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A Relationship Between Defective
Systems and Unit-Rank Modification
of Classical Damping

Uwe Prells
Michael I. Friswell
Department of Mechanical Engineering,
University of Wales, Swansea, Swansea SA2 8PP, UK

A common assumption within the mathematical modeling of
brating elastomechanical system is that the damping matrix
be diagonalized by the modal matrix of the undamped mo
These damping models are sometimes called ‘‘classical’’
‘‘proportional.’’ Moreover it is well known that in case of a re
peated eigenvalue of multiplicity m, there may not exist a
sub-basis of m linearly independent eigenvectors. These sys
are generally termed ‘‘defective.’’ This technical brief address
a relation between a unit-rank modification of a classical dam
ing matrix and defective systems. It is demonstrated that if a ra
one modification of the damping matrix leads to a repeated eig
value, which is not an eigenvalue of the unmodified system,
the modified system is defective. Therefore defective system
much more common in mechanical systems with general vis
damping than previously thought, and this conclusion should p
vide strong motivation for more detailed study of defect
systems.@S0739-3717~00!00602-4#

Introduction
The difference between general viscous damping and pro

tional damping was thoroughly investigated by Caughy@1#. He
gave an explicit formula for the family of proportional dampin
matrices. The basic property of a proportional damping matrix
that it can be diagonalized by the modal matrix of the undam
system. However in many applications a proportional dampin
not sufficient to match the model predictions and the data@2#.
Hence the proportional damping matrix has to be updated. T
issue has been addressed frequently in the last decade~Tong et al.
@3#, Bellos and Inman@4#, Starek and Inman@5#, Balmes @6#,
Garvey et al.@7#!. A common updating method is the unit-ran
modification @8#, which is of particular interest in control prob
lems @9#. As an example consider the proportionally damp
2-DoF model

M5I 2 , C5
1

3 F42A5 0

0 82A5
G , K5F1 0

0 4G , (1)
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which has two conjugate pairs of eigenvalues

l15l3* 52
42A5

6
1

j

6
A1518A5'20.29410.956j (2)

l25l4* 52
82A5

6
1

j

6
A75116A5'20.96111.754j . (3)

The rank-one modification of the damping matrix

Ĉ5C1xxT (4)

where

x5a~1,21!T (5)

leads fora5AA5/3 to a repeated eigenvaluel5211 j . Since
the matrix

l2M1lC1lxxT1K52
1

3 F 112 j A5~211 j !

A5~211 j ! 22~21 j !
G

(6)

has rank 1 there exists only one eigenvector for the repeated
genvalue. Hence the matrices

F Ĉ M

M 0
G and FK 0

0 2M
G (7)

of the corresponding first order system cannot be diagonal
simultaneously, i.e., the system is defective. For defective syst
only the Jordan decomposition is available@10#.

The above example suggests a general relation between
rank modification of classical damping and defectiveness. Give
classically damped vibrating elastomechanical system withn de-
grees of freedom~DoF! which is already transformed into diago
nal form, the eigenvaluesloi of

D~l!ªl2I n12lG1V2[diag~pi ! i 51, . . . ,n , (8)

whereG5diag(gi)i51, . . . ,n and V5diag(vi)i51, . . . ,n , can be cal-
culated from

det~D~lo!!505)
i 51

n

pi~lo!5:p~lo! (9)

with the well known solutions

loi52g i6 j v iA12~g i /v i !
2. (10)

The scope of this note is to explore whether a rank-one modifi
tion of the damping matrix

A5D~l!1lxxT, xPRn, (11)

can produce a nondefective system with repeated eigenvalue
the case that none of eigenvalues~10! is eigenvalue of~11!. Note,
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000 by ASME Transactions of the ASME

of Use: http://www.asme.org/about-asme/terms-of-use



d

i

o

-

h
i
t

-

n
e

lar

inor

all
not

the

Downloaded From
that the latter condition implies thatxiÞ0 for all i 51, . . . ,n. Of
course the modes corresponding toxi50 are not affected by the
modification. Thus the modes are decoupled into those affecte
the modification (xiÞ0) and those not affected (xi50). It will be
assumed that this has been done and that only the subsyste
modes affected by the modification is considered in the follow
analysis.

