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Abstract. Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible
linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x, y belonging
to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x)
and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e.
[C(x)]2+ [S(x)]2 = e whenever x belongs to the domain of these mappings. The following ques-
tion arises: Do there exist non-Leibniz algebras with logarithms such that the Trigonometric
Identity is satisfied? We shall show that in non-Leibniz algebras with logarithms the Trigono-
metric Identity does not exist. This means that the above question has a negative answer, i.e.
the Leibniz condition in algebras with logarithms is a necessary and sufficient condition for the
Trigonometric Identity to hold.

Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear
operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x, y belonging
to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements
C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric
Identity, i.e. [C(x)]2 + [S(x)]2 = e whenever x belongs to the domain of these mappings.

The following question has been posed in PR[2] (cf. also PR[3]):

Do there exist non-Leibniz algebras with logarithms such that the Trigonometric Iden-
tity is satisfied?

We shall show that in non-Leibniz algebras with logarithms the Trigonometric Identity
does not exist. This means that the above open question has a negative answer, i.e.

The Leibniz condition in algebras with logarithms is a necessary and sufficient condi-
tion for the Trigonometric Identity to hold.
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1. Preliminaries. We recall here some definitions and theorems (without proofs),
which are fundamental for Algebraic Analysis (cf. PR[1]).

Let X be a linear space (in general, without any topology) over a field F of scalars of
characteristic zero. We use the following notations:

• L(X) is the set of all linear operators with domains and ranges in X;
• domA is the domain of an A ∈ L(X);
• kerA = {x ∈ domA : Ax = 0} is the kernel of A ∈ L(X);
• L0(X) = {A ∈ L(X) : domA = X}.
• I(X) is the set of all invertible operators belonging to L(X).

Here the invertibility of an operator A ∈ L(X) means that the equation Ax = y has a
unique solution for every y ∈ X.

An operator D ∈ L(X) is said to be right invertible if there is an operator R ∈ L0(X)
such that RX ⊂ domD and DR = I, where I denotes the identity operator. The
operator R is called a right inverse of D. By R(X) we denote the set of all right invertible
operators in L(X). For D ∈ R(X) we denote by RD the set of all right inverses for D,
i.e. RD = {R ∈ L0(X) : DR = I}. We have domD = RX ⊕ kerD, independently of the
choice of R ∈ RD.

Elements of kerD are said to be constants, since by definition, Dz = 0 if and only
if z ∈ kerD. The kernel of D is said to be the space of constants. We should point out
that, in general, constants are different from scalars, since they are elements of the space
X. Clearly, if kerD 6= {0} then the operator D is right invertible, but not invertible. If
two right inverses commute, then they are equal. Let

FD = {F ∈ L0(X) : F 2 = F ;FX = kerD and ∃R∈RD
FR = 0}.

Any F ∈ FD is said to be an initial operator for D corresponding to R. One can prove
that any projection F ′ onto kerD is an initial operator for D corresponding to a right
inverse R′ = R− F ′R independently of the choice of R ∈ RD. It is enough to know one
right inverse in order to determine all right inverses and all initial operators.

If two initial operators commute, then they are equal. Thus this theory is essentially
noncommutative. An operator F is initial for D if and only if there is an R ∈ RD such
that F = I −RD on domD.

Note that the superposition (if exists) of a finite number of right invertible operators
is again a right invertible operator.

If T ∈ L(X) belongs to the set Λ(X) of all left invertible operators, then kerT = {0}.
If D ∈ I(X) then FD = {0} and RD = {D−1}.

Write for A ∈ L(X)

(1.1) vFA = {0 6= λ ∈ F : I − λA is invertible}.

This means that 0 6= λ ∈ vFA if and only if 1/λ is a regular value of A.
By V (X) we denote the set of all Volterra operators belonging to L(X), i.e. the set of

all operators A ∈ L(X) such that I−λA is invertible for all scalars λ. Clearly, A ∈ V (X)
if and only if vFA = F \ {0} (cf. Formula (1.1)).
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If X is an algebra over F with a D ∈ L(X) such that x, y ∈ domD implies xy, yx ∈
domD, then we shall write D ∈ A(X). The set of all commutative algebras belonging to
A(X) will be denoted by A(X). If D ∈ A(X) then

fD(x, y) = D(xy)− cD[xDy + (Dx)y] for x, y ∈ domD,

where cD is a scalar dependent onD only. Clearly, fD is a bilinear form which is symmetric
when X is commutative, i.e. when D∈A(X). This form is called a non-Leibniz component
(cf. PR[3]). Non-Leibniz components have been introduced for right invertible operators
D ∈ A(X) (cf. PR[1]). If D ∈ A(X) then the product rule in X can be written as follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ domD.

There are recurrence formulae which permit one to calculate non-Leibniz components for
Dn and αD (n ∈ N, α ∈ F).

