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Abstract 

We present new experimental and modeling data concerning imidazolium based-FILs synthesized 

with a hydroxyl group in the end of the cationic hydrogenated side chain and compared them with 

the analogous non-functionalized FILs in order to verify their suitability in the biomedical field. 

The thermophysical and thermodynamic properties of the neat coumpounds and the self-

aggregation behavior of FILs in aqueous solutions were measured and compared with theoretical 

results from the soft-SAFT equation of state, in good agreement with each other. Results showed 

that the presence of the hydroxyl group increases the density and viscosity of pure compounds and 

aqueous mixtures, whereas the thermal stability, melting, free volume, ionicity and self-

aggregation behavior decrease. These properties are improved with respect to the conventional 

perfluorosurfactants for the desired application, due to the full miscibility in water and the 

promising improved biocompatibility. 

Keywords: Fluorosurfactants; hydroxyl group; thermophysical and thermodynamic properties; 

self-aggregation; soft-SAFT. 
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1. Introduction 

The challenge of producing sustainable and green compounds has been one of the greatest efforts 

of academia and industries, prompting the development of “greener” ionic liquids (ILs). The major 

attribute of these compounds is the possibility to fine-tune their physicochemical properties by 

combining different cations and anions or functionalizing their structures, allowing the design of 

tailor-made ILs to specific applications [1,2]. 

The growing interest in task-specific ILs has empowered their functionalization through the 

introduction of functional groups in their structures, such as polar oxygenated features as hydroxyl, 

ester or ether groups [3]. The addition of polar groups can drastically reduce their cytotoxicity and 

ecotoxicity, as well as enhance their biodegradability, increasing their sustainability [4-7]. Several 

works showed that the introduction of a hydroxyl group in the cationic alkyl chain of imidazolium-

based ILs decreases the thermal stability and self-aggregation behavior while increasing the 

viscosity, density, polarity and hydrophilicity [3,8-10]. 

Fluorinated Ionic Liquids (FILs) are a family of ILs with fluorinated tags equal or longer than 

four carbon atoms in either ions structures [11]. FILs can be designed with exceptional properties 

such as low surface tension, chemical and biological inertness, high surfactant power, low vapor 

pressures, and capacity to rearrange in stable self-assembled supramolecular systems [11,12]. The 

enhanced properties of FILs are a consequence of the formation of a fluorinated nanosegregated 

domain, leading to three distinct solvation regions (polar, hydrogenated and fluorinated domains), 

upgrading their solubilization power [13]. FILs are of great interest in areas where greener 

fluorinated compounds are required [14]. Then, the interest in FILs as potential biomaterials in life 

sciences and medicine has grown with the aim to be used as components of pharmaceuticals, 
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artificial oxygen carriers and biomolecules/drugs delivery systems [2,15]. These applications are 

related to their valuable characteristics, which make them enhanced nanomaterials: (i) FILs with 

short cationic hydrogenated chains showed a total miscibility in water; [16] (ii) they have improved 

surfactant power due to their amphiphilic behavior, allowing the formation of self-assembled 

aggregates in aqueous systems; [16,17] and (iii) they can have low acute ecotoxicity in aquatic 

organisms and negligible cytotoxicity in human cell lines [4,11,18]. 

The full characterization of FILs properties is a lengthy and expensive task and several 

theoretical approaches have arisen to enable a quick screening. One good example is the soft–

Statistical Associating Fluid Theory (soft-SAFT) [19] which is a well-established Equation of 

State (EoS) grounded in statistical mechanical basis, where the intermolecular effects of a fluid 

are included in a coarse-grained molecular representation. In a recent work, [20] a thorough 

analysis of all FILs studied in literature by soft-SAFT proved its robustness to build FILs molecular 

models and accurately represent their structural features and properties in an intuitive way, keeping 

a high predictive capability [20]. 

In this work, two imidazolium-based FILs functionalized with a hydroxyl group in the tail of the 

cationic hydrogenated side chain (named as OH-FILs), conjugated with perfluorobutanesulfonate 

and perfluoropentanoate anions, were synthesized and characterized. (Table 1 shows structure and 

nomenclature). Melting and decomposition temperatures, density, viscosity, refractive index and 

conductivity were determined for OH-FILs. Moreover, the self-aggregation behavior, density, 

viscosity and ionic conductivity profile of OH-FILs in aqueous systems was analyzed. Previous 

work [4] shows that these OH-FILs have lower acute ecotoxicity than nonfunctionalized 

imidazoliums and pyridinium-based FILs. Results are discussed in terms of how the hydroxyl 

group can influence the pure and aqueous mixtures of FILs properties by comparing with the 
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analogous FILs without the hydroxyl group (see Table 1). Finally, the soft-SAFT EoS was used to 

build new molecular models for OH-FILs, describing the density and viscosity of the pure and 

binary systems with limited amount of experimental information. This theoretical approach allows 

us to better understand the microscopic behavior of OH-FILs, predicting the properties at different 

conditions and corroborating the experimental observations. 

