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Abstract
Given two graphs G and H, an H-decomposition of G is a partition of the

edge set of G such that each part is either a single edge or forms a graph
isomorphic to H. Let φ(n,H) be the smallest number φ such that any graph
G of order n admits an H-decomposition with at most φ parts. Pikhurko and
Sousa conjectured that φ(n,H) = ex(n,H) for χ(H) ≥ 3 and all sufficiently
large n, where ex(n,H) denotes the maximum number of edges in a graph on n
vertices not containing H as a subgraph. Their conjecture has been verified by
Özkahya and Person for all edge-critical graphs H. In this article, the conjecture
is verified for the k-fan graph. The k-fan graph, denoted by Fk, is the graph on
2k + 1 vertices consisting of k triangles which intersect in exactly one common
vertex called the centre of the k-fan.

1 Introduction

Given two graphs G and H, an H-decomposition of G is a partition of the edge set
of G such that each part is either a single edge or forms a graph isomorphic to H.
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1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357735434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Let φ(G,H) be the smallest possible number of parts in an H-decomposition of G. It
is easy to see that, for non-empty H, we have φ(G,H) = e(G) − pH(G)(e(H) − 1),
where pH(G) is the maximum number of pairwise edge-disjoint copies of H that can
be packed into G and e(G) denotes the number of edges in G. In this paper, we study
the function

φ(n,H) = max{φ(G,H) | v(G) = n},

which is the smallest number φ such that any graph G of order n admits an H-
decomposition with at most φ parts.

This function was first studied, in 1966, by Erdős, Goodman, and Pósa [6], who
were motivated by the problem of representing graphs by set intersections. They
proved that φ(n,K3) = ex(n,K3), where Ks denotes the complete graph of order s and
ex(n,H) denotes the maximum number of edges in a graph on n vertices not containing
H as a subgraph. A decade later, Bollobás [2] proved that φ(n,Kr) = ex(n,Kr), for
all n ≥ r ≥ 3.

General graphs H were only considered recently by Pikhurko and Sousa [8]. They
proved the following result.

Theorem 1.1 (See Theorem 1.1 from [8]). Let H be any fixed graph of chromatic
number r ≥ 3. Then,

φ(n,H) = ex(n,H) + o(n2).

Pikhurko and Sousa also made the following conjecture.

Conjecture 1.2. [8] For any graph H of chromatic number r ≥ 3, there exists n0 =
n0(H) such that φ(n,H) = ex(n,H) for all n ≥ n0.

A graph H is edge-critical if there exists an edge e ∈ E(H) such that χ(H) >
χ(H − e), where χ(H) denotes the chromatic number of H. For r ≥ 4 a clique-
extension of order r is a connected graph that consists of a Kr−1 plus another vertex,
say v, adjacent to at most r− 2 vertices of Kr−1. Conjecture 1.2 has been verified by
Sousa for some edge-critical graphs, namely, clique-extensions of order r ≥ 4 (n ≥ r)
[12] and the cycles of length 5 (n ≥ 6) and 7 (n ≥ 10) [11, 10]. Later, Özkahya and
Person [7] verified the conjecture for all edge-critical graphs with chromatic number
r ≥ 3. Recall that the Turán graph Tr−1(n) is the complete balanced (r − 1)-partite
graph on n vertices and does not contain Kr as a subgraph. Their result is the
following.

Theorem 1.3 (See Theorem 3 from [7]). For any edge-critical graph H with chromatic
number r ≥ 3, there exists n0 = n0(H) such that φ(n,H) = ex(n,H), for all n ≥ n0.
Moreover, the only graph attaining ex(n,H) is the Turán graph Tr−1(n).

Recently, as an extension of Özkahya and Person’s work, Allen, Böttcher, and
Person [1] improved the error term obtained by Pikhurko and Sousa in Theorem 1.1.
In fact, they proved that the error term o(n2) can be replaced by O(n2−α) for some
α > 0. Furthermore, they also showed that this error term has the correct order of
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magnitude. Their result is indeed an extension of Theorem 1.3 since the error term
O(n2−α) that they obtained vanishes for every edge-critical graph H.

