Decompositions of Graphs into Fans and Single Edges

Henry Liu*
Centro de Matemática e Aplicações
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal
h.liu@fct.unl.pt
Teresa Sousa*
Departamento de Matemática and Centro de Matemática e Aplicações
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal
tmjs@fct.unl.pt

14 May 2013

Abstract

Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H. Let $\phi(n, H)$ be the smallest number ϕ such that any graph G of order n admits an H-decomposition with at most ϕ parts. Pikhurko and Sousa conjectured that $\phi(n, H)=\operatorname{ex}(n, H)$ for $\chi(H) \geq 3$ and all sufficiently large n, where ex (n, H) denotes the maximum number of edges in a graph on n vertices not containing H as a subgraph. Their conjecture has been verified by Özkahya and Person for all edge-critical graphs H. In this article, the conjecture is verified for the k-fan graph. The k-fan graph, denoted by F_{k}, is the graph on $2 k+1$ vertices consisting of k triangles which intersect in exactly one common vertex called the centre of the k-fan.

1 Introduction

Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a graph isomorphic to H.

[^0]Let $\phi(G, H)$ be the smallest possible number of parts in an H-decomposition of G. It is easy to see that, for non-empty H, we have $\phi(G, H)=e(G)-p_{H}(G)(e(H)-1)$, where $p_{H}(G)$ is the maximum number of pairwise edge-disjoint copies of H that can be packed into G and $e(G)$ denotes the number of edges in G. In this paper, we study the function

$$
\phi(n, H)=\max \{\phi(G, H) \mid v(G)=n\}
$$

which is the smallest number ϕ such that any graph G of order n admits an H decomposition with at most ϕ parts.

This function was first studied, in 1966, by Erdős, Goodman, and Pósa [6], who were motivated by the problem of representing graphs by set intersections. They proved that $\phi\left(n, K_{3}\right)=\operatorname{ex}\left(n, K_{3}\right)$, where K_{s} denotes the complete graph of order s and ex (n, H) denotes the maximum number of edges in a graph on n vertices not containing H as a subgraph. A decade later, Bollobás [2] proved that $\phi\left(n, K_{r}\right)=\operatorname{ex}\left(n, K_{r}\right)$, for all $n \geq r \geq 3$.

General graphs H were only considered recently by Pikhurko and Sousa [8]. They proved the following result.

Theorem 1.1 (See Theorem 1.1 from [8]). Let H be any fixed graph of chromatic number $r \geq 3$. Then,

$$
\phi(n, H)=\operatorname{ex}(n, H)+o\left(n^{2}\right) .
$$

Pikhurko and Sousa also made the following conjecture.
Conjecture 1.2. [8] For any graph H of chromatic number $r \geq 3$, there exists $n_{0}=$ $n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$ for all $n \geq n_{0}$.

A graph H is edge-critical if there exists an edge $e \in E(H)$ such that $\chi(H)>$ $\chi(H-e)$, where $\chi(H)$ denotes the chromatic number of H. For $r \geq 4$ a cliqueextension of order r is a connected graph that consists of a K_{r-1} plus another vertex, say v, adjacent to at most $r-2$ vertices of K_{r-1}. Conjecture 1.2 has been verified by Sousa for some edge-critical graphs, namely, clique-extensions of order $r \geq 4(n \geq r)$ [12] and the cycles of length $5(n \geq 6)$ and $7(n \geq 10)$ [11, 10]. Later, Özkahya and Person [7] verified the conjecture for all edge-critical graphs with chromatic number $r \geq 3$. Recall that the Turán graph $T_{r-1}(n)$ is the complete balanced $(r-1)$-partite graph on n vertices and does not contain K_{r} as a subgraph. Their result is the following.

Theorem 1.3 (See Theorem 3 from [7]). For any edge-critical graph H with chromatic number $r \geq 3$, there exists $n_{0}=n_{0}(H)$ such that $\phi(n, H)=\operatorname{ex}(n, H)$, for all $n \geq n_{0}$. Moreover, the only graph attaining $\operatorname{ex}(n, H)$ is the Turán graph $T_{r-1}(n)$.

Recently, as an extension of Özkahya and Person's work, Allen, Böttcher, and Person [1] improved the error term obtained by Pikhurko and Sousa in Theorem 1.1. In fact, they proved that the error term $o\left(n^{2}\right)$ can be replaced by $O\left(n^{2-\alpha}\right)$ for some $\alpha>0$. Furthermore, they also showed that this error term has the correct order of
magnitude. Their result is indeed an extension of Theorem 1.3 since the error term $O\left(n^{2-\alpha}\right)$ that they obtained vanishes for every edge-critical graph H.

Here we will verify Conjecture 1.2 for the k-fan graph. The k-fan graph, denoted by F_{k}, is the graph on $2 k+1$ vertices consisting of k triangles which intersect in exactly one common vertex, called the centre of F_{k}. Observe that $\chi\left(F_{k}\right)=3$ and for $k \geq 2$ the graph F_{k} is not edge-critical.

In 1995, Erdős, Füredi, Gould, and Gunderson [5] have determined the value of the function $\operatorname{ex}\left(n, F_{k}\right)$ as well as the F_{k}-extremal graphs for every fixed k and whenever n is large. They have proved the following result.

Theorem 1.4. [5] Let $\mathcal{F}_{n, k}$ be the following family of graphs.

- If k is odd and $n \geq 4 k-1$, then a member of $\mathcal{F}_{n, k}$ is a Turán graph $T_{2}(n)$ with two vertex-disjoint copies of K_{k} added into one class.
- If k is even and $n \geq 4 k-3$, then a member of $\mathcal{F}_{n, k}$ is a $T_{2}(n)$ with a graph having $2 k-1$ vertices, $k^{2}-\frac{3}{2} k$ edges and maximum degree $k-1$ added into one class.