Table 1  

Chemical structure and acronyms of the fluorinated ionic liquids cations and anions studied in 

this work. 

Cations structure Anions structure 

 

1-(2-hydroxyethyl)-3-methylimidazolium 

[C2(OH)C1Im]+ 

 

Perfluorobutanesulfonate 

[C4F9SO3]– 

 

1-ethyl-3-methylimidazolium 

[C2C1Im]+ 

 

Perfluoropentanoate 

[C4F9CO2]– 
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2. Soft-SAFT molecular models  

Soft-SAFT EoS [19,21] is a variant of the well-established SAFT EoS [22,23] based on 

Wertheim’s first-order thermodynamic perturbation theory for associating fluids [24-27]. Soft-

SAFT accounts for the different molecular effects on a system as separated entities (e.g. molecular 

shape and association), enabling the description of the thermophysical properties and phase 

behavior of complex systems like ILs and their mixtures, in a good agreement with experimental 

data [28-33]. Further details on the equation can be found in Appendix A. 

To accurately predict FILs properties through soft-SAFT EoS, a proper coarse-grained model 

has to be selected to describe the physical features of the FILs structure. This model is based on 

the assumption of the ILs intrinsic low ionic character due to the formation of short-lived ion pairs 

caused by the interactions between the ions, which are characterized through dispersion forces and 

specific steric interactions [34-36]. Through quantum information, molecular simulation results 

and previous experience, ILs are modelled as single chain molecules (cation and anion together) 

with a number of associating sites specified to account the highly anisotropic interactions between 

the counterions, such as hydrogen bonding [28-33]. Five molecular parameters must be defined to 

describe the molecules (chain length, m, spheres diameter, , and dispersive energy between 

monomers, ) and the association scheme (site-site association energy, εHB, and volume, HB). 

A methodical study of all FILs parameterized by soft-SAFT EoS [20] underlined the robustness 

of this approach and disclosed a systematic procedure to modelling FILs. The parameterization is 

executed through the transference of the parameters between FILs with common cationic or 

anionic structures, simplifying the screening of similar compounds and their properties with less 

amount of experimental data [20]. The models of [C2C1Im][C4F9SO3] [28] and 
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[C2C1Im][C4F9CO2] [29] were previously defined by three associating sites accounting for the 

counterions interactions and the negative charge delocatization caused by the fluorine and oxygen 

atoms. We had initially transferred this 3-association scheme to the model of 

[C2(OH)C1Im][C4F9SO3] and [C2(OH)C1Im][C4F9CO2]. However, the study of the electrostatic 

potential surfaces of OH-FILs (see Fig. 1), determined by using the MMFF94 force field [37] and 

performed through the open-source software Avogadro (version 1.2.0), [38] showed that this 

association scheme is not suitable. In fact, the addition of the hydroxyl group in the cationic 

hydrogenated chain contributes to higher charge delocalization and number of hydrogen bonding 

interactions between FILs cations. Consequently, a 5-site association scheme was selected: one 

associating site of type A represented the interactions between counterions, two sites of type B 

described the charge delocalization caused by the surrounding fluorines and the oxygens of the 

anion, and two additional sites were added to account for the hydroxyl group association, where a 

negative site C stands for oxygen and a positive site D for hydrogen (Fig. 1). To sum up, only 

interactions between A–B, A–C, B–D and C–D are allowed. 
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Fig. 1. Sketch of 5-associating sites model used to describe the hydroxyl-containing fluorinated ionic liquids within 

soft-SAFT framework. Blue and green represents the positive sites and red and yellow corresponds to negative sites. 

To guarantee the definition of a suitable model based on the systematic methodology to 

parameterize FILs, [20] several molecular parameters of OH-FILs were transferred from the FILs-

analogous values [28,29] following some restrictions [28-31,33] to reduce the parameters 

degeneracy and improve the transferability. As the anion is the structural feature that has higher 

influence in the transferability, [20] various parameters for FILs based on the same anion were 

transferred: the segments chain length, m, and the association parameters, HB and HB, were 

directly transferred from [C2C1Im][C4F9SO3] [28] and [C2C1Im][C4F9CO2], [29] to 

[C2(OH)C1Im][C4F9SO3] and [C2(OH)C1Im][C4F9CO2], respectively. For the two additional 

associating sites added to represent the interactions of the OH–OH groups, the association strength 

was transferred from ethanol model (εHB/kB=2388 K and HB=2932 Å3). [39] Besides, cross-

association between OH group and the anion/cation counterparts are allowed (A–C, B–D 

interactions). Then, the association strength values were calculated using the combining rules 

given in Eqs. A.4 and A.5 in Supplementary Data. The remaining segment diameter, , and 
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dispersive energy between segments, , for both OH-FILs were obtained by fitting to the 

experimental density data at atmospheric pressure. The final parameters sets of OH-FILs can be 

found in Table 2, as well as those previously published for the analogous FILs [28,29]. The binary 

mixtures of FILs + water were also studied, details on water model are in Appendix A, with soft-

SAFT parameters provided in Table 2 [40]. Cross-association interactions between FILs and water 

molecules were calculated using combining rules (Eqs. A.4 and A.5 in Supplementary Data). 