If the eigenvaluel i is repeated of multiplicitym then the char-
acteristic polynomial contains the factor (l2l i)

m. Hence the de-
rivative of the characteristic polynomial vanishes atl i , that is
~Lancaster and Tismenetsky@11#, p. 346!

d det~A!

dl
U

l5l i

5traceFAad
dA

dl GU
l5l i

50. (12)

Here the superscript ad denotes the adjungate ofA. Its element in
row i and columnk is defined by

~Aad! ik5~21! i 1k det~A~ku i !!, (13)

where the superscript (i uk) denotes the deletion of rowi and col-
umn k. Only in the caseAad(l i)50, which implies rank (A(l i))
,n21, there exist at least two linearly independent eigenvect
In general, for a repeated eigenvaluel of multiplicity r, the nec-
essary and sufficient condition for nondefectiveness is

rank~A~l!!5n2r . (14)

Only if ~14! holds true there existr linearly independent eigen
vectors for that eigenvalue. The main result of this note is th
under the assumptions made, a rank-one modification of
damping cannot produce a nondefective system with a repe
eigenvalue.

The next section contains the proof of the main result of t
paper. If desired the preliminary material may be omitted tak
the reader directly to the theorem at the end of the next sec
Examples are given in the last section.

1 Theorem on Defective Systems
As it has been explained above a necessary condition for

system described byA to be nondefective for a repeated eige
valuel is

Aad~l!50 (15)

which means that alln2 minors

mikªdet@A~ i uk!~l!#, i ,kP$1, . . . ,n% (16)

of sizen21 of A(l) have to be zero. A basic tool of the follow
ing investigation is the well known formula~see for instance Lan
caster and Tismenetsky@11#, p. 65!

det~Z1xyT!5det~Z!1yTZadx, (17)

where Z is an arbitrary square matrix andx,y are arbitrary
n-dimensional vectors. As an immediate consequence one fi
~see also Veselic´ @12#!

det~A~l!!5det~D~l!1lxxT!5p1l(
l 51

n

xl
2 p~ l !, (18)

where the superscript~l ! denotes the deletion of thel th factor
~see Eq.~9!! in p. Since the principal minorsmii of A have the
same structure asA we find

mii 5det~A~ i u i !!5det~D ~ i u i !!1l(
l 51

n21

~xl
~ i !!2p~ i l !

5p~ i !1l(
l Þ i

xl
2 p~ i l !, (19)
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wherex( i ) is an (n21)-dimensional vector resulting from deletio
of the i th element ofx. To calculate the off-diagonal minors on
needs some definitions. Suppressing the argumentl we define for
i ,k the diagonal matrix

D ~ i ,k!ªF pi 0

�

0 pk

GPC~k2 i 11!3~k2 i 11!. (20)

Moreover it is convenient to define the strictly upper triangu
matrix

N~ i ,k!ªF0 D ~ i ,k!

0 0 GPC~k2 i 12!3~k2 i 12!, (21)

then one finds fori ,k

(22)

Note that det(D(iuk))5dikp
(i), which means thatD ( i uk) on the right

side of ~22! is singular because thek21th row and thei column
are zero. Hence all minors of that matrix are zero except the m

det~@D ~ i uk!#~k21u i !!5p~ ik !. (23)

This result holds true also for the casesi ,kP$1,n%. This can be
verified from the above formulas with the convention to delete
block rows or columns that contain expressions which are
defined because they are outside the index range$1, . . . ,n%, as for
instanceP(n11,n) , N( i 11,0) or I 0 . As a summarizing result we find

@D ~ i uk!#ad5H ~21! i 1k21p~ ik !Eik21 , i ,k

diag~p~ i j !! j Þ i , i 5k

~21! i 1k21p~ ik !Ei 21k , i .k
J PC~n21!3~n21!,

(24)

where in generalEikªeiek
T andei is the i th column vector of the

identity matrix. Applying Eq.~17! to Eq. ~22! one finds foriÞk

mik5~21!k1 i 21lxixkp
~ ik !. (25)

SinceA is symmetric its adjungate is symmetric, too. Hence
expression~25! is invariant with respect to the interchange ofi
andk. Summarizing the findings so far

det~A~ i uk!!5H ~21!k1 i 21lxixkp
~ ik !, iÞk

p~ i !1l( l Þ ixl
2 p~ i l !, i 5k

(26)

and consequently

~A!ki
ad5H 2lxixkp

~ ik !, iÞk

p~ i !1l( l Þ ixl
2 p~ i l !, i 5k

. (27)