For $k \geq 1$ and $n \geq 50 k^{2}$, we have

$$
\operatorname{ex}\left(n, F_{k}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+g(k)= \begin{cases}\left\lfloor\frac{n^{2}}{4}\right\rfloor+k^{2}-k & \text { if } k \text { is odd } \\ \left\lfloor\frac{n^{2}}{4}\right\rfloor+k^{2}-\frac{3}{2} k & \text { if } k \text { is even } .\end{cases}
$$

Moreover, the only F_{k}-free graphs with $\operatorname{ex}\left(n, F_{k}\right)$ edges are the members of $\mathcal{F}_{n, k}$.
Here we will prove the following result.
Theorem 1.5. For $k \geq 1$, there exists $n_{0}=n_{0}(k)$ such that $\phi\left(n, F_{k}\right)=\operatorname{ex}\left(n, F_{k}\right)$ for all $n \geq n_{0}$. Moreover, the only graphs attaining $\operatorname{ex}\left(n, F_{k}\right)$ are the members of $\mathcal{F}_{n, k}$.

The lower bound $\phi\left(n, F_{k}\right) \geq \operatorname{ex}\left(n, F_{k}\right)$ follows immediately by considering any member of $\mathcal{F}_{n, k}$. The upper bound will be proved in Section 2.

Our notations throughout the paper are fairly standard. Let $G=(V, E)$ be a graph, $U \subset V$ and v a vertex of G. We denote by $\delta(G)$ and $\Delta(G)$ the minimum and the maximum degree of G, respectively. The subgraph of G induced by U is denoted by $G[U]$ and $e_{G}(U)=e(G[U])$. We write $\operatorname{deg}_{G}(v)$ for the degree of v in G and $\operatorname{deg}_{G}(v, U)$ for the number of neighbours that v has in U. If it is clear which graph is being considered we simply write $e(U), \operatorname{deg}(v)$ and $\operatorname{deg}(v, U)$. Finally, for two disjoint subsets $U, W \subset V, e(U, W)$ denotes the number of edges of G with one endpoint in U and the other in W.

2 Proof of Theorem 1.5

In this section we will prove the upper bound in Theorem 1.5. In outline, the proof is the following. Suppose we have a graph G on n vertices such that $\phi\left(G, F_{k}\right) \geq \operatorname{ex}\left(n, F_{k}\right)$. We first apply a stability type result (Lemma 2.1) to deduce that G must be a dense and near-balanced bipartite graph with $m=o\left(n^{2}\right)$ edges inside the classes. Then, we find too many edge-disjoint copies of F_{k} in G which would imply that $\phi\left(G, F_{k}\right) \leq \operatorname{ex}\left(n, F_{k}\right)$, a contradiction to our initial assumption on $\phi\left(G, F_{k}\right)$. Such approach (stability method) has been widely used to study various problems in extremal graph theory. Our proof generally follows that of Özkahya and Person [7] except for the case when $m=O\left(k^{2}\right)$, when some further detailed analysis will be required.

Before presenting the proof we need to introduce the tools. Firstly, recall the following stability type result about graphs G on n vertices with $\phi(G, H) \geq \operatorname{ex}(n, H)-$ $o\left(n^{2}\right)$ due to Özkahya and Person [7]. Their result follows from a result of Pikhurko and Sousa ([8], Theorem 1.1) and an application of a stability result of Erdős [4] and Simonovits [9].

Lemma 2.1 (See Lemma 4 in [7]). Let H be a graph with $\chi(H)=r \geq 3$ and $H \neq K_{r}$. Then, for every $\gamma>0$ there exist $\varepsilon>0$ and $n_{0} \in \mathbb{N}$ such that for every graph G on $n \geq n_{0}$ vertices the following is true. If

$$
\phi(G, H) \geq \operatorname{ex}(n, H)-\varepsilon n^{2}
$$

then there exists a partition $V(G)=V_{1} \dot{\cup} \cdots \dot{\cup} V_{r-1}$ such that $\sum_{i=1}^{r-1} e\left(V_{i}\right)<\gamma n^{2}$.
Secondly, let $f(\nu, \Delta)=\max \{e(G) \mid \nu(G) \leq \nu$ and $\Delta(G) \leq \Delta\}$, where $\nu(G)$ is the size of a maximum matching in G. We will need the following result of Chvátal and Hanson [3].

Theorem 2.2. [3] For $\nu, \Delta \geq 1$, we have

$$
f(\nu, \Delta)=\nu \Delta+\left\lfloor\frac{\Delta}{2}\right\rfloor\left\lfloor\frac{\nu}{\lceil\Delta / 2\rceil}\right\rfloor \leq \nu \Delta+\nu .
$$

We are now able to complete the proof of Theorem 1.5.
Proof of the upper bound in Theorem 1.5. The case $k=1$ is the result of Erdős, Goodman, and Pósa [6], so assume $k \geq 2$. We choose $\gamma=\frac{1}{(288 k)^{2}}$ and let $n_{0}(k)=$ $\max \left(n_{0}, 505 k^{4}\right)+\binom{n_{0}}{2}$ where n_{0} is given by Lemma 2.1. Furthermore, suppose that there exists a graph G on $n \geq n_{0}(k)$ vertices such that $\phi\left(G, F_{k}\right) \geq \operatorname{ex}\left(n, F_{k}\right)$ and $G \notin \mathcal{F}_{n, k}$. We will derive a contradiction by finding sufficiently many edge-disjoint copies of F_{k} in G, which will give

$$
\phi\left(G, F_{k}\right)=e(G)-p_{F_{k}}(G)\left(e\left(F_{k}\right)-1\right)<\operatorname{ex}\left(n, F_{k}\right) .
$$

We first prove the following claim. Although the proof is similar to that of Claim 7 in [7], we include it for the sake of completeness.

