to key areas of the city where 

we would expect pollution levels to be altered following an intervention . 

3 – 5.1. Spatial-Temporal Difference-in-Difference Specification 

A variety of models are estimated for each of the transit interventions of interest to 

evaluate the local impact of pollutants, and any spatial decaying effects, from key locations 
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around the city related to metro stations and the LEZ. Here, the same econometric model is 

applied to all the pollutants to observe how equivalent interventions impacted the various 

pollutants differently. The empirical specifications in equations Eq. 3 – 3 and Eq. 3 – 4 control 

for the heterogeneity of neighbourhoods while estimating the treatment impact of the respective 

transit intervention by difference-in-difference across space and time. 

!"(ℙ!") = ' + )! + '#Location! + '$Metro" + '%[Location! ×Metro"] + '&Year+ -!" Eq. 3 – 3 
!"(ℙ!") = ' + )! + '#Location! + '$LEZ" + '%[Location! × LEZ"] + '&Year+ -!" Eq. 3 – 4 

 

Here,	"#(ℙ!") represents the log value of the various pollution measures for the ' =

1,… , 3,623 census tract neighbourhoods for each monthly interval from / = January 2000 to 

December 2016. An overall average effect is captured in the intercept, 0, while neighbourhood 

level heterogeneous effects are captured in the fixed effects, the individually varying 

parameters, 1!. The 2!" are classical Gaussian error terms. Year controls are included to capture 

broad annual trends in concentration trajectories. 

The Location! variable indicates the {0, 1} assignment to one of the chosen spatial 

treatment areas, indicating whether a neighbourhood is in, for example, Baixa or near a metro 

station recently opened. The Metro" and LEZ" represent the temporal treatment, assigning pre 

and post-transit intervention classification. 

The specifications above estimate the direct impacts of both the space (location) 

treatment and the temporal (transit) treatment, as well as the interaction between these two 

which represents the average treatment effect, 0#, via a difference-in-difference estimation. In 

this scenario the first difference represents the change in pollution captured before and after a 

transit initiative, while the second difference captures whether a neighbourhood is proximate 

or not to five chosen locations across the city where we would expect pollution to be impacted 

– near the newly opened metro, along the riverfront, in the central business district, near the 

LEZ or along busy thoroughfares.  



130 
 

If we expect that there are important omitted neighbourhood variables which are not 

measured or cannot be observed, then a fixed effect estimation can address this omitted 

heterogeneity. One of the key assumptions in the use of these neighbourhood level fixed effect 

controls however is that any unobserved and omitted heterogeneous effects among them is time 

invariant. That is, across the timespan no neighbourhood experienced structural change in their 

trajectory or dynamics over and above the changes other neighbourhoods experienced. 

The fixed effect, or within group, uses the individual group mean to identify the impact 

of intervention over space and time. This means that the parameter values are estimated using 

a standard OLS applied to the within-group demeaned values. This estimation is numerically 

equivalent to including a dummy variable for each census tract neighbourhoods. As the 

estimation is done on demeaned variables no general intercept value is obtained from the 

estimation.  

Choice of Temporal Treatment 

This work looks specifically at two groups of transit related interventions introduced 

over time. Exploiting the timing of these different initiatives is used to estimate and compare 

their mitigating impacts on localized airborne pollution across the city. While the mechanisms 

of these interventions are very different, the environmental aims of reducing air pollution are 

the same. The goal of this chapter is not to compare and evaluate these two transit interventions 

against each other, but rather to explore the patterns observed in the generated longitudinal 

neighbourhood pollution data against known transportation related changes with spatial and 

temporal dynamics.  

The two temporal treatment variables are introduced in a cumulative way. For 

estimating the impact from opening metro stations, the variable represents the cumulative 

number of stations opening over the course of the study period. This controls directly for the 

existing density of the transportation network in place at any given time. The estimate therefore 
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represents the marginal change of an additional metro station to the existing network of stations 

already opened.  

In terms of the LEZ, the treatment variable is cumulative in the sense of considering 

the relative intensity of when the policy entered into effect. Different levels of strictness 

accompanied the introduction of the different phases of the LEZ, and the cumulative variable 

captures this increasing intensity and restrictiveness as it was phased in over time. 

