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C=C+xx" (4)
where
A common assumption within the mathematical modeling of vi-
brating elastomechanical system is that the damping matrix can x=a(1,-1)" (%)

be diagonalized by the modal matrix of the undamped model. ) .
These damping models are sometimes called “classical” dgads fora= J5/3 to a repeated eigenvalae= —1+]. Since
“proportional.” Moreover it is well known that in case of a re- the matrix
peated eigenvalue of multiplicity m, there may not exist a full
sub-basis of m linearly independent eigenvectors. These system
are generally termed “defective.” This technical brief addresses
a relation between a unit-rank modification of a classical damp- (6)
ing matrix and defective systems. It is demonstrated that if a rank- ) ] )
one modification of the damping matrix leads to a repeated eigef@s rank 1 there exists only one eigenvector for the repeated ei-
value, which is not an eigenvalue of the unmodified system, tHgnvalue. Hence the matrices
the modified system is defective. Therefore defective systems are .
much more common in mechanical systems with general viscous c M
damping than previously thought, and this conclusion should pro- M 0
vide strong motivation for more detailed study of defective
systems[S0739-371{00)00602-4 of the corresponding first order system cannot be diagonalized

simultaneously, i.e., the system is defective. For defective systems

only the Jordan decomposition is availabl®].

The above example suggests a general relation between unit-

Introduction rank modification of classical damping and defectiveness. Given a

classically damped vibrating elastomechanical system wide-

The difference between general viscous damping and propgr- L : o
tional damping was thoroughly investigated by Caughy He %ielefzrﬁ: f{ﬁsdeﬁgﬁea?/zuv;gléhoés already transformed into diago
1 (o]}

gave an explicit formula for the family of proportional damping
matrices. The basic property of a proportional damping matrix is 2 2_ i .
that it can be diagonalized by the modal matrix of the undamped DOV =M+ 20+ Q7 =diagpy)i-1
system. However in many applications a proportional damping Wghere I =diag(y);-1
not sufficient to match the model predictions and the daja culated from
Hence the proportional damping matrix has to be updated. This N
issue has been addressed frequently in the last déTadeg et al.

[3], Bellos and Inmar{4], Starek and Inman5], Balmes[6], de(DU\o))=0=H Pi(No)=:pP(No) 9
Garvey et al[7]). A common updating method is the unit-rank =1

modification[8], which is of particular interest in control prob-with the well known solutions

lems [9]. As an example consider the proportionally damped

2-DoF model )\Oi:—yiijwi\/l—(yi/wi)z_ (10)
1[4-y5 0 [1 0
"3 0 8-5" " |0 4

A=D(\)+axx", xeR", (11)
Contributed by the Technical Committee on Vibration and Sound for publication . . . .
in the .DURNAL OF VIBRATION AND ACOUSTICS Manuscript received Oct. 1999. can produce a nondefective system with repeated eigenvalues in

Associate Technical Editor: D. J. Inman. the case that none of eigenvaluyé®) is eigenvalue of11). Note,
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The scope of this note is to explore whether a rank-one modifica-

M=1,, } (1) tion of the damping matrix
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that the latter condition implies that=0 for alli=1, ... n. Of wherex®” is an (1— 1)-dimensional vector resulting from deletion
course the modes correspondingx{e-0 are not affected by the of theith element ofx. To calculate the off-diagonal minors one
modification. Thus the modes are decoupled into those affectedidyeds some definitions. Suppressing the argueve define for
the modification §;#0) and those not affectec(=0). It willbe i<k the diagonal matrix

assumed that this has been done and that only the subsystem of

modes affected by the modification is considered in the following p; 0
analysis. ' ) :

