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Abstract. Some oscillation criteria for solutions of a general ordinary differential equation
of second order of the form

(r(t)ψ(x(t))ẋ(t)).+h(t)ẋ(t)+q(t)ϕ(g(x(t)),r(t)ψ(x(t))ẋ(t)) = H(t,x(t), ẋ(t))

with alternating coefficients are discussed. Our results improve and extend some existing
results in the literature. Some illustrative examples are given with its numerical solutions
which are computed using Runge Kutta method of fourth order.
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1. Introduction

In this paper, we consider the second order nonlinear ordinary differential equation of the
form

(1.1) (r(t)ψ(x(t))ẋ(t)).+h(t)ẋ(t)+q(t)ϕ(g(x(t)),r(t)ψ(x(t))ẋ(t)) = H(t,x(t), ẋ(t))

where r, h and q are continuous functions on the interval [t0,∞), t0 > 0, ψ ∈C (R,R+) and
r(t) is a positive function. g is a continuous function for x ∈ (−∞,∞), continuously differen-
tiable satisfies xg(x)> 0 and ġ(t)(x)> k> 0 for all x ̸= 0. The function ϕ is continuous func-
tion on R×R with uϕ(u,v)> 0 for all u ̸= 0 and ϕ(λu,λv) = λϕ(u,v) for any λ ∈ (0,∞)
and H is a continuous function on [t0,∞)×R×R with H(t,x(t), ẋ(t))/g(x(t))6 p(t) for all
x ̸= 0 and t > t0.

Throughout this paper, we restrict our attention only to the solutions of the differential
equation (1.1) which exist on some ray [t0,∞). Such solution of the equation (1.1) is said to
be oscillatory if it has an infinite number zeros, and otherwise it is said to be non-oscillatory.
Equation (1.1) is called oscillatory if all its solutions are oscillatory, and otherwise it is called
non-oscillatory.
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Equation (1.1) is said to be superlinear if
±∞∫
±ε

dx
g(x)

< ∞ for allε > 0.

The problem of finding oscillation criteria for second order ordinary differential equations
has received a great attention of many authors, see for example [1–15].

Kamenev [7] studied the equation

(1.2) ẍ(t)+q(t)x(t) = 0

and proved that the condition

limsup
t→∞

1
tn−1

t∫
t0

(t − s)n−1q(s)ds = ∞ for some integer n > 3,

is sufficient for the oscillation of the equation (1.2). Yan [15] proved that if

limsup
t→∞

1
tn−1

t∫
t0

(t − s)n−1q(s)ds < ∞ for some integer n > 3,

and there is a continuous function Ω on [t0,∞) with
∞∫

t0

Ω 2
+(s)ds = ∞,

where Ω+(t) = max{Ω(t),0} , t > t0 such that

limsup
t→∞

1
tn−1

t∫
t0

(t − s)n−1q(s)ds > Ω(T ) for every T > t0,

then every solution of the equation (1.2) oscillates. Philos [11] improved Kamenev’s result
[7] as follows: He supposed that there exist continuous functions h, H : D= {(t,s) : t > s > t0}→
R such that H(t, t) = 0 for t > t0 and H(t,s)> 0 for t > s > t0. H has a continuous and non-
positive partial derivative on D with respect to the second variable such that

− ∂
∂ s

H(t,s) = h(t,s)
√

H(t,s) for all (t,s) ∈ D,

then, equation (1.2) is oscillatory if

limsup
t→∞

1
H(t, t0)

t∫
t0

(
H(t,s)q(s)− 1

4
h2(t,s)

)
ds = ∞.

Also, Philos [11] extended and improved Yan’s result [15] by proving that H and h as in
above, moreover, supposed that

0 < inf
s>t0

[
liminf

t→∞

H(t,s)
H(t, t0)

]
6 ∞,

limsup
t→∞

1
H(t, t0)

t∫
t0

h2(t,s)ds 6 ∞
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and assume that Ω(t) as in Yan’s result [15] with
∞∫

t0

Ω 2
+(s)ds = ∞.

Then, equation (1.2) is oscillatory if

limsup
t→∞

1
H(t,T )

t∫
T

(
H(t,s)q(s)− 1

4
h2(t,s)

)
ds > Ω(T ) for every T > t0.