Claim 2.3. Let $m \geq 0$ and $\phi\left(G, F_{k}\right)=\operatorname{ex}\left(n, F_{k}\right)+m$. Then, there is a graph G^{\prime} on $n^{\prime}=n-i$ vertices that is obtained by deleting i vertices from G, for some $0 \leq i<$ $n-n_{0}$, such that $\delta\left(G^{\prime}\right) \geq\left\lfloor\frac{n^{\prime}}{2}\right\rfloor$ and $\phi\left(G^{\prime}, F_{k}\right) \geq \operatorname{ex}\left(n^{\prime}, F_{k}\right)+m+i$.

Proof. If $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$, then set $i=0$. Otherwise, there exists $v \in V(G)$ with $\operatorname{deg}_{G}(v)<$ $\left\lfloor\frac{n}{2}\right\rfloor$. Then we delete v from G obtaining $G_{1}:=G-v$ with

$$
\begin{aligned}
\phi\left(G_{1}, F_{k}\right) & \geq \phi\left(G, F_{k}\right)-\operatorname{deg}_{G}(v) \geq \operatorname{ex}\left(n, F_{k}\right)+m-\left\lfloor\frac{n}{2}\right\rfloor+1 \\
& =\operatorname{ex}\left(n-1, F_{k}\right)+m+1
\end{aligned}
$$

since $\operatorname{ex}\left(n, F_{k}\right)-\operatorname{ex}\left(n-1, F_{k}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ by Theorem 1.4. If $\delta\left(G_{1}\right)<\left\lfloor\frac{n-1}{2}\right\rfloor$, then we iterate this procedure until we arrive at a graph G^{\prime} that has $n-i$ vertices, $\delta\left(G^{\prime}\right) \geq\left\lfloor\frac{n-i}{2}\right\rfloor$ and $\phi\left(G^{\prime}, F_{k}\right) \geq \operatorname{ex}\left(n-i, F_{k}\right)+m+i$, or we stop when G^{\prime} has n_{0} vertices. But the latter case cannot occur since $\phi\left(G^{\prime}, F_{k}\right)>\binom{n_{0}}{2}$, which is a contradiction.

By Claim 2.3, we may assume that $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$. Otherwise, we can consider the graph G^{\prime} instead of G. Note that if $G^{\prime} \neq G$, then $\phi\left(G^{\prime}, F_{k}\right)>\operatorname{ex}\left(n^{\prime}, F_{k}\right)$ so that $G^{\prime} \notin \mathcal{F}_{n^{\prime}, k}$.

Let $V_{0} \dot{\cup} V_{1}$ be a partition of $V(G)$ such that $e\left(V_{0}, V_{1}\right)$ is maximised and let $m=$ $e\left(V_{0}\right)+e\left(V_{1}\right)$. Observe that

$$
m=e(G)-e\left(V_{0}, V_{1}\right) \geq \operatorname{ex}\left(n, F_{k}\right)-\left\lfloor\frac{n^{2}}{4}\right\rfloor=g(k)
$$

and that

$$
\begin{equation*}
e(G)=m+e\left(V_{0}, V_{1}\right) \leq m+\left\lfloor\frac{n^{2}}{4}\right\rfloor=\operatorname{ex}\left(n, F_{k}\right)+m-g(k) \tag{2.1}
\end{equation*}
$$

By Lemma 2.1, we also have $m<\gamma n^{2}$.
The following claim says that the partition $V(G)=V_{0} \dot{U} V_{1}$ is very close to being balanced.

Claim 2.4. For $i=0,1$, we have

$$
\begin{equation*}
\frac{n}{2}-\sqrt{\gamma} n \leq\left|V_{i}\right| \leq \frac{n}{2}+\sqrt{\gamma} n \tag{2.2}
\end{equation*}
$$

Proof. Without loss of generality, let $\left|V_{0}\right| \leq\left|V_{1}\right|$ and $\left|V_{0}\right|=\frac{n}{2}-a$, where $a \geq 0$. By Lemma 2.1, we have

$$
e(G) \leq\left|V_{0}\right|\left|V_{1}\right|+\gamma n^{2}=\frac{n^{2}}{4}-a^{2}+\gamma n^{2} .
$$

Also, by Theorem 1.4, we have

$$
e(G) \geq \operatorname{ex}\left(n, F_{k}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+g(k) \geq \frac{n^{2}}{4}
$$

Therefore, $\frac{n^{2}}{4}-a^{2}+\gamma n^{2} \geq \frac{n^{2}}{4}$, which implies that $a \leq \sqrt{\gamma} n$ and (2.2) holds.

In order to obtain the required contradiction it suffices to show that we can find $\left\lfloor\frac{m-g(k)}{3 k-1}\right\rfloor+1$ edge-disjoint copies of F_{k} in G. In fact, together with (2.1) we obtain

$$
\begin{aligned}
\phi\left(G, F_{k}\right) & =e(G)-\left(e\left(F_{k}\right)-1\right) p_{F_{k}}(G) \\
& \leq \operatorname{ex}\left(n, F_{k}\right)+m-g(k)-(3 k-1)\left(\left\lfloor\frac{m-g(k)}{3 k-1}\right\rfloor+1\right) \\
& <\operatorname{ex}\left(n, F_{k}\right)
\end{aligned}
$$

For this purpose we will describe a procedure that will find the required number of edge-disjoint copies of F_{k} in G. We continue the proof by considering two different cases.
Case 1: $m \geq \frac{5}{2} k^{2}-\frac{1}{2} k+1$.
For $i=0,1$ and a vertex $v \in V_{i}$, we call v a bad vertex if $\operatorname{deg}\left(v, V_{i}\right)>\frac{n}{72 k}$. Otherwise, v is a good vertex. Observe that the total number of bad vertices in G is at most

$$
\begin{equation*}
\frac{2 \gamma n^{2}}{\frac{n}{72 k}}=144 k \gamma n \tag{2.3}
\end{equation*}
$$