If the eigenvalue\; is repeated of multiplicitym then the char- Diw= e Clkmi+Dx(k=i+1) (20)
acteristic polynomial contains the factot £ \;)™. Hence the de- 0 [
rivative of the characteristic polynomial vanishesiat that is
(Lancaster and Tismenetsky1], p. 346 Moreover it is convenient to define the strictly upper triangular

matrix
ddet(A) e AaddA 0 1
dx x—xi o dx )\—}\7 . (12) 0 D (K—i+2) X (k—i+2)
=\ =N Nk = 0 0 eC , (21)
Here the superscript ad denotes the adjungate ¢ element in
row i and columnk is defined by then one finds for<k
(Aad)ik:(_1)i+kde(A(k“))’ (13) D(l,i*l) 0 0
where the superscript|k) denotes the deletion of roivand col- )
: e 0 Nir1x-1) 0
umnk. Only in the cased®(\;)=0, which implies rank A()\;)) Al = ’
<n-1, there exist at least two linearly independent eigenvectors. B 0 0 D g+ 1)
In general, for a repeated eigenvalu@f multiplicity r, the nec- - (22)
essary and sufficient condition for nondefectiveness is =pll
rank A(\))=n—r. (14) +AxOx BT clr D=1,

Only if (14) holds true there exist linearly independent eigen- \ i that de)=5,p®, which means thab ! on the right

vectors for that eigenvalue. The main result of this note is th?de of(22) is singular because tHe— 1th row and the column

under_ the assumptions made, a ran_k-one modlfl_catlon of t zero. Hence all minors of that matrix are zero except the minor
damping cannot produce a nondefective system with a repeate

eigenvalue. i i i
ql'he next section contains the proof of the main result of this dey[D"1]* 1ll)):p(lk)' (23)
paper. If des_ired the preliminary material may be omitted taki_rrghiS result holds true also for the caseke {1,n}. This can be
the reader directly to the theorem at the end of the next sectiQRyiied from the above formulas with the convention to delete all
Examples are given in the last section. block rows or columns that contain expressions which are not
defined because they are outside the index rgage. . n}, as for
1 Theorem on Defective Systems instanceP 1), N(i41,9 Or Ig. As @ summarizing result we find

As it has been explained above a necessary condition for the i +k—1n(ik) ,
system described b to be nondefective for a repeated eigen- (=1 P Eik-1, i<k
value\ is [D(i|k)]ad: diag(p(ij))j#i , i=kp eCn-DXx(n-1)

AY(\)=0 (15) (=1 pIE g, >k

. . (24)
which means that ath? minors

where in generaIEikzzeq'(r ande is theith column vector of the

my:=def AN, i kefl, ... n} (16) identity matrix. Applying Eq.(17) to Eq.(22) one finds fori #k
of sizen—1 of A(\) have to be zero. A basic tool of the follow- i1 (i)
ing investigation is the well known formul@ee for instance Lan- my=(—1) XX pt. (25)

caster and TismenetsK 1], p. 63 SinceA is symmetric its adjungate is symmetric, too. Hence the

de(Z+xy")=de(Z) +y"z5% (17) expression(25) is invariant with respect to the interchange iof
) ] ) ' ) andk. Summarizing the findings so far
where Z is an arbitrary square matrix angy are arbitrary

n-dimensional vectors. As an immediate consequence one finds (_1)k+i—l)\x_xkp(ik) i £k
(see also Vesélif12]) def Al ={ " PRI (26)
" LA
def A(\))=de(D(\) +AxxT)=p+r D, x2p), (18) and consequently
/=1
where the superscrig’) denotes the deletion of théth factor ad_ =X, i#k
(see EQ.(9)) in p. Since_ the principal minorsy; of A have the (A)ki= p(i)_,_)\z/#ixap(i/), i=k' @7
same structure a& we find i
- In the case thak is an eigenvalue of then
m;; = det AC) =de(DM)+ 1 >, (x1)2pli”) n
/=1 E 2 (/)
p+)\/71 x;p'=0 (28)
=pD+1 >, x2pl), 19) .
7 which may be rewritten as
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pip+ M+ D xEpip=0 (29)
/#i

or equivalently

P PN xEp | = =, (30) o
I /N X
AR R
If, in addition, A is not eigenvalue oD then p;#0 for all i Al %ﬁ‘?}:ﬁg&“\‘&\‘\“’,’%gﬁ?&“%“&
=1,...n. Hence one can replace the diagonal A% by = OSSN ’ e
2,(i) o ) Q 'llll,“f’b‘s:‘\k\\\\\\\\\ e e
—Axpt/p; yielding 2 0,'.:,"::\:\::%’;
O
A= —\pD~xx'D"L. (31) ¥ =
I 2 17/ l";;'
Note, that(31) implies trace A% =—\p|D~!x|?, which sug- 107 IIIIII ﬁﬁllllllllll

gests that the adjungate Afis zero only under certain conditions.
The following theorem clarifies the situation.