Lu and Meng [4] studied the following equation

(1.3) (r(t)ẋ(t)).+h(t)ẋ(t)+q(t)g(x(t)) = 0

and derived some oscillation criteria for equation (1.3).
Sun et al. [13] studied a second order nonlinear neutral functional differential equation

and also derived some oscillation criteria for the same functional equation.
In this paper, we continue in this direction the study of oscillatory properties of equation

(1.1). The purpose of this paper is to improve and extend the above mentioned results. Our
results are more general than the previous results.

2. Main results

We state and prove here our oscillation theorems.

Theorem 2.1. Suppose that

(1) a1 6 ψ(x)6 a2, a1,a2 > 0 for all x ∈ R,
(2) h(t)> 0 for all t > t0,
(3) q(t)> 0 for all t > t0.

Moreover, assume that there exist a differentiable function ρ : [t0,∞)→ (0,∞), (ρh).(t)6 0
for t > t0 and the continuous functions h, H : D = {(t,s) : t > s > t0} → R. The function
H has a continuous and non-positive partial derivative on D with respect to the second
variable such that

H(t, t) = 0 for t > t0 and H(t,s)> 0 for t > s > t0,

− ∂
∂ s

H(t,s) = h(t,s)
√

H(t,s) for all (t,s) ∈ D.

If

(4) limsup
t→∞

1
H(t, t0)

t∫
t0

ρ(s)r(s)σ2(t,s)ds<∞, where σ(t,s) =
[
h(t,s)− ρ̇(t)

ρ(t)
√

H(t,s)
]
.

(5) limsup
t→∞

1
H(t, t0)

t∫
t0

H(t,s)ρ(s)(C0q(s)− p(s))ds = ∞, where C0 is a positive con-

stant p : [t0,∞)→ [0,∞), then, every solution of superlinear equation (1.1) is oscil-
latory.
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Proof. Without loss of generality, we may assume that there exists a solution x(t) of equa-
tion (1.1) such that x(t)> 0 on [T,∞) for some T > t0 > 0. We define the function ω as

ω(t) =
ρ(t)r(t)ψ(x(t))ẋ(t)

g(x(t))
, t > T.

From ω(t), Eq. (1.1), condition (1) and since ϕ(1, ω(t)
ρ(t) ) > 0 then, there exists a positive

constant C0 such that ϕ(1,ω(t)/ρ(t))>C0 thus, we have

ω̇(t)6 ρ(t)p(t)− ρ(t)h(t)ẋ(t)
g(x(t))

−C0ρ(t)q(t)+
ρ̇(t)
ρ(t)

ω(t)− k
a2ρ(t)r(t)

ω2(t) , t > T.

Integrating the last inequality multiplied by H(t,s) from T to t, we have
t∫

T

H(t,s)ρ(s)(C0q(s)− p(s))ds 6−
t∫

T

H(t,s)ω̇(s)ds−
t∫

T

H(t,s)ρ(s)h(s)ẋ(s)
g(x(s))

ds

+

t∫
T

ρ̇(s)
ρ(s)

H(t,s)ω(s)ds−
t∫

T

kH(t,s)
a2ρ(s)r(s)

ω2(s)ds , t > T.(2.1)

From the first integral in the R. H. S. for t > T , we have

−
t∫

T

H(t,s)ω̇(s)ds = H(t,T )ω(T )−
t∫

T

[
− ∂

∂ t
H(t,s)

]
ω(s)ds

= H(t,T )ω(T )−
t∫

T

h(t,s)
√

H(t,s)ω(s)ds , t > T.(2.2)

Since H has a continuous and non-positive partial derivative on D with respect to the second
variable and ρh is non-increasing. The second integral in the R. H. S. is by using the
Bonnet’s theorem twice as follows: for t > T , there exists at ∈ [T, t] such that

t∫
T

H(t,s)ρ(s)h(s)ẋ(s)
g(x(s))

ds = H(t,T )
at∫

T

ρ(s)h(s)ẋ(s)
g(x(s))

ds

and bt ∈ [T,at ] such that

H(t,T )
at∫

T

ρ(s)h(s)ẋ(s)
g(x(s))

ds = H(t,T )ρ(T )h(T )
bt∫

T

ẋ(s)
g(x(s))

ds

= H(t,T )ρ(T )h(T )
x(bt )∫

x(T )

du
g(u)

.