For each bad vertex $v \in V_{i}, i=0,1$, we may choose $k\left\lceil\frac{1}{2 k} \operatorname{deg}\left(v, V_{i}\right)\right\rceil$ edges of G which connect v to good vertices in V_{i}. This is possible since the number of bad vertices is at most $144 k \gamma n$. We keep these edges and delete the remaining edges in $G\left[V_{i}\right]$ incident with v. We repeat this procedure for each bad vertex in G. Let G_{0} be the resulting graph. Writing $U_{i} \subset V_{i}$ for the set of good vertices in V_{i}, we have

$$
\begin{aligned}
e_{G_{0}}\left(V_{i}\right) & =e_{G_{0}}\left(U_{i}\right)+\sum_{v \operatorname{bad} \in V_{i}} \operatorname{deg}_{G_{0}}\left(v, V_{i}\right) \\
& =e_{G}\left(U_{i}\right)+\sum_{v \operatorname{bad} \in V_{i}} k\left\lceil\frac{1}{2 k} \operatorname{deg}_{G}\left(v, V_{i}\right)\right] \\
& \geq \frac{1}{2} e_{G}\left(U_{i}\right)+\frac{1}{2} \sum_{v \operatorname{bad} \in V_{i}} \operatorname{deg}_{G}\left(v, V_{i}\right) \geq \frac{1}{2} e_{G}\left(V_{i}\right),
\end{aligned}
$$

so that $e_{G_{0}}\left(V_{0}\right)+e_{G_{0}}\left(V_{1}\right) \geq \frac{m}{2}$.
We now find sufficiently many edge-disjoint copies of F_{k} in G_{0}, with each copy having exactly k edges in either V_{0} or V_{1}. Each time we find a copy of F_{k} we delete its edges. Let $G_{s} \subset G_{0}$ be the graph obtained after we have removed s copies.

We define a threshold

$$
\begin{equation*}
t=\frac{n}{2}-\frac{n}{36 k}-\sqrt{\gamma} n \tag{2.4}
\end{equation*}
$$

The purpose for the introduction of the threshold t is that in our procedure, for any good vertex $v \in V_{i}, i=0,1$, we will ensure that $\operatorname{deg}_{G_{s}}\left(v, V_{1-i}\right)$ will not be very much less than t, for every subgraph $G_{s} \subset G$.

For a good vertex $v \in V_{i}, i=0,1$, we say that v is active (in G_{s}) if $\operatorname{deg}_{G_{s}}\left(v, V_{1-i}\right) \geq$ t. Otherwise, v is inactive. Note that initially, all good vertices $v \in V_{i}$ are active in
G_{0}, since $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$ and $\operatorname{deg}_{G}\left(v, V_{i}\right) \leq \frac{n}{72 k}$, so that

$$
\begin{equation*}
\operatorname{deg}_{G_{0}}\left(v, V_{1-i}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor-\frac{n}{72 k} \geq t+\frac{n}{72 k} . \tag{2.5}
\end{equation*}
$$

We perform the following procedure to find edge-disjoint copies of F_{k}. If we cannot perform Step 1 then we proceed to Step 2.
Step 1. Let $s \geq 0$ and let $G_{s} \subset G_{0}$ be a subgraph at some point of the iteration. Suppose there exists a vertex $u \in V_{i}$ with $\operatorname{deg}_{G_{s}}\left(u, V_{i}\right) \geq k$, for some $i \in\{0,1\}$. We take k neighbours $v_{1}, \ldots, v_{k} \in V_{i}$ of u in G_{s}. We then find good and active vertices $w_{1}, \ldots, w_{k} \in V_{1-i}$, where w_{j} is a common neighbour of u and v_{j} in G_{s} for $1 \leq j \leq k$. This gives a copy of F_{k}. We remove the copy of F_{k} and update the status of the good vertices (whether they are active or inactive) and let $G_{s+1} \subset G_{s}$ be the new subgraph. We perform Step 1 successively by considering first all bad vertices, followed by good vertices. Suppose that we have considered bad vertices for a iterates and that Step 1 stops after $b \geq a$ iterates. That is, Step 1 is performed a times for bad vertices and $b-a$ times for good vertices.
Step 2. When Step 1 is completed, we obtain the subgraph $G_{b} \subset G_{0}$ such that for $i=0,1$, we have $\operatorname{deg}_{G_{b}}\left(u, V_{i}\right)=0$ for all bad vertices $u \in V_{i}$, and $\Delta\left(G_{b}\left[V_{i}\right]\right)<k$. Suppose that $G_{s} \subset G_{b}(s \geq b)$ is a subgraph at a further point of the iteration, and there exists a matching in $G_{s}\left[V_{i}\right]$ of size k for some $i \in\{0,1\}$. Let $v_{1} w_{1}, \ldots, v_{k} w_{k}$ be the matching. We find a good and active vertex $u \in V_{1-i}$ which is a common neighbour of $v_{1}, w_{1}, \ldots, v_{k}, w_{k}$ in G_{s}. As before, remove the resulting copy of F_{k}, let $G_{s+1} \subset G_{s}$ be the new subgraph and update the status of the good vertices. Step 2 is repeated until we have exhausted all such matchings. Let G^{*} be the subgraph obtained after Step 2 is terminated.