Theorem: Let D and A be defined as in Egs.)(8nd (12,
respectively. If none of the eigenvalues of D are eigenvalues o
then if A has a repeated eigenvalue then A is defective

i

Proof: If \ is eigenvalue ofA thenp+\3!_, x?p'=0. Since
\ is not an eigenvalue ob, p;#0 and hencex;#0 for all i
=1, ... n. Otherwise the matrixx' would contain a zero col-
umn and row and one eigenvalueAfvould be an eigenvalue of
D. One may also conclude that neithef) nor pt%) are zero.
Hence fori#k the minor my,=(—1)""** ]\ x;x,p™ can only
become zero if\=0. But this is not possible because the deter-
minant of A would lead top=0, which means that is an eigen-
value ofD in contrast to the assumption. Hena&= 0 and thusA

im(A) re(d)

Fig. 1 The inverse condition number of G as a function of the
eigenvalue A

.
has rankn—1 and therefore the system is defective. Vi) q(My)
In the next section some examples are presented. : ’ :
rank { L VI(\,) a(\,) (36)
<n.
=:T =.f

2 Repeated Pole Placement

To calculate examples the inverse problem has to be solvedM@reover the solutiox is real-valued if a vectoz can be chosen
find a vectorx such that the system has given eigenvalues. such that all components of the vector
Since the eigenvalue of interest is repeated there are two condi-

— _ Tt
tions: the determinant and the derivative of the determinant with Y(2)=—-T +Tyz (37)
respect to the eigenvalue have to be zero, that is are non-negative. The columnsBf form a basis of all vectora
n such thafTu=0. The corresponding subspace is called the kernel
n 2pl) = 2 of T In practical appllpatlons one may mtroduce_addltlon_al con-
P )\zl =0 (32) straints on the remaining eigenvalues by expanding the linear in-

verse problenTTy= —f correspondingly. If conditior{36) is sat-
n _ _ isfied it is straightforward to calculate the normal solutips
p’+z xZ(np®" +p)=0, (33) —T*f and a representatiof of the kernel ofT. The matrixT
=1 has a nontrivial kernel if thh<<n. In this case there exists a solu-
where (...)" denotes the derivative with respect Xxp and all tion spacey(z) generated by the kernel &F. The problem to
polynomials and derivatives are evaluated at the repeated eigd@termine alk that leads to non-negative solutioy) is a com-
value. Note that these equations are lineax?inHence one may Men Problem in linear programmirig.3].

write 2.1 Example 1. Consider the example presented in the in-
xi troduction, i.e., the cassm=1, n=2. Note that in this cas&
A Ap® » =VTe R**2 andf=qe R* A necessary condition for the exis-
1 (1) () L —( ,) tence of a solutiox e R? is that at\ the rank of the matrix
PN o pUEAp 2 14
S e (34 G(\):=[VT(\),q(\)] e R¥3 (38)
=-HT™
H =Yy () is two. In Fig. 1 the inverse condition number®fis plotted over

the phase planéRe{\},Im{\}) e[—2,0]X[0,2]. There is a distinct

Since the vectoy is real-valued we may double the order of théninimum at\=—1+j, that leads to the solutior=a(1,—1)"
equation to get (see Eq(5)). Indeed, as stated by Theorem 1, the resulting non-
proportionally damped system has no basis of eigenvectors.