Since H and ρ(t) are positive functions, by condition (2) and the equation (1.1) is superlin-
ear, we have ∫ x(bt )

x(T )

du
g(u)

<

{
0, if x(bt)< x(T );∫ ∞

x(T )
du

g(u) , if x(bt)> (T ).
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Thus, it follows that

(2.3)
t∫

T

H(t,s)ρ(s)h(s)ẋ(s)
g(x(s))

ds = H(t,T )
at∫

T

ρ(s)h(s)ẋ(s)
g(x(s))

ds > A1H(t,T )ρ(T )h(T ),

where A1 = inf
∫ x(bt )

x(T )
du

g(u) .
Thus, from (2.2) and (2.3), the inequality (2.1) becomes

t∫
T

H(t,s)ρ(s)(C0q(s)− p(s))ds

6 H(t,T )ω(T )−A1H(t,T )ρ(T )h(T )

−
t∫

T

[
kH(t,s)

a2ρ(s)r(s)
ω2(s)+

(
h(t,s)− ρ̇(s)

ρ(s)
√

H(t,s)
)√

H(t,s)ω(s)
]

ds.

Since A1H(t,T )ρ(T )h(T )> 0 and for t > T , we have
t∫

T

H(t,s)ρ(s)(C0q(s)− p(s))ds

6 H(t,T )ω(T )−
t∫

T

[
kH(t,s)

a2ρ(s)r(s)
ω2(s)+σ(t,s)

√
H(t,s)ω(s)

]
ds.

Hence, we have
t∫

T

H(t,s)ρ(s)(C0q(s)− p(s))ds 6 H(t,T )ω(T )+
t∫

T

a2ρ(s)r(s)
4k

σ2(t,s)ds

−
t∫

T

[√
kH(t,s)

a2ρ(s)r(s)
ω(s)+

1
2

√
a2ρ(s)r(s)

k
σ(t,s)

]2

ds.(2.4)

Then, for t > T , we have
t∫

T

H(t,s)ρ(s)(C0q(s)− p(s))ds 6 H(t,T )ω(T )+
a2

4k

t∫
T

ρ(s)r(s)σ2(t,s)ds, t > T.

Dividing the last inequality by H(t,T ), taking the limit superior as t → ∞ and by condition
(4), we obtain

limsup
t→∞

1
H(t,T )

t∫
T

H(t,s)ρ(s)(C0q(s)− p(s))ds

6 ω(T )+
a2

4k
limsup

t→∞

1
H(t,T )

t∫
T

ρ(s)r(s)σ2(t,s)ds < ∞,

which contradicts to the condition (5). Hence, the proof is completed.
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Theorem 2.2. Suppose, in addition to the conditions (1), (2), (3) and (4) hold that there
exist continuous functions h, H are defined as in Theorem 2.1 and

(6) 0 < inf
s>t0

[
liminf

t→∞

H(t,s)
H(t, t0)

]
6 ∞.

If there exists a continuous function Ω on [t0,∞) such that
(7)

limsup
t→∞

1
H(t,T )

t∫
T

[
H(t,s)ρ(s)(C0q(s)− p(s))− a2

4k
r(s)ρ(s)σ2(t,s)

]
ds>Ω(T ) for T > t0,

where σ(t,s) =
[
h(t,s)− ρ̇(t)

ρ(t)
√

H(t,s)
]
, k is a positive constant and a differen-

tiable function, ρ : [t0,∞)→ (0,∞),

(8)
∞∫
T

Ω 2
+(s)

ρ(s)r(s)ds = ∞, where Ω+(t) = max{Ω(t),0}, then every solution of superlinear

equation (1.1) is oscillatory.

Proof. Without loss of generality, we may assume that there exists a solution x(t) of equa-
tion (1.1) such that x(t)> 0 on [T,∞) for some T > t0 > 0.

Dividing (2.4) by H(t,T ) and taking the limit superior as t → ∞, we obtain

limsup
t→∞

1
H(t,T )

t∫
T

[
H(t,s)ρ(s)(C0q(s)− p(s))− a2

4k
ρ(s)r(s)σ2(t,s)

]
ds

6 ω(T )− limsup
t→∞

1
H(t,T )

t∫
T

[√
kH(t,s)

a2ρ(s)r(s)
ω(s)+

1
2

√
a2ρ(s)r(s)

k
σ(t,s)

]2

ds

6 ω(T )− liminf
t→∞

1
H(t,T )

t∫
T

[√
kH(t,s)

a2ρ(s)r(s)
ω(s)+

1
2

√
a2ρ(s)r(s)

k
σ(t,s)

]2

ds.