If D ∈ A(X) and if D satisfies the Leibniz condition:

D(xy) = xDy + (Dx)y for x, y ∈ domD,

then X is said to be a Leibniz algebra. This means that in Leibniz algebras cD = 1 and
fD = 0. The Leibniz condition implies that xy ∈ domD whenever x, y ∈ domD. If X is
a Leibniz algebra with unit e then e ∈ kerD, i.e. D is not left invertible.

Let D ∈ A(X). Then

• I(X) is the set of all invertible elements belonging to X;
•M(X) is the set of all multiplicative mappings (not necessarily linear) with domains

and ranges in X:

M(X) = {A : A(xy) = (Ax)(Ay) whenever x, y ∈ domA ⊂ X}.

We shall now show an approach to the trigonometric identity in Leibniz D-algebras
with unit e (but not necessarily with logarithms). Clearly, without additional assumptions
we cannot expect too much.

Proposition 1.1. Suppose that X is a Leibniz D-algebra with unit e, x ∈ domD2

and x, Dx are not zero divisors. If

(1.2) x2 + (Dx)2 = e,

then

(1.3) αx+ βDx ∈ ker(D2 + I) for every α, β ∈ F.

Proof. Let y = −Dx. Then Dy = −D2x and

0 = De = D[x2 + (Dx)2] = 2xDx− 2(Dx)D2x = 2(Dx)(x−D2x) = 2y(x−Dy).

Since y = −Dx is not a zero divisor, we have x− 2y = 0. Hence Dy = x and y = −Dx =
−D2y, which implies y∈ker(D2 +I). On the other hand, x = Dy = −D2x, which implies
x ∈ ker(D2 + I).
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Proposition 1.2. Suppose that all assumptions of Proposition 1.1 are satisfied. If
Condition (1.3) holds for x and Dx and

(1.4) u = x2 + (Dx)2,

then u ∈ kerD.

Proof. Define u by (1.4). Then

Du = 2xDx+ 2(Dx)Dx = 2(Dx)(x+Dx) = 2(Dx)(D2 + I)x = 0,

which implies u ∈ kerD.

Corollary 1.1. Suppose that all assumptions of Proposition 1.1 are satisfied, Con-
dition (1.3) holds for x, Dx, F ∈ FD ∩M(X), Fx = e, FDx = 0 and u is defined by
(1.4). Then u = e and x, Dx satisfy (1.2).

Proof. Since F is a multiplicative initial operator and Fx = e, FDx = 0, we find

u = F [x2 + (Dx)2] = (Fx)2 + (FDx)2 = e2 + 0 = e,

which implies (1.2).

Proposition 1.3. Suppose that all assumptions of Proposition 1.1 are satisfied, Con-
dition (1.2) holds for x, Dx, F ∈ FD ∩M(X) and Fx = e. Then FDx = 0.

Proof. By our assumptions,

e = Fe = F [x2 + (Dx)2] = (Fx)2 + (FDx)2 = e+ (FDx)2,

which implies (FDx)2 = 0. Hence FDx = 0.

Proposition 1.4. Suppose that all assumptions of Proposition 1.3 are satisfied. If
x± ∈ ker(D ± iI) and x = 1

2 (x+ + x−), y = 1
2i (x+ − x−), then

(i) x, y ∈ ker(D2 + I), Dx = −y, Dy = x and 1
2 (x± y) ∈ ker(D2 ∓ iI);

(ii) x2 + y2 = x+x− ∈ kerD.

Proof. (i) is proved by checking. In order to prove (ii), observe that, by the Leibniz
condition and our assumptions,

D(x+x−) = x+Dx− + x−Dx+ = ix+x− − ix+x− = 0.

Observe that x± are eigenvectors of the operator D corresponding to the eigenvalues
∓i, respectively (cf. Section 2).

2. Exponential elements in linear spaces. Trigonometric elements in alge-
bras. Here and below we assume that F is an algebraically closed field of scalars. For
instance, F = C. Following PR[1], we have (with some proofs slightly simpler than in
PR[1])

Definition 2.1. If λ ∈ F is an eigenvalue of an operator D ∈ L(X) then every
eigenvector xλ corresponding to that eigenvalue is said to be an exponential element
(briefly: an exponential). This means that xλ is an exponential if and only if xλ 6= 0 and
xλ ∈ ker(D − λI).
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Proposition 2.1. Suppose that D ∈ R(X). If 0 6= xλ ∈ ker(I − λR) for an R ∈ RD
and a λ ∈ F then xλ ∈ ker(D − λI), i.e. xλ is an exponential.

Proof. By our assumption, (D − λI)xλ = (D − λDR)xλ = D(I − λR)xλ = 0.

