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Abstract

The cyclic block coordinate descent-type
(CBCD-type) methods have shown remark-
able computational performance for solv-
ing strongly convex minimization problems.
Typical applications include many popular
statistical machine learning methods such as
elastic-net regression, ridge penalized logis-
tic regression, and sparse additive regression.
Existing optimization literature has shown
that the CBCD-type methods attain itera-
tion complexity of O(p · log(1/ε)), where ε
is a pre-specified accuracy of the objective
value, and p is the number of blocks. How-
ever, such iteration complexity explicitly de-
pends on p, and therefore is at least p times
worse than those of gradient descent meth-
ods. To bridge this theoretical gap, we pro-
pose an improved convergence analysis for
the CBCD-type methods. In particular, we
first show that for a family of quadratic min-
imization problems, the iteration complexity
of the CBCD-type methods matches that of
the GD methods in term of dependency on p
(up to a log2 p factor). Thus our complexity
bounds are sharper than the existing bounds
by at least a factor of p/ log2 p. We also pro-
vide a lower bound to confirm that our im-
proved complexity bounds are tight (up to a
log2 p factor) if the largest and smallest eigen-
values of the Hessian matrix do not scale with
p. Finally, we generalize our analysis to other
strongly convex minimization problems be-
yond quadratic ones.
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1 Introduction

We consider a class of convex minimization problems
in statistical machine learning:

x∗ = argmin
x∈Rd

L(x) +R(x), (1)

where L(·) is a twice differentiable convex loss func-
tion and R(·) is a possibly nonsmooth and strongly
convex penalty function. Typical applications of (1)
include elastic-net regression (Zou and Hastie, 2005),
ridge penalized logistic regression (Hastie et al., 2009),
support vector machine (Vapnik and Vapnik, 1998)
and many other statistical machine learning problems
(Hastie et al., 2009). The penalty function R(x) in
these applications is block coordinate decomposable.
For notational simplicity, we assume that there exists
a partition of d coordinates such that

x = [x>1 , . . . , x
>
p ]> ∈ Rd,

where xj ∈ Rdj , d =
∑p
j=1 dj , and dj � p. Then we

can rewrite the objective function in (1) as

F(x) = L(x1, . . . , xp) +

p∑

j=1

Rj(xj).

Many algorithms such as gradient decent (GD) meth-
ods (Nesterov, 2004, 2007), cyclic block coordinate
descent-type (CBCD-type) methods (Tseng, 1993,
2001; Friedman et al., 2007; Liu et al., 2009; Tseng
and Yun, 2009; Saha and Tewari, 2013; Schmidt and
Friedlander, 2015; Zhao and Liu, 2015; Zhao et al.,
2014b,a, 2012; Li et al., 2015b), and alternating di-
rection method of multipliers (ADMM, Gabay and
Mercier (1976); Boyd et al. (2011); He and Yuan
(2012); Zhao and Liu (2012); Liu et al. (2014, 2015);
Li et al. (2015a)) have been proposed to solve (1).
Among these algorithms, the CBCD-type methods
have been immensely successful (Friedman et al., 2007,
2010; Mazumder et al., 2011; Zhao et al., 2014a).
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One popular instance of the CBCD-type methods
is the cyclic block coordinate minimization (CBCM)
method, which minimizes (1) with respect to a single
block of variables while holding the rest fixed. Par-
ticularly, at the (t + 1)-th iteration, given x(t), we
choose to solve a collection of optimization problems:
For j = 1, . . . , p,

x
(t+1)
j = argmin

xj

L
(
x
(t+1)
1:(j−1), xj , x

(t)
(j+1):p

)

+Rj(xj), (2)

where x
(t+1)
1:(j−1) = [x

(t+1)>
1 , . . . , x

(t+1)>
j−1 ]> and

x
(t)
(j+1):p = [x

(t)>
j+1 , . . . , x

(t)>
p ]>. For some applica-

tions (e.g. elastic-net penalized linear regression),
we can obtain a simple closed form solution to (2),
but for many other applications (e.g. ridge-penalized
logistic regression), (2) does not admit a closed form
solution and requires more sophisticated optimization
procedures.