VI(Vy=—a(\), (35) ,
2.2 Example 2. The following example covers the case of
where V=[ReH},Im{H}]eR™* and q'=(Reg}’,Im{g}"). nontrivial kernel T¢. Let diagl)=(1,2,1,3,2)/2 and diag()

Givenm=2n complex scalarg;, i=1, ... mthere exists a vec- =(10,5,7,8,12), which leads to conjugate pairs of eigenvalues
tor x such thatD(\) + Axx" has all\; as repeated eigenvalues if(rounded diag(Ao)=(—1+2j, —1.5+2.4j, —0.5+2.6/, —0.5

and only if +3.12, —1£3.32). In this case the matriX has a nontrivial
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kernel of dimension one. Hence there exists a solution space, tRakact Solutions for Longitudina|
is, . . .
Vibration of Multi-Step Bars

=T+ Tz, 39 ) . :
vz K B9 with Varying Cross-Section

where TTx=0. In order to find all solutionx for the repeated
eigenvaluex = — 0.8+ 3] one has to determine all scalazsuch

that the vector Q.S. Li
0.226 0.333 Department of Building and Construction,
0.5531 0.7452 City University of Hong Kong,
y(z)=| 0.0535| +| 0.1474| ¢, (40) Tat Chee Avenue,
—1.3545 0.3715 Kowloon, Hong Kong
0.018 0.417

has no negative components. Obviously everyl.3545/0.3715

~3.65 lead to a non-negative solution. For instance the choicdJsing appropriate transformations, the equation of motion for
=3.75 leads tox=(1.2145,1.8297,0.7786,0.1962,1.2581The free longitudinal vibration of a nonuniform one-step bar is re-
modified system has four conjugate pafrs1.45-2.4j,—0.61 duced to an analytically solvable equation by selecting suitable
+2.59,—0.8+3j,—0.8+3j} and two real eigenvalues-0.82, expressions, such as power functions and exponential functions,

—7.83, which correspond to overdamped modes. for the area variation. Exact analytical solutions to determine the
longitudinal natural frequencies and mode shapes for a one step
Conclusions nonuniform bar are derived and used to obtain the frequency

. . . o ) equation of multi-step bars. The new exact approach is presented
This technical brief has highlighted that defective systems m@yhich combines the transfer matrix method and closed form so-

be more common that many engineers believe. It has been proyggehns of one step bars. A numerical example demonstrates that
that if a unit-rank modification is performed on a system withhe calculated natural frequencies and mode shapes of a televi-
classical damping, and this results in repeated eigenvalues, gy transmission tower are in good agreement with the corre-

the modified system is defective. The theorem, as formulated,,nging experimental data, and the selected expressions are suit-
requires that the eigenvalues of all the modes affected by thgie for describing the area variation of typical high-rise
modification are changed. The conditions on the modification M&Y%uctures[S0739-371700)00302-0

suggest that the theorem has limited applicability. However, there

are two counter arguments to this. The first is that there are indeed

many systems that do consist of a rank one modification, for ex-

ample the addition of a discrete damper to a lightly damped strugitroduction
ture. Second, it is not suggested that other modifications do no
lead to defective systems, it is just that a proof of the condition

required in the case of general viscous damping has proved el
sive. Indeed, the authors believe that many, if not most, noncl

sically damped systems with repeated eigenvalues are defective. ) :
The challenge, which the authors are continuing to pursue, is%al' [1], in which references traced back to one hundred years

rigorously prove the conditions required to produce a defecti;ﬁo' The free longitudinal vibrations of uniform rods have been

system. We encourage other researchers to rise to this challe 8_roughly d'SCL.'SSGfd in the literature _and the SO!Ut.'OnS are well
own (e.g., Meirovitch[2]). However, in general, it is not pos-

sible or, at least, very difficult to get the exact solutions of differ-

tA broad range of engineering problems involves longitudinal
oration analysis of uniform and nonuniform bars. A great deal
“research on longitudinal vibration of structural components has
en place over the last decade, as reviewed by Timoshenko
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amulti-step bar is a complex problem, and the exact solution of
this problem has not previously been obtained. Use of the exadt(x)=
solution of a one-step bar together with a transfer matrix method

148

il [ea ]z

s bt

is presented in this paper in order to resolve this problem. )
The eigenvalue equation is
One-Step Bar J,(N)I_ -y (NO)=—J_,(N)J,_1(NG) for a cantilever bar
8