By induction we prove

Proposition 2.2. Suppose that D ∈ R(X) and {λn} ⊂ F is a sequence of eigenvalues
such that λi 6= λj for i 6= j. Then for an arbitrary n ∈ N the exponentials xλ1 ,. . . ,xλn

are linearly independent.

Proposition 2.3. Suppose that D ∈ R(X), F is an initial operator for D corre-
sponding to an R ∈ RD and xλ is an exponential. Then xλ is an eigenvector for R

corresponding to the eigenvalue 1/λ if and only if Fxλ = 0, i.e. R is not a Volterra
operator.

Proof. Sufficiency. Since Dxλ = λxλ and Fxλ = 0, we get xλ = xλ − Fxλ =
(I −F )xλ = RDxλ = λRxλ. Hence xλ∈ker(I − λR). Since xλ 6= 0, we conclude that xλ
is an eigenvector for R corresponding to 1/λ.

Necessity. Suppose that 1/λ is an eigenvalue of R and the corresponding eigenvector
xλ is an exponential. Then Fxλ = (I −RD)xλ = (I − λR)xλ = −λ(R− 1

λI)xλ = 0.

Theorem 2.1. Suppose that D ∈ R(X), kerD 6= {0}, R ∈ RD and λ ∈ vFR. Then

(i) λ is an eigenvalue of D and the corresponding exponential is

(2.1) xλ = eλ(z), where eλ = (I − λR)−1, z ∈ kerD;

whenever eλ = (I − λR)−1 exists, it is said to be an exponential operator;
(ii) the dimension of the eigenspace Xλ corresponding to the eigenvalue λ is equal to

the dimension of the space of constants, i.e. dimXλ = dim kerD 6= 0;
(iii) if λ 6= 0 then there exist non-trivial exponentials: eλ(z) 6= 0.
(iv) exponentials are uniquely determined by their initial values, i.e. if F is an initial

operator for D corresponding to R then F [eλ(z)] = z;
(v) if R is a Volterra operator then every λ ∈ F is an eigenvalue of D, i.e. for every

λ ∈ F there exist exponentials.

Proof. (i) By definition, (I−λR)eλ(z) = (I−λR)(I−λR)−1z = z, where z ∈ kerD.
Thus eλ(z) = z + λReλ(z), which implies Deλ(z) = Dz + λDReλ(z) = eλ(z).

(ii) Since by our assumptions, the operator eλ = I − λR is invertible, dimXλ =
dim{eλ(z) : z ∈ kerD} = dim{(I − λR)−1z : kerD} = kerD 6= 0.

(iii) If λ 6= 0 and eλ(z) = (I − λR)−1z = 0 then z = (I − λR)eλ(z) = 0, This
contradicts our assumption that kerD 6= {0}.

(iv) By definitions and (i), we have Feλ(z) = (I −RD)eλ(z) = (I − λR)eλ(z) = z.
(v) If R ∈ V (X) then vFR = F ⊂ {0}. Clearly, for λ = 0 the operator I − λR is also

invertible. Hence, by (i), every scalar λ is an eigenvalue of D.

Definition 2.2. Let F = C. Suppose that D ∈ R(X), kerD 6= 0 and R ∈ RD∩V (X).
Then the operators

(2.2) cλ =
1
2

(eλi + e−λi), sλ =
1
2i

(eλi − e−λi) (λ ∈ R)
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are said to be cosine and sine operators, respectively (or: trigonometric operators). The
elements cλ(z), sλ(z), where z ∈ kerD, are said to be cosine and sine elements, respec-
tively (or: trigonometric elements).

Theorem 2.2. Suppose that all assumptions of Definition 2.2 are satisfied. Then

cλ = (I + λ2R2)−1, sλ = λR(I + λ2R2)−1 (λ ∈ R),(2.3)

Dcλ = −λsλ, Dsλ = λcλ (λ ∈ R),(2.4)

c0(z) = z, s0(z) = 0, Fsλ(z) = 0 for z ∈ kerD, λ ∈ R.(2.5)

Moreover, whenever z ∈ kerD, λ ∈ R, the element cλ(z) is even with respect to λ and
the element sλ is odd with respect to λ.

Proof. By the first formula of (2.2), for λ ∈ R we get

cλ =
1
2

[(I − λiR)−1 + (I + λiR)−1 =
1
2

(I − λiR)−1(I + λiR)(I + λiR+ I − λiR)

=
1
2

(I + λ2R2)−12I = (I + λ2R2)−1.

A similar proof for sλ. By definitions, if λ ∈ R, then

Dcλ =
1
2

(eλi + e−λi) =
1
2

(λieλi + λie−λi) =
1
2
λi(eλi + e−λi) = − λ

2i
(eλi + e−λi) = −λsλ.