Choice of Spatial Treatment 

In identifying the spatial impacts of interest, it is necessary to determine the extent to 

where we would expect inter-urban air pollution to be most affected by each transit 

intervention. This could be highly dependent on the study region of question and conditional 

on local topographic constraints and the built structure of the city. It is not always clear exactly 

where and how local transit patterns may respond to various changes to transportation 

infrastructure, and so spill-over impacts from the creation of a metro station in the urban 

periphery, for example, could be felt in Baixa if periphery residents change their behaviour or 

commuting patterns into the city centre.  

Five different key areas around the city are considered: proximity to the metro station 

which has opened, proximity to the LEZ boundary, distance to the city centre (Baixa), distance 

to the Tagus riverfront, and distance to the nearest freeway. As metro stations open and public 

transit becomes more accessible, or with the introduction of a traffic limiting LEZ in the city 

centre, the alterations to commuting and traffic patterns could impact pollution concentration 

in any combinations of these areas.  

One of the key assumptions when estimating impacts is the stable unit treatment value 

assumption. This states that the treatment assignment of one observation (in a neighbourhood 

‘nearby’ one of the key areas) does not affect the potential outcome of others (pollution levels 

in the ‘non-nearby’ neighbourhoods). This could particularly be the case with a spatial 
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treatment assignments such as proximity to key areas in the city. Given the continuity of 

pollution over space, the cut-off treatment threshold between what defines ‘nearby’ to the area 

of interest or not can be subjective. Proximate neighbourhoods are necessarily influenced by 

adjacent pollution, and so the distinction between these spatially treated units and controls can 

be fuzzy and should be addressed. 

The identification of this cut-off threshold defining the {0, 1} spatial treatment needs to 

represent a positive distance at which point neighbourhoods are considered in proximity to a 

given area of the city where pollution is likely impacted. These spatially treated units are then 

compared to those far enough away from these areas so as not to be influenced by the 

intervention effect (spatial controls). Depending on the context and underlying understanding 

of the study region, this could range from, for example, considering nearby neighbours as those 

very local units within 100 meters of downtown versus those within 1,000 meters if we would 

expect that the transit intervention has a larger impact over space. 

To address these possible concerns, a sequence of potential spatial treatment 

assignments is estimated for all combinations of pollution and interventions. This takes, for 

example, the distance to the LEZ boundary, and assigns the spatial treatment classification 

sequentially moving marginally away from the location. This enables a plot of the decaying 

fuzzy effect that various treatments may have on pollution over space comparing 

neighbourhoods first at 100 meters away and then at sequentially larger distances.  

Each fixed effect model is at every potential spatial treatment assignment in 50 meters 

intervals between 100 and 500 meters. At larger buffer distances, the impacts are estimated at 

every 250 meters from 750 meters up to 3 kilometres. The rationale behind estimating the 

spatial impacts at such a large distance can be seen by looking at an example plot of how PM10 

or NO concentration decays over space for neighbourhoods pre and post-transit intervention.  
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Figure 11 shows that decreases in pollution concentration following the introduction of 

a LEZ was felt up to around 1.25 kilometres away from Baixa by comparing the spatial decay 

two months before and after treatment. Prior to the treatment, pollution effects increased around 

the city centre locally for both PM10 and NO after which point levels begin dropping. After the 

treatment however, we see consistent spatial decay in levels. This effect is highly conditional 

on the spatial concept considered, and for example, the spatial decay located around freeways 

is much more localized and the estimated impacts therefore are only estimated much more 

locally. Figure A3 –2 of the appendix shows the similar plot for the impact of proximity to 

freeways. 

Figure 11. Spatial Decay of PM10 and NO Pre and Post Treatment in Baixa 

  

3 – 5.2. Bootstrapped Short-Term Pollution Reduction Impacts 

The estimation of the fixed effect parameters in the difference-in-difference 

specification makes use of the entire time series of data spanning from the start of monitoring 

to the end of 2016. The estimated impacts are therefore representative of the average effects 

spread out over this relatively long span. With limited data in the periods directly before and 

after a given transit intervention, it is difficult to use a panel data structure to estimate the short-

term immediate effects occurring directly following a treatment. 
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To overcome this limitation, a non-parametric bootstrapping process is used to estimate 

the immediate temporal effects in the subsequent months following an intervention, and the 

respective decay of these effects both over space and over time. The bootstrapped average 

treatment effect is based on systematically increasing the estimation by including new 

observations in one-month intervals before and after the introduction of the treatment. 