In the case thatl is an eigenvalue ofA then

p1l(
l 51

n

xl
2 p~ l !50 (28)

which may be rewritten as
APRIL 2000, Vol. 122 Õ 181
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pip
~ i !1lxi

2p~ i !1l(
l Þ i

xl
2 p~ i l !pi50 (29)

or equivalently

pi S p~ i !1l(
l Þ i

xl
2 p~ i l !D 52lxi

2p~ i !. (30)

If, in addition, l is not eigenvalue ofD then piÞ0 for all i
51, . . . ,n. Hence one can replace the diagonal ofAad by
2lxi

2p( i )/pi yielding

Aad52lpD21xxTD21. (31)

Note, that~31! implies trace (Aad)52lpiD21xi2, which sug-
gests that the adjungate ofA is zero only under certain conditions
The following theorem clarifies the situation.

Theorem: Let D and A be defined as in Eqs. (8) and (11),
respectively. If none of the eigenvalues of D are eigenvalues
then if A has a repeated eigenvalue then A is defective

Proof: If l is eigenvalue ofA thenp1l( i 51
n xi

2p( i )50. Since
l is not an eigenvalue ofD, piÞ0 and hencexiÞ0 for all i
51, . . . ,n. Otherwise the matrixxxT would contain a zero col-
umn and row and one eigenvalue ofA would be an eigenvalue o
D. One may also conclude that neitherp( i ) nor p( ik) are zero.
Hence for iÞk the minor mik5(21)i 1k11lxixkp

( ik) can only
become zero ifl50. But this is not possible because the det
minant ofA would lead top50, which means thatl is an eigen-
value ofD in contrast to the assumption. HenceAadÞ0 and thusA
has rankn21 and therefore the system is defective.

In the next section some examples are presented.

2 Repeated Pole Placement
To calculate examples the inverse problem has to be solve

find a vectorx such that the systemA has given eigenvalues
Since the eigenvalue of interest is repeated there are two co
tions: the determinant and the derivative of the determinant w
respect to the eigenvalue have to be zero, that is

p1l(
i 51

n

xi
2p~ i !50 (32)

p81(
i 51

n

xi
2~lp~ i !81p~ i !!50, (33)

where ~ . . . !8 denotes the derivative with respect tol, and all
polynomials and derivatives are evaluated at the repeated e
value. Note that these equations are linear inxi

2. Hence one may
write

(34)

Since the vectory is real-valued we may double the order of th
equation to get

VT~l!y52q~l!, (35)

where V5@Re$H%,Im$H%#PRn34 and qT5(Re$g%T,Im$g%T).
Givenm<2n complex scalarsl i , i 51, . . . ,m there exists a vec-
tor x such thatD(l)1lxxT has alll i as repeated eigenvalues
and only if
182 Õ Vol. 122, APRIL 2000
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Moreover the solutionx is real-valued if a vectorz can be chosen
such that all components of the vector

y~z!52T1f1TKz (37)

are non-negative. The columns ofTK form a basis of all vectorsu
such thatTu50. The corresponding subspace is called the ker
of T. In practical applications one may introduce additional co
straints on the remaining eigenvalues by expanding the linear
verse problemTy52f correspondingly. If condition~36! is sat-
isfied it is straightforward to calculate the normal solutionȳª
2T1f and a representationTK of the kernel ofT. The matrixT
has a nontrivial kernel if 4m,n. In this case there exists a solu
tion spacey(z) generated by the kernel ofT. The problem to
determine allz that leads to non-negative solutionsy(z) is a com-
mon problem in linear programming@13#.

2.1 Example 1. Consider the example presented in the i
troduction, i.e., the casem51, n52. Note that in this caseT
5VTPR432 and f5qPR4. A necessary condition for the exis
tence of a solutionxPR2 is that atl the rank of the matrix

G~l!ª@VT~l!,q~l!#PR433 (38)

is two. In Fig. 1 the inverse condition number ofG is plotted over
the phase plane~Re$l%,Im$l%!P@22,0#3@0,2#. There is a distinct
minimum atl5211 j , that leads to the solutionx5a(1,21)T

~see Eq.~5!!. Indeed, as stated by Theorem 1, the resulting no
proportionally damped system has no basis of eigenvectors.