Since DR = I, we have Dsλ = λDR(I + λ2R2)−1 = λ(I + λ2R2)−1 = λcλ.
Let z ∈ kerD. Let λ = 0. Then c0(z) = z, s0(z) = 0. Since FR = 0, for every λ ∈ R

we have Fsλ(z) = λFR(I + λ2R2)−1 = 0. Let z ∈ kerD. Then

c−λ(z) = [I + (−λ)2R2)−1](z) = (I + λ2R2)−1z = cλ(z);

s−λ(z) = −λR[I + (−λ)2R2)−1](z) = −λR(I + λ2R2)−1z = −sλ(z).

Consider now trigonometric elements in algebras.

Proposition 2.4. Suppose that D ∈ A(X)∩R(X), kerD 6= {0} and R ∈ RD∩V (X).
Then

(2.6) [cλ(z)]2 + [sλ(z)]2 = eλi(z)e−λi(z) for all z ∈ kerD, λ ∈ R.

Proof. By checking.

Proposition 2.5. Suppose that D ∈ A(X)∩R(X) and xλ, xµ are eigenvectors of D
corresponding to the eigenvalues λ, µ ∈ C, respectively. Then

(2.7) D[xλxµ] = [cD(λ+ µ)]xλxµ + fD(xλ, xµ) for all λ ∈ R.

In particular, if fD(u, v) = d(Du)(Dv) + auv whenever u, v ∈ domD (d, a ∈ C), then

D[xλxµ] = [cD(λ+ µ) + dλµ+ a]xλxµ for all λ ∈ R, i.e.

(2.8) xλxµ = xcD(λ+µ)+dλµ+a.

Proof. By checking.

Proposition 2.6. Suppose that D ∈ A(X)∩R(X), kerD 6= {0} and R ∈ RD∩V (X).
Then

(2.9) D[eλi(z)e−λi(z)] = fD(eλi(z), e−λi(z)) for all z ∈ kerD, λ ∈ R.
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Proof. Put in Formula (2.7) λi instead of λ and −λi instead of µ. Then λ+ µ = 0,
which implies (2.9).

Corollary 2.1. Suppose that X is a Leibniz D-algebra, kerD 6= {0} and R ∈
RD ∩ V (X). Then

(2.10) D[eλi(z)e−λi(z)] = 0 for all z ∈ kerD, λ ∈ R.

Proof. Since X is a Leibniz D-algebra, we have cD = 1 and fD = 0. Hence (2.9)
implies (2.10).

Corollary 2.2. Suppose that X is a Leibniz D-algebra, kerD 6= {0} and R ∈
RD ∩ V (X). Then the Trigonometric Identity holds, i.e.

(2.11) [cλ(z)]2 + [sλ(z)]2 = z for all z ∈ kerD, λ ∈ R.

Proof. This follows immediately from formulae (2.9) and (2.10).

There is still

Open Question 2.1. Do there exist non-Leibniz algebras with the Trigonometric
Identity (2.11) ?

Formula (2.8) shows that a sufficient condition for (2.11) to be satisfied is that cD = 1,
d = a = 0.

3. Logarithmic and antilogarithmic mappings. Suppose that D ∈ A(X). Let
Ωr,Ωl : domD −→ 2domD be multifunctions defined as follows:

(3.1) Ωru = {x ∈ domD : Du = uDx}, Ωlu = {x ∈ domD : Du = (Dx)u}

for u ∈ domD. The equations

(3.2) Du = uDx for (u, x) ∈ graph Ωr , Du = (Dx)u for (u, x) ∈ graph Ωl

are said to be the right and left basic equations, respectively. Clearly,

(3.3) Ω−1
r x = {u ∈ domD : Du = uDx}, Ω−1

l x = {u ∈ domD : Du = (Dx)u}

for x ∈ domD. The multifunctions Ωr,Ωl are well-defined and dom Ωr∩dom Ωl ⊃ kerD.
Suppose that (ur, xr)∈ graph Ωr, (ul, xl)∈ graph Ωl, Lr, Ll are selectors of Ωr, Ωl,

respectively, and Er, El are selectors of Ω−1
r , Ω−1

l , respectively. By definitions, Lrur ∈
dom Ω−1

r , Erxr ∈ dom Ωr, Llul ∈ dom Ω−1
l , Elxl ∈ dom Ωl and the following equations

are satisfied:

Dur = urDLrur, DErxr = (Erxr)Dxr;

Dul = (DLlul)ul, DElxl = (Dxl)(Elxl).