Here we will verify Conjecture 1.2 for the k-fan graph. The k-fan graph, denoted
by Fk, is the graph on 2k + 1 vertices consisting of k triangles which intersect in
exactly one common vertex, called the centre of Fk. Observe that χ(Fk) = 3 and for
k ≥ 2 the graph Fk is not edge-critical.

In 1995, Erdős, Füredi, Gould, and Gunderson [5] have determined the value of the
function ex(n, Fk) as well as the Fk-extremal graphs for every fixed k and whenever
n is large. They have proved the following result.

Theorem 1.4. [5] Let Fn,k be the following family of graphs.

- If k is odd and n ≥ 4k − 1, then a member of Fn,k is a Turán graph T2(n) with
two vertex-disjoint copies of Kk added into one class.

- If k is even and n ≥ 4k − 3, then a member of Fn,k is a T2(n) with a graph
having 2k− 1 vertices, k2− 3

2
k edges and maximum degree k− 1 added into one

class.

For k ≥ 1 and n ≥ 50k2, we have

ex(n, Fk) =
⌊n2

4

⌋
+ g(k) =

{ ⌊
n2

4

⌋
+ k2 − k if k is odd,⌊

n2

4

⌋
+ k2 − 3

2
k if k is even.

Moreover, the only Fk-free graphs with ex(n, Fk) edges are the members of Fn,k.

Here we will prove the following result.

Theorem 1.5. For k ≥ 1, there exists n0 = n0(k) such that φ(n, Fk) = ex(n, Fk) for
all n ≥ n0. Moreover, the only graphs attaining ex(n, Fk) are the members of Fn,k.

The lower bound φ(n, Fk) ≥ ex(n, Fk) follows immediately by considering any
member of Fn,k. The upper bound will be proved in Section 2.

Our notations throughout the paper are fairly standard. Let G = (V,E) be a
graph, U ⊂ V and v a vertex of G. We denote by δ(G) and ∆(G) the minimum
and the maximum degree of G, respectively. The subgraph of G induced by U is
denoted by G[U ] and eG(U) = e(G[U ]). We write degG(v) for the degree of v in G
and degG(v, U) for the number of neighbours that v has in U . If it is clear which
graph is being considered we simply write e(U), deg(v) and deg(v, U). Finally, for
two disjoint subsets U,W ⊂ V , e(U,W ) denotes the number of edges of G with one
endpoint in U and the other in W .
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2 Proof of Theorem 1.5

In this section we will prove the upper bound in Theorem 1.5. In outline, the proof is
the following. Suppose we have a graphG on n vertices such that φ(G,Fk) ≥ ex(n, Fk).
We first apply a stability type result (Lemma 2.1) to deduce that G must be a
dense and near-balanced bipartite graph with m = o(n2) edges inside the classes.
Then, we find too many edge-disjoint copies of Fk in G which would imply that
φ(G,Fk) ≤ ex(n, Fk), a contradiction to our initial assumption on φ(G,Fk). Such ap-
proach (stability method) has been widely used to study various problems in extremal
graph theory. Our proof generally follows that of Özkahya and Person [7] except for
the case when m = O(k2), when some further detailed analysis will be required.

Before presenting the proof we need to introduce the tools. Firstly, recall the
following stability type result about graphs G on n vertices with φ(G,H) ≥ ex(n,H)−
o(n2) due to Özkahya and Person [7]. Their result follows from a result of Pikhurko
and Sousa ([8], Theorem 1.1) and an application of a stability result of Erdős [4] and
Simonovits [9].

Lemma 2.1 (See Lemma 4 in [7]). Let H be a graph with χ(H) = r ≥ 3 and H 6= Kr.
Then, for every γ > 0 there exist ε > 0 and n0 ∈ N such that for every graph G on
n ≥ n0 vertices the following is true. If

φ(G,H) ≥ ex(n,H)− εn2

then there exists a partition V (G) = V1 ∪̇ · · · ∪̇Vr−1 such that
∑r−1

i=1 e(Vi) < γn2.