2.2 Example 2. The following example covers the case o
nontrivial kernel TK . Let diag(G)5(1,2,1,3,2)/2 and diag(V2)
5(10,5,7,8,12), which leads to conjugate pairs of eigenvalu
~rounded! diag(L0)5(2162j, 21.562.4j , 20.562.6j , 20.5
63.12j , 2163.32j ). In this case the matrixT has a nontrivial

Fig. 1 The inverse condition number of G as a function of the
eigenvalue l
Transactions of the ASME
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kernel of dimension one. Hence there exists a solution space,
is,

y~z!52T1f1TKz, (39)

whereTTK50. In order to find all solutionsx for the repeated
eigenvaluel520.813 j one has to determine all scalarsz such
that the vector

y~z!5S 0.2263
0.5531
0.0535

21.3545
0.0185

D 1S 0.3330
0.7452
0.1474
0.3715
0.4172

D z, (40)

has no negative components. Obviously everyz>1.3545/0.3715
'3.65 lead to a non-negative solution. For instance the choiz
53.75 leads tox5(1.2145,1.8297,0.7786,0.1962,1.2581)T. The
modified system has four conjugate pairs$21.4562.4j ,20.61
62.59j ,20.863 j ,20.863 j % and two real eigenvalues$20.82,
27.83%, which correspond to overdamped modes.

Conclusions
This technical brief has highlighted that defective systems m

be more common that many engineers believe. It has been pr
that if a unit-rank modification is performed on a system w
classical damping, and this results in repeated eigenvalues,
the modified system is defective. The theorem, as formula
requires that the eigenvalues of all the modes affected by
modification are changed. The conditions on the modification m
suggest that the theorem has limited applicability. However, th
are two counter arguments to this. The first is that there are ind
many systems that do consist of a rank one modification, for
ample the addition of a discrete damper to a lightly damped st
ture. Second, it is not suggested that other modifications do
lead to defective systems, it is just that a proof of the conditio
required in the case of general viscous damping has proved
sive. Indeed, the authors believe that many, if not most, nonc
sically damped systems with repeated eigenvalues are defec
The challenge, which the authors are continuing to pursue, i
rigorously prove the conditions required to produce a defec
system. We encourage other researchers to rise to this challe
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Exact Solutions for Longitudinal
Vibration of Multi-Step Bars
with Varying Cross-Section

Q. S. Li
Department of Building and Construction,
City University of Hong Kong,
Tat Chee Avenue,
Kowloon, Hong Kong

Using appropriate transformations, the equation of motion
free longitudinal vibration of a nonuniform one-step bar is
duced to an analytically solvable equation by selecting suit
expressions, such as power functions and exponential func
for the area variation. Exact analytical solutions to determine
longitudinal natural frequencies and mode shapes for a one
nonuniform bar are derived and used to obtain the freque
equation of multi-step bars. The new exact approach is prese
which combines the transfer matrix method and closed form
lutions of one step bars. A numerical example demonstrates
the calculated natural frequencies and mode shapes of a te
sion transmission tower are in good agreement with the co
sponding experimental data, and the selected expressions are
able for describing the area variation of typical high-ri
structures.@S0739-3717~00!00302-0#

Introduction
A broad range of engineering problems involves longitud

vibration analysis of uniform and nonuniform bars. A great d
of research on longitudinal vibration of structural components
taken place over the last decade, as reviewed by Timosh
et al. @1#, in which references traced back to one hundred y
ago. The free longitudinal vibrations of uniform rods have b
thoroughly discussed in the literature and the solutions are
known ~e.g., Meirovitch@2#!. However, in general, it is not po
sible or, at least, very difficult to get the exact solutions of dif
ential equations of free longitudinal vibrations of bars with va
ing cross-section. These exact bar solutions are available on
certain bar shapes and boundary conditions. Analytical solu
for transverse vibration of beams with linearly varying sec
were proposed by Ward@3#. Conway et al.@4# obtained an exac
solution for a conical beam in terms of Bessel functions. Wang@5#
and Bapat@6# derived the closed-form solutions for the free lo
gitudinal vibration of exponential and catenoidal bars. Eisenbe
@7# found exact longitudinal natural frequencies of a varia
cross-section rod with polynomial variation in the cross-secti
area and mass distribution along the member using exact ele
method. Lau@8# and Abrate@9# derived closed-form solutions fo
the free longitudinal vibration of rods whose cross-section va
as A(x)5A0(x/L)2 and A(x)5A0@11a(x/L)#2, respectively
Kumar and Sujith@10# obtained exact solutions for the longitu
nal vibration of nonuniform rods whose cross-section varie
A(x)5(a1bx)n andA(x)5A0 sin2(ax1b).

