
Minimizing AND-EXOR Expressions for

Multiple-Valued Two-Input Logic Functions

(Extended Abstract)

Takaaki Mizuki1, Hitoshi Tsubata2, and Takao Nishizeki2

1 Cyberscience Center, Tohoku University,
Aramaki-Aza-Aoba 6–3, Aoba-ku, Sendai 980–8578, Japan

tm-paper@rd.isc.tohoku.ac.jp
2 Graduate School of Information Sciences, Tohoku University, Aramaki-Aza-Aoba

6–6–05, Aoba-ku, Sendai, 980–8579, Japan

Abstract. A minimum ESOP (Exclusive-OR Sum-of-Products) form of
a logic function f is an AND-EXOR 2-level expression of f having the
minimum number of product terms. In the paper we deal with multiple-
valued 2-input logic functions f , and give an algorithm to find a minimum
ESOP form of a given function f in polynomial time.

1 Introduction

An ESOP (Exclusive-OR Sum-of-Products) form of a logic function f is an AND-
EXOR 2-level expression of f , i.e., a logical expression that combines products
of literals by Exclusive-ORs. For example,

f(x1, x2, x3) = (x1 ∧ x̄2 ∧ x3)⊕ (x̄1 ∧ x̄2 ∧ x̄3)⊕ (x2 ∧ x̄3) (1)

is an ESOP form defining a (2-valued) 3-input logic function f . The logic function
f can be expressed by another ESOP form, say

f(x1, x2, x3) = x1x̄2 ⊕ x̄3. (2)

(Hereafter, as in this expression, we omit the conjunction symbol ∧.) The ESOP
form in Eq. (1) has exactly three product terms, while the ESOP form in Eq. (2)
has only two product terms. Thus, there exists a minimization problem regarding
ESOP forms. This paper deals with such a minimization problem; more specifi-
cally, we give an efficient algorithm to minimize ESOP forms for multiple-valued
2-input logic functions.

1.1 ESOP Forms

First of all, we formally define “multiple-valued input logic functions” and “lit-
erals.” Throughout the paper, for a positive integer m, we define ZZm as follows:

ZZm
def= {0, 1, . . . , m− 1}.

J. Chen and S.B. Cooper (Eds.): TAMC 2009, LNCS 5532, pp. 301–310, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

302 T. Mizuki, H. Tsubata, and T. Nishizeki

Let n ≥ 1 be the number of logical variables, and let m1, m2, . . . , mn ≥ 2 be n
positive integers. Then, a function

f(x1, x2, . . . , xn)

such that
f : ZZm1 × ZZm2 × · · · × ZZmn → {0, 1}

is called a multiple-valued n-input logic function; in particular, when m1 = m2 =
· · · = mn = m, we call it an m-valued n-input logic function. (Needless to say,
when m = 2, it is a 2-valued n-input logic function and hence is a so-called
Boolean function.) Furthermore, for an i-th variable xi, 1 ≤ i ≤ n, and a subset
S ⊆ ZZmi , we define a function xS

i : ZZmi → {0, 1}, called a literal, as follows:

xS
i (xi) =

{
1 if xi ∈ S;
0 otherwise.

We often denote xS
i (xi) simply by xS

i . When S = ZZmi , the literal xS
i is just the

constant 1; also, when S = ∅, the literal xS
i (= x∅

i) is just the constant 0. For
instance, when mi = 2, i.e., ZZmi = {0, 1}, there are exactly four literals x

{0,1}
i ,

x
{0}
i , x

{1}
i and x∅

i , which are often denoted by 1, xi, xi and 0, respectively.
A product xS1

1 xS2
2 · · ·xSn

n of literals is called a product term. If a logic function
f(x1, x2, . . . , xn) has a logical expression

F =
⊕

(S1,S2,···,Sn)

xS1
1 xS2

2 · · ·xSn
n (3)

which combines product terms by Exclusive-ORs, then the expression F is called
an ESOP form. If an ESOP form F has a product term containing a literal
x∅

i (= 0), then the resulting ESOP form F ′ obtained by removing such a product
term represents the same logic function as the original ESOP form F . For an
ESOP form F , we denote by τ(F) the number of product terms in F . A minimum
ESOP form of a logic function f is an ESOP form having the minimum number
of product terms among all possible ESOP forms representing f .

1.2 Known Results

For many decades, the problem of minimization or simplification of ESOP forms
has attracted much attention of the researchers in the logic design community.
(A comprehensive survey appears in a book [6].) Although no efficient algorithm
to minimize ESOP forms has been known, many good heuristic algorithms to
simplify ESOP forms have been proposed (e.g. [1,5,7,8,11]). On the other hand,
there also exist efficient exact minimization algorithms which efficiently work
only for a limited (small) number of variables or product terms (e.g. [3,9,10]).