Table 2 

Molecular weight, molecular parameters and absolute average deviation (AAD) for the densities 

of the studied fluorinated ionic liquids and water. 

Substance 
Mw 

[g⸱mol-1] 
m 



[Å] 

/kB 

[K] 

HB/kB 

[K] 

HB 

[Å3] 

AAD 

[%] 

[C2(OH)C1Im][C4F9SO3] 426.26 7.320 3.818 324.0 3850 2250 0.028 

[C2(OH)C1Im][C4F9CO2] 390.21 7.233 3.788 328.1 3850 2250 0.046 

[C2C1Im][C4F9SO3]a 410.26 7.320 3.816 343.4 3850 2250 0.053 

[C2C1Im][C4F9CO2]b 374.21 7.233 3.762 338.8 3850 2250 0.008 

Waterc 18.01 1.000 3.154 365 2388 2932  

Parameters from references [28] for (a); [29] for (b) and [40] for (c). 

3. Results and discussion 

[C2(OH)C1Im][C4F9SO3] and [C2(OH)C1Im][C4F9CO2] FILs were synthesized pursuing the 

functionalization of the analogous FILs, [C2C1Im][C4F9SO3] and [C2C1Im][C4F9CO2] [12]. The 

melting point, thermal stability, density, viscosity, refractive index, ionic conductivity, and the 
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calculated fluidity and free volume parameters were studied to experimentally characterize them. 

The self-aggregation behavior of OH-FILs in aqueous solutions was obtained by measuring the 

density and viscosity as well as determining the critical aggregation concentrations (CACs) and 

the ionization degree of the aggregates. Moreover, the density and viscosity of the pure OH-FILs 

and of the FILs + water systems were characterized with soft-SAFT EoS to better understand the 

microscopic behavior of OH-FILs and to corroborate the experimental observations. This study 

discloses the influence on the physicochemical properties caused by the addition of a hydroxyl 

group in FILs, since it increases the biocompatibility and enhances their properties to be used in 

biological applications [4-7]. Consequently, the discussion is focused on two different structural 

features: (i) the influence induced by introducing a hydroxyl group in the cation structure and (ii) 

the influence of the anions [C4F9SO3]– and [C4F9CO2]– in these properties. 

3.1. Thermal analysis 

Thermal properties are crucial to decide the eligibility of a substance to a specific application, 

because the melting and decomposition temperatures determine the liquid and operative range of 

FILs. Thus, the onset temperature, Tonset, starting temperature, Tstart, melting temperature, Tm, and 

glass transition temperature, Tg, for OH-FILs were measured (Table A.1 in Supplementary Data). 

In Fig. 2, the Tonset versus Tm results were compared with the analogous FILs values previously 

reported [12]. In order to consider their applicability in biomedical applications, thermal stability 

must be ensured under 310.15 K (the human body temperature, black line in Fig. 2). FILs with Tm 

above this value are discarded, preferring those with higher Tonset values. All FILs showed a value 

of Tm lower than 310.15 K, and regarding the influence of the hydroxyl group, OH-FIL conjugated 

with [C4F9SO3]– anion has lower Tm and Tonset values than with the [C2C1Im]+ cation. The opposite 

behavior was observed for [C4F9CO2]– anion, where [C2(OH)C1Im]+ cation has higher values of Tm 
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and Tonset. The anion influence shows that [C4F9SO3]-FILs have higher values of Tonset. However, 

Tm is higher for OH-FIL based on [C4F9CO2]– anion. It can be inferred that both structural features 

(hydroxyl group and anion) highly influence these thermal properties. Nonetheless, all FILs show 

an adequate thermal behavior and the best T range was observed for [C2(OH)C1Im][C4F9SO3] due 

to the combination of a low Tm and a high Tonset. All FILs have Tm under 298.15K, ensuring thermal 

stability at room temperature, regarding the compound’s handling and storage. Another interesting 

feature is that both OH-FILs have a Tg (Table A.1 in Supplementary Data), whereas the analogous 

FILs did not show any Tg in the studied temperature range [12]. 

 

Fig. 2. Decomposition onset temperature versus melting temperature for [C2(OH)C1Im][C4F9SO3] (red, ⏺) and 

[C2(OH)C1Im][C4F9CO2] (blue, ⬛) FILs and comparison with [C2C1Im][C4F9SO3] (black, ○) and [C2C1Im][C4F9CO2] 

(black, □) literature values [12]. The line indicates the reference temperature of human body, 310.15 K. 