A popular alternative is to solve a quadratic approxi-
mation of (2) using the cyclic block coordinate gradi-
ent descent (CBCGD) method. For notational simplic-
ity, we denote the partial gradient∇xjL(x) by∇jL(x).
Then the CBCGD method solves a collection of opti-
mization problems: For j = 1, . . . , p,

x
(t+1)
j = argmin

xj

(xj − x(t)j )>∇jL
(
x
(t+1)
1:(j−1), x

(t)
(j):p

)

+
ηj
2
‖xj − x(t)j ‖2 +Rj(xj), (3)

where ηj > 0 is a step-size parameter for the j-th
block.

There have been many results on iteration complexity1

of block coordinate descent-type (BCD-type) meth-
ods, but most of them focus on the randomized BCD-
type methods, where blocks are randomly chosen with
replacement in each iteration (Shalev-Shwartz and
Tewari, 2011; Richtárik and Takáč, 2012; Lu and Xiao,
2015). In contrast, existing literature on cyclic BCD-
type methods is rather limited. Specifically, one line of
research focuses on minimizing smooth objective func-
tions, and has shown that given a pre-specified accu-
racy ε for the objective value, the CBCGD method
attains linear iteration complexity of O(log(1/ε)) for
minimizing smooth and strongly convex problems, and
sublinear iteration complexity of O(1/ε) for smooth
and nonstrongly convex problems (Beck and Tetru-
ashvili, 2013). Another line of research focuses on
minimizing nonsmooth composite objective functions
such as (1), and has shown that the CBCM and
CBCGD methods attain sublinear iteration complex-
ity of O(1/ε), when the objective function is non-
stronlgy convex (Hong et al., 2013).

1Each iteration considers one update of all blocks.

Here we are interested in establishing an improved iter-
ation complexity of the CBCM and CBCGD methods,
when the nonsmooth composite objective function is
strongly convex. Particularly, Beck and Tetruashvili
(2013) has shown that for smooth minimization, the
CBCGD method attains linear iteration complexity of

O
(
µ−1pL2 log(1/ε)

)
, (4)

where L is the Lipschitz constant of the gradient map-
ping ∇L(x) and µ is the strongly convex coefficient of
the objective function. However, such iteration com-
plexity explicitly depends on p (the number of blocks),
and therefore is at least p times worse than those of the
gradient descent (GD) methods. To bridge this theo-
retical gap, we propose an improved convergence anal-
ysis for the CBCD-type methods. Specifically, we show
that for a family of quadratic minimization problems,
the iteration complexity of the CBCD-type methods
matches that of the GD methods in term of depen-
dency on p (up to a log2 p factor). More precisely,
when L(x) is quadratic, the iteration complexity of
the CBCD-type methods is

O
(
µ−1L2 log2 p log(1/ε)

)
. (5)

As can be seen easily, (5) is better than (4) by a factor
of p/ log2 p. We also provide a lower bound analysis
that confirms that our improved iteration complexity
is tight (up to a log2 p factor) if the largest and small-
est eigenvalues of the Hessian matrix do not scale with
p. Finally, we provide the analysis of other strongly
convex minimization problems beyond quadratic ones.
Specifically, for general minimization problems with
both smooth and nonsmooth regularizations, the iter-
ation complexity of the CBCD-type method matches
with the result in Beck and Tetruashvili (2013) that
only analyzed smooth R(·); for more details refer to
Table 12. It is worth mentioning that all the above
results on the CBCD-type methods can be used to es-
tablish the iteration complexity for popular permuted
BCM (PBCM) and permuted BCGD (PBCGD) meth-
ods, in which the blocks are randomly sampled without
replacement.

2 Notations and Assumptions

We start with some notations used in this paper.
Given a vector v = (v1, . . . , vd)

> ∈ Rd, we define
vector norms: ‖v‖1 =

∑
j |vj |, ‖v‖2 =

∑
j v

2
j , and

‖v‖∞ = maxj |vj |. Let {A1, . . . ,Ap} be a partition of
all d coordinates with |Aj | = dj and

∑p
j=1 dj = d. We

2When R(·) is nonsmooth, the optimization problem is
actually solved by the cyclic block coordinate proximal gra-
dient (CBCPGD) method. For notational convenience in
this paper, however, we simply call it the CBCGD method.
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Table 1: Compared with Beck and Tetruashvili (2013), our contribution contains many folds: (1) Developing the
iteration complexity bounds of the CBCM methods for different specifications on L(·) and R(·); (2) Developing
the iteration complexity bound of CBCGD for quadratic L(·) + nonsmooth R(·); (3) Provide the iteration
complexity bound of CBCGD for both smooth and nonsmooth R(·).