In considering only observations directly around any of the respective interventions, 

the sample size of the data decreases, and so too does the statistical power and variation 

captured by the original model. The non-parametric aspect means that the estimate returns the 

bootstrapped value of the mean differences across space and time treatments as opposed to 

being estimated through a deterministic linear model as is done when a longitudinal database 

format is available. The bootstrap statistic, 0$%, which is evaluated for the subsample of 

temporally proximate observations for all intervals from one month to a year is: 

0$% = 678. :ℙ;&'.&)*+",-%..&)*+",- − ℙ;&'.&)*+",-%..&)*+",/ = − 678. :ℙ;&'.&)*+",/%..&)*+",- − ℙ;&'.&)*+",/%..&)*+",/ = Eq. 3 – 5 

 
The same set of spatial treatment effects as in the parametric model are used, and so a 

bootstrap estimate is obtained for increasing distances from Baixa, the Tagus riverfront, 

opening metro stations, the LEZ boundary and freeways. The temporal treatments, however, 

are converted to dummy variables representing the month of the intervention. This provides an 

indicator to identify the specific base reference month when a metro opened, or the LEZ was 

introduced. From this reference month, estimates for the immediate temporal effects can be 

calculated by systematically estimating the average impact in the first month post-treatment, 

the second month post-treatment, and continuing sequentially for up to one year following the 

transit intervention.10 

 
10 In the case of multiple cumulative treatments, such as opening new metro stations, the mutually exclusive before 
and after observations are taken. Any observations which happen to fall in the same number of months prior to 
the opening of a station and equally within the months following the opening of another station, are removed.  
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For each combination of treatment effect of interest, and now further for each month 

following the intervention, a bootstrapped resampling is used to estimate the average treatment 

effect. The idea behind this is to use the limited temporal subsample of observations directly 

immediate to the transit intervention and resample these values with replacement. The average 

treatment effect is then estimated for the resampled levels of pollution. A total of 500 iterations 

for each model are run with estimated impact coming from average effect. Bootstrapped 

standard errors are also calculated and allow us to evaluate the significance of any estimated 

impacts.  

3 – 6. Impact Estimations 

This section outlines the results of the estimation for the impact evaluation of the two 

transit policies of interest: the opening of new metro stations and the introduction of a LEZ. 

The empirical strategy first looks at the long-run effect of either transit initiative on pollution 

levels in key areas of the city. This is estimated via difference-in-difference to get the average 

impact on different neighbourhood locations pre and post intervention. The pollution variables 

used correspond to the best interpolated model for each respective pollutant as described in 

section 4.  

The difference-in-difference strategy uses the entire time series of data starting after 

2000. For every pollutant, this includes up to 216 months and 3,623 neighbourhoods for over 

700,000 total observations per model. The average effect across this time span therefore 

represents a longer-term impact averaged out over almost two decades. Estimates presented 

are converted directly into the percentage change caused by the interventions. 

This model estimation is complemented with the bootstrapped short-run effects which 

show how pollution levels changed in the months directly after the opening of a new metro 

station or the timing of the LEZ. The bootstrapped estimates draw from the pollution in 

neighbourhoods directly surrounding the interventions to compare the pre and post-treatment 
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effect. It is comparable to the difference-in-difference estimator, calculating the average 

treatment effect for the subsample of values occurring sequentially in every month before and 

after the respective treatments up to one year. 

Both long-run difference-in-difference estimates and short-run bootstrap estimates for 

the impact of metros and the LEZ are obtained for every pollutant across the five key areas of 

the city. The spatial treatment effect estimated varies in distance relative to each of these 

locations ranging from 100 meters to 3 kilometres away. In order to present all results in a 

systematic manner, the estimated coefficients from each model are all plotted together to 

highlight the decaying impact of pollution across space and time.11 

3 – 6.1. Average Short and Long-Run Impacts of Metro Accessibility on Pollution 

Particulate Matter 

Overall, we observe positive impacts coming from the opening of new metro stations 

related to the reduction of particulate pollution in the city. Looking first at the direct impact 

across the entire study region, the average effect of the metro expansion has a median estimated 

long-run impact of -2.15% across the varying specifications, corresponding to 00 from equation 

Eq. 3 – 3.  

