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Abstract: War is a cause of gains and losses. Economic historians have long stressed the extreme
importance of considering the economic potential of society for belligerency, the role of management
of chaos to bear the costs of battle and casualties, and ingenious and improvisation methodologies
for emergency management. However, global and inter-temporal studies on warring are missing.
The adoption of computational tools for data processing is a key modeling option with present day
resources. In this paper, hierarchical clustering techniques and multidimensional scaling are used as
efficient instruments for visualizing and describing military conflicts by electing different metrics to
assess their characterizing features: time, time span, number of belligerents, and number of casualties.
Moreover, entropy is adopted for measuring war complexity over time. Although wars have been an
important topic of analysis in all ages, they have been ignored as a subject of nonlinear dynamics
and complex system analysis. This paper seeks to fill these gaps in the literature by proposing a
quantitative perspective based on algorithmic strategies. We verify the growing number of events
and an explosion in their characteristics. The results have similarities to those exhibited by systems
with increasing volatility, or evolving toward chaotic-like behavior. We can question also whether
such dynamics follow the second law of thermodynamics since the adopted techniques reflect a
system expanding the entropy.

Keywords: data visualization; multidimensional scaling; hierarchical clustering; entropy; complex systems

1. Introduction

Wars have played a major role in human history, because they have long accounted for violence.
According to Blum [1], we presently live in a paradox of power, because on the one hand our means
and methods of war have become both more devastating (potentially), and on the other hand less
devastating (in practice).

Campbell [2] asks what conception of war to adopt. Williams et al. [3] (p. 85) recall that Cicero
defined war as contending by force, and Machiavelli [4] installed Machiavellian philosophy in saying
that “rulers should be good if they can, but be willing to practice evil if necessary” in order to reach
their goals. In the same way, Grotius [5] (p. 18) wrote that “war is the state of contending parties,
considered as such,” while for Hobbes [6] war was a state of affairs. Regretting wars, Mannies and
Laursen [7] prefer to say that war is a violent political disease.

How can one account for wars? The mathematical analysis of war has relied on developing and
interpreting the statistical distributions of casualties [8,9]. Such distributions reveal fat-tails, meaning
that the size of an event is inversely proportional to its frequency. Such patterns can be used to
predict the size distribution of future wars, with implications in sociological and general policy [10].
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The fat-tail distributions are consistent with self-similarity, scale-invariance, and self-organized
criticallity mechanisms, as reported in various studies [11–14].

This paper uses a framed database to record wars, military struggles, and armed conflicts
over time. Data are interpreted and patterns unveiled according to different distances between
high-dimensional data, namely, time and space proximity (by the date and parts involved); and human
sacrifice or human capital loss (by the number of casualties) using the hierarchical clustering (HC)
and multidimensional scaling (MDS) computational visualization techniques. Moreover, entropy is
adopted as a measure of characterizing war data, when regarded as the output of a complex system.
On the difficulty of such an exercise, which checks the historical decisions of commander-in-chiefs for
fighting with sets of historical conditions and military weaponry, Milward [15] says, quoting Carl von
Clausewitz (1833), that “Bonaparte was quite right when he said that many of the decisions which
confront a commander-in-chief would constitute problems in mathematical calculus not unworthy of a
Newton and a Euler.”

The synergies of adopting data analysis and computational strategies reveal the key importance
of this manifestation of the intrinsic behavior of the human species. The historical records provide
assertive quantitative information and the results of the analysis give a new perspective towards the
future development of modeling strategies. Having these ideas in mind, the modeling follows present
day data processing techniques, using computational resources both for data analysis and for the
visualization of the results. The HC and MDS are useful algorithms for time series analysis, embedding
several characteristics such as time, time span, number of belligerents, and number of casualties.
The results reveal that the treatment of real-world data may unveil details not qualitatively known
with standard approaches. On the other hand, the entropy analysis of the war casualties, interpreted as
the output of a complex system, reveals the human-belligerency trend towards “chaotic-like” behavior
over time. This evolution toward a state of higher confusion reveals increasing an entropy, somehow
compatible with systems following the second law of thermodynamics.

The paper has the following organization. Section 2 presents the mathematical fundamentals,
namely, the HC and MDS techniques, the distances for assessing historical data records, and the
concepts of entropy and spectral entropy. Section 3 describes the dataset used and develops the
computational modeling approach using the HC and MDS. Section 4 interprets the results from a
sociological perspective. Section 5 analyses the data by means of entropy generated by a complex
system. Finally, section 6 outlines the main conclusions.

2. Fundamental Concepts and Tools

2.1. Distance Indices

A function is considered a distance, d(vi, vj), between vi and vj, if it obeys the following axioms:
(i) non-negativity, (ii) identity of indiscernibles, (iii) symmetry, and (iv) triangle inequality [16].

In the sequel, nine distances are considered for comparing objects, namely, the {Arccosine,
Canberra, Dice, Divergence, Euclidean, Jaccard, Lorentzian, Manhattan, and Sørenson} = {d1, . . . , d9}
distances. Accordingly, given the points vi = (vi1, · · · , viP) and vj = (vj1, · · · , vjP) in a P dimensional
space, the distances between vi and vj are given by [16]:

d1(vi, vj) = arccos

 ∑P
k=1 vik · vjk√

∑P
k=1 v2

ik

√
∑P

k=1 v2
jk

 , (1)

d2(vi, vj) =
P

∑
k=1

|vik − vjk|
|vik|+ |vjk|

, (2)
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d3(vi, vj) =
2 ∑P

k=1 vik · vjk

∑P
k=1 v2

ik + ∑P
k=1 v2

jk

, (3)

d4(vi, vj) = 2
P

∑
k=1

(vik − vjk)
2

(vik + vjk)2 , (4)

d5(vi, vj) =

√√√√ P

∑
k=1

(vik − vjk)2, (5)

d6(vi, vj) =
∑P

k=1(vik − vjk)
2

∑P
k=1 v2

ik + ∑P
k=1 v2

jk −∑P
k=1 vikvjk

, (6)

d7(vi, vj) =
P

∑
k=1

ln
(

1 + |vik − vjk|
)