3.2. Thermophysical and transport properties 

FILs are tunable compounds and any alteration in their structure allows changes their 

thermophysical and transport properties. [41,42] Then, density, viscosity and conductivity have 
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been analysed. In addition, refractive index, related to the molar free-volume effects, forces 

between ILs molecules and their behavior in solution, [43] are also relevant for assessing their 

application. 

3.2.1. Density and viscosity 

The density and viscosity of OH-FILs were measured (Table A.2 in Supplementary Data) and 

the results are illustrated in Fig. 3. The values previously determined for analogous FILs are also 

represented for comparative purposes [12]. Fig. 3a shows the density results, where all FILs values 

linearly decrease when the temperature increases. The same behavior was found for other FILs in 

earlier publications [12,44]. The comparison between [C2(OH)C1Im]- and [C2C1Im]-FILs shows that 

the hydroxyl group significantly increases the density of the FILs. Besides, the [C4F9SO3]-FILs 

present higher densities than those with the [C4F9CO2]– anion. Finally, [C2C1Im][C4F9CO2] 

(1.47g⸱cm-3 at 313.15 K) is the FIL with lower density. 

The provided experimental data were used to parameterize the OH-FILs using soft-SAFT EoS, 

as explained in “soft-SAFT molecular models” Section. The resulting model calculations are 

plotted as solid lines in Fig. 3a, showing an excellent agreement with experimental data (deviations 

lower than 0.05%). Soft-SAFT calculations related to the analogous FILs [28,29] are plotted as 

dashed lines in Fig. 3a.  
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Fig. 3. Density (a), dynamic viscosity (b) and ionic conductivity (c) versus temperature at atmospheric pressure, for 

the pure FILs studied in this work, ([C2(OH)C1Im][C4F9SO3] and [C2(OH)C1Im][C4F9CO2]), and for the analogous FILs, 

[12] ([C2C1Im][C4F9SO3] and [C2C1Im][C4F9CO2]). The lines in (a) and (b) represent the soft-SAFT calculations (solid 

lines for OH-FILs and dashed lines for analogous FILs). 
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In order to verify the consistency and physical meaning of the fitted molecular parameters of the 

OH-FILs, two correlations of the molecular parameters with the molecular weight (Mw) of FILs 

were used (Fig. A.1 in Supplementary Data). The m3 refers to a rough approximation of the 

volume of the ILs individual molecules (volume of each group multiplied by the chain length), 

while m refers to the energy of the ILs molecules. The m3 values (Fig. A.1a in Supplementary 

Data) of [C4F9CO2]-FILs have a proportional increment with the Mw, whereas the [C4F9SO3]-FILs 

do not show significant differences. Since the m parameter was transferred from FILs [28,29] to 

OH-FILs, the volume differences from the addition of the hydroxyl group are considered by the  

parameter (Fig. A.1a in Supplementary Data). The OH-FILs show a higher Mw and a lower m 

value compared to the analogous FILs,[28,29] indicating that the addition of the OH group 

minimizes the inner van der Waals energy of the FILs molecules (Fig. A.1b in Supplementary 

Data). 

In Fig. 3b the viscosity data of OH-FILs and the analogous FILs is plotted [12]. The analysis of 

these results shows a high dependence and inverse proportionality with temperature. The addition 

of the hydroxyl group severely increases the viscosity, which can be related to the increment of 

the cationic interactions.[8] Conversely, the viscosity is higher for [C4F9SO3]-FILs than for 

[C4F9CO2]-FILs. 

In order to gain molecular insights into the behavior of the systems, the viscosity data was 

theoretically characterized by soft-SAFT coupled with FVT, [45,46] as described in Section 2.2. 

of Appendix A. Results are depicted in Fig. 3b where a good agreement with experimental values 

is observed. Only a small deviation between the two experimental points at the lowest temperatures 

are found. The FVT parameters are given in Table A.3 (Supplementary Data). 
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Results of viscosity and density show that OH-FILs and [C4F9SO3]-FILs present higher cohesive 

structures, resulting in more dense and viscous compounds. As expected, higher fluidity is found 

for non-functionalized FILs with the [C4F9CO2]– anion. 

3.2.2. Molar free-volume effects 

Refractive index enables the measurement of the electric polarizability of a molecule, providing 

useful information about the response of the molecules electron distribution to an electric field, 

which can also be induced by electric interactions with ionic solvents, allowing the study of the 

internal structure of molecules and their bounded systems [43,47]. Data for OH-FILs regarding 

the refractive index are presented in Table A.2 (Supplementary Data), showing inverse 

proportionality with temperature, the same behaviour of the analogous FILs [12]. The results 

indicate slightly higher values for [C2(OH)C1Im][C4F9CO2] in comparison with the other FILs. 