Definition 3.1 (cf. PR[3]). Any invertible selector Lr of Ωr is said to be a right
logarithmic mapping and its inverse Er = L−1

r is said to be a right antilogarithmic
mapping . If (ur, xr) ∈ graph Ωr and Lr is an invertible selector of Ωr then the element
Lrur is said to be a right logarithm of ur and Erxr is said to be a right antilogarithm of
xr. By G[Ωr] we denote the set of all pairs (Lr, Er), where Lr is an invertible selector
of Ωr and Er = L−1

r . Respectively, any invertible selector Ll of Ωl is said to be a left
logarithmic mapping and its inverse El = L−1

l is said to be a left antilogarithmic mapping .
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If (ul, xl) ∈ graph Ωl and Ll is an invertible selector of Ωl then the element Llu is said
to be a left logarithm of ul and Elxl is said to be a left antilogarithm of xl. By G[Ωl] we
denote the set of all pairs (Ll, El), where Ll is an invertible selector of Ωl and El = L−1

l .
If D ∈ A(X) then Ωr = Ωl and we write Ωr = Ω and Lr = Ll = L, Er = El =

E, (L,E) ∈ G[Ω]. The selectors L,E are said to be logarithmic and antilogarithmic
mappings, respectively. For any (u, x) ∈ graph Ω the elements Lu,Ex are said to be the
logarithm of u and antilogarithm of x, respectively.

Clearly, by definition, for all (Lr, Er) ∈ G[Ωr], (ur, xr) ∈ graph Ωr, (Ll, El) ∈ G[Ωl],
(ul, xl) ∈ graph Ωl we have

ErLrur = ur, LrErxr = xr; ElLlul = ul, LlElxl = xl;(3.4)

DErxr = (Erxr)Dxr, Dur = urDLrur;(3.5)

DElxl = (Dxl)(Elxl), Dul = (DLlul)ul.

A right (left) logarithm of zero is not defined. If (Lr, Er) ∈ G[Ωr], (Ll, El) ∈ G[Ωl] then
Lr(kerD \ {0}) ⊂ kerD, Er(kerD) ⊂ kerD, Ll(kerD \ {0}) ⊂ kerD, El(kerD) ⊂ kerD.
In particular, Er(0), El(0) ∈ kerD.

If D ∈ R(X) then logarithms and antilogarithms are uniquely determined up to a
constant. These constants are additive for right (left) logarithms and logarithms and
multiplicative for right (left) antilogarithms and antilogarithms. Let F be an initial
operator for D corresponding to an R ∈ RD. Then there are (L,E) ∈ G[Ω] ((Lr, Er) ∈
G[Ωr], (Ll, El) ∈ G[Ωl]) such that FDjL = 0 (FDjLr = 0, FDjLl = 0) (j = 0, 1, . . . ,m−
1; m ∈ N). We then say that (L,E) ((Lr, Er), (Ll, El), respectively) is m-normalized by R
and we write (L,E) ∈ GR,m[Ω] ((Lr, Er) ∈ GR,m[Ωr], (Ll, El) ∈ GR,m[Ωl], respectively).
By definition, a 1-normalized logarithm (right, left logarithm, respectively) has a fixed
constant.

If X is a Leibniz algebra with unit e and D is right invertible, then e ∈ kerD ⊂
dom Ωr ∩ dom Ωl.

If X is a Leibniz algebra with unit e and (L,E) ∈ GR,1[Ω], u ∈ I(X) ∩ dom Ω
((Lr, Er) ∈ GR,1[Ωr], u ∈ I(X)∩dom Ωr or (Ll, El) ∈ GR,1[Ωl], u ∈ I(X)∩dom Ωl) then

L(−u) = Lu, Lr(−u) = Lru, Ll(−u) = Llu.

If D ∈ R(X), X is a Leibniz algebra with unit e, (Lr, Er) ∈ GR,1[Ωr], (Ll, El) ∈
GR,1[Ωl] for an R ∈ RD and u ∈ I(X) ∩ domD, then u ∈ dom Ωr ∩ dom Ωl and

Lru
−1 + Llu = 0, i.e. Lru

−1 = −Llu.

Similarly,
(Erx)El(−x) = El(−x)Erx = e, i.e. El(−x) = (Erx)−1

whenever x ∈ dom Ω−1
r , −x ∈ dom Ω−1

l .
In particular, if X is commutative and (L,E) ∈ GR,1[Ω] then Lu−1 = −Lu for

u ∈ I(X) ∩ dom Ω and E(−x) = (Ex)−1 whenever x,−x ∈ dom Ω−1.
A right logarithmic mapping Lr (a left logarithmic mapping Ll) is said to be of

the exponential type if Lr(uv) = Lru + Lrv for u, v ∈ dom Ωr (Ll(uv) = Llu + Llv

for u, v ∈ dom Ωl, respectively). If Lr (Ll, respectively) is of the exponential type then
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Er(x+ y) = (Erx)(Ery) for x, y ∈ dom Ω−1
r (El(x+ y) = (Elx)(Ely) for x, y ∈ dom Ω−1

l ,
respectively). We have proved that a logarithmic mapping L is of the exponential type
if and only if X is a commutative Leibniz algebra. This means that, in general, not all
antilogarithms are exponentials, i.e. eigenvectors of the operator D.