The objective of this paper is to present exact solutions fo
longitudinal vibration of one-step and multi-step bars with vary
cross-section. In this paper, exact analytical solutions for free
gitudinal vibration of a one step nonuniform bar are derived
selecting appropriate expression of area variation and usin
propriate transformations. The free longitudinal vibration

Contributed by the Technical Committee on Vibration and Sound for public
in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received Nov. 199
Associate Technical Editor: A. Vakakis.
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amulti-step bar is a complex problem, and the exact solution
this problem has not previously been obtained. Use of the e
solution of a one-step bar together with a transfer matrix met
is presented in this paper in order to resolve this problem.

One-Step Bar
The equation for longitudinal vibration mode function,U(x),

of a nonuniform bar shown in Fig. 1 is as follows~Li et al.
@11,12#!

EA~x!
d2U

dx2 1E
dA~x!

dx

dU

dx
1rA~x!v2U50 (1)

wherev is the circular natural frequency and other parameters
defined in Fig. 1.

It is difficult to find the exact solutions of Eq.~1! for general
cases, because the coefficients in the equation vary with the c
dinatex. It is obvious that the exact solutions are dependent on
area variation,A(x). Thus, the exact solutions of Eq.~1! may be
obtained by means of reasonable selection forA(x). In this paper,
two important cases are considered and discussed.
Case A: Expression ofA(x) is a power function

A~x!5aS 11b
x

l D
n

(2)

in which a, b and n are constants which can be determined
terms of the values ofA(x) at three control sections.

Substituting Eq.~2! into Eq. ~1! one obtains

d2U

dz2 1
n

z

dU

dz
1l2U50 (3)

in which

z511b
x

l
, l25

rv2l 2

Eb2 (4)

Setting

U5~lz!nZ, n5
12n

2
(5)

and substituting Eq.~5! into Eq.~3! yield the Bessel’s equation o
the nth order as follows

d2Z

dz2 1
1

z

dZ

dz
1S 12

n2

z2DZ50 (6)

Whenn is not an integer,U(x) is given by

Fig. 1 A cantilever bar with varying cross-section
184 Õ Vol. 122, APRIL 2000
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U~x!5S 11b
x

l D
nH C1JnFlS 11b

x

l D G1C2J2nFlS 11b
x

l D G J
(7)

The eigenvalue equation is

Jn~l!J2~n21!~lu!52J2n~l!Jn21~lu! for a cantilever bar
(8)

or

Jn~l!J2n~lu!5J2n~l!Jn~lu! for a fixed-fixed bar (9)

where

u511b

Whenn is an integer, in Eqs.~7!–~9!, J2n(l) should be changed
to Yn(l) andJ2(n21)(l) should be2Yn21(l).

Solving the eigenvalue equation one obtains thejth eigenvalue,
l j ( j 51,2,3, . . . ), andsubstitutingl j into Eq. ~4! one yields the
j-th circular natural frequency,v j , as follows

v j5
l j ubu

l
AE

r
j 51,2,3, . . . (10)

Whenn52, thenn52
1
2, the eigenvalue equation is

tglb5l~11b! for a cantilever bar (11)

or

sinlb50

l j5
j p

b
J for a fixed-fixed bar (12)

The first six eigenvalues,ubul j ( j 51,2,3,4,5,6), of a cantileve
bar with various values ofb for the casen52 are calculated and
listed in Table 1~for b.0) and Table 2~for b,0).
Case B: Expression ofA(x) is an exponential function

A~x!5ae2b~x/ l !, (13)

The parameters,a, b can be determined in terms of the values
A(x) at two control sections. Substituting Eq.~13! into Eq. ~1!
obtains a differential equation with constant coefficients as

d2U

dx2 2
b

l

dU

dx
1h2U50 (14)

in which

Table 1 The first six eigenvalues, l jb, of a cantilever bar with
A „x …Äa„1¿b„x Õ l ……2 for bÌ0