. (7)

d8(vi, vj) =
P

∑
k=1
|vik − vjk|, (8)

d9(vi, vj) =
∑P

k=1 |vik − vjk|
∑P

k=1(vik + vjk)
, (9)

The Arccosine distance is important when comparing objects described by vectors with different
magnitudes. The Canberra is a metric well-suited for quantifying data scattered around an origin
and is very sensitive for values close to zero. The Dice, like the Arccosine and the Jaccard, is an
angularly-based measure closely related to the Euclidean distance, which is the shortest distance
between two points. In particular, the Jaccard has several practical applications, namely, in information
retrieval, data mining, and machine learning. The Divergence measures the “distance” between
two probability distributions on a statistical manifold. The Lorentzian is the natural logarithm of an
absolute difference between objects. The Manhattan distance is a rectilinear distance or taxicab norm.
The Sørenson distance is close to the Canberra.

2.2. Hierarchical Clustering

Let us consider a set of N objects, vi, i = 1, . . . , N, in a P dimensional real-valued space. The HC
is a technique that visualizes groups of similar objects and involves three steps [17]. The first
consists of defining a measure of the distance d(vi, vj), i, j = 1, . . . , N, between the objects i and
j. The second step regards the comparison of all objects and the construction of a matrix of distances,
D = [d(vi, vj)], of dimensions N × N. For classical distances, d(vi, vj) = d(vj, vi) the matrix D is
symmetric, with zeros in the main diagonal. In the final step the HC algorithm produces a structure of
clusters that is represented by some graphical portrait, such as a hierarchical tree or a dendrogram.
We can adopt two main techniques: (i) the agglomerative and (ii) the divisive iterative schemes. For
the agglomerative, each object starts in its own cluster. Then, the successive iterations join the most
similar clusters until reaching one single cluster. For the divisive scheme, all objects start in a single
cluster. Then, the iterations remove the “outsiders” from the least cohesive cluster, until each object has
a separate cluster. The HC requires the definition of a linkage criterion, consisting of some distances,
for quantifying the dissimilarity between clusters. The distance d (vR, vS) between a pair of objects
vR ∈ R and vS ∈ S, in the clusters R and S, respectively, can be determined by means of a number of
alternative metrics, such as the average-linkage [18]:

dav (R, S) =
1

‖R‖ ‖S‖ ∑
vR∈R,vS∈S

d (vR, vS). (10)
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For assessing the quality of the clustering, we can adopt the cophenetic coefficient cc [19]. Let us
assume that the objects vi and vj are described by the HC representations ti and tj, respectively;
then the index cc is given by:

cc =

∑
i<j

[
d(vi, vj)− v̄

] [
d(ti, tj)− t̄

]
√√√√[∑

i<j

[
d(vi, vj)− v̄

]2] [∑
i<j

[
d(ti, tj)− t̄

]2] , (11)

where v̄ = av
(
d(vi, vj)

)
and t̄ = av

(
d(ti, tj)

)
, with av(·) denoting average, and d(ti, tj) is the

cophenetic distance between the HC objects ti and tj. We have 0 ≤ cc ≤ 1 and the limits correspond to
bad and good clustering of the original data. Additionally, the Shepard chart can be used to compare
the original and the cophenetic distances, so that the closer the points to the 45 degree line, the better
the result. The graphical portrait consists of a dendogram or a tree, and the objects are the “leafs”.

2.3. Multidimensional Scaling

MDS is a computational method for determining and visualizing the similarities or dissimilarities
(distances) between objects in a dataset [20]. The main concept is to find the key dimensions explaining
the observed distances between the objects. The matrix D is the source of information of the MDS.
The algorithm tries to find the positions of M ≤ P dimensional objects v̂i (represented by points),
producing a matrix D̂ = [d(v̂i, v̂j)] that approximates the original one. Several MDS types were
proposed and we can cite the metric, non-metric, and generalized versions. For the metric MDS,
we have minimization of the stress cost function S :

S =

[
∑
i<j

[
d(vi, vj)− d(v̂i, v̂j)

]2] 1
2

. (12)

The Sammon criterion can be also adopted, yielding:

S =


∑
i<j

[
d(vi, vj)− d(v̂i, v̂j)

]2
∑
i<j

[
d(vi, vj)

]2


1
2

. (13)

The stress S has a monotonic decreasing variation with the dimension M. The user establishes
a compromise between the two variables, and usually either M = 2 or M = 3 is adopted since such
values allow a direct graphical representation. The resulting map is read by following the clusters and
by checking how they reflect the relationships embedded in the original data. Consequently, the shape
of the map and the dimensions of the locus are meaningless.

For assessing the “quality” of the MDS, the user can check, subjectively, whether the locus clearly
displays some clusters reflecting the characteristics of the dataset. Additionally, the user can compare
the original and the reproduced information stored in D and D̂, respectively. The Shepard diagram
portraits d(vi, vj) versus d(v̂i, v̂j), so that a good representation corresponds to points close to the 45
degree line. Alternatively, the plot of S versus M indicates a good representation when we have a
significant reduction of the stress. If the map is not clear the user can adopt another measure d(vi, vj)

until obtaining a suitable representation.
Similarly to the HC, the definition of an adequate distance d(vi, vj) requires some practice and

eventually a few numerical trials. We must note that the alternative distances are correct, the difference
being merely in the capability of each one to capture the characteristics embedded in the dataset.
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Several distances can lead to valid MDS maps and reveal the same clusters, just differing in their
geometrical shapes.