Focusing on the spatial and temporal decay of effects, estimates show a reduction in 

PM10 following the opening of new metro stations extending to some distance away from the 

city centre. Figure 12 shows the estimated significant impact of metro openings on sequentially 

increasing spatial treatments, increasing from locally within 100 meters of the city centre and 

opening metro stations up to 3 kilometres away. The average value of the R2 is presented across 

each of the difference-in-difference models. Consistent with expectations from figure 11, the 

 
11 For brevity, only the most salient features and results are presented. Estimated values, and respective 
significance levels, are plotted sequentially in order to highlight spatial trends and robustness in considering 
marginal increases in the estimated values over time and space. 
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significant impacts are strongest at the point where post-treatment pollution levels appear to 

decay away from the city centre.  

Figure 12. Short and Long-Run Metro Opening Impacts on PM10 
Short-Run Impacts Near Baixa (PM10) 

 

Long-Run Impacts Near Baixa (PM10) 

 
Short-Run Impacts Near Opened Metro (PM10) 

 

Long-Run Impacts Near Opened Metro (PM10) 

 
 
Results indicate that up to approximately 2 kilometres away from the city centre new 

metro stations across the city has yielded a long-term reduction in local particulate matter 

around 0.15%. In the short term, the bootstrap plots in the months directly before and after an 

opening indicate some immediate increase in PM10 around Baixa, a pattern further observed 

around the location of the metro station itself. With construction and preparations ongoing up 

to and including opening day, the immediate jump in pollution could be measuring this effect, 

compounded if the station opened towards the end of the month. This effect reduces in the 

subsequent months and immediate short-run local pollution levels reduce by almost 2% up to 

two and three months following the opening of a new station.  
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Around the metros, PM10 has a long term drop up to 0.175% in the immediate vicinity 

of the station up to 500 meters away. Weaker yet still negative reductions around 0.05% 

continue to be experienced in neighbourhoods up to around 1.5 kilometres away from the metro 

station. Although there appear to be some short-term increase in pollution in the months 

following an opening, this effect again dissipates over time. 

Figure 13a. Metro Opening Impacts on Combustion-Based Emissions Near Baixa 
Short-Run Impacts Near Baixa (NO) 

 

Long-Run Impacts Near Baixa (NO) 

 

Long-Run Impacts from Near Baixa (NOX) 

 

Nitrogen-Based Combustion Emissions 

Metro openings decreased NO in Baixa by around 0.45% up to around 1.5 kilometres 

in the long run as seen in figure 13a. Short term effects indicate the largest decrease in the first 

month, around 20%, and in subsequent months this effect dies off. Up to almost a year later, 

however, impacts of 2.5% could be felt at large 2 kilometer distances from Baixa. Similarly, 

very localized spatial effects around Baixa show decreases in NOX around 0.9%. 
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Combustion emissions have the greatest reduction around the riverfront with NO, NO2 

and NOX all decreasing in this area following the introduction of new metro stations, as seen 

in figure 13b. The reduction of NO and NOX is broad, extending away from the Tagus and 

reaching up to 0.9% and 0.2% up to 3 kilometres away. Around metro stations themselves, 

there are local reductions of NOX around 0.3%. This impact dies off over space but decreases 

NOX in neighbourhoods up to 2 kilometres away from newly opened stations. 

Figure 13b. Metro Opening Impacts on Combustion-Based Emissions Near the Tagus 
Short-Run Impacts Near the Tagus (NO) 

 

Long-Run Impacts Near the Tagus (NO2) 

 

Long-Run Impacts from the Tagus (NOX) 

 

Carbon Monoxide 

Although the average predictive power of the interpolated data at each time interval for 

CO has little improvement, it is still possible that a difference-in-difference specification can 

capture the temporal impacts from the observed point values. Broadly, the direct estimated 

impacts caused by the cumulative opening of metro stations, corresponding to 00, has a median 
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average reduction of 2.18%. This captures the general temporal impact of these metro 

treatments on neighbourhood CO concentration.  

As one of the primary sources of CO is vehicle emission, we would expect that the 

opening of new metro stations may reduce emissions from private drivers. Estimates indicate 

localized reductions near metro stations and broader impacts in Baixa, 0.25% up to 750 meters 

and 0.29% up to 3 kilometres respectively (figure A3 – 3 of the appendix).  

3 – 6.2. Average Short and Long-Run Impacts of Low Emission Zones on Pollution 

Particulate Matter 

The before and after difference is generally larger when comparing the interventions 

surrounding the LEZ and the introduction of new metro stations. This however only evaluates 

pre and post intervention averages and the complex mechanisms of pollution abatement cannot 

cleanly be attributed to any specific source. The larger decrease following the LEZ is not 

surprising given the zones explicit aim of reducing pollution, however should be interpreted 

with caution given the number of transit initiatives introduced in conjunction with the LEZ, 

and thus could be capturing the combined effect of this temporal dynamic.  