Mode

b 1 2 3 4 5 6

0 1.5708 4.7124 7.8540 10.9956 14.1372 17.278
1 1.1653 4.6038 7.7893 10.9492 14.1010 17.248
5 0.6940 4.5315 7.7463 10.9185 14.0770 17.229

10 0.5210 4.5130 7.7390 10.9120 14.0720 17.224

Table 2 The first six eigenvalues, l jb, of a cantilever bar with
A „x …Äa„1¿b„x Õ l ……2 for bË0

Mode

b 1 2 3 4 5 6

0 1.5708 4.7124 7.8540 10.9956 14.1372 17.278
0.3 1.8038 4.8011 7.9076 11.0340 14.1661 17.302
0.6 2.1745 5.0035 8.0379 11.1285 14.2061 17.363
0.9 2.8362 5.7175 8.6585 11.6548 14.6856 17.750
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h5vAr

E
(15)

The general solution ofU(x) is found as

U~x!5ebx/2l S C1 cos
cx

l
1C2 sin

cx

l D (16)
e

r

c

t
f

r
e
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where

c25
l 2

4 S 4h22
b2

l 2 D (17)

The eigenvalue equations and circular natural frequencies ar
follows
tanc52
2

b
c

v j5
1

l
AE

r FCj
21S b

2 D 2G , j 51,2, . . .

v j'
Cj

l
AE

r
, for small b and j >2

6 for a cantilever bar (18)

or

sinc50

v j5
1

l
AE

r F ~ j p!21S b

2 D 2G , j 51,2, . . .

v j'
j p

l
AE

r
, for small b and j >2

6 for a fixed-fixed bar (19)
of
last

M
for
and
of

the
The j -th mode shape function for a cantilever bar and a fix
fixed bar can be written as

U j~x!5ebx/2l sin
Cjx

l
(20)

The first six eigenvalues,Cj ( j 51,2,3,4,5,6), of a cantileve
bar with various values ofb are calculated and listed in Table 3
It can be seen from the results presented in Table 1 that, like
case of a cantilever bar, the lowest natural frequency is affe
most by the taper. For higher modes, the natural frequencies
close to those of corresponding uniform bars. The same con
sions can be draw from Table 2. It can be seen from Table 1
all the natural frequencies, including the lowest and higher
quencies, are less than those of corresponding uniform bars w
b.0. However, the results presented in Table 2 show that all
natural frequencies for the case ofb,0 are greater than those o
corresponding uniform bars. Table 3 shows that the variation
Cj with b is similar to that ofl jb with b presented in Table 2.

Multi-Step Bars
A multi-step bar is shown in Fig. 2. It is assumed that the a

of section in each step varies withx. The equation of mode shap
function of thei -th step bar is as follows

EAi~x!
d2Ui

dx2 1E
dAi~x!

dx

dUi

dx
1rAi~x!v2Ui50 (21)

Table 3 The first six eigenvalues, Cj , of a cantilever bar with
A „x …ÄaeÀb„x Õ l …

Mode

b 1 2 3 4 5 6

0 1.5708 4.7124 7.8540 10.9956 14.1372 17.278
1.0 1.8350 4.8150 7.9164 11.0400 14.1713 17.306
2.0 2.0261 4.9115 7.9780 11.0847 14.2063 17.335
4.0 2.2878 5.0865 8.0962 11.1743 14.2753 17.392
d-

.
the
ted
are

clu-
hat
re-
hen
the
f
of

ea

The general solution of mode shape function for thei -th step bar
can be expressed as

Ui~x!5Ci1Si1~x!1Ci2Si2~x! (22)

wherei denotes thei th step andq is the total step number~Fig. 2!,
Si1(x) andSi2(x) are special solutions of mode shape functions
the i th step bar, which can be found from those derived in the
section for the Case A and Case B.

The transfer matrix method~TMM ! is often used for structures
composed of one-dimension elements. The applications of TM
are also limited by possible occurrence of numerical problems
certain cases, which have been extensively discussed by Yong
Lin @13#. But, it has some advantages in computations: ease
programming and small memory requirements, etc. Thus,

Fig. 2 A multi-step bar with varying cross-section

7
3
2
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transfer matrix method is adopted herein to establish the equa
of mode shape function and the eigenvalue equation for a m
step bar.