2.4. Spectral Domain

Let us consider the time-series X = {xn : n = 1, . . . , N}, resulting from sampling a continuous
variable x(t) at the frequency fs. We can express X in the frequency-domain using the discrete Fourier
transform, resulting in:

Y = {yk : k = 1, . . . , N} = F{X}, (14)

yk =
N

∑
n=1

xne−ı 2π
N (k−1)(n−1), (15)

where ı =
√
−1 and F{·} is the Fourier operator. Often, we consider only the first half of the spectrum

versus frequency, f , by considering k = 1, . . . ,
⌈

N
2

⌉
and f = k Fs

2 /
⌈

N
2

⌉
, where d·e stands for the

ceiling function.

2.5. Entropy

Let us consider a discrete probability distribution P = {p1, p2, . . . , pN}, with ∑i pi = 1 and pi ≥ 0.
The Shannon entropy, H(S), of P is given by:

H(S) = ∑
i

pi I(pi) = −∑
i

pi ln pi, (16)

which represents the expected value of the information content I(pi) = − ln pi.
Several generalizations of (16) have been proposed [21]. Herein, we recall the

Machado—H(M)
α [22], and Machado and Lopes—H(ML1)

q,α and H(ML2)
q,α [21], formulations, derived

in the framework of fractional calculus (FC). The FC generalizes the concepts of differentiation [23–26]
to non-integer orders. The theory was introduced by Leibniz by the 17th century, but only recently
gained popularity in applied sciences [27–33].

The derivation of H(M)
α starts from viewing the Shannon information I (pi) = − ln pi as a function

lying between D−1 I (pi) = pi (1− ln pi) and D1 I (pi) = − 1
pi

, where Dα stands for the fractional
derivative of order α ∈ R. Therefore, the concepts of fractional information and fractional entropy of
order α can be formulated as:

Iα (pi) = Dα I (pi) = −
p−α

i
Γ (α + 1)

(
ln pi + ψ̃

)
, (17)

H(M)
α = ∑

i

[
−

p−α
i

Γ (α + 1)
(
ln pi + ψ̃

)]
pi, (18)

where ψ̃ = ψ (1)− ψ (1− α) and ψ (·) represents the digamma function. For the case α = 0, we verify
that H(M)

α yields the Shannon entropy H(S).
For the derivation of H(ML1)

q,α and H(ML2)
q,α , we adopt a general averaging operator, instead of the

linear one that is assumed for the Shannon entropy (16). Let us consider a monotonic function f (x)
with inverse f−1(x). Therefore, for a set of real values {xi}, i = 1, 2, . . . , with probabilities {pi}, we can
define a general mean [34] associated with f (x) as:

f−1

(
∑

i
pi f (xi)

)
. (19)
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Applying (19) to the Shannon entropy (16) we obtain:

H = f−1

(
∑

i
pi f (I(pi))

)
, (20)

where f (x) is a Kolmogorov–Nagumo invertible function [35]. If the postulate of additivity for
independent events is considered in (19), then only two functions f (x) are possible, consisting of
f1(x) = c · x and f2(x) = c · exp[(1− q)x], with c, q ∈ R. For f1(x) we get the ordinary mean and we
verify that H = H(S). For f (x) = c · e(1−q)x we have the expression:

H =
1

1− q ∑
i

pi · exp[(1− q)I(pi)], (21)

leading to the Rényi entropy:

H(R)
q =

1
1− q

ln

(
∑

i
pq

i

)
, q > 0, q 6= 1. (22)

If we combine (17) and (21), then we obtain:

H(ML1)
q,α =

1
1− q

ln

{
∑

i
pi · exp [(1− q) · Iα(pi)]

}

=
1

1− q
ln

{
∑

i
pi · exp

[
(q− 1) ·

p−α
i

Γ (α + 1)
(
ln pi + ψ̃

)]}
.

(23)

On the other hand, if we rewrite (22) as:

H(R)
q =

q
1− q

ln

( 1
N ∑

i
pq

i

) 1
q

· N
1
q


=

q
1− q

ln
[
〈pi〉g · N

1
q

]
,

(24)

where 〈pi〉g =
(

1
N ∑i pq

i

) 1
q is a generalized mean, then we obtain:

H(ML2)
q,α = Dα H(R)

q =
1

N
α
q

q
1− q

[
〈pi〉−α

g

Γ (α + 1)

(
1
q

ln N + ln〈pi〉g + ψ̃

)]
. (25)

In the limit, when α→ 0, both H(ML1)
q,α and H(ML2)

q,α yield (22).

3. The Spans of Wars

This Section characterizes the real-world data describing the spans of wars. In Section 3.1 the
adopted dataset is presented. In Section 3.2 these data are processed by computing the dissimilarity
indices (1)–(27), followed by the HC and the MDS techniques for dimensionality reduction and
scientific visualization. The loci are interpreted in the light of the emerging clusters.

3.1. Description of the Dataset

Wars have resulted in about 3.5 billion casualties, people who died in the battlefields or later
on, as an indirect consequence or a result of those events. Since 1820, ninety five international and
intra-state wars have occurred, depending on how war is defined [36,37].
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Table A1, in Appendix A, contains the database of military conflicts from century VI B.C. to
present date that is considered in this paper. Its construction adhered to a strict and prudent account
of proceedings in order to preserve scholarly caution in synthesizing the conflicts whose consequences
can be measured by the suffering that results. The selection criterion was based on the threshold of
25,000 estimated casualties, because this indicator can express not only lost human capital, but also its
devastating impact on families and society in terms of pain and social disruption [38]. The database
is global, as it includes all military conflicts above the defined threshold of casualties, wherever they
took place. The number of casualties, namely, for ancient conflicts, is derived from historical texts by
contemporary writers. For some wars, deaths due to collateral effects are included, such as those due
to diseases caused by starvation and general degradation of health care. For details, please refer to the
notes in Table A1.