Method L(·) R(·) Improved Iteration Complexity Beck and Tetruashvili (2013)

[a] CBCGD Quadratic Smooth O
(
µ−1log2 pL2 log(1/ε)

)
O
(
µ−1pL2 log(1/ε)

)

[b] CBCGD Quadratic Nonsmooth O
(
µ−1 log2 pL2 log(1/ε)

)
N/A

[c] CBCGD General Convex Smooth O
(
µ−1pL2 log(1/ε)

)
O
(
µ−1pL2 log(1/ε)

)

[d] CBCGD General Convex Nonsmooth O
(
µ−1pL2 log(1/ε)

)
N/A

[e] CBCM Quadratic Smooth O
(
µ−1 log2 pL2 log(1/ε)

)
N/A

[f] CBCM Quadratic Nonsmooth O
(
µ−1 log2 pL2 log(1/ε)

)
N/A

[g] CBCM General Convex Smooth O
(
µ−1pL2 log(1/ε)

)
N/A

[h] CBCM General Convex Nonsmooth O
(
µ−1pL2 log(1/ε)

)
N/A

Remark: Results [a] and [b] are presented in Theorem 3; Results [e] and [f] are presented in Theorem 4; Results
[c], [d], [g], and [h] are presented in Theorem 5.

use vj to denote the subvector of v with all indices in
Aj . Given a matrix A ∈ Rd×d, we use λmax(A) and
λmin(A) to denote the largest and smallest eigenval-
ues of A. We denote ‖A‖ as the spectral norm of A
(i.e., the largest singular value). We denote ⊗ and �
as the Kronecker product and Hadamard (entrywise)
product for two matrices respectively.

Before we proceed with our convergence analysis, we
introduce some assumptions on L(·) and R(·).
Assumption 1. L(·) is convex, and its gradient map-
ping ∇L(·) is Lipschitz continuous and also block-
wise Lipschitz continuous, i.e., there exist positive con-
stants L and Lj’s such that for any x, x′ ∈ Rd and
j = 1, . . . , p, we have

‖∇L(x′)−∇L(x)‖ ≤ L‖x− x′‖ and

‖∇jL
(
x1:(j−1), x

′
j , x(j+1):p

)
−∇jL(x)‖ ≤ Lj‖xj − x′j‖.

Moreover, we define Lmax = maxj Lj and Lmin =
minj Lj.

Assumption 2. R(·) is strongly convex and also
blockwise strongly convex, i.e., there exist positive con-
stants µ and µj’s such that for any x, x′ ∈ Rd and
j = 1, . . . , p, we have

R(x) ≥ R(x′) + (x− x′)>ξ′ + µ

2
‖x− x′‖2 and

Rj(xj) ≥ Rj(x′j) + (xj − x′j)>ξ′j +
µj
2
‖xj − x′j‖2,

for any ξ′ in the sub-differential of R(x′), i.e. ξ′ ∈
∂R(x′). Moreover, we define µmin = minj µj.

For notational simplicity, we define auxiliary variables

Lµmin = min
j
Lj + µj and

y(t,j) = [x
(t)>
1:(j−1), x

(t−1)>
j:p ]>, j = 1, . . . , p.

Our analysis considers Lmin, Lmax, Lµmin, µmin, µ, and
dmax = maxj dj as constants, which do not scale with
the block size p.

3 Improved Convergence Analysis

Our analysis consists of the following three steps:

(1) Characterize the successive descent after each
CBCD iteration;

(2) Characterize the gap towards the optimal objec-
tive value after each CBCD iteration;

(3) Combine (1) and (2) to establish the iteration
complexity bound.

We present our analysis under different specifications
on L(·) and R(·).

3.1 Quadratic Minimization

We first consider a scenario, where L(·) is a quadratic
function. Particularly, we solve

x∗ = argmin
x∈Rd

L(x) +R(x)

= argmin
xj∈Rdj

j=1,...,p

1

2

∣∣∣∣
∣∣∣∣
p∑

j=1

A∗jxj − b
∣∣∣∣
∣∣∣∣
2

+

p∑

j=1

Rj(xj), (6)
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where A∗j ∈ Rn×dj for j = 1, ..., p. Typical appli-
cations of (6) in statistical machine learning include
ridge regression, elastic-net penalized regression, and
sparse additive regression.