Considering the importance of defining the ability of FILs to dissolve, the molar free-volume 

effects was calculated for OH-FILs by Lorentz-Lorentz equation [47] (more details can be found 

in Appendix A). The calculated values of the molar refractions and molar volumes of OH-FILs are 

listed in Table A.4 (Supplementary Data) and they were also compared with the ones from 

analogous FILs [12]. The analysis of the molar refractions showed the tendency 

[C2C1Im][C4F9CO2] < [C2(OH)C1Im][C4F9CO2] < [C2(OH)C1Im][C4F9SO3] < [C2C1Im][C4F9SO3]; 

whereas the molar volumes are [C2C1Im][C4F9CO2] ≈ [C2(OH)C1Im][C4F9CO2] < 

[C2(OH)C1Im][C4F9SO3] ≈ [C2C1Im][C4F9SO3]. The relative ratio of the free volume over molar 

volume, fmVm
-1, was also calculated in this work [12,28,44] (see the methodology in Appendix A 

along with the values in Table A.4). The analysis of fmVm
-1 indicated that the effect of the anion 

and of the addition of a hydroxyl group is not significant (with slightly lower ratio values for 
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[C2(OH)C1Im][C4F9CO2]). The increment of the cationic interactions due to the OH group can 

compact the structure of the OH-FIL, diminishing the free spaces caused by the asymmetric 

counterions and bulky imidazolium cation of the analogous compounds. 

3.2.3. Walden plot  

The ionic conductivities of OH-FILs are reported in Fig. 3c and Table A.2 (Supplementary 

Data). The results show no significant differences between OH-FILs. The addition of the hydroxyl 

group decreases the ionic conductivity of OH-FILs, which can be related with the decrement of 

fluidity associated to the polar interactions by cationic OH groups, compacting the structure of the 

OH-FILs, diminishing their mobility. Fig. 4 reports the ionicity of the OH-FILs studied and the 

analogous FILs [12]. This property establishes a relation between the molar conductivity and the 

fluidity (inverse of viscosity) of a solution using the Walden Plot (Fig. 4). Ionicity provides useful 

information about transport properties, mobility and the possible formation of aggregates, whose 

presence decreases the mobility of FILs and increases their viscosity, resulting in an ionic 

behaviour away from the ideal electrolyte [11,12]. The ionicity of these compounds is mainly 

controlled by the molar concentration of ions, the charged aggregates and their mobility in the 

fluid. Thus, this property is a measure of the formation of aggregates due to the decrease of fluidity 

and conductivity of a compound. The standard classification of ionic liquids using the Walden plot 

(Fig. 4a) is pictured by a straight line representing the ideal behaviour corresponding to aqueous 

KCl solutions (fully dissociated, where the ions have equal mobility). In Fig. 4b, a closer look into 

the Walden plot shows a linear trend with temperature observed for each pure FIL. The ionicity is 

very similar for all FILs, with slightly higher values for [C4F9SO3]-FILs. The hydroxyl group 

functionalization does not affect this property. 
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Fig. 4. (a) Classification diagram for ionic liquids based on the Walden plot and (b) a closer look for the pure FILs 

studied in this work, ([C2(OH)C1Im][C4F9SO3] and [C2(OH)C1Im][C4F9CO2]), in a temperature range of 283.15-323.15 

K and for the analogous FILs, [12] ([C2C1Im][C4F9SO3] and [C2C1Im][C4F9CO2]). 
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3.3. Self-aggregation behaviour of fluorinated ionic liquids in aqueous solutions 

Knowledge on the self-aggregation behaviour and solvation mechanisms of FILs and how the 

structural features can affect the organization of the self-assembled components will allow the 

design of new compounds with improved surfactant power. In this section, the density, viscosity, 

ionicity and the critical aggregation concentrations (CACs) of FILs + water systems are disclosed. 

These results elucidate the insight of the OH-FILs self-aggregation mechanism in water and the 

verification of their usefulness as totally water-miscible fluorinated surfactants. 

3.3.1. Density, viscosity and ionicity 

The density and viscosity of the [C2(OH)C1Im][C4F9SO3], [C2(OH)C1Im][C4F9CO2] and 

[C2C1Im][C4F9CO2] FILs in aqueous solutions were determined in this work between 298.15 and 

318.15 K, whereas the ionic conductivity of OH-FILs was determined at 298.15 K (Table A.5 in 

Supplementary Data). The results were compared with the previous measurements of 

[C2C1Im][C4F9SO3] + water system [16]. The density and viscosity at 298.15 K are represented in 

Fig. 5, (the other temperatures are plotted in Figs. A.2 and A.3 in Supplementary Data, 

respectively). As expected, the increment of temperature decreases the density and viscosity of the 

binary systems. Through the detailed analysis of Fig. 5, the increment of water concentration 

reduces both properties. The results show the same trends obtained for the pure components, where 

higher values of density and viscosity are found to OH-FILs and [C4F9SO3]-FILs. 
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Fig. 5. Density (a) and dynamic viscosity for the xFIL range between 0 to 0.2 (b) and for the xFIL range between 0.2 to 