Claim 2.5. Steps 1 and 2 can be successfully iterated.
For $i=0,1$, we have $\operatorname{deg}_{G^{*}}\left(u, V_{i}\right)=0$ for all bad vertices $u \in V_{i}$, since $\operatorname{deg}_{G_{0}}\left(u, V_{i}\right)$ is a multiple of k. Also, $\Delta\left(G^{*}\left[V_{i}\right]\right)<k$ and $G^{*}\left[V_{i}\right]$ does not contain a matching of size k. Thus, by Theorem $2.2, e_{G^{*}}\left(V_{i}\right) \leq f(k-1, k-1) \leq(k-1)^{2}+(k-1)$ implying that $e_{G^{*}}\left(V_{0}\right)+e_{G^{*}}\left(V_{1}\right) \leq 2 k(k-1)$. Therefore, since $e_{G_{0}}\left(V_{0}\right)+e_{G_{0}}\left(V_{1}\right) \geq \frac{m}{2}$, for $m \geq 14 k^{2}$, we have found and removed at least

$$
\left\lfloor\frac{1}{k}\left(\frac{m}{2}-2 k(k-1)\right)\right\rfloor \geq\left\lfloor\frac{m-k^{2}+\frac{3}{2} k}{3 k-1}\right\rfloor+1 \geq\left\lfloor\frac{m-g(k)}{3 k-1}\right\rfloor+1
$$

edge-disjoint copies of F_{k} from G. Suppose now that $\frac{5}{2} k^{2}-\frac{1}{2} k+1 \leq m \leq 14 k^{2}$ holds. Then $\Delta\left(G\left[V_{i}\right]\right) \leq 14 k^{2} \leq \frac{n}{72 k}$ for $i=0,1$, so that G has no bad vertices and $G_{0}=G$. In this case we have found and removed at least

$$
\left\lfloor\frac{1}{k}(m-2 k(k-1))\right\rfloor \geq\left\lfloor\frac{m-k^{2}+\frac{3}{2} k}{3 k-1}\right\rfloor+1 \geq\left\lfloor\frac{m-g(k)}{3 k-1}\right\rfloor+1
$$

edge-disjoint copies of F_{k} from G, as required. Therefore, to complete the proof of Case 1 it remains to prove Claim 2.5.

Proof of Claim 2.5. The maximality of $e\left(V_{0}, V_{1}\right)$ implies that for every $v \in V_{i}, i=0,1$ we have

$$
\begin{equation*}
\operatorname{deg}_{G}\left(v, V_{1-i}\right) \geq \max \left(\operatorname{deg}_{G}\left(v, V_{i}\right),\left\lfloor\frac{n}{4}\right\rfloor\right) \tag{2.6}
\end{equation*}
$$

For Step 1, let $G_{s} \subset G_{0}$ be a subgraph at some point of the iteration, where $0 \leq s<b$. Suppose firstly that $0 \leq s<a$, so that we have a bad vertex $u \in V_{i}$ with neighbours $v_{1}, \ldots, v_{k} \in V_{i}$ in G_{s}, for some $i \in\{0,1\}$. Note that v_{1}, \ldots, v_{k} are good vertices. Then, u was involved in at most $\frac{1}{k} \operatorname{deg}_{G_{0}}\left(u, V_{i}\right)$ previous iterates, and for each iterate the number of edges that u sends to V_{1-i} was reduced by k. Therefore, by (2.6),

$$
\begin{align*}
\operatorname{deg}_{G_{s}}\left(u, V_{1-i}\right) & \geq \operatorname{deg}_{G_{0}}\left(u, V_{1-i}\right)-k \cdot \frac{1}{k} \operatorname{deg}_{G_{0}}\left(u, V_{i}\right) \\
& \geq \operatorname{deg}_{G}\left(u, V_{1-i}\right)-\frac{1}{2} \operatorname{deg}_{G}\left(u, V_{i}\right)-k \\
& \geq \frac{1}{2} \operatorname{deg}_{G}\left(u, V_{1-i}\right)-k \geq \frac{1}{2}\left\lfloor\frac{n}{4}\right\rfloor-k . \tag{2.7}
\end{align*}
$$

Also, for every $1 \leq j \leq k$, we have

$$
\begin{equation*}
\operatorname{deg}_{G_{s}}\left(v_{j}, V_{1-i}\right) \geq t-\Delta\left(F_{k}\right)-\operatorname{deg}_{G_{0}}\left(v_{j}, V_{i}\right) \geq t-2 k-\frac{n}{72 k}, \tag{2.8}
\end{equation*}
$$

since after v_{j} becomes inactive, the number of edges that v_{j} sends to V_{1-i} decreases by at $\operatorname{most}^{\operatorname{deg}}{ }_{G_{0}}\left(v_{j}, V_{i}\right)$. Finally, note that there are $s \leq \frac{m}{k}<\frac{\gamma n^{2}}{k}$ previous iterates, and for each iterate, the number of edges that a good and active vertex of V_{1-i} sends to V_{i} is reduced by at most $\Delta\left(F_{k}\right)=2 k$. By (2.5), the number of inactive good vertices of G_{s} in V_{1-i} is at most

$$
\begin{equation*}
\frac{\frac{2 k \gamma n^{2}}{k}}{\frac{n}{72 k}}=144 k \gamma n . \tag{2.9}
\end{equation*}
$$

Let $L\left(u, v_{j}\right) \subset V_{1-i}$ be the set of good and active common neighbours of u and v_{j} in G_{s}. Then using (2.3) and (2.9), we have

$$
\begin{align*}
\left|L\left(u, v_{j}\right)\right| & \geq \operatorname{deg}_{G_{s}}\left(u, V_{1-i}\right)+\operatorname{deg}_{G_{s}}\left(v_{j}, V_{1-i}\right)-\left|V_{1-i}\right|-144 k \gamma n-144 k \gamma n, \\
& \geq \frac{1}{2}\left\lfloor\frac{n}{4}\right\rfloor-k+t-2 k-\frac{n}{72 k}-\frac{n}{2}-\sqrt{\gamma} n-288 k \gamma n \geq \frac{n}{12} \tag{2.10}
\end{align*}
$$

where the second inequality follows from (2.2), (2.7) and (2.8), and the last one follows from (2.4). Hence, there exist $w_{1}, \ldots, w_{k} \in V_{1-i}$ such that for all $1 \leq j \leq k, w_{j}$ is a good and active vertex of G_{s}, and is a common neighbour of u and v_{j} in G_{s}.