Secondly, let f(ν,∆) = max{e(G) | ν(G) ≤ ν and ∆(G) ≤ ∆}, where ν(G) is the
size of a maximum matching in G. We will need the following result of Chvátal and
Hanson [3].

Theorem 2.2. [3] For ν,∆ ≥ 1, we have

f(ν,∆) = ν∆ +
⌊∆

2

⌋⌊ ν

d∆/2e

⌋
≤ ν∆ + ν.

We are now able to complete the proof of Theorem 1.5.

Proof of the upper bound in Theorem 1.5. The case k = 1 is the result of Erdős,
Goodman, and Pósa [6], so assume k ≥ 2. We choose γ = 1

(288k)2
and let n0(k) =

max(n0, 505k4) +
(
n0

2

)
where n0 is given by Lemma 2.1. Furthermore, suppose that

there exists a graph G on n ≥ n0(k) vertices such that φ(G,Fk) ≥ ex(n, Fk) and
G 6∈ Fn,k. We will derive a contradiction by finding sufficiently many edge-disjoint
copies of Fk in G, which will give

φ(G,Fk) = e(G)− pFk
(G)(e(Fk)− 1) < ex(n, Fk).

We first prove the following claim. Although the proof is similar to that of Claim
7 in [7], we include it for the sake of completeness.
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Claim 2.3. Let m ≥ 0 and φ(G,Fk) = ex(n, Fk) + m. Then, there is a graph G′ on
n′ = n − i vertices that is obtained by deleting i vertices from G, for some 0 ≤ i <
n− n0, such that δ(G′) ≥ bn′

2
c and φ(G′, Fk) ≥ ex(n′, Fk) +m+ i.

Proof. If δ(G) ≥ bn
2
c, then set i = 0. Otherwise, there exists v ∈ V (G) with degG(v) <

bn
2
c. Then we delete v from G obtaining G1 := G− v with

φ(G1, Fk) ≥ φ(G,Fk)− degG(v) ≥ ex(n, Fk) +m−
⌊n

2

⌋
+ 1

= ex(n− 1, Fk) +m+ 1,

since ex(n, Fk)−ex(n−1, Fk) = bn
2
c by Theorem 1.4. If δ(G1) < bn−1

2
c, then we iterate

this procedure until we arrive at a graph G′ that has n− i vertices, δ(G′) ≥ bn−i
2
c and

φ(G′, Fk) ≥ ex(n− i, Fk) +m+ i, or we stop when G′ has n0 vertices. But the latter
case cannot occur since φ(G′, Fk) >

(
n0

2

)
, which is a contradiction.

By Claim 2.3, we may assume that δ(G) ≥ bn
2
c. Otherwise, we can consider the

graph G′ instead of G. Note that if G′ 6= G, then φ(G′, Fk) > ex(n′, Fk) so that
G′ 6∈ Fn′,k.

Let V0 ∪̇V1 be a partition of V (G) such that e(V0, V1) is maximised and let m =
e(V0) + e(V1). Observe that

m = e(G)− e(V0, V1) ≥ ex(n, Fk)−
⌊n2

4

⌋
= g(k),

and that

e(G) = m+ e(V0, V1) ≤ m+
⌊n2

4

⌋
= ex(n, Fk) +m− g(k). (2.1)

By Lemma 2.1, we also have m < γn2.
The following claim says that the partition V (G) = V0 ∪̇V1 is very close to being

balanced.

Claim 2.4. For i = 0, 1, we have

n

2
−√γn ≤ |Vi| ≤

n

2
+
√
γn. (2.2)

Proof. Without loss of generality, let |V0| ≤ |V1| and |V0| = n
2
− a, where a ≥ 0. By

Lemma 2.1, we have

e(G) ≤ |V0||V1|+ γn2 =
n2

4
− a2 + γn2.

Also, by Theorem 1.4, we have

e(G) ≥ ex(n, Fk) =
⌊n2

4

⌋
+ g(k) ≥ n2

4
.