The equation for longitudinal vibration mode functidd(x), ®
of a nonuniform bar shown in Fig. 1 is as followki etal. ©f
(11,12) J,003_,(08)=3_,(\)3J,(\0) for a fixed-fixed bar (9)

d’U _dA(x) dU
EAX) 5z % T FPAPU=0 (1) Where
_ _ 0=1+p

\clivgfier:zg) |Irs1 tl?i(; C|1rcular natural frequency and other parameters E\;\?henv is an integer, in Eqs(7)—(9), J_,(\) should be changed

It is difficult to find the exact solutions of Eq1) for general to Y,(A) andJ_(,_qy(A) should be—Y,_41(A).
cases, because the coefficients in the equation vary with the c orSOIL’Ing the eigenvalue equation one obtalnSJthelgerllvaIuhe
dinatex. It is obvious that the exact solutions are dependent on t ?h( 1,2,3...), andsubstitutingk; into Eq.(4) one yields the
area variationA(x). Thus, the exact solutions of E(L) may be circular natural frequencyy; , as follows
obtained by means of reasonable selectiorfpr). In this paper, >\j|ﬁ| \[

=— i=1,2,3

two important cases are considered and discussed. (10)
Case A: Expression oA(x) is a power function
X\ Whenn=2, thenv=— % the eigenvalue equation is
AX)=a 1+ﬁ|— 2) tg\B=AN(1+pB) for a cantilever bar (12)
in which «, B and n are constants which can be determined ir
terms of the values oA(x) at three control sections. in\B=0
Substituting Eq(2) into Eq. (1) one obtains sin\ B=
22U ndu \ jm for a fixed-fixed bar (12)
T iT g
d§2+gd{+)\u 0 (3) B
in which The first six eigenvaluedB|\; (j=1,2,3,4,5,6), of a cantilever
bar with various values gB for the casen=2 are calculated and
) pw?l? listed in Table 1(for B>0) and Table Afor 8<0).
(=1+B7, A “EF (4) cCase B: Expression 6&(x) is an exponential function
Settlng A(X) = ae’ﬁ(xn), (13)
1-n The parametersy, 8 can be determined in terms of the values of
U=(\0"Z2, v=—— (5) A(x) at two control sections. Substituting EA.3) into Eq. (1)
2 obtains a differential equation with constant coefficients as
and substituting Eq5) into Eq.(3) yield the Bessel's equation of d’U B du
the vth order as follows T dx +7°U=0 (14)

d?z 1dz v? N
Z=0 (6) in which

aztra |t
Whenv is not an integerU(x) is given by

Table 1 The first six eigenvalues, \;B, of a cantilever bar with
A(X)=a(1+B(xIN)? for f>0

T Mode
Yy
B 1 2 3 4 5 6
0 15708 4.7124 7.8540 10.9956 14.1372  17.2787
1 1.1653 4.6038 7.7893 10.9492 14.1010 17.2483
2 5 0.6940 45315 7.7463 109185 14.0770 17.2292
d’'u 10 05210 4.5130 7.7390 10.9120 14.0720 17.2248
A(x) - pA(x) P
- T N, N,
l T p(x, H)dx + Table 2 The first six eigenvalues, \;8, of a cantilever bar with
A(X)=a(1+B(xI1))? for B<0
X 1\ p(x, tydx Mode
T B 1 2 3 4 5 6
/S /S ST 0 15708 4.7124 7.8540 10.9956 14.1372 17.2787
0.3 1.8038 4.8011 7.9076 11.0340 14.1661 17.3022
(@ 0.6 21745 5.0035 8.0379 11.1285 14.2061 17.3635
0.9 28362 57175 8.6585 11.6548 14.6856 17.7501
Fig. 1 A cantilever bar with varying cross-section
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\ﬁ where
2__ 2_ I
The general solution dfJ(x) is found as ©= 4 4n 12 (47
U(x)=ef?| c cosC—X+C sinc—x) (16) The eigenvalue equations and circular natural frequencies are as
1 2200 follows
|
2 \
tanc=——c
B
1 [E[ , (B . _
=T ; Ci+ 5| j=1,2,... for a cantilever bar (18)
C, |E .
o~ \/—, for small B8 and j=2
| p )
or
sinc=0
1 2
;==\ —|(jm?3*+ s } i=12,... _ _
| 2 for a fixed-fixed bar (19)
jm |E .
o= ;, for small 8 and j=2