We first characterize the successive descent of the
CBCGD method.

Lemma 1. Suppose that Assumptions 1 and 2 hold.
We choose ηj = Lj for the CBCGD method. Then for
all t ≥ 1, we have

F(x(t))−F(x(t+1)) ≥ Lµmin

2
‖x(t) − x(t+1)‖2.

Proof. At t-th iteration, there exists a ξ
(t+1)
j ∈

∂Rj(x(t+1)
j ) satisfying the optimality condition:

∇jL(y(t+1,j+1)) + ηj(x
(t+1)
j − x(t)j ) + ξ

(t+1)
j = 0. (7)

Then by definition of CBCGD (3), we have

F(y(t+1,j))−F(y(t+1,j+1))

= (x
(t)
j − x

(t+1)
j )>∇jL(y(t+1,j+1)) +Rj(x(t)j )

− Lj
2
‖x(t+1)

j − x(t)j ‖2 −Rj(x
(t+1)
j ). (8)

By Assumptions 2, we have

Rj(x(t)j )−Rj(x(t+1)
j ) ≥ (x

(t)
j − x

(t+1)
j )>ξ(t+1)

j

+
µj
2
‖x(t)j − x

(t+1)
j ‖2. (9)

Combining (7), (8) and (9), we have

F(y(t+1,j))−F(y(t+1,j+1))

≥ Lj + µj
2

‖x(t)j − x
(t+1)
j ‖2. (10)

We complete the proof via summation of (10) over
j = 1, . . . , p.

Next, we characterize the gap towards the optimal ob-
jective value.

Lemma 2. Suppose that Assumptions 1 and 2 hold.
Then for all t ≥ 1, we have

F(x(t+1))−F(x∗) ≤ L2 log2(2p · dmax)

2µ
‖x(t+1) − x(t)‖2.

Due to space limit, we only provide a proof sketch
of Lemma 2, and the detailed proof can be found in
Appendix A.

Proof sketch. Since L(x) is quadratic, its second order
Taylor expansion is tight, i.e.

L(x∗) = L(x(t+1)) + 〈∇L(x(t+1)), x∗ − x(t+1)〉

+
1

2
‖A(x(t+1) − x∗)‖2, (11)

where A = [A∗1, . . . , A∗p] ∈ Rn×d.

Consider matrices P̃ and Ã, defined as

P̃ =




L1 0 0 . . . 0 0
0 L2 0 . . . 0 0
...

...
... . . .

...
...

0 0 . . . 0 Lp


 ∈ Rp×p,

Ã =




A∗1 0 0 . . . 0 0
0 A∗2 0 . . . 0 0
...

...
... . . .

...
...

0 0 . . . 0 A∗p


 ∈ Rnp×d,

which gives us the following inequality

P̃ ⊗ Im � Ã>Ã. (12)

To characterize the gap towards the optimal objective
value based on the strong convexity of R(·), we ex-
ploit the tightness of the second order Taylor expan-
sion of quadratic L(·) in (11), the optimality condi-
tion of subproblems and a symmetrization technique
involving Kronecker product, to show that

F(x(t+1))−F(x∗) ≤ (x(t+1) − x(t))>B(x(t+1) − x∗)
− µ

2
‖x(t+1) − x∗‖2, (13)

where B =
(
A>A− Ã>Ã

)
�Dd + Ã>Ã− P̃ ⊗ Im. By

minimizing the R.H.S. of (13) w.r.t. x∗, we have

F(x(t+1))−F(x∗) ≤ 1

2µ
‖B(x(t+1) − x(t))‖2

≤ λ2max(B)

2µ
‖x(t+1) − x(t)‖2

Finally, we obtain the desired result by bounding the
spectral norm of B using the result for triangular trun-
cation operation, i.e.,

λmax(B) ≤ λmax

(
A>A− Ã>Ã

)
log(2d)

≤ L log(2p · dmax),

which completes the proof.

Using Lemmas 1 and 2, we establish the iteration com-
plexity bound of the CBCGD method for minimizing
(6) in the next theorem.