Historically, the binary case of m1 = m2 = · · · = mn = 2, namely ESOP
forms for 2-valued input logic functions have been much investigated, of course;
the most famous ESOP form is probably a Reed-Muller expression. For such a 2-
valued input case, there are many good heuristic (or exact) algorithms to simplify

Minimizing AND-EXOR Expressions 303

(or minimize) ESOP forms (e.g. [1,3,9,11]). In particular, the best known upper
bound on the number τ(F) of product terms in a minimum ESOP form F for any
2-valued n-input logic function is τ(F) ≤ 29 · 2n−7 (provided that n ≥ 7) [2].

On the other hand, there are relatively a small number of papers dealing with
multiple-valued input logic functions, but there are a few works on the case where
integers mi are larger than 2. In particular, the case of m1 = m2 = · · · = mn = 4,
namely ESOP forms for 4-valued input logic functions have been greatly studied,
e.g. [5,7]; it is motivated by improving input decoders in PLA (Programmable
Logic Array) structures. Furthermore, the case where m1 = m2 = · · · = mn−1 =
2 and mn ≥ 3 has been studied in [10].

1.3 Our Results

As mentioned in the previous subsection, no efficient ESOP minimization
algorithm for general logic functions has been known; in particular, for the
multiple-valued input case, every existing efficient minimization algorithm, to
our knowledge, has a limitation in the input sizes mi. In this paper, instead of
restricting the input sizes mi in multiple-valued input logic functions, we fix the
number n of variables to 2. We thus deal with m-valued 2-input logic functions,
and give an algorithm to find a minimum ESOP form of any given function in
polynomial time in m, say time O(m3), where m is any integer larger than 1.

It is known that the minimization of ESOP forms of m-valued 2-input logic func-
tions, which this paper addresses, can be applied to improving a cryptographic
protocol [4], as follows. The cost (communication complexity) of the cryptographic
protocol developed in [4] to securely compute a function f(a, b) is proportional to
the number τ(F) of product terms in an ESOP form F of f . Thus, if one can find a
minimum ESOP form of f , then one can achieve the most efficient secure compu-
tation by the protocol. Therefore, applying the results in this paper to the protocol
proposed in [4], one can execute the protocol most efficiently.

The remainder of the paper is organized as follows. In Section 2, we present
some preliminaries necessary to explain our algorithm. In Section 3, we introduce
a method to express an ESOP form of an m-valued 2-input logic function in a
matrix form. This matrix-based expression helps us to easily and intuitively un-
derstand the minimization of ESOP forms. In Section 4, we present our efficient
algorithm to find a minimum ESOP form of any given m-valued 2-input logic
function by using elementary row operations for matrices. This paper concludes
in Section 5 with some discussions.

2 Preliminaries

In this section, we define some terms and present some of the known results.

2.1 Multiple-Valued Shannon Expansion

Let f(a, b) be an m-valued 2-input logic function with variables a and b, that is, let

f : ZZm × ZZm → {0, 1}.

304 T. Mizuki, H. Tsubata, and T. Nishizeki

Then, throughout this paper, we call the ESOP form

f(a, b) = a{0}bT1 ⊕ a{1}bT2 ⊕ · · · ⊕ a{m−1}bTm

the multiple-valued Shannon expansion of f . It should be noted that Ti ⊆ ZZm,
i ∈ {1, 2, . . . , m}, is uniquely determined as follows:

Ti = {b ∈ ZZm | f(i− 1, b) = 1}.

Consider for example a 5-valued 2-input logic function h(a, b), whose truth
table is given in Table 1. The multiple-valued Shannon expansion of h is

h(a, b) = a{0}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{3}b{0,3,4} ⊕ a{4}b{0,1,3}. (4)

Table 1. A truth table for the 5-valued 2-input logic function h(a, b)

b
0 1 2 3 4

0 1 0 0 1 1
1 0 1 0 0 1

a 2 0 1 0 1 0
3 1 0 0 1 1
4 1 1 0 1 0

Let F be the multiple-valued Shannon expansion of an m-valued 2-input logic
function f , then the number τ(F) of the product terms in F satisfies τ(F) = m
(before removing a product term containing a constant literal b∅).

2.2 Transformation Rules for ESOP Forms

One of the most famous currently known algorithms to simplify ESOP forms is
EXMIN2, which was developed by Sasao [5]. The transformation rule for ESOP
forms described in the following Theorem 1 is one of the rules utilized by the
algorithm EXMIN2. Hereafter, the binary operator ⊕ for two sets denotes the
symmetric difference of the two sets, that is,

S ⊕ T = (S ∩ T) ∪ (S ∩ T).