In commutative Leibniz algebras with a right invertible operator D a necessary and
sufficient condition for u ∈ dom Ω is that u ∈ I(X). In the non-commutative case this
theorem is false, as is shown by a result of Di Bucchianico (cf. DB[1], also [PR[3]).

By Lgr(D) (Lgl(D), Lg(D), respectively) we denote the class of those algebras with
unit e ∈ dom Ω for which D ∈ R(X) and there exist invertible selectors of Ωr (Ωl,
Ω, respectively), i.e. there exist (Lr, Er) ∈ G[Ωr] ((Ll, El) ∈ G[Ωl], (L,E) ∈ G[Ω],
respectively).

By Lg#(D) we denote the class of those commutative algebras with a left invertible
D for which there exist invertible selectors of Ω, i.e. there exist (L,E) ∈ G[Ω]. Clearly,
if D is left invertible then kerD = {0}. Thus the multifunction Ω is single-valued and
we may write: Ω = L. On the other hand, if kerD = {0} then either X is not a Leibniz
algebra or X has no unit.

Suppose that either X ∈ Lgr(D) or X ∈ Lgl(D) or X ∈ Lg(D). If cD = 0 (in partic-
ular, if D is multiplicative), then the intersections of the domains of the multifunctions
Ωr, Ωl, Ω with lines passing through zero consist of one point only.

In order to show relations between results in algebras with and without logarithms,
let us consider the following condition:

[L] X ∈ Lg(D) is a Leibniz D-algebra with unit e

(i.e. a commutative Leibniz algebra with unit and with D ∈ R(X)).

Proposition 3.1 (cf. PR[3]). Suppose that Condition [L] holds. Then λg = Re ∈
dom Ω−1 for every R ∈ RD and λ ∈ vFR and there are (L,E) ∈ G[Ω] such that

E(λg) = (I − λR)−1z = eλ(z) ∈ ker(D − λI) for all z ∈ kerD.

Proof. Let R ∈ RD be fixed. Elements of the form u = eλ(z) = (I − λR)−1z are
well-defined for all z ∈ kerD and (D − λI)u = D(I − λR)u = Dz = 0. Moreover,
Du = λu = uλe = uλDRe = uD(λg), which implies that λg ∈ dom Ω−1 and there are
(L,E) ∈ G[Ω] such that eλ(z) = u = E(λg).

Recall that elements of the form eλ(z) are called exponentials for D (cf. Section 2;
also PR[1]). Indeed, these elements belong to ker(D − λI), hence they are eigenvectors
of D.

4. Trigonometric mappings and elements in algebras with logarithms

Definition 4.1 (cf. PR[3]). Suppose that F = C, X ∈ Lgr(D) ∩ Lgl and E1 =
dom Ω−1

r ∩ dom Ω−1
l is symmetric, i.e. −x ∈ E1 whenever x ∈ E1. Let (Lr, Er) ∈ G[Ωr],

(Ll, El) ∈ G[Ωl]. Write

(4.1) Cx =
1
2

[El(ix) + Er(−ix)], Sx =
1
2i

[El(ix)− Er(−ix)] for ix ∈ E1.
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In particular, if (L,E) ∈ G[Ω], then E1 = dom Ω−1 and Cx = 1
2 [E(ix) + E(−ix)],

Sx = 1
2i [E(ix)−E(−ix)]. The mappings C and S are said to be cosine and sine mappings

or trigonometric mappings. Elements Cx and Sx are said to be cosine and sine elements
or trigonometric elements.

Clearly, trigonometric mappings and elements have properties representing those of
the classical cosine and sine functions. Namely, we have (proofs can be found in PR[3]):

Proposition 4.1 (cf. PR[3]). Suppose that all assumptions of Definition 4.1 are
satisfied. Let (Lr, Er) ∈ G[Ωr], (Ll, El) ∈ G[Ωl], (L,E) ∈ G[Ω]. Then trigonometric
mappings C and S are well-defined for all ix ∈ E1 and

(i) the De Moivre formulae hold:

(4.2) Er(ix) = Cx+ iSx, El(−ix) = Cx− iSx for ix ∈ E1;

in particular, if X ∈ Lg(D) is a commutative Leibniz algebra then

(4.2′) (Cx+ iSx)n = C(nx) + iS(nx) for ix ∈ E1 and n ∈ N;

(ii) C(0), S(0) ∈ kerD;
(iii) if X ∈ Lg(D), i.e. Er = El = E, then C and S are even and odd functions of

their argument, respectively, i.e. C(−x) = Cx, S(−x) = −Sx;
(iv) for all ix ∈ E1

(4.3) (Cx)2 + (Sx)2 =
1
2

[El(ix)Er(−ix) + Er(−ix)El(ix)].