The relationship between the parameters,Ui1 ~longitudinal dis-
placement! and Ni1 ~axis force! at the end 1 andUi0 ,Ni0 at the
end 0 of thei th step bar~Fig. 3! can be expressed as

FUi1

Ni1
G5@Ti #FUi0

Ni0
G (23)

in which

@Ti #5@S~xi1!#@S~xi0!#21

@S~xi0!#5F Si1~xi0! Si2~xi0!

EAi0Si18 ~xi0! EAi0Si28 ~xi0!
G

@S~xi1!#5F Si1~xi1! Si2~xi1!

EAi1Si18 ~xi1! EAi1Si28 ~xi1!
G (24)

Ui05Ui~xi0! Ui15Ui~xi1!

Ni15Ni~xi1!, Ni05Ni~xi0!, EAi15EAi~xi1!,

EAi05EAi~xi0!

@Ti # is called the transfer matrix because it transfers the par
eters at the end 0 to those at the end 1 of thei th step bar.

Since

Ui05Ui 21,1, Ni05Ni 21,1 (25)

The equation for the top step bar (i 5q, Fig. 2! can be established
by use of Eqs.~23! and ~25! repeatedly as follows

FUq1

Nq1
G5@T#FU10

N10
G (26)

in which

@T#5 bTqc bTq21c¯@T1#

@T# is a matrix which can be written as

@T#5FT11 T12

T21 T11
G (27)

If a multi-step bar has lumped masses as shown in Fig. 4, then

Fig. 3 The i th step

Fig. 4 A multi-step bar with lumped masses
186 Õ Vol. 122, APRIL 2000
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lti-

m-

, the

transfer matrix@Ti # should be replaced by@Tmi#,

@Tmi#5F 1 0

2v2mi 1G @Ti # (28)

According to the following boundary conditions of a multi-ste
cantilever bar~Fig. 2!,

x50, U1050

x5 l , Nq150J (29)

we obtain the eigenvalue equation as

T2250 (30)

According to the following boundary conditions for a multi-ste
fixed-fixed bar,

x50, U1050

x5 l , Nq150J (31)

the eigenvalue equation is found as

T1250 (32)

After the natural frequencies of a multi-step bar have been fou
the mode shapes of a multi-step bar can be determined by us
Eq. ~22! and the general solutions of each step bar.

Numerical Example
Wuhan Television Transmission Tower~Wuhan T.V. Tower!

located in Wuhan, China, is a reinforced concrete tube struct
its geometric configuration is shown in Fig. 5. The top of t
tower is 221 meters. The height of the main tower body~main
structure! is 187 meters. The main structure was dynamica
tested by Li et al.@14#. The objective of this numerical example
to determine the longitudinal natural frequencies and vibrat
mode shapes of the main structure of Wuhan T.V. Tower by
proposed method.

Wuhan T.V. Tower is treated as a cantilever multi-step bar w
varying cross-section for free vibration analysis. Because
variation of cross-sectional area of the tower is complicated,
main structure is divided into 18 steps for computation. Since
main structure is a tube and the variation of its diameter in a s
along the height is linear, the distribution of cross-sectional a
in the i th step can be described by

Ai~x!5a i~11b ix! i 51,2, . . . ,18 (33)

The mass per unit volume and Young’s modulus of the m
structure have been found as@14#

r i5r5constant52.513103 kg/m3,

Ei5E5constant53.143107 kg/m2

Using the following formula

@T#5@T1#@T2#¯@T18#

and Eq.~23! obtains@T# which can be written as Eq.~27!. Substi-
tuting T22 into Eq. ~30! yields the eigenvalue equation. Solvin
the eigenvalue equation obtains the first circular natural
quency,v1 , as 42.16. In order to examine the accuracy of t
methods proposed in this paper, the finite element method~FEM!
is also employed to calculate the structural dynamic characte
tics of this tower. This main structure was divided into 40 unifor
steps~elements!. The calculated value ofv1 by the finite element
method is 42.36. Although the result obtained by FEM is alm
the same as that calculated by the present method, the com
consuming time of FEM is much more than that of the pres
method. Li et al.@14# reported that the field-measured value of t
first circular natural frequency is 41.98. This illustrates that
Transactions of the ASME

of Use: http://www.asme.org/about-asme/terms-of-use



h

en-
ond-

ep
alue
nted
so-
re-

ars
are
are

tural
ood

re-
one
er of
d
nite
tical
. It
cted
ss-

,’’

n-

J.

ri-

ith

nd

al

ll

ht
&

ic

-

Downloaded From
computed value ofv1 by the present method is very close to t
measured one. The assumptions of the area variation are
justified.