By condition (7), we get

ω(T )> Ω(T )+ lim
t→∞

inf
1

H(t,T )

t∫
T

[√
kH(t,s)

a2ρ(s)r(s)
ω(s)+

1
2

√
a2ρ(s)r(s)

k
σ(t,s)

]2

ds.

This shows that

(2.5) ω(T )> Ω(T ) for every t > T,

and

liminf
t→∞

1
H(t,T )

t∫
T

[√
kH(t,s)

a2ρ(s)r(s)
ω(s)+

1
2

√
a2ρ(s)r(s)

k
σ(t,s)

]2

ds < ∞.

Hence,

∞ > liminf
t→∞

1
H(t,T )

t∫
T

[√
kH(t,s)

a2ρ(s)r(s)
ω(s)+

1
2

√
a2ρ(s)r(s)

k
σ(t,s)

]2

ds
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> liminf
t→∞

 1
H(t, t0)

t∫
t0

kH(t,s)
a2ρ(s)r(s)

ω2(s)ds+
1

H(t, t0)

t∫
t0

σ(t,s)
√

H(t,s)ω(s)ds

 .(2.6)

Define

U(t) =
1

H(t, t0)

t∫
t0

kH(t,s)
ρ(s)r(s)

ω2(s)ds, t > t0

and

V (t) =
1

H(t, t0)

t∫
t0

σ(t,s)
√

H(t,s)ω(s)ds, t > t0.

Then, (2.6) becomes

(2.7) liminf
t→∞

[U(t)+V (t)]< ∞.

Now, suppose that

(2.8)
∞∫

t0

ω2(s)
ρ(s)r(s)

ds = ∞.

Then, by condition (6) we can easily see that

(2.9) lim
t→∞

U(t) = ∞.

Let us consider a sequence {Tn}n=1,2,3,... in [t0,∞) with limn→∞ Tn = ∞ and such that

lim
n→∞

[U(Tn)+V (Tn)] = liminf
t→∞

[U(t)+V (t)] .

By inequality (2.7) there exists a constant N such that

(2.10) U(Tn)+V (Tn)6 N, n = 1,2,3, . . . .

From inequality (2.9), we have

(2.11) lim
n→∞

U(Tn) = ∞.

Hence inequality (2.10) gives

(2.12) lim
n→∞

V (Tn) =−∞.

By taking into account inequality (2.11), from inequality (2.10), we obtain

1+
V (Tn)

U(Tn)
6 N

U(Tn)
<

1
2
,

provided that n is sufficiently large. Thus

V (Tn)

U(Tn)
<−1

2
,

which by inequality (2.12) and inequality (2.11), we have

(2.13) lim
n→∞

V 2(Tn)

U(Tn)
= ∞.
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On the other hand by Schwarz’s inequality, we have

V 2(Tn) =
1

H2(Tn, t0)

 Tn∫
t0

σ(Tn,s)
√

H(Tn,s)ω(s)ds

2

6

 1
H(Tn, t0)

Tn∫
t0

a2ρ(s)r(s)
k

σ2(Tn,s)ds

 1
H(Tn, t0)

Tn∫
t0

kH(Tn,s)
a2ρ(s)r(s)

ω2(s)ds


=

1
H(Tn, t0)

Tn∫
t0

a2ρ(s)r(s)
k

σ2(Tn,s)ds×U(Tn).

Thus, we have

V 2(Tn)

U(Tn)
6 1

H(Tn, t0)

Tn∫
t0

a2ρ(s)r(s)
k

σ2(Tn,s)ds for large n.

By inequality (2.13), we have

a2

k
lim
n→∞

1
H(Tn, t0)

Tn∫
t0

ρ(s)r(s)σ2(Tn,s)ds = ∞.

Consequently,

limsup
t→∞

1
H(t, t0)

t∫
t0

ρ(s)r(s)σ2(t,s)ds = ∞,

which contradicts to the condition (4), Thus inequality (2.8) fails and hence
∞∫

t0

ω2(s)
ρ(s)r(s)

ds < ∞.

Hence from inequality (2.5), we have
∞∫

t0

Ω 2
+(s)

ρ(s)r(s)
ds 6

∞∫
t0

ω2(s)
ρ(s)r(s)

ds < ∞,

which, contradicts to the condition (8), hence the proof is completed.