Theorem 3. Suppose that Assumptions 1 and 2 hold.
We choose ηj = Lj for the CBCGD method. Given a
pre-specified accuracy ε of the objective value, we need
at most
⌈
µLµmin + L2 log2(2p · dmax)

µLµmin

log

(F(x(0))−F(x∗)
ε

)⌉

iterations for the CBCGD method such that F(x(t))−
F(x∗) ≤ ε
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Proof. Combining Lemmas 1 and 2, we obtain

F(x(t))−F(x∗)

= [F(x(t))−F(x(t+1))] + [F(x(t+1))−F(x∗)]

≥ Lµmin

2
‖x(t) − x(t+1)‖2 + [F(x(t+1))−F(x∗)]

≥
(

1 +
Lµminµ

L2 log2(2p · dmax)

)
[F(x(t+1))−F(x∗)].

Recursively applying the above inequality for t ≥ 1,
we obtain

F(x(t))−F(x∗)

F(x(0))−F(x∗)
≤
(

1− µLµmin

µLµmin + L2 log2(2p · dmax)

)t
.

To secure F(x(t)) − F(x∗) ≤ ε, we only need a large
enough t such that

(
1− µLµmin

µLµmin + L2 log2(2pdmax)

)t
[F(x(0))−F(x∗)] ≤ ε.

We complete the proof by the above inequality, and

the basic inequality κ ≥ log−1
(

κ
κ−1

)
.

As can be seen in Theorem 3, the iteration complex-
ity depends on p only in the order of log2 p, which is
generally mild in practice. The iteration complexity
of the CBCM method can be established in a similar
manner.

Theorem 4. Suppose that Assumptions 1 and 2 hold.
Given a pre-specified accuracy ε, we need at most

⌈
µµmin + 4L2 log2(2p · dmax)

µµmin
log

(F(x(0))−F(x∗)
ε

)⌉

iterations for the CBCM method such that F(x(t)) −
F(x∗) ≤ ε

Proof. The overall proof also consists of three major
steps: (i) successive descent, (ii) gap towards the op-
timal objective value, and (iii) iteration complexity.

Successive Descent: At t-th iteration, there exists

a ξ
(t+1)
j ∈ ∂Rj(x(t+1)

j ) satisfying the optimality con-
dition:

∇jL(y(t+1,j+1)) + ξ
(t+1)
j = 0. (14)

Then we have

F(y(t+1,j))−F(y(t+1,j+1))

(i)

≥(x
(t)
j − x

(t+1)
j )>∇jL(y(t+1,j+1))

+Rj(x(t)j )−Rj(x(t+1)
j )

(ii)

≥
(
∇jL(y(t+1,j+1)) + ξ

(t+1)
j

)>
· (x(t)j − x

(t+1)
j )

+
µj
2
‖x(t)j − x

(t+1)
j ‖2

(iii)
=

µj
2
‖x(t)j − x

(t+1)
j ‖2, (15)

where (i) is from the convexity of L(·), (ii) is from
Assumptions 2, and (iii) is from (14). By summation
of (15) over j = 1, . . . , p, we have

F(x(t))−F(x(t+1)) ≥ µmin

2
‖x(t) − x(t+1)‖2.

Gap towards the Optimal Objective Value: The
proof follows the same arguments with the proof of
Lemma 2, with a few differences.

First, with the optimality condition to the subproblem

associated with xj , 〈∇jL(x(t+1))+ξ
(t+1)
j , xj−x(t+1)

j 〉 ≥
0 for any xj ∈ Rm, we have

F(x(t+1))−F(x∗) ≤ (x(t+1) − x(t))>B(x(t+1) − x∗)
− µ

2
‖x(t+1) − x∗‖2,

where B =
(
A>A− Ã>Ã

)
�Dd + Ã>Ã.

Then, using the same technique to bound the eigen-
values for matrices with Hadamard product, we have

F(x(t+1))−F(x∗) ≤ L2 log2(2d) + L2
max

µ
‖x(t+1) − x(t)‖2

≤ 2L2 log2(2d)

µ
‖x(t+1) − x(t)‖2.

Iteration Complexity: The analysis follows from
that of Theorem 3.

Theorem 4 establishes that the iteration complexity
of the CBCM method matches that of the CBCGD
method. To the best of our knowledge, Theorems 3
and 4 are the sharpest iteration complexity analysis of
the CBCD-type methods for minimizing (6).