Substituting the first natural frequency,v1 , into Eq. ~23!, and
settingU1050, N1051, and repeatedly using Eq.~23! one obtains

Fig. 5 Wuhan T.V. Tower
Journal of Vibration and Acoustics
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thus

the first mode shape. It should be noted that using the aforem
tioned procedure, the higher natural frequencies and corresp
ing mode shapes could also be determined.

Conclusions
The general solutions for free longitudinal vibration of one-st

nonuniform bars are derived and used to obtain the eigenv
equation of multi-step bars. The new exact approach is prese
which combines the transfer matrix method and closed-form
lutions of one step bars derived in this paper. The calculated
sults of the first six eigenvalues of cantilever nonuniform b
show that the fundamental natural frequencies of those bars
affected most by the taper, but, the higher natural frequencies
close to those of corresponding uniform bars.

The numerical example demonstrates that the calculated na
frequencies and mode shapes of Wuhan T.V. Tower are in g
agreement with the corresponding experimental data and the
sults determined by FEM. This numerical example shows that
of the advantages of the present method is that the total numb
the segments~steps or elements! required by the proposed metho
could be much less than that normally used in conventional fi
element methods. Therefore, the proposed method has prac
significance for free vibration analysis of nonuniform structures
is also shown through the numerical example that the sele
expressions are suitable for describing the variation of cro
sectional area of typical high-rise structures.

References
@1# Timoshenko, S. P., Young, D. H., and Weaver, Jr., W., 1974,Vibration Prob-

lems in Engineering, McGraw Hill, New York.
@2# Meirovitch, L., 1967,Analytical Methods in Vibration, MacMillan, New York.
@3# Ward, P. F., 1913, ‘‘Transverse Vibration of Bars of Varying Cross Section

Philos. Mag.,25, pp. 86–106.
@4# Conway, H. D., Becker, E. C. H., and Dubil, J. F., 1964, ‘‘Vibration Freque

cies of Tapered Bars and Circular Plates,’’ ASME J. Appl. Mech.,31, pp.
329–331.

@5# Wang, G. Y., 1978,Vibration of Building and Structures, Science and Tech-
nology Press, Beijing.

@6# Bapat, C. N., 1995, ‘‘Vibration of Rods with Uniformly Tapered Sections,’’
Sound Vib.,185, pp. 185–189.

@7# Eisenberger, M., 1991, ‘‘Exact Longitudinal Vibration Frequencies of a Va
able Cross-Section Rod,’’ Appl. Acoust.34, pp. 123–130.

@8# Lau, J. H., 1984, ‘‘Vibration Frequencies for a Non-Uniformed Beam w
End Mass,’’ J. Sound Vib.,97, No. 3, pp. 513–521.

@9# Abrate, S., 1995, ‘‘Vibration of Non-Uniform Rods and Beams,’’ J. Sou
Vib., 185, pp. 703–716.

@10# Kumar, B. M., and Sujith, R. I., 1997, ‘‘Exact Solutions for the Longitudin
Vibration of Non-Uniform Rods,’’ J. Sound Vib.,207, No. 5, pp. 721–729.

@11# Li, Q. S., Cao, H., and Li, G., 1994, ‘‘Analysis of Free Vibrations of Ta
Buildings,’’ ASCE J. Eng. Mech.,120, No. 9, pp. 1861–1876.

@12# Li, Q. S., Cao, H., and Li, G., 1996, ‘‘Static and Dynamic Analysis of Straig
Bars with Variable Cross-Section,’’ International Journal of Computers
Structures,59, No. 6, pp. 1185–1191.

@13# Yong, Y., and Lin, Y. K., 1989, ‘‘Propagation of Decaying Waves in Period
and Piecewise Periodic Structures of Finite Lengths,’’ J. Sound Vib.,129, No.
2, pp. 99–118.

@14# Li, Q. S., Cao, H., and Li, G., 1995, ‘‘Calculation of Free Vibration of High
Rise Structures,’’ Asian J. Structural Eng.,1, No. 1, pp. 17–25.
APRIL 2000, Vol. 122 Õ 187

of Use: http://www.asme.org/about-asme/terms-of-use


	A Relationship Between Defective
	Exact Solutions for Longitudinal