0.8 (c) versus FILs composition for the [C2(OH)C1Im][C4F9SO3], [C2(OH)C1Im][C4F9CO2] and [C2C1Im][C4F9CO2] 

determined in this work at 298.15 K, and for [C2C1Im][C4F9SO3] [16]. The lines represent the soft-SAFT + FVT 

calculations (solid lines for OH-FILs and dashed lines for analogous FILs). 
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In Fig. 5a, the predicted density by soft-SAFT EoS (lines) shows a good agreement with 

experimental data, although the density is slightly overestimated in the concentration range 0.2-

1.0 molar fraction of FIL (xFIL). Though, the qualitative trend is well represented. It is important 

to stress out that no fitting to the binary data were used, being the results a full prediction from the 

parameters adjusted to the pure FILs data. This empowers the modelling approach to predict other 

mixture conditions for which not experimental data are available. The calculations related to all 

range of temperatures are represented by the solid lines in Figs. A.2 and A.3 (Supplementary Data). 

Two approaches were executed in the viscosity description of the FILs + water system using 

soft-SAFT + FVT [45,46]. Firstly, the Spider-Web methodology [48] (see Section 2.2. of 

Appendix A) was used to reproduce the viscosity in all FILs composition range. However, the 

calculations did not show good agreement with the experimental data, as depicted in Fig. A.4 

(Supplementary Data), where the calculations for all FILs at 298.15 K are represented as an 

example. Looking at the tendency of the experimental data and the change of behaviour in the 

viscosity before and after a concentration of 0.2, xFIL a second approach was used. The Spider-

Web methodology was applied to optimize two sets of FVT parameters characterizing the ranges 

of 0-0.2 (Fig. 5b) and 0.2-0.8 (Fig. 5c) of xFIL (see FVT parameters on Table A.3 in Supplementary 

Data). As a consequence, different values of Lv and B were obtained while the  parameter was 

the same for the whole range of composition for each FIL. The use of two different sets of 

parameters is not usually executed in the soft-SAFT + FVT approach, but it has been previously 

used for describing the VLE of water, [40] to take into account the anomalous behaviour of the 

density at low temperatures. In this case a similar procedure has been considered for the FTV part, 

as the nanosegregation (applicable to higher concentrations and pure FIL) [13] and the different 

structuration behaviour of the molecules in aqueous solutions (evident in the range of lower FIL 
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compositions) [16,17] has a direct impact in the viscosity of the fluid. These structural changes 

cannot be considered neither by soft-SAFT theory nor by Free-Volume Theory approach, which 

are mean-field theories. Moreover, the very sharp decrease of the viscosity of the FILs after the 

addition of a few amount of water, which is associated with the mentioned structural changes, also 

difficult the viscosity modelling of water + FILs systems. This highly non-ideal behaviour can 

hardly be captured by the FVT method, for the reasons already mentioned; more detailed molecular 

approaches, such as molecular simulations should be used, but they are out of the scope of the 

current work. As far as the predictive power of the equation is concerned, It is also important to 

mention that the extension of the soft-SAFT FVT calculation to mixtures was done without the 

addition of any binary parameters for the viscosity. A change in the mixing rules, allowing the use 

of fitting binary parameters, can help to improve the description of aqueous systems [49] but this 

solution is more related to a less constrained model (with extra parameters) than including a 

physical interpretation of the behaviour of the mixture. 

The ionicity of FILs + water systems was obtained in the same way as for the pure systems (see 

“Walden plot” Section) and represented in Fig. 6. Experimental data for OH-FILs + water ionic 

conductivity were determined (Table A.5 in Supplementary Data) and compared with the former 

[C2C1Im][C4F9SO3] + water system [16]. The experimental results show that all the three systems 

have a similar ionicity behaviour (similar vertical distance to the ideal electrolyte line along of 

each own profile) (Fig. 6). Interestingly, an increment of ionicity from pure FIL until a maximum 

at a certain xFIL value is observed. After this value, the ionicity starts to decrease when the xFIL 

decreases. This behaviour is more evident to the [C4F9SO3]-FILs. The maximum can be related to 

the extremely high ionic conductivity that will be scrutinized in the next section. The addition of 

the hydroxyl group (comparing [C2(OH)C1Im][C4F9SO3] and [C2C1Im][C4F9SO3]) decreases the 
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“ideal” behaviour (more distance to the ideal electrolyte line) in the region of higher xFIL and 

increases it in the lower xFIL. Comparing both OH-FILs, the [C4F9SO3]– anion shows values closer 

to the “ideal” electrolyte than [C4F9CO2]–. These results indicate the formation of distinct 

aggregates of FILs in the aqueous solutions. These outcomes will be further supported by the 

analysis of the complete conductivity profile and CACs of OH-FILs in the next section. 