The database contains N = 163 wars, where the ith war, i = 1, . . . , 163, is characterized by means

of four variables: (i) the mean (or center) time of the event, ti =
tbi

+tei
2 , where tbi

and tei denote the
starting and ending years, respectively; (ii) the time span, Ti = tei − tbi

+ 1 (expressed in years); (iii)
the number of belligerents, Bi; and (iv) the number of deaths, Ci. Therefore, the data are organized in
a 163× 4 dimensional array, W̃ = [w̃ik], where w̃ik, i = 1, . . . , 163, k = 1, . . . , 4, represents the ith war
and its kth characterizing variable.

3.2. The HC Analysis and Visualization of the Spans of Wars

For applying the HC, firstly the array W̃ is normalized by the arithmetic mean, µ(·), and standard
deviation, σ(·), to avoid numerical saturation. This means that the columns of W̃, to be denoted by ũk,
are converted to:

uk =
ũk − µ(ũk)

σ(ũk)
, (26)

yielding a normalized array W. Secondly, the rows of W, to be denoted by vi, are used for calculating
the dissimilarity matrices Dn = [dn(vi, vj)], i, j = 1, . . . , 163, where dn(vi, vj) denotes one distance in
the set {d1, . . . , d9}. Finally, the matrices Dn are processed through the HC for producing the loci of
objects that represent the spans of wars. The agglomerative clustering and average-linkage methods
are adopted.

Although the HC trees are 2-dimensional loci, we can highlight particular aspects embedded
in the data or capture distinct information provided by the HC. Herein, the HC trees will consist of
two dimensions produced by the standard HC and one extra dimension, corresponding to time, t, or
casualties, C. The 3rd dimension is thus obtained by means of radial basis interpolation (RBI) [39],
using the information of each point and the thin-plate spline φ(ε) = ε2 log ε, where ε stands for the
Euclidean distance between the HC points in the plane. Therefore, isoclines represent identical loci of
time or of casualties.

Figures 1 and 2 depict, for example, the HC trees obtained with the Jaccard and Sørenson distances,
d6 and d9, respectively, while the 3rd dimension is calculated interpolating either t or ln(C). For the
other distances the loci are of the same type. For both distances, we verify the emergence of identical
clusters, C1 and C2, composed by sub-clusters, C11 and C12, and C21 and C22, respectively. These clusters
reflect the similarities between objects, but often the interpretation of the loci is difficult, namely, in the
presence of many objects.

Figure 3 shows the Shepard plot for assessing the HC tree with the distance d6. The chart reflects
an accurate clustering of the original data, with cc = 0.89. For the other distances the charts are
identical, and therefore, are not presented.
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(a)

(b)

Figure 1. The hierarchical trees obtained with the Jaccard distance, d6, and the 3rd dimension calculated
by RBI based on: (a) time (year), t; (b) logarithm of the casualties, that is, ln(C). A magnification of the
denser part is included.
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(a)

(b)

Figure 2. The hierarchical trees obtained with the Sørenson distance, d9, and the 3rd dimension
calculated by RBI based on: (a) time (year), t; (b) logarithm of the casualties, that is, ln(C).
A magnification of the denser part is included.
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Figure 3. Shepard plot for the HC cophenetic distances obtained with d6. The cophenetic correlation
coefficient is cc = 0.89.

3.3. The MDS Analysis and Visualization of the Spans of Wars

We visualize the spans of wars using the metric MDS and the Sammon criterion (13). The inputs
to the algorithm are the matrices Dn. Figures 4 and 5 depict, for example, the 3-dimensional MDS loci
obtained with the Jaccard and Sørenson distances, d6 and d9, respectively. The spheres representing
wars have sizes proportional to the numbers of casualties, and color is proportional to time. Figure 6a,b
shows the MDS assessment charts for the Jaccard distance. Since the Shepard diagram exhibits a small
scatter around the 45 degree line, we have a good fit between the initial and reproduced distances
d6(vi, vj) and d6(ṽi, ṽj). The stress plot shows that the 3-dimensional locus is a good representation,
since M = 3 points to the elbow of the function S(M). Therefore, 3-dimensional representations give
a good compromise between accuracy and readability. For the other distances we obtain charts of the
same type.
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Figure 5. The 3-dimensional MDS loci obtained with the Sørenson distance, d9. The spheres represent
wars, with size proportional to the number of casualties, C, and color proportional to time (years), t.
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Figure 6. The MDS assessment charts for the Jaccard distance, d6: (a) Shepard; (b) stress.

3.4. The MDS Analysis and Visualization of the Spans of Wars based on a Generalized Distance

Distances (1)–(9) have their own pros and cons; that is to say, they highlight specific aspects of the
data, but give lesser importance to others. Therefore, in order to embed their distinct characteristics,
we propose the distance d10 as "generalized":

d10(vi, vj) =
9

∑
r=1

λr
dr(vi, vj)

max[dr(vi, vj)]
, (27)

where λr ∈ R, ∑9
i=1 λr = 1, are weighting constants.

In other words, we conjecture that the distances (1)–(9) capture distinct characteristics of the objects
and that a more complete grasp of the information is obtained by using all indices complementarily.
Therefore, distance (27) may lead to a multi-perspective visualization. Since we have no a priori
preference for a given distance we consider in the follow-up all weights to be identical, that is, λr =

1
9 ,

r = 1, . . . , 9.
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Figure 7 depicts the 3-dimensional MDS loci obtained with the generalized distance, d10.
The spheres size and color have the same meaning as in the previous MDS loci. The corresponding
MDS assessment charts are omitted, since they are of the same type as those shown in Figure 6.
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Figure 7. The 3-dimensional MDS loci obtained with the generalized distance, d10. The spheres
represent wars, with size proportional to the number of casualties and color proportional to time.

Several experiments showed that, as expected, the generalized distance, d10, leads to better
clustering than the one revealed by the distances {d1, . . . , d9} used separately. More importantly,
we note in all cases, the explosion in the number of events during the recent decades and a large
scattering in the MDS plots for the events in the last decades corresponding to a multitude of distinct
characteristics.