Next, suppose that $a \leq s<b$, so that $\operatorname{deg}_{G_{s}}\left(u, V_{i}\right)=0$ for all bad vertices $u \in V_{i}$, $i=0,1$. We have a good vertex $u \in V_{i}$ with $\operatorname{deg}_{G_{s}}\left(u, V_{i}\right) \geq k$ for some $i \in\{0,1\}$. Let $v_{1}, \ldots, v_{k} \in V_{i}$ be (good) neighbours of u in G_{s}, and $L\left(u, v_{j}\right) \subset V_{1-i}$ be the good and active common neighbours of u and v_{j} in $G_{s}(1 \leq j \leq k)$. Then, we have

$$
\begin{equation*}
\operatorname{deg}_{G_{s}}\left(u, V_{1-i}\right) \geq t-\Delta\left(F_{k}\right)-\operatorname{deg}_{G_{0}}\left(u, V_{i}\right) \geq t-2 k-\frac{n}{72 k}, \tag{2.11}
\end{equation*}
$$

since after u becomes inactive, in each subsequent iterate, the number of edges that u sends to V_{i} and V_{1-i} are both reduced by either 1 or k. Similarly, for $1 \leq j \leq k$ we have

$$
\operatorname{deg}_{G_{s}}\left(v_{j}, V_{i}\right) \geq t-2 k-\frac{n}{72 k}
$$

Therefore,

$$
\left|L\left(u, v_{j}\right)\right| \geq 2\left(t-2 k-\frac{n}{72 k}\right)-\frac{n}{2}-\sqrt{\gamma} n-288 k \gamma n \geq \frac{n}{3}
$$

As before, we conclude that the required vertices $w_{1}, \ldots, w_{k} \in V_{1-i}$ do exist.
Now, consider an iterate of Step 2 and let G_{s} be the graph at some point of the iteration. Suppose that we have a matching M in $G_{s}\left[V_{i}\right]$ of size k, for some $i \in\{0,1\}$. Let $v_{1} w_{1}, \ldots, v_{k} w_{k}$ be the edges of M. Then, as in (2.11), we have

$$
\begin{aligned}
\operatorname{deg}_{G_{s}}\left(v_{j}, V_{1-i}\right) & \geq t-2 k-\frac{n}{72 k}, \\
\operatorname{deg}_{G_{s}}\left(w_{j}, V_{1-i}\right) & \geq t-2 k-\frac{n}{72 k},
\end{aligned}
$$

for $1 \leq j \leq k$.
Let $L(M) \subset V_{1-i}$ be the set of good and active vertices which are adjacent to $v_{1}, w_{1}, \ldots, v_{k}, w_{k}$ in G_{s}. Then, similar to (2.10), we have

$$
|L(M)| \geq 2 k\left(t-2 k-\frac{n}{72 k}\right)-(2 k-1)\left(\frac{n}{2}+\sqrt{\gamma} n\right)-288 k \gamma n \geq \frac{n}{3} .
$$

Hence, there exists a good and active vertex $u \in V_{1-i}$ which is adjacent to $v_{1}, w_{1}, \ldots, v_{k}, w_{k}$ in G_{s}. This completes the proof of Claim 2.5 and Case 1 follows.
Case 2: $g(k) \leq m \leq \frac{5}{2} k^{2}-\frac{1}{2} k$.
We may assume that $\left|V_{0}\right| \leq\left|V_{1}\right|$. For $i=0,1$, let $A_{i} \subset V_{i}$ be the set of vertices incident to at least one edge of $G\left[V_{i}\right]$ and $B_{i}=V_{i} \backslash A_{i}$ the isolated vertices of $G\left[V_{i}\right]$. Then, $\left|A_{i}\right| \leq 2 m \leq 5 k^{2}$ and since $\left|V_{i}\right| \geq \frac{n}{2}-\sqrt{\gamma} n$ by Claim 2.4, we must have $B_{i} \neq \emptyset$.

Since $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$, by considering any vertex of B_{1}, it follows that G has the following structure. The partition $V(G)=V_{0} \dot{\cup} V_{1}$ must be exactly balanced, so that $\left|V_{0}\right|=\left\lfloor\frac{n}{2}\right\rfloor$ and $\left|V_{1}\right|=\left\lceil\frac{n}{2}\right\rceil$. Moreover, if n is even, then for $v \in B_{i}, v$ is adjacent to all vertices in V_{1-i}. If n is odd, then for $v \in B_{1}, v$ is adjacent to all vertices of V_{0}, and for $v \in B_{0}$, all but at most one vertex of V_{1} are neighbours of v.

Suppose that $e(G) \geq \operatorname{ex}\left(n, F_{k}\right)+s(3 k-1)$ for some integer $s \geq 0$. Then by (2.1), we have

$$
\begin{aligned}
s(3 k-1) & \leq e(G)-\operatorname{ex}\left(n, F_{k}\right) \leq m-g(k) \leq \frac{5}{2} k^{2}-\frac{1}{2} k-g(k) \\
& = \begin{cases}\frac{3}{2} k^{2}+\frac{1}{2} k & \text { if } k \text { is odd, } \\
\frac{3}{2} k^{2}+k & \text { if } k \text { is even, }\end{cases}
\end{aligned}
$$

so that $s \leq \frac{k}{2}+\frac{3}{8}$ if k is odd and $s \leq \frac{k}{2}+\frac{3}{5}$ if k is even. Therefore, $s \leq\left\lfloor\frac{k}{2}\right\rfloor$ since s is an integer. Our goal is to prove the following claim.