Corollary 4.1 (cf. PR[3]). Suppose that all assumptions of Proposition 4.1 are sat-
isfied. Then the mappings C ′, S′ defined as follows: C ′x = C(x+ z), S′x = S(x+ z) for
ix ∈ E0, z ∈ kerD also satisfy assertions (i)-(iv) of that Proposition.

Example 4.1 (cf. PR[3]). Suppose that all assumptions of Proposition 4.1 are satis-
fied. For ix ∈ E1 write

C̃x =
1
2

[Er(ix) + El(−ix)], S̃x =
1
2i

[Er(ix)− El(−ix)].

In particular, if (L,E) ∈ G[Ω] then

C̃x =
1
2

[E(ix) + E(−ix)], S̃x =
1
2i

[E(ix)− E(−ix)].

It is easy to verify that C̃x = C(−x), S̃x = −S(−x). If X ∈Lg(D) then, by Propo-
sition 4.1(iii), we get C̃x = C(−x) = Cx, S̃x = −S(−x) = Sx. This shows that trigono-
metric mappings are uniquely determined by the choice of right and left antilogarithms
and antilogarithms.

Proposition 4.2 (cf. PR[3]). Suppose that all assumptions of Definition 4.1 are
satisfied and (L,E) ∈ G[Ω]. Then for all ix ∈ dom Ω−1 we have

(Cx)2 + (Sx)2 = E(ix)(E(−ix);(4.4)

DCx = −(Sx)Dx, DSx = (Cx)Dx.(4.5)

Example 4.2. We shall show connections of the trigonometric mappings and elements
with the trigonometric operators and elements induced by a right inverse of a D ∈ R(X)
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in linear spaces (cf. Section 2; also PR[1], Sections 2.3 and 6.2). Suppose then that
Condition [C]1 holds, R ∈ RD and λ ∈ vCR. Let g = Re. Then there are (L,E) ∈ G[Ω]
such that

(4.7) E(λg) = eλ(z) ∈ ker(D − λI) , where z ∈ kerD is arbitrary.

Indeed, elements of the form u = eλ(z) = (I − λR)−1z are well-defined for all z ∈ kerD
and called exponentials for D since they are eigenvectors for D corresponding to the
eigenvalue λ: (D − λI)u = D(I − λR)u = Dz = 0 (cf. PR[1]). Moreover, Du = λu =
uλe = uλDRe = uD(λg), which implies that λg ∈ dom Ω−1 and there are (L,E) ∈ G[Ω]
such that eλ(z) = u = E(λg). Clearly, Lu = λg.

Suppose now that λi,−λi ∈ vCR. The operators

cλ = (I + λ2R2); sλ = λR(I + λ2R2)

are said to be cosine and sine operators, respectively. Let z ∈ kerD. Then cλz and sλz

are said to be cosine and sine elements, respectively. It is not difficult to verify that

cλ =
1
2

(eλi + e−λi); sλ =
1
2i

(eλi − e−λi).

Thus
cλz = C(λg); sλz = S(λg).

We therefore conclude that cλ and sλ have all properties listed in Proposition 4.1. Clearly,
proofs in the book PR[1] are different, since they follow just from definitions. Also the
assumption made there was much stronger. Namely, we have assumed that R is a Volterra
operator, i.e. I − λR is invertible for all scalars λ (cf. also Section 2).

Corollary 4.2 (cf. PR[3]). Suppose that all assumptions of Proposition 4.1 are sat-
isfied and X is a Leibniz D-algebra with unit e. Then the Trigonometric Identity holds,
i.e.

(4.8) (Cx)2 + (Sx)2 = e whenever ix ∈ E1.

On the other hand, we have

Proposition 4.3 (cf. PR[3]). Suppose that all assumptions of Definition 4.1 are
satisfied, (L,E) ∈ G[Ω] and the trigonometric identity (4.8) holds. Then

(i) E(ix), E(−ix) ∈ I(X) and E(−ix) = [E(ix)]−1 for all ix ∈ dom Ω−1;
(ii) E(0) = e, hence Le = 0;
(iii) e ∈ kerD;
(iv) if X is an almost LeibnizD-algebra, i.e. if fD(x, z) = 0 for x ∈ domD, z ∈ kerD,

then cD = 1;
(v) if cD = 1 then fD(u, e) = 0 for all u ∈ I(X)∩ dom Ω, i.e. gD(u) = u−1fD(u, e) =

0.

Proposition 4.3 shows that commutative algebras with the trigonometric identity are
very ”similar” to Leibniz algebras.

The following question arises: Do there exist non-Leibniz algebras with the Trigono-
metric Identity (4.8) ?