The j-th mode shape function for a cantilever bar and a fixedFhe general solution of mode shape function for ithte step bar

fixed bar can be written as

Cix
Uj(x)=e? sinl—J (20)

can be expressed as

Ui(X)=Ci1S11(X) + Ci2S2(X) (22)

wherei denotes théth step andj is the total step numbéFig. 2),

The first six eigenvalues;; (j=1,2,3,4,5,6), of a cantilever Sil(_x) andS;,(x) are special solutions of mode shap_e fun_ctlons of
bar with various values o are calculated and listed in Table 3.the|.th step bar, which can be found from those derived in the last
It can be seen from the results presented in Table 1 that, like fction for the Case A and Case B.
case of a cantilever bar, the lowest natural frequency is affected! N€ transfer matrix methodMM) is often used for structures
most by the taper. For higher modes, the natural frequencies §RMPosed of one-dimension elements. The applications of TMM
close to those of corresponding uniform bars. The same concff€ &lSo limited by possible occurrence of numerical problems for
sions can be draw from Table 2. It can be seen from Table 1 t}{.‘&l’tall’l cases, WhICh have been extensw_ely dlscusse_d by Yong and
all the natural frequencies, including the lowest and higher fr&in [13]. But, it has some advantages in computations: ease of
quencies, are less than those of corresponding uniform bars wiRéggramming and small memory requirements, etc. Thus, the

B>0. However, the results presented in Table 2 show that all the
natural frequencies for the case 80 are greater than those of
corresponding uniform bars. Table 3 shows that the variation of
C; with g is similar to that ofA; 8 with 8 presented in Table 2.

Multi-Step Bars

A multi-step bar is shown in Fig. 2. It is assumed that the area
of section in each step varies with The equation of mode shape
function of thei-th step bar is as follows

d2Ui dAl(X) dU,

dx? dx  dx

EA(X) +pA(X)0?U;=0  (21)

Table 3 The first six eigenvalues,

C;, of a cantilever bar with
A(x)=ae XD

Mode
B 1 2 3 4 5 6
0 1.5708 4.7124 7.8540 10.9956 14.1372 17.2787
1.0 1.8350 4.8150 7.9164 11.0400 14.1713 17.3063
20 2.0261 4.9115 7.9780 11.0847 14.2063 17.3352
4.0 22878 5.0865 8.0962 11.1743 14.2753 17.3920
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4 X transfer matriX T;] should be replaced byT ],

L 1 0

i [Tmi]=[_w2mi 1}[Ti] (28)
Xi1 Accqrding to th_e following boundary conditions of a multi-step
0 cantilever bar(Fig. 2),
Xio x=0, Uy,=0

> x=1, qu—oJ (29)

Fig. 3 The ith step we obtain the eigenvalue equation as
T2=0 (30)

transfer matrix method is adopted herein to establish the equati®écording to the following boundary conditions for a multi-step
of mode shape function and the eigenvalue equation for a mulfixed-fixed bar,

step bar.
The relationship between the parametéts, (longitudinal dis- x=0, Uy=0
placement and N;; (axis force at the end 1 andJ;y,N;, at the x=1, Ng=0 (31)
end 0 of theith step barFig. 3) can be expressed as ' q
the eigenvalue equation is found as
Uil 7[.'._] U|O 23
Nil - ! NiO ( ) T12:O (32)
in which After the natural frequencies of a multi-step bar have been found,
- the mode shapes of a multi-step bar can be determined by use of
[Ti1=[S(XiD1[S(Xi0)] Eq. (22 and the general solutions of each step bar.
[S(x,0)] [ Si1(Xio) Si2(Xi0)
Xi = ’ ’
0 EA0S 1 (xi0)  EA0S(Xi0) .
Numerical Example
[S(xi1)]= Sia(Xi1) Si2(Xi1) (24) Wuhan Television Transmission TowéVuhan T.V. Towey
' EA1S1(Xi1) EA1SH(Xi1) located in Wuhan, China, is a reinforced concrete tube structure,
its geometric configuration is shown in Fig. 5. The top of the
Uio=Ui(Xi0)  Uj1=U;(Xi1) tower is 221 meters. The height of the main tower bgmhain
N N[y L EA(y structure is 187 meters. The main structure was dynamically
Nis=NiCia), Nio=NiCxio), - EAL=EA(Xi), tested by Li et al[14]. The objective of this numerical example is
EA,=EA(Xo) to determine the longitudinal natural frequencies and vibration