Example 2.1. Consider the following differential equation

(
(x2(t)+2)

t6(x2(t)+1)
ẋ(t)

).

+
ẋ(t)
t2 +

1
t3

x7(t)+
x133(t)

9x126(t)+6
(

(x2(t)+2)
t6(x2(t)+1) ẋ(t)

)18


=−x9(t)sin2(ẋ(t))

(x2(t)+1)
, t > 0.
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Here we note r(t)= 1/t6, ψ(x)= (x2(t)+2)/(x2(t)+1) for all x∈R, h(t)= 1/t2, q(t)=
1/t3 and g(x) = x7.

ϕ(u,v) = u+
u19

9u18 +6v18 and
H(t,x(t), ẋ(t))

g(x(t))
=−x2(t)sin2(ẋ(t))

(x2(t)+1)
6 0 = p(t)

for all t > 0 and x ∈ R.
Let H(t,s) = (t−s)2 > 0 for all t > s> t0, thus ∂

∂ s H(t,s) =−2(t−s) =−h(t,s)
√

H(t,s)
for all t > t0. Taking ρ(t) = 6 such that

limsup
t→∞

1
H(t,T )

t∫
T

ρ(s)r(s)σ2(t,s)ds

= limsup
t→∞

1
H(t,T )

t∫
T

ρ(s)r(s)
(

h(t,s)− ρ̇(s)
ρ(s)

√
H(t,s)

)2

ds

= limsup
t→∞

24
(t −T )2

t∫
T

1
s2 ds = 0 < ∞,

inf
s>t0

[
liminf

t→∞

H(t,s)
H(t, t0)

]
= inf

s>t0

[
liminf

t→∞

(t − s)2

(t − t0)2

]
= 1 thus, 0 < inf

s>t0

[
liminf

t→∞

H(t,s)
H(t, t0)

]
< ∞

and

limsup
t→∞

1
H(t,T )

t∫
T

[
H(t,s)ρ(s)(C0q(s)− p(s))− a2

4k
r(s)ρ(s)σ2(t,s)

]
ds

= limsup
t→∞

1
(t −T )2

t∫
T

[
6C0

(t − s)2

s3 − 12
ks6

]
ds

=
3C0

T 2 >
3C0

4T 2 .

Set Ω(t) = 3C0
4T 2 , then Ω+(t) =

3C0
4T 2 and

∞∫
T

Ω 2
+(s)

ρ(s)r(s)
ds =

3C2
0

32

∞∫
T

s2ds = ∞.

All conditions of Theorem 2.2 are satisfied, thus, the given equation is oscillatory. We also
compute the numerical solutions of the given differential equation using the Runge Kutta
method of fourth order (RK4). We have

ẍ(t) = f (t,x(t), ẋ(t)) =−x9(t)sin2(ẋ(t))
x2(t)+1

−
(

x7(t)+
x133(t)

9x126(t)+6ẋ18(t)

)
with initial conditions x(1) = −1, ẋ(1) = 0.5 on the chosen interval [1,100], the functions
ψ(x) ≡ 1 and h(t) ≡ 0 and finding values the functions r, q and f where we consider
H (t,x, ẋ) = f (t)l(x, ẋ) at t = 1, n = 500 and h = 0.198.
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Table 1. Numerical solution of ODE 1

k tk x(tk)

1 1 -1
2 1.198 -0.882
3 1.396 -0.7431
. . .
9 2.584 0.1373
10 2.782 0.2844
11 2.98 0.4314
. .

26 5.95 -0.1151
27 6.148 -0.2624
28 6.346 -0.4097
. . .

43 9.316 0.0959
44 9.514 0.2435
45 9.712 0.391

Figure 1. Solution curve of ODE 1

Remark 2.1. Theorem 2.1 and Theorem 2.2 extend and improve results of Kamenev [7],
results of Philos [11] and results of Yan [15] who studied the equation (1.1) as r(t) ≡ 1,
ψ(x(t))≡ 1, h(t)≡ 0, ϕ(g(x(t)),r(t)ψ(x(t))ẋ(t))≡ x(t) and H(t,x(t), ẋ(t))≡ 0. Also their
results [7, 11, 15] cannot be applied to the differential equation in Example 2.1.