Claim 2.6. Let G have the structure described above and let $\operatorname{ex}\left(n, F_{k}\right)+s(3 k-1) \leq$ $e(G)<\operatorname{ex}\left(n, F_{k}\right)+(s+1)(3 k-1)$ for some integer $0 \leq s \leq\left\lfloor\frac{k}{2}\right\rfloor$. Then, G contains at least $s+1$ edge-disjoint copies of F_{k}.

Claim 2.6 will then give us

$$
\phi\left(G, F_{k}\right) \leq e(G)-(s+1)\left(e\left(F_{k}\right)-1\right)<\operatorname{ex}\left(n, F_{k}\right)
$$

and thus completing the proof of Case 2. Before we prove Claim 2.6, we need an auxiliary claim.
Claim 2.7. Let G have the structure as described. Then for $i=0,1$ and any nonempty set $A \subset A_{i}$ with $|A| \leq 2 k^{2}$, there exists a set $B \subset B_{1-i}$ with $|B|=2 k^{2}$, such that, G contains a complete bipartite subgraph with classes A and B.

Proof. Note that for $i=0,1$, we have $\left|B_{i}\right| \geq\left\lfloor\frac{n}{2}\right\rfloor-5 k^{2} \geq 2 k^{2}$. Hence, the only non-trivial case is when n is odd and $i=1$. For this case, assume that the claim does not hold. Then, the number of vertices of B_{0} which are not adjacent to one vertex of A is at least $\left\lfloor\frac{n}{2}\right\rfloor-5 k^{2}-2 k^{2}=\left\lfloor\frac{n}{2}\right\rfloor-7 k^{2}$. Hence, there exists a vertex $u \in A$ which is not adjacent to at least $\frac{1}{2 k^{2}}\left(\left\lfloor\frac{n}{2}\right\rfloor-7 k^{2}\right)$ vertices of B_{0}. We have

$$
\operatorname{deg}_{G}(u) \leq\left\lfloor\frac{n}{2}\right\rfloor+\frac{5}{2} k^{2}-\frac{1}{2} k-\frac{1}{2 k^{2}}\left(\left\lfloor\frac{n}{2}\right\rfloor-7 k^{2}\right)<\left\lfloor\frac{n}{2}\right\rfloor,
$$

which contradicts $\delta(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$.
Proof of Claim 2.6. The claim holds for $s=0$ since we have $e(G) \geq e x\left(n, F_{k}\right)$ and $G \notin \mathcal{F}_{n, k}$, so that by Theorem 1.4 G contains a copy of F_{k}. Now, let $1 \leq s \leq\left\lfloor\frac{k}{2}\right\rfloor$. Note that since $e(G) \geq \operatorname{ex}\left(n, F_{k}\right)+s(3 k-1)$ and $s<3 k$, we may apply Theorem 1.4 successively s times to obtain and delete s edge-disjoint copies of F_{k} from G. Moreover, we will first greedily delete $q \leq s$ copies of F_{k} that have a specific property, followed by a further $s-q$ copies. Let $G^{\prime} \subset G$ be a subgraph on $V(G)$ obtained after deleting s edge-disjoint copies of F_{k} from G, so that $e\left(G^{\prime}\right) \geq \operatorname{ex}\left(n, F_{k}\right)-s$. We will show that we can always obtain G^{\prime}, so that G^{\prime} contains a further copy of F_{k}, which will imply Claim 2.6.