Therefore, n2

4
− a2 + γn2 ≥ n2

4
, which implies that a ≤ √γn and (2.2) holds.
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In order to obtain the required contradiction it suffices to show that we can find
bm−g(k)

3k−1
c+ 1 edge-disjoint copies of Fk in G. In fact, together with (2.1) we obtain

φ(G,Fk) = e(G)− (e(Fk)− 1)pFk
(G)

≤ ex(n, Fk) +m− g(k)− (3k − 1)
(⌊m− g(k)

3k − 1

⌋
+ 1
)

< ex(n, Fk).

For this purpose we will describe a procedure that will find the required number
of edge-disjoint copies of Fk in G. We continue the proof by considering two different
cases.
Case 1: m ≥ 5

2
k2 − 1

2
k + 1.

For i = 0, 1 and a vertex v ∈ Vi, we call v a bad vertex if deg(v, Vi) > n
72k

.
Otherwise, v is a good vertex. Observe that the total number of bad vertices in G is
at most

2γn2

n
72k

= 144kγn. (2.3)

For each bad vertex v ∈ Vi, i = 0, 1, we may choose kd 1
2k

deg(v, Vi)e edges of G
which connect v to good vertices in Vi. This is possible since the number of bad
vertices is at most 144kγn. We keep these edges and delete the remaining edges in
G[Vi] incident with v. We repeat this procedure for each bad vertex in G. Let G0 be
the resulting graph. Writing Ui ⊂ Vi for the set of good vertices in Vi, we have

eG0(Vi) = eG0(Ui) +
∑

v bad∈Vi

degG0
(v, Vi)

= eG(Ui) +
∑

v bad∈Vi

k
⌈ 1

2k
degG(v, Vi)

⌉
≥ 1

2
eG(Ui) +

1

2

∑
v bad∈Vi

degG(v, Vi) ≥
1

2
eG(Vi),

so that eG0(V0) + eG0(V1) ≥ m
2
.

We now find sufficiently many edge-disjoint copies of Fk in G0, with each copy
having exactly k edges in either V0 or V1. Each time we find a copy of Fk we delete
its edges. Let Gs ⊂ G0 be the graph obtained after we have removed s copies.

We define a threshold
t =

n

2
− n

36k
−√γn. (2.4)

The purpose for the introduction of the threshold t is that in our procedure, for
any good vertex v ∈ Vi, i = 0, 1, we will ensure that degGs

(v, V1−i) will not be very
much less than t, for every subgraph Gs ⊂ G.

For a good vertex v ∈ Vi, i = 0, 1, we say that v is active (in Gs) if degGs
(v, V1−i) ≥

t. Otherwise, v is inactive. Note that initially, all good vertices v ∈ Vi are active in
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G0, since δ(G) ≥ bn
2
c and degG(v, Vi) ≤ n

72k
, so that

degG0
(v, V1−i) ≥

⌊n
2

⌋
− n

72k
≥ t+

n

72k
. (2.5)

We perform the following procedure to find edge-disjoint copies of Fk. If we cannot
perform Step 1 then we proceed to Step 2.
Step 1. Let s ≥ 0 and let Gs ⊂ G0 be a subgraph at some point of the iteration.
Suppose there exists a vertex u ∈ Vi with degGs

(u, Vi) ≥ k, for some i ∈ {0, 1}. We
take k neighbours v1, . . . , vk ∈ Vi of u in Gs. We then find good and active vertices
w1, . . . , wk ∈ V1−i, where wj is a common neighbour of u and vj in Gs for 1 ≤ j ≤ k.
This gives a copy of Fk. We remove the copy of Fk and update the status of the good
vertices (whether they are active or inactive) and let Gs+1 ⊂ Gs be the new subgraph.
We perform Step 1 successively by considering first all bad vertices, followed by good
vertices. Suppose that we have considered bad vertices for a iterates and that Step 1
stops after b ≥ a iterates. That is, Step 1 is performed a times for bad vertices and
b− a times for good vertices.
Step 2. When Step 1 is completed, we obtain the subgraph Gb ⊂ G0 such that for
i = 0, 1, we have degGb