mode shapes of the main structure of Wuhan T.V. Tower by the
P¥oposed method.

Wuhan T.V. Tower is treated as a cantilever multi-step bar with
varying cross-section for free vibration analysis. Because the
Uio=Ui_11, Niog=N;_11 (25) Vvariation of cross-sectional area of the tower is complicated, the
' ' main structure is divided into 18 steps for computation. Since the
main structure is a tube and the variation of its diameter in a step
along the height is linear, the distribution of cross-sectional area
in theith step can be described by

A(X)=a(1+8x) i=12,...,18 (33)

The mass per unit volume and Young's modulus of the main
[TI=1Tol Tq-1)-[Ta] structure have been found gk

[T] is a matrix which can be written as pi=p=constant2.51x 10° kg/m?,
T To E;=E=constant3.14x 10" kg/n?

Toy Tu Using the following formula
If a multi-step bar has lumped masses as shown in Fig. 4, then, the [TI=[T[To] [Tl

[T;] is called the transfer matrix because it transfers the para
eters at the end 0 to those at the end 1 ofithestep bar.
Since

The equation for the top step bar<{q, Fig. 2 can be established
by use of Eqs(23) and (25) repeatedly as follows

Uql},
{qu =[] (26)

N1g
in which

[T]= 27)

and Eq.(23) obtains[T] which can be written as E§27). Substi-

tuting T,, into Eq. (30) yields the eigenvalue equation. Solving

the eigenvalue equation obtains the first circular natural fre-

quency,w,, as 42.16. In order to examine the accuracy of the

methods proposed in this paper, the finite element meth&d/)

is also employed to calculate the structural dynamic characteris-
Xi1 tics of this tower. This main structure was divided into 40 uniform
steps(elements The calculated value ab, by the finite element
method is 42.36. Although the result obtained by FEM is almost
the same as that calculated by the present method, the computer
7TV 77 Y consuming time of FEM is much more than that of the present

method. Li et al[14] reported that the field-measured value of the

Fig. 4 A multi-step bar with lumped masses first circular natural frequency is 41.98. This illustrates that the

186 / Vol. 122, APRIL 2000 Transactions of the ASME

Downloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



221.20 .
210.67

183.00

150.207

135.864

|

121.323

111.273
101.173

11.80m

0.00 B

—i__J

Fig. 5 Wuhan T.V. Tower

the first mode shape. It should be noted that using the aforemen-
tioned procedure, the higher natural frequencies and correspond-
ing mode shapes could also be determined.

Conclusions

The general solutions for free longitudinal vibration of one-step
nonuniform bars are derived and used to obtain the eigenvalue
equation of multi-step bars. The new exact approach is presented
which combines the transfer matrix method and closed-form so-
lutions of one step bars derived in this paper. The calculated re-
sults of the first six eigenvalues of cantilever nonuniform bars
show that the fundamental natural frequencies of those bars are
affected most by the taper, but, the higher natural frequencies are
close to those of corresponding uniform bars.

The numerical example demonstrates that the calculated natural
frequencies and mode shapes of Wuhan T.V. Tower are in good
agreement with the corresponding experimental data and the re-
sults determined by FEM. This numerical example shows that one
of the advantages of the present method is that the total number of
the segmentésteps or elemenksequired by the proposed method
could be much less than that normally used in conventional finite
element methods. Therefore, the proposed method has practical
significance for free vibration analysis of nonuniform structures. It
is also shown through the numerical example that the selected
expressions are suitable for describing the variation of cross-
sectional area of typical high-rise structures.
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