3.2 The Tightness of the Iteration
Complexity for Quadratic Problems

We next provide an example to establish the tightness
of the above result. We consider the following opti-
mization problem

min
x
H(x) := ‖Bx‖2, (16)
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where B ∈ Rp×p is a tridiagonal Toplitz matrix defined
as follows:

B =




3 1 0 0 . . . 0 0 0
1 3 1 0 . . . 0 0 0
0 1 3 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 3 1
0 0 0 0 . . . 0 1 3



.

Note that the minimizer to (16) is x∗ = [0, 0, . . . , 0]>,
and the eigenvalues of B are given by 3+2 cos(jπ/(j+
1)) for j = 1, . . . , p. Since the Hessian matrix of (16)
is 2B>B, we have

L=λmax(2B>B) ≤ 50, µ = λmin(2B>B) ≥ 2, µmin =10.

Clearly, for this problem the largest and smallest eigen-
values of the Hessian matrix, as well as L/γ do not
scale with p. We consider each coordinate xj ∈ R
as a block. Then the problem can be rewritten as
min ‖∑p

j=1B∗jxj‖, where B∗j denotes the j-th col-

umn of B. Given an initial solution x(0), we can show
that x(1) is generated by

x
(1)
1 = −1

4

(
4x

(0)
2 + x

(0)
3

)
, (17)

x
(1)
2 = −1

5

(
4x

(1)
1 + 4x

(0)
3 + x

(0)
4

)
(18)

x
(1)
3 = −1

5

(
x
(1)
1 + 4x

(1)
2 + x

(0)
4 + x

(0)
5

)
, (19)

x
(1)
j = −1

5

(
x
(1)
j−2 + 4x

(1)
j−1 + x

(0)
j+1 + x

(0)
j+2

)
(20)

x
(1)
p−1 = −1

5

(
x
(1)
p−3 + 4x

(0)
p−2 + 4x(0)p

)
, (21)

x(1)p = −1

4

(
x
(1)
p−2 + 4x

(1)
p−1

)
. (22)

Now we choose the initial solution

x(0) =

[
1,

9

32
,

7

8
, 1, . . . , 1, 1

]>
.

Then by (17)–(22), we obtain

x(1) =

[
−1

2
,−1

2
, . . . ,−1

2
,− 3

10
,−17

40

]>
,

which yields

H(x(1))−H(x∗) ≥ 25

4
(p− 3),

‖x(0) − x∗‖2 ≤ p− 2 +

(
9

32

)2

+

(
7

8

)2

≤ p− 1.

Therefore, we have

H(x(1))−H(x∗)

‖x(0) − x∗‖2 ≥ 25(p− 3)

4p
≥ 22

4
.

This implies that when the largest and smallest eigen-
values of the Hessian matrix do not scale with p (the
number of blocks), the iteration complexity is inde-
pendent of p, and cannot be further improved.

3.3 General Minimization

We provide an iteration complexity bound of the
CBCM and CBCGD methods for a general convex L(·)
and a potentially nonsmooth R(·).
Theorem 5. Suppose that Assumptions 1 and 2 hold.
We choose ηj = Lj for the CBCGD method. Then
given a pre-specified accuracy ε of the objective value,
we need at most

⌈
µLµmin + 4pL2

µLµmin

log

(F(x(0))−F(x∗)
ε

)⌉

iterations for the CBCGD method and at most
⌈
µµmin + pL2

µµmin
log

(F(x(0))−F(x∗)
ε

)⌉

iterations for the CBCM method to guarantee F(x(t))−
F(x∗) ≤ ε.

Proof. Successive Descent: For CBCGD, using the
same analysis of Lemma 1, we have that for all t ≥ 1,

F(x(t))−F(x(t+1)) ≥ Lµmin

2
‖x(t) − x(t+1)‖2.

For CBCM, using the same analysis of Theorem 4, we
have that for all t ≥ 1,

F(x(t))−F(x(t+1)) ≥ µmin

2
‖x(t) − x(t+1)‖2.