(u, Vi) = 0 for all bad vertices u ∈ Vi, and ∆(Gb[Vi]) < k.
Suppose that Gs ⊂ Gb (s ≥ b) is a subgraph at a further point of the iteration, and
there exists a matching in Gs[Vi] of size k for some i ∈ {0, 1}. Let v1w1, . . . , vkwk
be the matching. We find a good and active vertex u ∈ V1−i which is a common
neighbour of v1, w1, . . . , vk, wk in Gs. As before, remove the resulting copy of Fk, let
Gs+1 ⊂ Gs be the new subgraph and update the status of the good vertices. Step
2 is repeated until we have exhausted all such matchings. Let G∗ be the subgraph
obtained after Step 2 is terminated.

Claim 2.5. Steps 1 and 2 can be successfully iterated.

For i = 0, 1, we have degG∗(u, Vi) = 0 for all bad vertices u ∈ Vi, since degG0
(u, Vi)

is a multiple of k. Also, ∆(G∗[Vi]) < k and G∗[Vi] does not contain a matching of size
k. Thus, by Theorem 2.2, eG∗(Vi) ≤ f(k− 1, k− 1) ≤ (k− 1)2 + (k− 1) implying that
eG∗(V0) + eG∗(V1) ≤ 2k(k− 1). Therefore, since eG0(V0) + eG0(V1) ≥ m

2
, for m ≥ 14k2,

we have found and removed at least⌊1

k

(m
2
− 2k(k − 1)

)⌋
≥
⌊m− k2 + 3

2
k

3k − 1

⌋
+ 1 ≥

⌊m− g(k)

3k − 1

⌋
+ 1

edge-disjoint copies of Fk from G. Suppose now that 5
2
k2− 1

2
k+ 1 ≤ m ≤ 14k2 holds.

Then ∆(G[Vi]) ≤ 14k2 ≤ n
72k

for i = 0, 1, so that G has no bad vertices and G0 = G.
In this case we have found and removed at least⌊1

k

(
m− 2k(k − 1)

)⌋
≥
⌊m− k2 + 3

2
k

3k − 1

⌋
+ 1 ≥

⌊m− g(k)

3k − 1

⌋
+ 1

edge-disjoint copies of Fk from G, as required. Therefore, to complete the proof of
Case 1 it remains to prove Claim 2.5.
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Proof of Claim 2.5. The maximality of e(V0, V1) implies that for every v ∈ Vi, i = 0, 1
we have

degG(v, V1−i) ≥ max
(

degG(v, Vi),
⌊n

4

⌋)
. (2.6)

For Step 1, let Gs ⊂ G0 be a subgraph at some point of the iteration, where
0 ≤ s < b. Suppose firstly that 0 ≤ s < a, so that we have a bad vertex u ∈ Vi with
neighbours v1, . . . , vk ∈ Vi in Gs, for some i ∈ {0, 1}. Note that v1, . . . , vk are good
vertices. Then, u was involved in at most 1

k
degG0

(u, Vi) previous iterates, and for
each iterate the number of edges that u sends to V1−i was reduced by k. Therefore,
by (2.6),

degGs
(u, V1−i) ≥ degG0

(u, V1−i)− k ·
1

k
degG0

(u, Vi)

≥ degG(u, V1−i)−
1

2
degG(u, Vi)− k

≥ 1

2
degG(u, V1−i)− k ≥

1

2

⌊n
4

⌋
− k. (2.7)

Also, for every 1 ≤ j ≤ k, we have

degGs
(vj, V1−i) ≥ t−∆(Fk)− degG0

(vj, Vi) ≥ t− 2k − n

72k
, (2.8)

since after vj becomes inactive, the number of edges that vj sends to V1−i decreases by

at most degG0
(vj, Vi). Finally, note that there are s ≤ m

k
< γn2

k
previous iterates, and

for each iterate, the number of edges that a good and active vertex of V1−i sends to
Vi is reduced by at most ∆(Fk) = 2k. By (2.5), the number of inactive good vertices
of Gs in V1−i is at most