 

Fig. 6. Walden plot of [C2(OH)C1Im][C4F9SO3] + water and [C2(OH)C1Im][C4F9CO2] + water binary systems at 298.15 

K. For comparison purposes, the Walden plot of [C2C1Im][C4F9SO3] + water system was also included [16]. The arrow 

indicates the increment of molar fraction of the FILs in solution. 

3.3.1. Critical aggregation concentrations 

Amphiphilic molecules aggregate in aqueous solutions depending on the species and the 

medium. The formation of orientated colloidal aggregates occurs when the concentration of those 

species with long hydrophobic chains surpasses certain value. This leads to variation in the 

physicochemical properties and the narrow ranges of concentrations are known as CACs. 

According to Philips et al., [50] the first CAC, known as critical micellar concentration (CMC), 

corresponds to the value of concentration in which a first maximum change in gradient appears 
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when plotting ionic conductivity versus concentration. In this context, measurements of ionic 

conductivity are usually implemented in the ionic micellar studies [16,17,51]. The ionic 

conductivity of FIL aqueous solutions was measured at 298.15 K for OH-FILs (Fig. 7a) and 

compared with the analogous FILs [16,17]. The ionic conductivity data against xFIL are illustrated 

in Fig. 7a, where full miscibility in water is observed for the complete range of concentration (from 

pure water to pure FIL) of OH-FILs. Following Philips’ definition, [50] already implemented in 

FILs, [16,17,51] the CACs were determined, and values are reported in Table 3. The analysis of 

Fig. 7a shows that the gradual addition of FIL to water presents similar tendencies as in the 

literature, exhibiting two phases: a first step in which the ionic conductivity increases, followed 

by a second step in which values decrease after reaching a maximum [16]. This is the same 

behaviour found for the Walden Plots previously discussed. The mentioned increase in ionic 

conductivity in diluted systems can be explained by the rising number of free ions in the solution. 

However, at the CAC value, the number and mobility of charge carriers is reduced due to the 

increase in aggregate formation and the decrease in fluidity, resulting in a deviation from the linear 

behaviour [16]. 

Although all the studied FILs have multiple CACs, the most significant change in ionic 

conductivity behaviour occurs at lower values of xFIL, corresponding to the CMC (Table 3). Two 

more transitions were determined at lower xFIL, corresponding to second and third CACs (Table 3). 

The changes in the slopes of these plots were analysed according to Phillips definition, [50] and 

compared with the bibliographic values of [C2C1Im][C4F9SO3] [16] and [C2C1Im][C4F9CO2] [17] 

(Fig. 7b and Table 3). The three CACs can be related to the FILs total miscibility in water, 

indicating the formation of different structures along the increment of xFIL, concluding that a low 

xFIL is enough to assemble into colloidal aggregates. From the analysis of the influence of the FILs 
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structural features in the CACs, it is shown in Fig. 7b that the addition of a hydroxyl group: (i) 

does not significantly affect the CMC values; (ii) increases the second CAC on the case of 

[C4F9SO3]-FILs while does not significantly affect that of the [C4F9CO2]-FILs; and (iii) increases 

the third CAC of [C4F9SO3]-FILs and decreases the value of [C4F9CO2]-FILs. The 

[C2C1Im][C4F9SO3] shows the best self-aggregation behaviour, with lower values for all three 

CACs. All FILs studied, with only 4 carbon atoms in the anionic fluorinated tags, have an 

improved surfactant behaviour compared to the CMC values of the conventional 

perfluorosurfactants and their hydrogenated counterparts, with fluorine tags of 8 carbons 

(approximately 30 mmol.kg-1 for sodium perfluorooctanoate and ammonium perfluorooctanoate 

and 380 mmol.kg-1 for sodium octanoate) [52-54]. 

Fig. 7. (a) Conductivity profile of [C2(OH)C1Im][C4F9SO3] (red, ⏺) and [C2(OH)C1Im][C4F9CO2] (blue, ⬛) in aqueous 

solution at 298.15 K, determined in this work, and for [C2C1Im][C4F9SO3] (black, ○) and [C2C1Im][C4F9CO2] (black, 

□) [16,17]. (b) Critical aggregation concentration (CAC) values of OH-FILs in aqueous solution at 298.15 K 

determined in this work and for analogous FILs [16,17]. 

The degree of ionization of the aggregates, represented by α, can be found in Table 3. This 

parameter is associated to the charges fraction of the surfactant ions in the micelles, which suffer 
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neutralization through the micelle-bound counterions. It is calculated by the ratio of the linear 

segments slopes above and below the CACs. Even if the surfactant ions are supposedly dissociated 

in aqueous solutions, the molecules are partly associated with the counterions, enabling the 

formation of aggregates [16,17]. Therefore, a lower α value means an improved micelle packaging. 