Gap towards the Optimal Objective Value: By
the strong convexity of R(·), we have

F(x)−F(x(t+1)) ≥ µ

2
‖x− x(t+1)‖2

+ (x− x(t+1))>(∇L(x(t+1)) + ξ(t+1)), (23)

where ξ
(t+1)
j ∈ ∂Rj(x(t+1)

j ). We then minimize both
sides of (23) with respect to x and obtain

F(x(t+1))−F(x∗) ≤ ‖∇L(x(t+1)) + ξ(t+1)‖2
2µ

, (24)

For CBCGD, we have from the optimality condition

∇jL(y(t+1,j+1)) + Lj(x
(t+1)
j − x(t)j ) + ξ

(t+1)
j = 0,

‖∇L(x(t+1)) + ξ(t+1)‖2

≤
p∑

j=1

2‖∇L(x(t+1))−∇jL(y(t+1,j+1))‖2

+ 2L2
j‖x(t+1)

j − y(t+1,j)
j ‖2

≤ 4pL2‖x(t+1) − x(t)‖2, (25)
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Combining (24) and (25), we have

F(x(t+1))−F(x∗) ≤ 2pL2‖x(t+1) − x(t)‖2
µ

.

For CBCM, we have from the optimality condition

∇jL(y(t+1,j+1)) + ξ
(t+1)
j = 0,

‖∇L(x(t+1)) + ξ(t+1)‖2

≤
p∑

j=1

‖∇L(x(t+1))−∇jL(y(t+1,j+1))‖2

≤ pL2‖x(t+1) − x(t)‖2, (26)

Combining (24) and (26), we have

F(x(t+1))−F(x∗) ≤ pL2‖x(t+1) − x(t)‖2
2µ

.

Iteration Complexity: The analysis follows from
that of Theorem 3.

Theorem 5 is a general result for both smooth and non-
smooth minimizations. In contrast, Beck and Tetru-
ashvili (2013) only covers general smooth minimiza-
tion.

3.4 Extensions to Nonstrongly Convex
Minimization

For nonstrongly convex minimization, we only need to
add a strongly convex perturbation to the objective
function

x̂ = argminF (x) +
σ

2
‖x‖2, (27)

where σ > 0 is a perturbation parameter. Then, the
results above can be used to analyze the CBCD-type
methods for minimizing (27). Eventually, by setting σ
as a reasonable small value, we can establish O(1/ε)-
type iteration complexity bounds up to a log(1/ε) fac-
tor. See Shalev-Shwartz and Zhang (2014) for more
details.

4 Numerical Results

We consider two typical statistical machine learning
problems as examples to illustrate our analysis.

(I) Elastic-net Penalized Linear Regression: Let
A ∈ Rn×d be the design matrix, and b ∈ Rn be the
response vector. We solve the following optimization
problem

min
x∈Rd

1

2n
‖b−Ax‖2 + λ1‖x‖2 + λ2‖x‖1,

where λ is the regularization parameter. We set
n = 10,000 and d = 20,000. We simply treat each
coordinate as a block (i.e., dmax = 1). Each row of
A is independently sampled from a 20,000-dimensional
Gaussian distribution with mean 0 and covariance ma-
trix Σ. We randomly select 2,500 entries of x, each of
which is independently sampled from a uniform dis-
tribution over support (−2,+2). The response vec-
tor b is generated by the linear model b = Ax + ε,
where ε is sampled from an n-variate Gaussian dis-
tribution N(0, In). We set λ1 = 1/

√
n = 0.01 and

λ2 =
√

log d/n ≈ 0.0315. We normalize A to have
‖A∗j‖ =

√
n for j = 1, .., d, where A∗j denotes the

j-th column of A. For the BCGD method, we choose
ηj = 1. For the gradient descent method, we either
choose η = λmax

(
1
nA
>A
)
, or adaptively select η by

backtracking line search.

(II) Ridge Penalized Logistic Regression: We
solve the following optimization problem

min
x∈Rd

1

n

n∑

i=1

[
log(1 + exp(x>Ai∗))− bix>Ai∗

]
+ λ‖x‖2.

We generate the design matrix A and regression coef-
ficient vector x using the same scheme as sparse lin-
ear regression. Again we treat each coordinate as a
block (i.e., dmax = 1). The response b = [b1, ..., bn]>

is generated by the logistic model bi = Bernoulli([1 +
exp(−x>A∗i)]−1). We set λ =

√
1/n. For the BCGD

method, we choose ηj = 1
4 . For gradient descent meth-

ods, we choose either the step size η = 1
4λmax

(
1
nA
>A
)

or adaptively select η by backtracking line search.