2kγn2

k
n

72k

= 144kγn. (2.9)

Let L(u, vj) ⊂ V1−i be the set of good and active common neighbours of u and vj
in Gs. Then using (2.3) and (2.9), we have

|L(u, vj)| ≥ degGs
(u, V1−i) + degGs

(vj, V1−i)− |V1−i| − 144kγn− 144kγn,

≥ 1

2

⌊n
4

⌋
− k + t− 2k − n

72k
− n

2
−√γn− 288kγn ≥ n

12
, (2.10)

where the second inequality follows from (2.2), (2.7) and (2.8), and the last one follows
from (2.4). Hence, there exist w1, . . . , wk ∈ V1−i such that for all 1 ≤ j ≤ k, wj is a
good and active vertex of Gs, and is a common neighbour of u and vj in Gs.

Next, suppose that a ≤ s < b, so that degGs
(u, Vi) = 0 for all bad vertices u ∈ Vi,

i = 0, 1. We have a good vertex u ∈ Vi with degGs
(u, Vi) ≥ k for some i ∈ {0, 1}. Let

v1, . . . , vk ∈ Vi be (good) neighbours of u in Gs, and L(u, vj) ⊂ V1−i be the good and
active common neighbours of u and vj in Gs (1 ≤ j ≤ k). Then, we have

degGs
(u, V1−i) ≥ t−∆(Fk)− degG0

(u, Vi) ≥ t− 2k − n

72k
, (2.11)

8



since after u becomes inactive, in each subsequent iterate, the number of edges that
u sends to Vi and V1−i are both reduced by either 1 or k. Similarly, for 1 ≤ j ≤ k we
have

degGs
(vj, Vi) ≥ t− 2k − n

72k
.

Therefore,

|L(u, vj)| ≥ 2
(
t− 2k − n

72k

)
− n

2
−√γn− 288kγn ≥ n

3
.

As before, we conclude that the required vertices w1, . . . , wk ∈ V1−i do exist.
Now, consider an iterate of Step 2 and let Gs be the graph at some point of the

iteration. Suppose that we have a matching M in Gs[Vi] of size k, for some i ∈ {0, 1}.
Let v1w1, . . . , vkwk be the edges of M . Then, as in (2.11), we have

degGs
(vj, V1−i) ≥ t− 2k − n

72k
,

degGs
(wj, V1−i) ≥ t− 2k − n

72k
,

for 1 ≤ j ≤ k.
Let L(M) ⊂ V1−i be the set of good and active vertices which are adjacent to

v1, w1, . . . , vk, wk in Gs. Then, similar to (2.10), we have

|L(M)| ≥ 2k
(
t− 2k − n

72k

)
− (2k − 1)

(n
2

+
√
γn
)
− 288kγn ≥ n

3
.

Hence, there exists a good and active vertex u ∈ V1−i which is adjacent to
v1, w1, . . . , vk, wk in Gs. This completes the proof of Claim 2.5 and Case 1 follows.

Case 2: g(k) ≤ m ≤ 5
2
k2 − 1

2
k.

We may assume that |V0| ≤ |V1|. For i = 0, 1, let Ai ⊂ Vi be the set of vertices
incident to at least one edge of G[Vi] and Bi = Vi \ Ai the isolated vertices of G[Vi].
Then, |Ai| ≤ 2m ≤ 5k2 and since |Vi| ≥ n

2
−√γn by Claim 2.4, we must have Bi 6= ∅.

Since δ(G) ≥ bn
2
c, by considering any vertex of B1, it follows that G has the

following structure. The partition V (G) = V0 ∪̇V1 must be exactly balanced, so that
|V0| = bn2 c and |V1| = dn2 e. Moreover, if n is even, then for v ∈ Bi, v is adjacent to all
vertices in V1−i. If n is odd, then for v ∈ B1, v is adjacent to all vertices of V0, and
for v ∈ B0, all but at most one vertex of V1 are neighbours of v.