The difference-in-difference estimate can identify the local change in the area directly 

around the LEZ itself where pollution reduction is more targeted. A long-term reduction up to 

0.30% is estimated in the immediate area around the LEZ, with broader impacts extending up 

to 3 kilometres away from the boundary with a broad area reduction up to 0.43%. Similar 

effects are confirmed when considering the distance to Baixa, where the LEZ is located, with 

broad effects up to 0.25% felt up to 3 kilometres. The effect of the LEZ has thus had a wide 

impact on pollution in the city centre over the long term since its introduction.  

Large local decreases of PM10 are observed in the months directly following the 

intervention as expected. In the first 5 months after the introduction, the reduction ranged 
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between around 2% to 4%. This effect appears to die off over time and revert, and also  

observed in the literature as drivers or enforcers may become complacent and regulations laxed. 

Figure 14. Short and Long-Run LEZ Impacts on PM10 and NOX 

Short-Run Impacts Near LEZ (PM10) 

 

Long-Run Impacts Near LEZ (PM10) 

 

Short-Run Impacts Near LEZ (NOX) 

 

Long-Run Impacts Near LEZ (NOX) 

 

 

Interestingly, we see some increases in pollution along the Tagus river over the long 

run, however small. The estimated impact represents an increase in pollution around 0.2% near 

the waterfront. While the zone itself has improved in air quality, there is some suggestion that 

the introduction of the LEZ may have led to shifts in driving patterns where now commuters 

or heavy vehicles entre into the city centre via alternative routes – many of which are along the 

river.  



142 
 

Nitrogen-Based Combustion Emissions 

In terms of NOX there are long-run reductions in pollution due to the introduction of 

the LEZ very localized of around 1.65%. This reduction decays closer to zero over space 

indicating the strongest reductions of NOX are closer to the LEZ boundary after its introduction. 

The short run dynamics reveal some increases in localized pollution. In the month directly 

following the introduction of the LEZ pollution increase was constant across space, however, 

in the subsequent months NOX levels further away from the LEZ began increasing at relatively 

faster rates.  

As LEZ’s primarily target traffic patterns, these short-term increases could be a result 

of peripheral areas surrounding the LEZ having increased spill-over traffic to avoid entering 

the zone after it was introduced. This can further be seen with slight increases in freeway 

pollution following the introduction of the LEZ in the magnitude of 0.17% within 200 meters. 

If traffic patterns are indeed shifted, then we would expect that drivers may take alternative 

routes to by-pass the LEZ and enter the city centre. 

Reductions of NO2 were broader and included decreases around the Tagus riverfront of 

around 1.5%. The reductions are very localized and significant for NO2, and short-term impacts 

indicate strong decreases very nearby in the months immediately following the introduction 

which decay both over space and time. Thus, while the LEZ was efficient in reducing the 

concentration of NO2 it is a very localized effect.  

Similar effects are seen with NO, however, are much more extensive. The pollution 

reduction of around 3.5% caused by the LEZ and stemming from the riverfront was 

experienced by neighbourhoods up to 3 kilometres away. Short-run impacts mirror this trend 

with strong decreases in NO concentration which remain large as we consider a larger zone 

around the Tagus.  
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Sulfur Dioxide 

The impacts on SO2 from models looking at metro openings have a poor fit and results 

that are not meaningful, however estimates are much more robust and intuitive when 

considering the impacts from the LEZ. This shows the importance of considering the full 

resulting outcomes of each treatment as they related to different urban transports and ultimately 

different pollutants. While metro policies are targeted towards light vehicle drivers, 

incentivizing them to use public transport, LEZ’s are targeted towards more heavy polluting 

vehicles. So, while a metro treatment is not likely to impact SO2 emissions, given the low 

proportion coming from light vehicles, a LEZ policy targeting these heavy vehicles directly 

should. 

Similar localized reductions in SO2 are seen around Baixa and the LEZ itself from 

around 5.8% in the immediate proximity with impacts extending out to 2 kilometres from Baixa 

and 1 kilometre from the LEZ. Along the Tagus riverfront, the introduction of the LEZ yielded 

reductions of over 5% in neighbourhoods within up to 3 kilometres. As we would expect transit 

patterns to shift, further reductions along the freeways within the city are estimated to reach 

around 1.5% up to 750 meters away. Plots for auxiliary impacts from sulfur dioxide available 

in figure A3 – 4 of the appendix. 