Theorem 1 ([5]). For any four literals aSp , bTp , aSq , bTq of two variables a
and b,

aSpbTp ⊕ aSqbTq = aSp⊕SqbTp ⊕ aSqbTp⊕Tq

holds, where Sp, Tp, Sq, Tq ⊆ ZZm.

Note that, according to Theorem 1, if Tp = Tq, then

aSpbTp ⊕ aSqbTp = aSp⊕SqbTp ⊕ aSqb∅ = aSp⊕SqbTp ,

Minimizing AND-EXOR Expressions 305

and hence the number of product terms decreases by exactly 1. For example,
applying the transformation rule in Theorem 1 to the first and fourth product
terms in the ESOP form in Eq. (4) results in

h(a, b)
= a{0}⊕{3}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{3}b{0,3,4}⊕{0,3,4} ⊕ a{4}b{0,1,3}

= a{0,3}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{4}b{0,1,3}. (5)

In this paper, as seen later in Sections 3 and 4, applying the transformation rule
given in Theorem 1, we propose an efficient algorithm to find a minimum ESOP
form of any given m-valued 2-input logic function.

3 ESOP Matrices

In this section, we propose a method for expressing an ESOP form of an m-
valued 2-input logic function in a Boolean matrix. The method makes it easier
for us to intuitively understand the transformations of ESOP forms.

We begin with an example; consider the following ESOP form of the 5-valued
2-input logic function h (already seen in Eq. (5)):

a{0,3}b{0,3,4} ⊕ a{1}b{1,4} ⊕ a{2}b{1,3} ⊕ a{4}b{0,1,3}.

Given such a 5-valued ESOP form having 4 product terms, we construct a
Boolean 4× 10 matrix as follows:

⎛
⎜⎜⎝

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

∣∣∣∣∣∣∣∣

1 0 0 1 1
0 1 0 0 1
0 1 0 1 0
1 1 0 1 0

⎞
⎟⎟⎠
← a{0,3}b{0,3,4}

← a{1}b{1,4}

← a{2}b{1,3}

← a{4}b{0,1,3}

which represents the ESOP form above; the first row of the Boolean matrix cor-
responds to the first term a{0,3}b{0,3,4} in the ESOP form, i.e., the five elements
in the left half of the first row correspond to the literal a{0,3}, and the five ele-
ments in the right half correspond to the literal b{0,3,4}, and so on. (Notice that
each literal is described by a bit pattern of length 5.)

Generally, let F =
⊕t

i=1 aSibTi be an m-valued ESOP form, then we call the
following t× 2m Boolean matrix H the ESOP matrix of F :

H =

⎛
⎜⎜⎜⎝

�11 �12 · · · �1m

�21 �22 · · · �2m

...
... · · · ...

�t1 �t2 · · · �tm

∣∣∣∣∣∣∣∣∣

r11 r12 · · · r1m

r21 r22 · · · r2m

...
... · · · ...

rt1 rt2 · · · rtm

⎞
⎟⎟⎟⎠

where

�ij = aSi(j − 1) =
{

1 if j − 1 ∈ Si;
0 if j − 1 ∈ Si

306 T. Mizuki, H. Tsubata, and T. Nishizeki

and

rij = bTi(j − 1) =
{

1 if j − 1 ∈ Ti;
0 if j − 1 ∈ Ti

for every i ∈ {1, 2, . . . , t} and j ∈ {1, 2, . . . , m}.
Given an ESOP form of t product terms, its corresponding t × 2m ESOP

matrix is uniquely determined. Conversely, given a t× 2m Boolean matrix, the
corresponding ESOP form of t product terms is also uniquely determined.

Hereafter, for a t × 2m ESOP matrix H , partitioning H into the left block
HL and the right block HR, we often write

H =
(
HL HR

)
,

where HL and HR are t×m matrices. For example, let H be the ESOP matrix
of the multiple-valued Shannon expansion

f(a, b) = a{0}bT1 ⊕ a{1}bT2 ⊕ · · · ⊕ a{m−1}bTm

of an m-valued 2-input logic function f , then HL must be an identity matrix
(unit matrix) of size m, i.e., H must be like

H =
(
I HR

)
,

where I denotes the identity matrix (also in the sequel).
Furthermore, for each of the left block HL and the right block HR of a t×2m

ESOP matrix H , using row vectors �i and ri of length m, we often write

H =
(
HL HR

)
=

⎛
⎜⎜⎜⎝

�1

�2

...
�t

∣∣∣∣∣∣∣∣∣

r1

r2

...
rt

⎞
⎟⎟⎟⎠ .