We evaluate the computational performance using the
number of passes over p blocks of coordinates (normal-
ized iteration complexity). For the CBCGD method,
we count one iteration as one pass (all p blocks).
For the randomized BCGD (RBCGD) method, we
count p iterations as one pass (since it only updates
one block in each iteration). Besides the CBCGD
and RBCGD methods, we also consider a variant
of the CBCGD method named the permuted BCGD
(PBCGD) method, which randomly permutes all in-
dices for the p blocks in each iteration. Since the
RBCGD and PBCGD methods are inherently stochas-
tic, we report the objective values averaged over 20 dif-
ferent runs. Moreover, for the RBCGD method, the
block of coordinates is selected uniformly at random
in each iteration. We consider three different settings:
Setting (I) is the sparse linear regression, where the co-
variance matrix for generating the design matrix has
Σjj = 1 and Σjk = 0.5 for any k 6= j; Setting (II) is the
sparse linear regression, where the covariance matrix
for generating the design matrix has Σjk = 0.5|j−k| for
any j and k; Setting (III) is the sparse logistic regres-
sion, where the covariance matrix for generating the
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Figure 1: Comparison among different methods under different settings. “RBCGD” and “PBCGD” denote the ran-
domized BCD-type and permuted BCD-type methods respectively. The vertical axis corresponds to the gap towards
the optimal objective value, log[F(x) − F(x∗)]; the horizontal axis corresponds to the number of passes over p blocks
of coordinates. Though all methods attain linear iteration complexity, their empirical behaviors are different from each
others. Note that in plot (b) the curves for the CBCGD method and the RBCGD methods overlap.

design matrix is the same as Setting (II). Note that
the condition number of the Hessian matrix depends
on Σ. Setting (I) tends to yield a badly conditioned
Hessian matrix whereas Settings (II) and (III) tend to
yield well-conditioned Hessian matrices.

Figure 1 plots the gap between the objective value
and the optimal as a function of number of passes
for different methods. Our empirical findings can be
summarized as follows: (1) All BCD-type methods at-
tain better performance than the GD methods; (2)
When the Hessian matrix is badly conditioned (i.e.,
in Setting (I)), the CBCGD performs worse than the
RBCGD and PBCGD methods. (3) When the Hes-
sian matrix is well conditioned (e.g., in Settings (II)
and (III)), all three BCD-type methods attain good
performance, and the CBCGD method slightly outper-
forms the PBCGD method; (4) The CBCGD method
outperforms the RBCGD method in Setting (III).

5 Discussions

Existing literature has established an iteration com-
plexity of O(µ−1L · log(1/ε)) for the gradient de-
scent methods when solving strongly convex compos-
ite problems. However, our analysis shows that the
CBCD-type methods only attains an iteration com-
plexity of O(µ−1pL2 · log(1/ε)). Even though our
analysis further shows that the iteration complex-
ity of the CBCD-type methods can be further im-
proved to O(µ−1 log2 pL2 · log(1/ε)) for a quadratic
L(·), there still exists a gap of factor L log2 p. As our
numerical experiments show, however, the CBCD-type
methods can actually attain a better computational
performance than the gradient methods regardless of
whether L(·) is quadratic or not, thereby suggesting
that perhaps there is still room for improvement in

the iteration complexity analysis of the CBCD-type
methods.

It is also worth mentioning that though some literature
claims that the CBCD-type methods works as well as
the randomized BCD-type methods in practice, there
do exist some counter examples, e.g. our experiment in
Setting (I), where the CBCD-type methods fail signifi-
cantly. This suggests that the CBCD-type methods do
have some possible disadvantages in practice. To the
best of our knowledge, we are not aware of any similar
experimental results reported in existing literature.

Furthermore, our numerical results show that the per-
muted BCD-type methods, which can be viewed as
a hybrid of the cyclic and the randomized BCD-type
(RBCD-type) methods, has a stable performance ir-
respective of the problem being well conditioned or
not. But to the best of our knowledge, no iteration
complexity result has been established for the per-
muted BCD-type (PBCD-type) methods. We leave
these problems for future investigation.
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catholique de Louvain, Center for Operations Research
and Econometrics (CORE).
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