We consider several cases. In each case, we shall find the graph G^{\prime} and a vertex $u \in V\left(G^{\prime}\right)$ with $\operatorname{deg}_{G^{\prime}}(u) \leq\left\lfloor\frac{n}{2}\right\rfloor-s$.
(i) Suppose that G contains a copy of $F_{q k}$ with centre $u \in A_{0} \cup A_{1}$ and $q \geq 2$. We choose u so that q is maximum. We have q copies of F_{k} and we are done if $q \geq s+1$. If $q \leq s$, then $\operatorname{deg}_{G}(u)<\left\lceil\frac{n}{2}\right\rceil+(q+1) k$, otherwise Claim 2.7 implies that there exists a copy of $F_{(q+1) k}$ with centre u, contradicting the choice of q. Obtain G^{\prime} by deleting the copy of $F_{q k}$, followed by a further $s-q$ copies of F_{k}. We have $\operatorname{deg}_{G^{\prime}}(u) \leq\left\lceil\frac{n}{2}\right\rceil+(q+1) k-1-2 q k \leq\left\lfloor\frac{n}{2}\right\rfloor-(q-1) k<\left\lfloor\frac{n}{2}\right\rfloor-s$.
(ii) Suppose that there are s vertices $u_{1}, \ldots, u_{s} \in A_{0} \cup A_{1}$ such that $\operatorname{deg}_{G}\left(u_{j}, A_{i}\right) \geq$ $\left\lfloor\frac{3}{2} k\right\rfloor-1$, if $u_{j} \in A_{i}$. Without loss of generality we may assume that for $q \geq\left\lceil\frac{s}{2}\right\rceil$ we have $u_{1}, \ldots, u_{q} \in A_{i}$, for some $i \in\{0,1\}$. However, in the special case when $q=\left\lceil\frac{s}{2}\right\rceil$
and s is even, we will consider that $u_{1}, \ldots, u_{q} \in A_{0}$. For each $u_{j} \in A_{i}, 1 \leq j \leq q$, we can choose k neighbours of u_{j}, say $v_{j, 1}, \ldots, v_{j, k} \in A_{i} \backslash\left\{u_{1}, \ldots, u_{q}\right\}$. This is possible since there are at least $\left\lfloor\frac{3}{2} k\right\rfloor-1-(q-1) \geq k$ such neighbours. We may further assume that $v_{j, 1} \neq v_{\ell, 1}$ for $1 \leq j<\ell \leq q$. By Claim 2.7, we can find and delete q copies of F_{k} with centres u_{1}, \ldots, u_{q} as follows. For $1 \leq j \leq q$, the copy with centre u_{j} has triangles $u_{j} v_{j, 1} u, u_{j} v_{j, 2} w_{j, 2}, \ldots, u_{j} v_{j, k} w_{j, k}$, for some $u, w_{j, 2}, \ldots, w_{j, k} \in B_{1-i}$, with the vertices $w_{j, p}$ distinct for $1 \leq j \leq q$ and $2 \leq p \leq k$. Obtain the subgraph G^{\prime} by deleting a further $s-q$ copies of F_{k}. Then, $\operatorname{deg}_{G^{\prime}}(u) \leq \operatorname{deg}_{G}(u)-2 q$. In the special case when s is even and $q=\left\lceil\frac{s}{2}\right\rceil$ we must have $u \in B_{1}$, therefore $\operatorname{deg}_{G^{\prime}}(u) \leq\left\lfloor\frac{n}{2}\right\rfloor-2 q \leq\left\lfloor\frac{n}{2}\right\rfloor-s$. In all other cases we have $\operatorname{deg}_{G^{\prime}}(u) \leq\left\lceil\frac{n}{2}\right\rceil-2 q=\left\lfloor\frac{n}{2}\right\rfloor-s$, as required.
(iii) Suppose that (i) and (ii) do not hold. We obtain G^{\prime} by deleting any s copies of F_{k}. If some copy has centre $u \in B_{0} \cup B_{1}$, then $\operatorname{deg}_{G^{\prime}}(u) \leq\left\lceil\frac{n}{2}\right\rceil-2 k<\left\lfloor\frac{n}{2}\right\rfloor-s$. Otherwise, all the centres lie in $A_{0} \cup A_{1}$, and must be distinct. Moreover, at most $s-1$ vertices $v \in A_{0} \cup A_{1}$ satisfy $\operatorname{deg}_{G}\left(v, A_{i}\right) \geq\left\lfloor\frac{3}{2} k\right\rfloor-1$ if $v \in A_{i}$. Hence, there exists a centre $u \in A_{i}$ with $\operatorname{deg}_{G}\left(u, A_{i}\right) \leq\left\lfloor\frac{3}{2} k\right\rfloor-2$, for some $i \in\{0,1\}$. We have $\operatorname{deg}_{G^{\prime}}(u) \leq\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{3}{2} k\right\rfloor-2-2 k<\left\lfloor\frac{n}{2}\right\rfloor-s$.

Now, $\operatorname{ex}\left(n, F_{k}\right)-\operatorname{ex}\left(n-1, F_{k}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ by Theorem 1.4. Therefore in every case,

$$
\begin{align*}
e\left(G^{\prime}-u\right) & =e\left(G^{\prime}\right)-\operatorname{deg}_{G^{\prime}}(u) \geq \operatorname{ex}\left(n, F_{k}\right)-s-\left\lfloor\frac{n}{2}\right\rfloor+s \\
& =\operatorname{ex}\left(n-1, F_{k}\right) . \tag{2.12}
\end{align*}
$$

Observe that equality in (2.12) can only happen in (ii). However, in this case, we have $\operatorname{deg}_{G^{\prime}-u}\left(w_{1,2}\right) \leq\left\lceil\frac{n}{2}\right\rceil-2<\left\lfloor\frac{n-1}{2}\right\rfloor$. Thus, $G^{\prime}-u \notin \mathcal{F}_{n-1, k}$, since otherwise one must have $\delta\left(G^{\prime}-u\right) \geq\left\lfloor\frac{n-1}{2}\right\rfloor$. Therefore, by Theorem 1.4, $G^{\prime}-u$ contains a copy of F_{k}. This completes the proof of Claim 2.6 and Case 2 follows.

The proof of Theorem 1.5 is now complete.

Acknowledgements

The authors acknowledge the support from FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PEst-OE/MAT/UI0297/2011 (CMA) and PTDC/MAT/113207/2009.

References

[1] P. Allen, J. Böttcher, and Y. Person. An improved error term for minimum H-decompositions of graphs. Submitted.
[2] B. Bollobás. On complete subgraphs of different orders. Math. Proc. Cambridge Philos. Soc., 79(1):19-24, 1976.
[3] V. Chvátal and D. Hanson. Degrees and matchings. J. Combin. Theory Ser. B, 20(2):128-138, 1976.
[4] P. Erdős. On some new inequalities concerning extremal properties of graphs. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 77-81. Academic Press, New York, 1968.
[5] P. Erdős, Z. Füredi, R. J. Gould, and D. S. Gunderson. Extremal graphs for intersecting triangles. J. Combin. Theory Ser. B, 64(1):89-100, 1995.
[6] P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections. Canad. J. Math., 18:106-112, 1966.
[7] L. Özkahya and Y. Person. Minimum H-decompositions of graphs: edge-critical case. J. Combin. Theory Ser. B, 102(3):715-725, 2012.
[8] O. Pikhurko and T. Sousa. Minimum H-decompositions of graphs. J. Combin. Theory Ser. B, 97(6):1041-1055, 2007.
[9] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279-319. Academic Press, New York, 1968.
[10] T. Sousa. Decompositions of graphs into a given clique-extension. Ars Combin. to appear.
[11] T. Sousa. Decompositions of graphs into 5-cycles and other small graphs. Electron. J. Combin., 12:Research Paper 49, 7 pp. (electronic), 2005.
[12] T. Sousa. Decompositions of graphs into a given clique-extension. Ars Combin., 100:465-472, 2011.

[^0]: *Research partially supported by FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PEst-OE/MAT/UI0297/2011 (CMA) and PTDC/MAT/113207/2009.