As will be seen in Section 4, our algorithm uses the following two transforma-
tion rules (named R1 and R2) for ESOP forms:

(R1) aSpbTp ⊕ aSqbTq = aSp⊕SqbTp ⊕ aSqbTp⊕Tq (Theorem 1);
(R2) aSpbTp ⊕ aSqbTq = aSqbTq ⊕ aSpbTp (commutativity of Exclusive-OR).

Considering the two rules above applied to ESOP matrices, we naturally get
the following two definitions.

Definition 1. Given an ESOP matrix of t rows, applying rule R1 to the p-th
and q-th rows means the following row operation:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

...
�p

...
�q

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

...
rp

...
rq

...
rt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R1(p,q)

−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

...
�p ⊕ �q

...
�q

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

...
rp

...
rp ⊕ rq

...
rt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the operator ⊕ represents bitwise Exclusive-OR of two row vectors.

Minimizing AND-EXOR Expressions 307

Definition 2. Given an ESOP matrix of t rows, applying rule R2 to the p-th
and q-th rows means the following row operation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

...
�p

...
�q

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

...
rp

...
rq

...
rt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R2(p,q)

−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1

...
�q

...
�p

...
�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r1

...
rq

...
rp

...
rt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Based on these two definitions, the following lemma immediately holds.

Lemma 1. Let F be an arbitrary ESOP form, and let H be the ESOP matrix
of F . Assume that applying rule R1 (R2) to the p-th and q-th product terms in
F results in an ESOP form F ′, and that applying rule R1 (R2) to the p-th and
q-th rows of H results in a matrix H ′. Then, H ′ is the ESOP matrix of F ′.

Note that rules R1 and R2 for an ESOP matrix H can be regarded just as the
elementary row operations (on a Boolean matrix) for each of the left block HL

and the right block HR of H .

4 Our Algorithm

We are now ready to present our algorithm.
Given a truth table of an m-valued 2-input logic function f as an input, the

following algorithm outputs a minimum ESOP form of f .

[Our algorithm]

1. Find the multiple-valued Shannon expansion
⊕m

i=1 a{i−1}bTi of f from the
truth table of f , and let (

I HR
)

be its m× 2m ESOP matrix. (Recall that the left block of the ESOP matrix
of a multiple-valued Shannon expansion is always an identity matrix I.)

2. Apply a series of rules R1 and R2 to the ESOP matrix so that the right
block HR is transformed into a Boolean matrix in row echelon form. (Us-
ing a known algorithm, e.g. Gaussian elimination algorithm, one can obtain
such a row echelon form within an O(m2) number of transformations. Each
transformation can be done in O(m) bit operations.) Note that, since these
transformations are elementary row operations for each of the left and right
blocks, the rank of the right block never changes, and hence its rank remains
rank(HR) (after the series of rules R1 and R2), where rank(M) denotes the
rank of a matrix M .

308 T. Mizuki, H. Tsubata, and T. Nishizeki

3. Note that the current ESOP matrix in row echelon form has an all-zero
submatrix O in the lower part of its right block as follows:(∗ ∗

∗ O

)}
rank(HR)

.

Construct the ESOP form corresponding to this ESOP matrix, and remove
all the m−rank(HR) terms containing constant 0. The resulting ESOP form
is the output of our algorithm.

We now demonstrate the execution of our algorithm with the 5-valued 2-
input logic function h which was given in Table 1. In step 1 of our algorithm,
the multiple-valued Shannon expansion of h is given in Eq. (4), and hence we
have a 5× 10 Boolean matrix⎛

⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

1 0 0 1 1
0 1 0 0 1
0 1 0 1 0
1 0 0 1 1
1 1 0 1 0

⎞
⎟⎟⎟⎟⎠

as its ESOP matrix. In step 2, applying a series of four transformations R1(1,4),
R1(1,5), R1(2,3) and R1(2,5) to the matrix, we make the right block of the ESOP
matrix be a Boolean matrix in row echelon form⎛

⎜⎜⎜⎜⎝

1 0 0 1 1
0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

1 0 0 1 1
0 1 0 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .

In step 3, from the ESOP matrix above, our algorithm outputs the following
ESOP form:

a{0,3,4}b{0,3,4} ⊕ a{1,2,4}b{1,4} ⊕ a{2}b{3,4},

which is a minimum ESOP form of h as will be guaranteed in Theorem 2.
Since applying rules R1 and R2 in step 2 of our algorithm can be regarded

exactly as elementary row operations for each of the left and right blocks as
mentioned above, the rank of the right block never changes, and hence its rank
remains rank(HR). Therefore, the following Lemma 2 holds.
Lemma 2. Let f be an m-valued 2-input logic function, and let(

I HR
)

be the ESOP matrix of its multiple-valued Shannon expansion. Then, our algo-
rithm outputs an ESOP form F such that τ(F) = rank(HR).

Using Lemma 2, one can verify the correctness of our algorithm and obtains the
following Theorem 2.

Theorem 2. For every m-valued 2-input logic function f , our algorithm outputs
a minimum ESOP form.

Proof. Omitted due to the page limitation. ��

Minimizing AND-EXOR Expressions 309

5 Conclusions

In this paper, we first introduced a method for expressing an ESOP form as
a matrix, and then, utilizing the method, we proposed an algorithm to find a
minimum ESOP form of any given m-valued 2-input logic function in O(m3) bit
operations.

Lemma 2 and Theorem 2 also imply that, given an m-valued 2-input logic
function f , the minimum number of product terms among all the ESOP forms
of f is equal to rank(HR), where

(
I HR

)
is the ESOP matrix of the multiple-valued Shannon expansion of f . Furthermore,
even if a logic function f is given in an ESOP form F which is not necessarily
that of the multiple-valued Shannon expansion of f , one can efficiently find a
minimum ESOP form of f having min{rank(HL), rank(HR)} product terms by
extending the results in Section 4, where

(
HL HR

)
is the ESOP matrix of F .

We have so far considered the minimization of ESOP forms of m-valued 2-
input logic functions, namely only for the case of m1 = m2 = m. However,
even for the case of m1 = m2, i.e., for multiple-valued 2-input logic functions
f : ZZm1 × ZZm2 → {0, 1} with m1 = m2, one can easily construct an efficient
minimization algorithm by redefining ESOP matrices as t× (m1 +m2) matrices.

Acknowledgments

We thank Dr. Xiao Zhou and Dr. Takehiro Ito for their valuable discussions and
suggestions. This work was supported by KAKENHI (19700002).

References

1. Fleisher, H., Tavel, M., Yeager, J.: A computer algorithm for minimizing Reed-
Muller canonical forms. IEEE Transactions on Computers 36(2), 247–250 (1987)

2. Gaidukov, A.: Algorithm to derive minimum ESOP for 6-variable function. In:
Proceedings of the Fifth International Workshop on Boolean Problems, Freiberg
(2002)

3. Hirayama, T., Nishitani, Y., Sato, T.: A faster algorithm of minimizing AND-
EXOR expressions. IEICE Trans. Fundamentals E85-A(12), 2708–2714 (2002)

4. Mizuki, T., Otagiri, T., Sone, H.: An application of ESOP expressions to secure
computations. Journal of Circuits, Systems, and Computers 16(2), 191–198 (2007)

5. Sasao, T.: EXMIN2: a simplification algorithm for exclusive-or sum-of-products
expressions for multiple-valued-input two-valued-output functions. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 12(5), 621–632
(1993)

310 T. Mizuki, H. Tsubata, and T. Nishizeki

6. Sasao, T.: Switching Theory for Logic Synthesis. Kluwer Academic Publishers,
Boston (1999)

7. Sasao, T., Besslich, P.: On the complexity of mod-2 sum PLA’s. IEEE Transactions
on Computers 39(2), 262–266 (1990)

8. Song, N., Perkowski, M.A.: Minimization of exclusive sum-of-products expressions
for multiple-valued input, incompletely specified functions. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 15(4), 385–395 (1996)

9. Stergiou, S., Papakonstantinou, G.: Exact minimization of ESOP expressions with
less than eight product terms. Journal of Circuits, Systems and Computers 13(1),
1–15 (2004)

10. Stergiou, S., Voudouris, D., Papakonstantinou, G.: Multiple-value exclusive-or sum-
of-products minimization algorithms. IEICE Trans. Fundamentals E87-A(5), 1226–
1234 (2004)

11. Ye, Y., Roy, K.: An XOR-based decomposition diagram and its application in
synthesis of AND/XOR networks. IEICE Trans. Fundamentals E80-A(10), 1742–
1748 (1997)

	Minimizing AND-EXOR Expressions for Multiple-Valued Two-Input Logic Functions
	Introduction
	ESOP Forms
	Known Results
	Our Results

	Preliminaries
	Multiple-Valued Shannon Expansion
	Transformation Rules for ESOP Forms

	ESOP Matrices
	Our Algorithm
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