4. Sociological Interpretation of the Spans of Wars

Perhaps wars are as ancient as humankind, and go back for tens or hundreds of thousands of
years, because they are of great value in clarifying the human responses to disputes. During the
Mesolithic period, from circa 9700 B.C. to 8750 B.C., when European hunter-gatherers settled and
developed more complex societies, they developed warring. However, they are not considered in
Table A1, because collective memory on these wars has been lost, as writing systems were not available
and oral tradition has given origin to only myths and legends.

Causes for warring in sedentary existence also include the shift to a growing population,
and concentrations of assets and value in terms of resources such as livestock, which have increased
the complexity of social relationships and social ranking. Cooperation in hunting, agriculture, or food
sharing must be recognized as means for conflict resolution. The existence of surpluses triggered barter
for common products and trade in high-value commodities. Both Europeans and Asians faced scarcity
of resources in Ancient ages. From the 6th century B.C. to the 4th century A.D., 24 military events
took place in 11 centuries, which averages to one every 50 years. The 24 ancient wars here represented
with a frequency of one per half a century make a cluster of their own (Figure 7). The establishment of
collective identities required group boundaries and territory control in the Chinese, Greek, Persian,
and Roman empires. The Three kingdom war (labeled with number 21) from the Han to the Jin dynasty,
and the Yellow Turban Rebellion (labeled with number 22) are the bloodiest known conflicts since the
beginning of humankind.
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Splitting of empires also brought military conflicts, such as the Hunnic invasions which put an
end to the West Roman empire (with number 24 in Figure 7). The flexibility that allowed individuals
to move to other groups was another superior instrument for social and political arrangements.
Such peaceful social mechanisms have included family alliances through marriage, and cross-group
ties of kinship. However, these mechanisms did not eliminate serious conflict, namely, because
of religion or ideological mass killings, such as Reconquista from the Muslims and the Crusades
(1095–1291), labeled in the Figure 7 as 27. Territorial conquest and economic gain continued as the
bloodiest, such as the Mongol conquests (32 in the Figure 7, in the cloud), and the Timured Conquests
(35) which downgrade the importance of the European Hundred Years’ War (34 in the cloud). Clouds
mean that peaceful periods occurred for short duration. The long durations of these kinds of wars
for control of means of production, trade routes, and raw materials oblige belligerents to invest great
amounts of spending and armies’ blood, which makes it very difficult to stop fighting if victory is not
clear, because losses would become useless [40]. Continuation of fighting is the way to redeem all
previous military efforts and human sacrifices.

There was also a tremendous dependency on weather conditions. According to rainfalls,
temperature, and other weather conditions, crops could flourish or be lost. Production was subject
to high vulnerability, and standards of life could deteriorate because of scarcity, high pricing of
food, and diet problems for a large number of people. Under those conditions, standards of life
could languish, and resistance to diseases could decrease, soon resulting in famine, epidemics,
and higher mortality, as happened because of the Eurasian Black Death epidemics (1343–1353). Riots,
revolts, and warring were a common consequence of such a set of difficult conditions for human
survival. Expansion to scarcely known lands, in the Modern Age, brought discovery and colonization.
Wars labeled 37 to 61 were the great Modern Age wars. The Spanish conquests of Yucatan, the Inca,
and the Azteca empires in the New World (which are labeled as 39 to 41 Figure 7) are famous, which
downgrades the European conflicts (such as the French Wars of Religion labeled 44, and the Thirty
Years’ War labeled 49) [41] thanks to the spread of diseases in the New World [42]. Strategic innovations
became available for military superiority, and new hopes supported victory possibilities [43]. The old
armor, pikes, and longbows became old fashioned when compared to muskets and cannons, increasing
human sacrifice (casualties), as Figure 7 clearly shows [43].

Environmental and economic conditions strongly conditioned “the economic history of man as
a successful species” [44]. A good example of the correlation between bad weather conditions and
lower production levels did happen in the 17th century in Northern Europe. The so-called Cooling age
generated conditions that led to wars (labeled 49–52, 54–57, and 59 and 60). Environmental upheavals
such as long rainy winters obliged an adaptation to alternative means of survival beyond colonial
expansion: capitalist industry, trading, and finance. A world without water or ice is hard to visualize,
and recent trends toward increasing average temperatures may bring serious problems to humankind,
and military conflicts may also become more plausible and frequent [45].

Looking at contemporary history, newly available and sophisticated means of warfare became
available in this phase. Artillery and bombing at a distance were key aspects in Napoleon’s invasions
and conquest wars, (labeled 64 in the Figure 7). Soldiers’ bodies engaged one another within confined
battlefields has given place to long-range weapon technologies. Wars became much bloodier in the
nineteenth and twentieth centuries. Civil wars have dominated the military scene, and the Chinese
Civil War of 1927-49 downgraded the American and the Spanish Civil Wars (1861-65 and 1936-39,
respectively) with labels 75 and 97.

More recently, the World Wars’ modern battlefields labeled 89 and 99 also differed a lot, because
of the air force bombing capacity in the second one (1939–1945). By earlier standards, the First World
War (1914–1918), was not in fact particularly global [46]. Recent weaponry technology has evolved in
two different aspects: destructiveness and distance. Each one of the most recent wars was dramatically
bloody (colored yellow-orange-green in Figures 1, 2, 4, 5, and 7. Weapons with great destructive power
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can defeat any enemy nowadays (or at least oblige its government to sit for a bargaining deal). By
operating across great distances, they present much higher effective ranges of threat.

Global-scale ambition and conquest purposes have been explanatory variables for more frequent
belligerency. Such a high frequency of conflict means that it has been difficult to reap the anticipated
gains that were forecast for victory [47]. Perhaps the announcements of messianic future benefits of
victory by ruling elites and their political propaganda frequently have been persuasive so as to create
popular domestic attitudes of enthusiasm and support to fighting. The return to peace and normalcy
includes tremendous political costs for politicians, even for victors.