We need the following lemma which will significantly simplify the proof of our next
theorem.
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Let D = {(t,s) : t > s > t0}, we say that a function H ∈C(D,R) belongs to the class W
if

(1) H(t, t) = 0 for t > t0 and H(t,s)> 0 when t ̸= s;
(2) H(t,s) has partial derivatives on D such that

∂
∂ t

H(t,s) = h1(t,s)
√

H(t,s),

∂
∂ s

H(t,s) =−h2(t,s)
√

H(t,s) for all (t,s) ∈ D, and some h1, h2 ∈ L1
loc(D,R).

Lemma 2.1. Let A0, A1, A2 ∈ C ([t0,∞) ,R) with A2 > 0 and Z ∈ C1 ([t0,∞) ,R). If there
exist (a,b)⊂ [t0,∞) and c ∈ (a,b) such that

(2.14) Z
′ 6−A0(s)+A1(s)Z −A2(s)Z2, s ∈ (a,b),

then

1
H(c,a)

c∫
a

[
H(s,a)ρ(s)A0(s)−

1
4A2(s)

η2
1 (s,a)

]
ds

+
1

H(b,c)

b∫
c

[
H(b,s)ρ(s)A0(s)−

1
4A2(s)

η2
2 (b,s)

]
ds 6 0(2.15)

for all H ∈W and where

η1(s,a) =
[
h1(s,a)−A1(s)

√
H(s,a)

]
and

η2(b,s) =
[
h2(b,s)−A1(s)

√
H(b,s)

]
.

The proof of this lemma is similar to that of Lu and Meng [4] and hence will be omitted.

Theorem 2.3. Suppose in addition to the condition (3) holds that ψ(x) ≡ 1 for x ∈ R and
assume that there exist c ∈ (a,b)⊂ (T,∞) and H ∈W such that

(9)

1
H(c,a)

c∫
a

[
H(s,a)ρ(s)(C0q(s)− p(s))− k

4ρ(s)r(s)
η2

1 (s,a)
]

ds

+
1

H(b,c)

b∫
c

[
H(b,s)ρ(s)(C0q(s)− p(s))− k

4ρ(s)r(s)
η2

2 (b,s)
]

ds > 0,

where

η1(t,a) =
[

h1(t,a)−
(

ρ̇(t)
ρ(t)

− h(t)
r(t)

)√
H(t,a)

]
,

η2(b, t) =
[

h2(b, t)−
(

ρ̇(t)
ρ(t)

− h(t)
r(t)

)√
H(b, t)

]
and the function ρ is defined as in Theorem 2.1. Then, every solution of equation (1.1) is
oscillatory.
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Proof. Without loss of generality, we may assume that there exists a solution x(t) of equa-
tion (1.1) such that x(t)> 0 on [T,∞) for some T > t0 > 0. We define the function ω as

ω(t) =
ρ(t)r(t)ẋ(t)

g(x(t))
, t > T.

This and (1.1), we obtain

ω̇(t)6 ρ(t)p(t)− h(t)
r(t)

ω(t)−ρ(t)q(t)ϕ(1,v1(t))+
ρ̇(t)
ρ(t)

ω(t)− k
ρ(t)r(t)

ω2(t) , t > T,

where v1(t) =
ω(t)
ρ(t) .

Since ϕ(1,v1(t))> 0 then, there exists C0 such that ϕ(1,v1(t))>C0, we have

ω̇(t)6−ρ(t)(C0q(t)− p(t))+
(

ρ̇(t)
ρ(t)

− h(t)
r(t)

)
ω(t)− k

ρ(t)r(t)
ω2(t) , t > T.

From last inequality and by Lemma 2.1, we conclude that for any c ∈ (a,b) and H ∈W

1
H(c,a)

c∫
a

[
H(s,a)ρ(s)(C0q(s)− p(s))− k

4ρ(s)r(s)
η2

1 (s,a)
]

ds

+
1

H(b,c)

b∫
c

[
H(b,s)ρ(s)(C0q(s)− p(s))− k

4ρ(s)r(s)
η2

2 (b,s)
]

ds 6 0,

where A0(t) = ρ(t)(C0q(t)− p(t)), A1(t) =
(

ρ̇(t)
ρ(t) −

h(t)
r(t)

)
and A2(t) = k

ρ(t)r(t) .
This contradicts (9). Thus, the equation (1.1) is oscillatory.

Remark 2.2. Theorem 2.3 is an extension of result of Lu and Meng [4].
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