We shall show that the answer to this question is negative.
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In order to do it, observe that cD 6= 0 by our assumption that dom Ω−1 is symmetric.
For instance, we have

Proposition 4.4. Suppose that all assumptions of Definition 4.1 are satisfied, (L,E)
∈ GR,1[Ω] for an R ∈ RD and D ∈M(X) (i.e. cD = 0). Then the Trigonometric Identity
(4.8) does not hold.

Proof. Suppose that D ∈ M(X). Then L,E ∈ M(X). Suppose that the Trigono-
metric Identity (4.8) holds. Then, by (4.4) and Proposition 4.3(ii), for all ix ∈ dom Ω−1

we have

e = (Cx)2 + (Sx)2 = E(ix)E(−ix) = E[(ix)(−ix)] = E(−i2x2) = E(x2),

which implies x2 = LE(x2) = Le = 0. Hence x = 0 and ix = 0 ∈ dom Ω−1, which
contradicts Proposition 6.2(vi) of PR[3]. Hence (4.8) does not hold.

Note that in several cases an operator D under consideration may be reduced by a
substitution to a multiplicative one. It is so, for instance, for various difference operators
(cf. PR[3]). In general, if cD = 0, then we have

Proposition 4.5. Suppose that all assumptions of Definition 4.1 are satisfied, (L,E)
∈ GR,1[Ω] for an R ∈ RD and cD = 0. Then the Trigonometric Identity (4.8) does not
hold.

Proof. Suppose that cD = 0 and (4.8) holds. Then D(uv) = fD(u, v) for u, v ∈
domD. Hence Du = D(ue) = fD(u, e). Let u = E(ix), where ix ∈ dom Ω−1 is arbitrary.
Then e = (Cx)2 + (Sx)2 = E(ix)E(−ix), which implies u ∈ I(X) ∩ dom Ω and u−1 =
[E(ix)]−1 = E(−ix). Thus fD(e, e) = De = D(uu−1) = fD(u, u−1). The arbitrariness
of ix = Lu implies that the mapping fD is constant. Thus Du is independent of the
value of u, i.e. u = z ∈ kerD. Hence fD(u, e) = Du = Dz = 0 and the mapping
gD(u, e) = u−1fD(u, e) = 0 for all u ∈ I(X) ∩ dom Ω = I(X) ∩ kerD. By Theorem 4.3
of PR[3], this implies cD = 1 6= 0, a contradiction. Thus the Trigonometric Identity does
not hold.

Theorem 4.1. Suppose that all assumptions of Definition 4.1 are satisfied, cD 6= 0,
and (L,E) ∈ GR,1[Ω] for an R ∈ RD. If X is a non-Leibniz algebra, then the Trigono-
metric Identity (4.8) does not hold in X.

Proof. Suppose that cD 6= 0, X is a non-Leibniz algebra and (4.8) holds. Let F be
an initial operator for D corresponding to R. By (4.4), for all ix ∈ dom Ω−1 we have

e = (Cx)2 + (Sx)2 = E(ix)E(−ix) = E(−ix)E(ix).

Let u = E(ix). By definition, u ∈ I(X) ∩ dom Ω. Then Lu = ix and

u−1 = [E(ix)]−1 = E(−ix).

By Proposition 4.3(iii),

0 = De = D[E(ix)E(−ix)] =

= cD[E(ix)DE(−ix) + E(−ix)DE(ix)] + fD(E(ix), E(−ix)) =

= cD[E(ix)E(−ix)D(−ix) + E(−ix)E(ix)D(ix)] + fD(E(ix), E(−ix)) =
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= cDE(ix)E(−ix)D(−ix+ ix) + fD(E(ix), E(−ix)) = fD(E(ix), E(−ix)) = fD(u, u−1).

Since (L,E) ∈ GR,1[Ω], we get FL = 0. Hence

e = E(ix)E(−ix) = E
{
cDix+R[cDD(ix) + fD((E(ix), E(−ix))E(ix)−1E(−ix)−1]

}
=

= E
{
cDix+R[cDD(ix) + fD((E(ix), E(−ix))]

}
= E[cDix+ cDRD(ix)] =

= E[cD(I +RD)Lu] = E[cD(2I − F )Lu] = E(2cDLu),

which, by Proposition 4.3(ii), implies

2cDLu = LE(2cDLu) = Le = 0.

If cD 6= 0, we obtain Lu = 0, i.e. u = e. This contradicts our assumption on the
arbitrariness of Lu = ix ∈ dom Ω−1, which implies the arbitrariness of u ∈ I(X)∩dom Ω.
Hence cD = 0.

Corollary 4.4. Suppose that all assumptions of Theorem 4.1 are satisfied. Then a
necessary and sufficient condition for the Trigonometric Identity (4.8) to be satisfied is
that the operator D satisfies the Leibniz condition, i.e. X is a Leibniz algebra.
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