5. Entropy Analysis of the Span of Wars

The number of casualties in each war, Ci, i = 1, . . . , N, with N = 163, is distributed along the time
span, Ti = tei − tbi

+ 1, yielding the “density of casualties” time-series:

X = {xn : n = tb1 , . . . , teN} =
N

∑
i=1

tei

∑
n=tbi

Ci
Ti

δ(n), (28)

where tbi
and tei stand for the beginning and the end the ith war, respectively, and δ(n) denotes the

Dirac delta function at time n.
Figure 8 depicts the time-series X (n) and its spectrum |Y( f )|. In the first, we note the tendency

toward chaotic-like behavior, and in the second, we verify the existence of some complex behavior.
Therefore, we need some more assertive mathematical and numerical tool to unveil other characteristics
of the dataset.

We start by adopting a 10-year sliding window without overlap, that is, slicing the time-series X
into 275 intervals, wi (i = 1, . . . , 275). This minimizes issues related to the non-stationarity of the data
and yields a good compromise between time discrimination and statistical significance. For the ith
window we determine a histogram by binning the elements of wi into 10 equally spaced containers
and counting the number of elements in each container. Then, we compute the Shannon and fractional
entropies discussed in Sections 2.4 and 2.5, where the probabilities are estimated from the histograms
of relative frequencies.

Figure 9 depicts the results, where the parameter q = 1.2 and the fractional order are α =

{0.3, 0.3,−0.2} for H(M)
α , H(ML1)

q,α and H(ML2)
q,α , respectively. For these values, the fractional entropies

have a higher sensitivity to the data characteristics [21].
The two models:

f1 = 1− e−β1n−β2n2−β3n3−β4n4
(29)

and
f2 = β1 + (1− β1)

(
1− e−β2n−β3n2−β4n3

)
, (30)

fit well into
{

H(S), H(M)
α

}
and

{
H(ML1)

q,α , H(ML2)
q,α

}
, respectively, where {β1, β2, β3, β4} ∈ R are the

models’ parameters, whose values are listed in Table 1.
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Figure 8. The density of casualties and its spectrum: (a) X (n); (b) |Y( f )|.

Table 1. Values of the parameters {β1, β2, β3, β4} for the fitting models of H(S), H(M)
α , H(ML1)

q,α and

H(ML2)
q,α .

β1 β2 β3 β4

H(S) 1.540× 10−2 −1.062× 10−4 −3.918× 10−7 2.914× 10−9

H(M)
α −1.250× 10−2 2.377× 10−4 −1.90× 10−6 4.921× 10−9

H(ML1)
q,α −1.147 1.127× 10−2 −1.353× 10−4 4.205× 10−7

H(ML2)
q,α −7.503 3.354× 10−3 −3.670× 10−5 1.019× 10−7

We clearly observe three periods: the first, P1 ∈ [−549, 650], with a slow increase of the entropy
until the middle followed by a slow decreasing; the second, P2 ∈ [650, 1400], with very small values of
entropy; and the third, P2 ∈ [1400, 2020], with a fast increase of the entropy. This behavior is coherent
with the explosion of conflicts with large mortality rates fueled by the development of more “efficient”
weapons. In fact, guided missiles and sniper fire (and drones, nowadays) are allowing targeting
more enemies and economic resources, with lower risk of counterattacks. The aftermath of a war has
always included disaster, economic disarray, and profound social unrest for the defeated partners,
with unbearable costs beyond the efforts in belligerency. More importantly, the results highlight an
evolution toward increasing values of the entropy, somehow reflecting a thermodynamic behavior,
seemingly aligned with the anthropological and social issues pointed out in this paper. This conclusion
was also reached previously based on different concepts and tools, namely, when using HC and MDS
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for a collection of distances. Therefore, the results obtained by distinct techniques are compatible and
seem not to depend on the type of measure or the computational approach hand. Moreover, we verify
that a data-driven modeling, combining mathematical and computational tools, constitutes a relevant
exploratory strategy for describing complex real-world phenomena. Indeed, we are tackling a class
of systems for which a classical approach based purely on an analytical perspective would require
subjective initial assumptions, possibly biasing the resulting analysis.
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Figure 9. Entropy versus window, wi: (a) H(S); (b) H(M)
α , α = 0.3; (c) H(ML1)

q,α , {q, α} = {1.2, 0.3};
(d) H(ML2)

q,α , {q, α} = {1.2,−0.2}.

6. Discussion and Conclusions

MSD revealed the entire graphical appraisal of humankind’s warring. When looking at the
historical record of wars, one can see that warring is not an abnormality for the humankind. From a
long-term perspective, warring may be equated as a powerful element in the economic history of the
humankind, as military defeat means the spoiling of economic resources (including loss of human
capital) beyond social turmoil.

War has served as a mechanism of natural selection in which the fittest prevailed to acquire both
mates and resources. Ravaged economies and societies have had great difficulties to return to growth,
while military victory for their enemies brought enlargement of territory and more availability of
economic and human resources. Warship may be an instrument of policy for reaching economic targets
from a strategical perspective, a kind of investment for expansionary purposes in a local, regional,
or global context. War is a deliberate and instrumental economic choice of political and military
elites for leadership. In a distinct perspective, we verified that present day computational techniques,
both for data processing, and for visualization of the results, may represent a key role in the study of
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these dramatic events. This strategy does not preclude the use of classical modeling techniques and in
fact can be complemented by such description. Moreover, the proposed method suggests collecting
further characteristics of the events since the algorithmic approach can easily handle a higher and
richer description involving a higher number of dimensions.