Furthermore, the degree of counterion binding/condensed on the micellar surface was also 

determined, which derives from the degree of ionization as follows: 

β=1 െ 𝛼            [1] 

This β parameter can be correlated with the charge density at the aggregate surface, the aggregate 

size, and the hydrophobic nature of the counterions [16,17]. The increment of α values, and 

consequently decrease of β values, in the first and third transitions (Table 3, comparison between 

[C2(OH)C1Im][C4F9SO3] and [C2C1Im][C4F9SO3] [16]) proves that the aggregates can lose the 

packaging in their structures because OH group increases the FILs polarity. The second transition 

does not have significant changes. This variation is observed in second and third transitions for 

[C2(OH)C1Im][C4F9CO2] and [C2C1Im][C4F9CO2] [17]. On the other hand, [C4F9SO3]– anion have 

lower α and higher β values, indicating a better packaging (Table 3). 

The standard Gibbs free energy of aggregation, ΔGagg0 , for the ionic surfactants [55] was also 

determined in this study, and the values reported in Table 3. The pseudophase model of 

micellization [55] was considered by determining the standard Gibbs free energy, ΔGagg0 , for the 

ionic surfactants by Eq. 2: 

ΔGagg
0 =RT(1+β)lnxCAC          [2] 
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where R and T correspond to the universal gas constant and absolute temperature, respectively, 

and xCAC is the critical aggregation concentration defined in terms of molar fraction. This 

parameter stands for the free energy accounted in transferring one mole of surfactant from the 

aqueous solution to the micellar pseudophase in the aggregates form [55]. When the parameter 

values are negative, a spontaneous aggregation of the surfactant molecules happens. Furthermore, 

all OH-FILs show an improved surfactant behaviour compared to the conventional surfactants, 

demonstrating the possibility to decrease the FILs toxicity and allowing biodegradability which is 

the key advantage to use OH-FILs in the biomedical field. All FILs, in all transitions, show that 

the aggregation behaviour is always spontaneous, with negative ΔGagg0  values. More negative 

values were found for the non-functionalized FILs, especially for [C2C1Im][C4F9SO3], meaning an 

easy aggregation process for this IL. 
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Table 3 

Critical aggregation concentrations, CACs, ionization degree, , and Gibbs free energy of aggregation, G0
agg, of the fluorinated ionic liquids + 

water systems, determined by conductometry at 298.15 K. 

  [C2(OH)C1Im][C4F9SO3] [C2(OH)C1Im][C4F9CO2] [C2C1Im][C4F9SO3]a [C2C1Im][C4F9CO2]b 

First CAC xFIL 0.0004 0.0003 0.0003 0.0004 

 mmol⸱kg-1 19.65 18.32 14.55 20.96 

  0.91 0.79 0.79 0.87 

 G0
agg [kJ⸱mol-1] -21.4 -24.1 -24.7 -22.1 

Second CAC xFIL 0.0016 0.0012 0.0007 0.0014 

 mmol⸱kg-1 87.98 63.19 38.54 77.23 

  0.85 0.80 0.84 0.71 

 G0
agg [kJ⸱mol-1] -18.2 -20.1 -20.8 -20.9 

Third CAC xFIL 0.0024 0.0022 0.0015 0.0070 

 mmol⸱kg-1 125.8 119.0 81.03 341.4 

  0.79 0.55 0.29 0.37 

 G0
agg [kJ⸱mol-1] -18.1 -21.9 -27.5 -20.0 

Maximum xFIL 0.0509 0.0204 0.0867 – 

 mmol⸱kg-1 1312 797 1667 – 

Parameters from references (a) [16] and (b) [17]. 
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4. Conclusions 

The thermodynamic and thermophysical properties of hydroxyl functionalized FILs were 

determined in this work. Furthermore, the total miscibility and self-aggregation behaviour of OH-

FILs + water systems were investigated. Results were compared with the analogous FILs, with the 

aim to evaluate the influence of adding a hydroxyl group to the structure of the imidazolium cation 

and how it affects FILs properties. The experimental study was completed with theoretical 

calculations of the density and viscosity of pure FILs and aqueous mixtures with the soft-SAFT 

EoS, using a set of transferable parameters in good agreement with the experimental data. This 

model will allow us to obtain other FILs properties that are not available experimentally. 

Overall, the results show an increment in the density and viscosity of the pure OH-FILs and their 

aqueous mixtures with respect to the non-functionalized FILs, while a decrement of the thermal 

stability, melting temperature, free volume, ionicity and self-aggregation behaviour is noticed. 

However, when OH-FILs are compared with the conventional perfluorosurfactants, these novel 

compounds are total miscibility in the aqueous systems and show a higher surfactant behaviour. 

Furthermore, the lower ecotoxicity associated with the increment of the polarity by adding the 

hydroxyl group to FILs structure can be advantageous for the use of these compounds. 
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