3 – 7. Conclusions 

Although this work does not aim to evaluate the full costs and benefits associated to 

metro expansions and LEZ’s, it does provide context to the relative impact of each initiative in 

terms of pollution changes and spatial-temporal patterns. The results indicate that within-urban 

spatial and temporal decay patterns are significant and do not impact all neighbourhoods 

equally. Transit interventions therefore have potentially very localized effects which may cause 

varying impacts conditional on how commuting patterns respond. As pollution concentrations 
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tend to be spatially concentrated in urban areas, it is important to take these high-resolution 

dynamics into account when evaluating different transit interventions.  

Understanding the local and neighbourhood level impacts of pollution can be used to 

better target hotspots where residents are at greater risks of negative impacts. Further, non-

transit related pollution mitigation strategies, such as the planting of trees or developing green 

infrastructures (walls, roofs, parks), can be better targeted knowing where pollution is most 

prevalent. While long run pollution reduction around newly opened metro stations are 

observed, the largest effect appears to come generally from the reduction in pollution in the 

city centre or near the riverfront. This is similarly seen with the resulting impacts from the 

introduction of the LEZ, located in the centre. 

Of particular interest from these results, in comparison to general average city-level 

impacts, there is some evidence to support the idea that the introduction of the LEZ yields 

alterations to transit patterns and ultimately pollution. Results suggest a post intervention 

increase in pollution at the external boundaries of the LEZ and along freeways. Further, results 

highlight that certain interventions are only appropriate for certain goals, for example, the goal 

of reducing SO2 emissions should be concentrated on LEZ enforcement of heavy-duty vehicles 

rather than incentivizing light vehicle drivers to switch to public transit. 

The results from the applied study highlight the benefit to be gained in terms of 

increased spatial and temporal complexity and understanding of the impacts. While in the 

relative context Lisbon is not a heavily polluted city, there are still clear environmental 

improvements to be made and best practices for other municipalities with similar infrastructure 

and conditions. The broader impact of metro stations and LEZ fall in line with estimated 

impacts from other large cities, particularly when looking at the larger short run effects 

estimated compared with more traditional point differences in pollution levels at different 

stations inside and outside of LEZs.  
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More important considerations should further be given to the relative costs of each 

transit intervention. LEZ’s are very low-cost relative to the expansion of a new metro, which 

include capital heavy construction projects rather than simple enforcement. From a purely 

pollution reduction point of view therefore, the results from the LEZ suggest that interventions 

surrounding this goal had relatively large long run reductions in local pollutants. 

However, this does not negate or diminish the benefit of metro expansions on pollution 

reduction. Since the primary goal of metro expansions is not the reduction of pollution, any 

observed decrease in pollutants constitute a positive spill-over. This value of pollution 

reduction is a non-market benefit that is often not taken into account when estimating the costs 

and benefits of any intervention. Therefore, the value of pollution reduction via metro 

expansions is crucial for evaluating the true benefits, based on current dynamics.  

This chapter looks at the role of geostatistical methods to generate longitudinal data for 

detailed urban environmental statistical analysis. The application of these methods highlight 

the increasing detail with which urban analytics can be used to better understand dynamic 

processes at a highly refined spatial and temporal detail, often lacking in studies of the urban 

environment. This highlights the advantage of leveraging currently available geospatial data to 

estimate and value urban processes and impacts. From a practical point of view these estimates 

are crucial for better understanding urban dynamics in different contexts and better valuing 

location spillovers.  

These procedures and estimates highlight the quality of open source data for the 

generation of high-dimensional longitudinal neighbourhood level databases, enabling the study 

of spatial and temporal dynamics of urban pollution. As data and computational power allows 

for higher resolution data at a higher frequency, new and relevant urban-scale intervention 

analyses can be conducted to better guide any discussions and best practices related to transit 

or other policy areas influencing the urban environment.  
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Figure A3 – 2. Spatial Decay of PM10 and NO Pre and Post Treatment Near Freeway 

 
 

 

Figure A3 – 3. Carbon Monoxide and Auxiliary Plots 
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Figure A3 – 4. Auxiliary Plots of LEZ Impacts 

  

  

 

 

 

 

 

  