On another level, we verified an increasing number of conflicts. This produced not only large
scattering in the HC and MDS plots for recent times, but also larger and growing values of entropy.
Such conclusions seem to be robust and not to depend on the mathematical index or computational
tool. We can question ourselves whether human civilization is reflected by events such as wars that
are manifestations of the second law of thermodynamics. The results seem to indicate that the Plato
quote, "Only the dead have seen the end of war," is still going to be relevant for the years to come.
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analyzed the data; and wrote the paper. All authors have read and agreed to the published version of the
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Appendix A

Table A1. List of 163 wars with more that 25,000 casualties (adapted from: https://en.wikipedia.org/wiki/List_of_wars_by_death_toll).

i ti Ti Bi Ci Name Note

1 −540 20 4 100,000 Conquests of Cyrus the Great Does not include civilian deaths (from texts by contemporary writers)
2 −474 51 2 73,800 Greco-Persian Wars
3 −317 54 2 33,500 Samnite Wars Does not include civilian deaths (from texts by Roman writers)
4 −330 14 4 142,000 Wars of Alexander the Great Does not include civilian deaths (from texts by Greek writers)
5 −205 119 2 1,520,691 Punic Wars
6 −253 24 2 185,000 First Punic War Part of the Punic Wars
7 −210 18 2 770,000 Second Punic War Part of the Punic Wars
8 −148 4 2 193,649 Third Punic War Part of the Punic Wars
9 −262 2 2 173,205 Kalinga War

10 −226 10 6 700,000 Qin’s Wars of Unification Part of Warring States Period
11 −107 13 3 516,236 Cimbrian War Part of the Germanic Wars
12 −54 9 2 1,000,000 Gallic Wars
13 61 2 2 150,000 Iceni Revolt Part of the Roman Conquest of Britain. Year is uncertain.
14 101 71 2 836,660 Jewish-Roman Wars
15 70 8 2 605,614 First Jewish-Roman War Part of Jewish-Roman Wars
16 116 3 2 440,000 Kitos War Part of Jewish-Roman Wars
17 134 5 2 481,664 Bar Kokhba Revolt Part of Jewish-Roman Wars
18 269 1 2 320,000 Gothic War (269) Part of the Germanic Wars
19 277 1 2 400,000 Probus’s German War Part of the Germanic Wars
20 379 7 2 40,000 Gothic War (376–382) Part of the Germanic Wars
21 232 97 2 37,947,332 Three Kingdoms War Includes the "unofficial" part of the Three Kingdoms period
22 195 22 2 4,582,576 Yellow Turban Rebellion Part of Three Kingdoms War
23 372 136 2 150,000 Wars of the Sixteen Kingdoms Does not include civilian deaths
24 424 59 2 165,000 Hunnic Invasions Does not include civilian deaths (from texts by Roman writers).
25 541 15 2 5,000,000 Moorish Wars
26 840 422 4 130,000 Arab-Byzantine Wars Does not include civilian deaths (from texts by contemporary writers).
27 1102 782 4 7,000,000 Reconquista
28 759 9 3 21,633,308 An Lushan Rebellion
29 1006 27 2 90,000 Goryeo-Khitan Wars
30 1193 197 4 1,732,051 Crusades
31 1219 22 3 447,214 Albigensian Crusade Part of the Crusades
32 1287 163 2 34,641,016 Mongol conquests Does not include deaths due to the Black Death migration

https://en.wikipedia.org/wiki/List_of_wars_by_death_toll
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Table A1. Cont.

i ti Ti Bi Ci Name Note

33 1327 62 2 94,868 Wars of Scottish Independence
34 1395 117 2 2,754,995 Hundred Years’ War
35 1388 36 4 12,649,111 Conquests of Timur
36 1466 31 4 873,000 Conquests of Mehmed II “the Conqueror”
37 1471 33 4 41,833 Wars of the Roses
38 1527 66 4 346,410 Italian Wars
39 1576 114 2 24,300,000 Spanish conquest of the Aztec Empire Includes the cocoliztli plagues
40 1557 77 2 1,460,000 Spanish conquest of Yucatán Includes deaths due to European diseases
41 1553 40 2 8,400,000 Spanish conquest of the Inca Empire Includes deaths due to European diseases
42 1544 46 4 200,000 Campaigns of Suleiman the Magnificent
43 1525 2 2 100,000 German Peasants’ War
44 1580 37 2 2,828,427 French Wars of Religion
45 1608 81 5 648,074 Eighty Years’ War
46 1595 20 4 138,285 Anglo-Spanish War (1585–1604)
47 1595 7 3 1,000,000 Japanese invasions of Korea
48 1639 47 6 25,000,000 Qing conquest of the Ming
49 1633 31 2 5,873,670 Thirty Years’ War
50 1647 25 4 200,000 Franco-Spanish War (1635–59)
51 1645 13 4 876,000 Wars of the Three Kingdoms
52 1647 10 2 511,527 English Civil War Part of the Wars of the Three Kingdoms
53 1683 50 2 5,600,000 Mughal-Maratha Wars
54 1675 7 4 220,000 Franco-Dutch War
55 1691 17 4 120,000 Great Turkish War
56 1711 22 4 350,000 Great Northern War
57 1708 14 2 707,390 War of the Spanish Succession
58 1746 11 2 400,000 Maratha expeditions in Bengal
59 1760 8 4 1,102,361 Seven Years’ War
60 1767 5 2 70,000 Sino-Burmese War (1765–69)
61 1779 9 4 37,324 American Revolutionary War
62 1800 4 3 65,000 French campaign in Egypt and Syria
63 1803 2 3 135,000 Saint-Domingue expedition
64 1809 13 4 4,949,747 Napoleonic Wars
65 1812 1 2 540,000 French invasion of Russia Part of the Napoleonic Wars
66 1821 26 4 600,000 Spanish American Wars of Independence
67 1817 14 2 228,000 Venezuelan War of Independence Part of Spanish American Wars of Independence
68 1828 26 4 1,732,051 Mfecane
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Table A1. Cont.