Suppose that e(G) ≥ ex(n, Fk) + s(3k − 1) for some integer s ≥ 0. Then by (2.1),
we have

s(3k − 1) ≤ e(G)− ex(n, Fk) ≤ m− g(k) ≤ 5

2
k2 − 1

2
k − g(k)

=

{
3
2
k2 + 1

2
k if k is odd,

3
2
k2 + k if k is even,

so that s ≤ k
2

+ 3
8

if k is odd and s ≤ k
2

+ 3
5

if k is even. Therefore, s ≤ bk
2
c since s is

an integer. Our goal is to prove the following claim.
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Claim 2.6. Let G have the structure described above and let ex(n, Fk) + s(3k − 1) ≤
e(G) < ex(n, Fk) + (s + 1)(3k − 1) for some integer 0 ≤ s ≤ bk

2
c. Then, G contains

at least s+ 1 edge-disjoint copies of Fk.

Claim 2.6 will then give us

φ(G,Fk) ≤ e(G)− (s+ 1)(e(Fk)− 1) < ex(n, Fk),

and thus completing the proof of Case 2. Before we prove Claim 2.6, we need an
auxiliary claim.

Claim 2.7. Let G have the structure as described. Then for i = 0, 1 and any non-
empty set A ⊂ Ai with |A| ≤ 2k2, there exists a set B ⊂ B1−i with |B| = 2k2, such
that, G contains a complete bipartite subgraph with classes A and B.

Proof. Note that for i = 0, 1, we have |Bi| ≥ bn2 c − 5k2 ≥ 2k2. Hence, the only
non-trivial case is when n is odd and i = 1. For this case, assume that the claim does
not hold. Then, the number of vertices of B0 which are not adjacent to one vertex of
A is at least bn

2
c − 5k2 − 2k2 = bn

2
c − 7k2. Hence, there exists a vertex u ∈ A which

is not adjacent to at least 1
2k2 (bn

2
c − 7k2) vertices of B0. We have

degG(u) ≤
⌊n

2

⌋
+

5

2
k2 − 1

2
k − 1

2k2

(⌊n
2

⌋
− 7k2

)
<
⌊n

2

⌋
,

which contradicts δ(G) ≥ bn
2
c.

Proof of Claim 2.6. The claim holds for s = 0 since we have e(G) ≥ ex(n, Fk) and
G 6∈ Fn,k, so that by Theorem 1.4 G contains a copy of Fk. Now, let 1 ≤ s ≤ bk

2
c.

Note that since e(G) ≥ ex(n, Fk) + s(3k − 1) and s < 3k, we may apply Theorem
1.4 successively s times to obtain and delete s edge-disjoint copies of Fk from G.
Moreover, we will first greedily delete q ≤ s copies of Fk that have a specific property,
followed by a further s− q copies. Let G′ ⊂ G be a subgraph on V (G) obtained after
deleting s edge-disjoint copies of Fk from G, so that e(G′) ≥ ex(n, Fk) − s. We will
show that we can always obtain G′, so that G′ contains a further copy of Fk, which
will imply Claim 2.6.

We consider several cases. In each case, we shall find the graph G′ and a vertex
u ∈ V (G′) with degG′(u) ≤ bn

2
c − s.

(i) Suppose that G contains a copy of Fqk with centre u ∈ A0 ∪ A1 and q ≥ 2.
We choose u so that q is maximum. We have q copies of Fk and we are done if
q ≥ s + 1. If q ≤ s, then degG(u) < dn

2
e + (q + 1)k, otherwise Claim 2.7 implies

that there exists a copy of F(q+1)k with centre u, contradicting the choice of q. Obtain
G′ by deleting the copy of Fqk, followed by a further s − q copies of Fk. We have
degG′(u) ≤ dn

2
e+ (q + 1)k − 1− 2qk ≤ bn

2
c − (q − 1)k < bn

2
c − s.