i ti Ti Bi Ci Name Note

69 1848 57 2 200,000 Carlist Wars
70 1838 19 2 300,000 French conquest of Algeria
71 1857 15 2 24,494,897 Taiping Rebellion
72 1855 4 4 382,047 Crimean War
73 1865 18 2 943,398 Panthay Rebellion
74 1858 2 2 2,828,427 Indian Rebellion of 1857
75 1863 5 2 806,226 American Civil War
76 1870 16 3 9,797,959 Dungan Revolt
77 1865 6 3 49,287 French intervention in Mexico
78 1867 7 4 600,000 Paraguayan War
79 1873 11 2 241,000 Ten Years’ War
80 1877 15 2 32,404 Conquest of the Desert
81 1894 42 2 101,877 Aceh War
82 1895 2 2 48,311 First Sino-Japanese War
83 1897 4 3 362,000 Cuban War of Independence
84 1901 4 2 120,000 Thousand Days’ War
85 1901 4 4 81,056 South African War (Second Boer War)
86 1906 14 2 234,000 Philippine-American War
87 1915 11 2 1,000,000 Mexican Revolution
88 1913 2 4 140,000 Balkan Wars
89 1916 5 27 23,568,559 World War I
90 1920 6 4 6,708,204 Russian Civil War
91 1961 86 4 210,784 Iraqi-Kurdish conflict
92 1971 100 2 100,000 Kurdish rebellions in Turkey
93 1928 10 2 40,000 Second Italo-Senussi War
94 1938 23 2 9,671,401 Chinese Civil War
95 1934 4 2 100,000 Chaco War
96 1936 2 2 278,350 Second Italo-Ethiopian War
97 1938 4 2 707,107 Spanish Civil War
98 1941 9 5 22,360,680 Second Sino-Japanese War Part of World War II
99 1942 7 193 69,069,811 World War II

100 1940 2 2 173,071 Winter War Part of World War II
101 1941 2 2 27,080 Greco-Italian War Part of World War II
102 1943 4 3 387,333 Continuation War Part of World War II
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Table A1. Cont.

i ti Ti Bi Ci Name Note

103 1945 1 3 56,574 Soviet-Japanese War Part of World War II
104 1950 9 4 400,000 First Indochina War
105 1948 4 2 158,000 Greek Civil War
106 1948 2 2 35,000 Malagasy Uprising
107 1984 74 2 93,808 Kashmir Conflict
108 1953 11 2 193,697 La Violencia
109 1984 73 2 180,278 Internal conflict in Myanmar
110 1984 73 3 116,074 Arab-Israeli conflict
111 1948 1 2 84,116 Indian annexation of Hyderabad
112 1952 4 16 3,000,000 Korean War
113 1958 9 2 724,569 Algerian War
114 1987 67 3 34,000 Ethnic conflict in Nagaland
115 1965 21 18 3,144,873 Vietnam War
116 1964 18 2 500,000 First Sudanese Civil War
117 1963 6 5 100,000 Congo Crisis
118 1968 14 3 92,452 Angolan War of Independence
119 1966 9 4 141,421 North Yemen Civil War
120 1992 58 4 244,949 West Papua conflict
121 1969 11 2 74,965 Mozambican War of Independence
122 1992 57 7 25,000 Insurgency in Northeast India
123 1992 57 4 220,000 Colombian conflict
124 1969 4 2 1,732,051 Nigerian Civil War
125 1994 51 3 120,000 Moro Conflict
126 1995 52 2 35,917 CPP-NPA-NDF rebellion
127 1971 1 2 3,000,000 Bangladesh Liberation War
128 1983 18 2 866,025 Ethiopian Civil War
129 1989 28 2 504,158 Angolan Civil War
130 1983 16 4 134,164 Lebanese Civil War
131 1991 33 4 100,000 Insurgency in Laos
132 1999 43 4 1,574,802 War in Afghanistan
133 1999 43 2 45,000 Kurdish-Turkish conflict Part of the Kurdish rebellions in Turkey
134 1984 11 3 1,095,445 Soviet-Afghan War Part of War in Afghanistan
135 1984 9 6 564,041 Iran-Iraq War
136 2000 41 3 70,000 Internal conflict in Peru
137 1984 6 3 223,607 Ugandan Bush War
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Table A1. Cont.

i ti Ti Bi Ci Name Note

138 1994 23 2 1,414,214 Second Sudanese Civil War
139 1996 27 2 89,443 Sri Lankan Civil War
140 2003 35 2 387,298 Somali Civil War
141 2004 34 2 223,607 Lord’s Resistance Army insurgency
142 1991 7 4 38,000 Nagorno-Karabakh War
143 1991 2 2 32,091 Gulf War
144 1997 12 3 93,808 Algerian Civil War
145 1993 5 4 100,903 Bosnian War
146 1991 1 2 141,333 1991 Iraqi Civil War
147 1997 12 3 122,474 Sierra Leone Civil War
148 1999 13 3 300,000 Burundian Civil War
149 1994 1 2 800,000 Rwandan genocide
150 1997 2 2 447,214 First Congo War
151 2001 6 4 3,674,235 Second Congo War
152 2001 5 2 60,000 Ituri conflict Part of the Second Congo War
153 2011 20 4 585,423 War on Terror
154 2011 20 2 53,949 War in Afghanistan (2001-present) Part of the War on Terror and War in Afghanistan
155 2007 9 4 190,000 Iraq War Part of the War on Terror
156 2012 18 4 300,000 War in Darfur
157 2012 17 4 100,000 Kivu Conflict Part of the Second Congo War
158 2012 17 8 60,165 War in North-West Pakistan Part of the War on Terror and War in Afghanistan (2001-present)
159 2013 15 2 200,000 Mexican Drug War
160 2015 12 4 51,567 Boko Haram insurgency
161 2016 10 4 570,000 Syrian Civil War
162 2016 4 4 197,500 Iraqi Civil War (2014–2017)
163 2018 6 3 91,600 Yemeni Civil War
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