(ii) Suppose that there are s vertices u1, . . . , us ∈ A0∪A1 such that degG(uj, Ai) ≥
b3

2
kc − 1, if uj ∈ Ai. Without loss of generality we may assume that for q ≥ d s

2
e we

have u1, . . . , uq ∈ Ai, for some i ∈ {0, 1}. However, in the special case when q = d s
2
e

10



and s is even, we will consider that u1, . . . , uq ∈ A0. For each uj ∈ Ai, 1 ≤ j ≤ q,
we can choose k neighbours of uj, say vj,1, . . . , vj,k ∈ Ai\{u1, . . . , uq}. This is possible
since there are at least b3

2
kc−1−(q−1) ≥ k such neighbours. We may further assume

that vj,1 6= v`,1 for 1 ≤ j < ` ≤ q. By Claim 2.7, we can find and delete q copies
of Fk with centres u1, . . . , uq as follows. For 1 ≤ j ≤ q, the copy with centre uj has
triangles ujvj,1u, ujvj,2wj,2, . . . , ujvj,kwj,k, for some u,wj,2, . . . , wj,k ∈ B1−i, with the
vertices wj,p distinct for 1 ≤ j ≤ q and 2 ≤ p ≤ k. Obtain the subgraph G′ by deleting
a further s− q copies of Fk. Then, degG′(u) ≤ degG(u)− 2q. In the special case when
s is even and q = d s

2
e we must have u ∈ B1, therefore degG′(u) ≤ bn

2
c− 2q ≤ bn

2
c− s.

In all other cases we have degG′(u) ≤ dn
2
e − 2q = bn

2
c − s, as required.

(iii) Suppose that (i) and (ii) do not hold. We obtain G′ by deleting any s copies
of Fk. If some copy has centre u ∈ B0 ∪ B1, then degG′(u) ≤ dn

2
e − 2k < bn

2
c − s.

Otherwise, all the centres lie in A0 ∪ A1, and must be distinct. Moreover, at most
s − 1 vertices v ∈ A0 ∪ A1 satisfy degG(v, Ai) ≥ b32kc − 1 if v ∈ Ai. Hence, there
exists a centre u ∈ Ai with degG(u,Ai) ≤ b32kc − 2, for some i ∈ {0, 1}. We have
degG′(u) ≤ dn

2
e+ b3

2
kc − 2− 2k < bn

2
c − s.

Now, ex(n, Fk)− ex(n− 1, Fk) = bn
2
c by Theorem 1.4. Therefore in every case,

e(G′ − u) = e(G′)− degG′(u) ≥ ex(n, Fk)− s−
⌊n

2

⌋
+ s

= ex(n− 1, Fk). (2.12)

Observe that equality in (2.12) can only happen in (ii). However, in this case, we
have degG′−u(w1,2) ≤ dn2 e − 2 < bn−1

2
c. Thus, G′ − u 6∈ Fn−1,k, since otherwise one

must have δ(G′ − u) ≥ bn−1
2
c. Therefore, by Theorem 1.4, G′ − u contains a copy of

Fk. This completes the proof of Claim 2.6 and Case 2 follows.

The proof of Theorem 1.5 is now complete.
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[4] P. Erdős. On some new inequalities concerning extremal properties of graphs. In
Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 77–81. Academic Press,
New York, 1968.
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[7] L. Özkahya and Y. Person. Minimum H-decompositions of graphs: edge-critical
case. J. Combin. Theory Ser. B, 102(3):715–725, 2012.

[8] O. Pikhurko and T. Sousa. Minimum H-decompositions of graphs. J. Combin.
Theory Ser. B, 97(6):1041–1055, 2007.

[9] M. Simonovits. A method for solving extremal problems in graph theory, stability
problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319.
Academic Press, New York, 1968.

[10] T. Sousa. Decompositions of graphs into a given clique-extension. Ars Combin.
to appear.

[11] T. Sousa. Decompositions of graphs into 5-cycles and other small graphs. Elec-
tron. J. Combin., 12:Research Paper 49, 7 pp. (electronic), 2005.

[12] T. Sousa. Decompositions of graphs into a given clique-extension. Ars Combin.,
100:465–472, 2011.

12


