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Bringing Context and Variability
Back in to Causal Analysis

The methodology of causal analysis in the social sciences is often divided into

two ideal type research scenarios: experimental social science and observational social

science. For experimental social science, the researcher can manipulate the cause of

interest. The most common research design is one where the analyst assigns values

of the cause according to a randomization scheme and then calculates post-treatment

differences in outcomes across levels of the assigned cause. Typically, the researcher

gives little or no attention to individual-specific differences in the inferred causal

effects or to the context in which the experiment is conducted.1

For observational social science, the analyst cannot manipulate the cause

through intervention because some process outside of the analyst’s control deter-

mines the pattern of causal exposure. To develop causal assertions, the analyst must

adopt a model of causal exposure based on assumptions about how the cause is dis-

tributed in the population. Most commonly, a model is adopted that warrants causal

inference from differences in outcomes calculated within sets of observed individuals

who are exposed to alternative values of the cause but who are deemed otherwise

comparable by the maintained model of causal exposure. Individual-level variation

in causal effects is then presumed to exist within and across comparison sets, often

arising from interactions between individuals’characteristics and the contexts within

which they are exposed to the cause.

In this chapter, we will discuss methods for modeling causal effects in obser-

vational social science, giving particular attention to the capacity of new graphical

methods to represent and then motivate models that can effectively deliver estimates

1This does not mean that the results imply that individual-level differences do not exist. All
such differences are, by construction, balanced in expectation across arms of the randomization
scheme. Moreover, for the many experiments that are performed on convenience-based collections of
individuals willing to participate (e.g., college students), this balancing often does not even generate
the average causal effect in a target population of fundamental interest.
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of underlying heterogeneity of causal effects. We have several related goals that

we will pursue in the following order: (1) explain why quantitatively oriented so-

cial science that adopted path modeling methodology became a target of critiques

that it had ignored variability and context, (2) demonstrate how such effects can be

expressed within a more recent methodology of causal graphs, (3) consider feasible

empirical strategies to identify these effects, and (4) explain why causal graphs pose

a risk of obscuring patterns of heterogeneity that deserve full scrutiny.

To set the stage for our explanations, consider some classic examples from soci-

ology that have sought to model explicitly the effects of individual-level heterogeneity

of causal effects as they interact with consequential social contexts. At least since

the 1980s, sociologists have investigated the effects of neighborhoods on educational

outcomes, deviance, and the transition to adulthood (for insightful reviews, see Jencks

and Mayer 1990 and Harding, Gennetian, Winship, Sanbonmatsu, and Kling 2011).

Because neighborhoods have many characteristics, and individuals living within them

can be influenced to varying degrees by circumstances only partly under their own

control, the effects of neighborhoods have proven persistently diffi cult to estimate.

These debates have not been settled by first-rate observational data analysis or by

large-scale experimentation (see Sampson 2008).

Alongside this work on neighborhoods, sociologists of education have studied

the variable effects of schooling on the academic achievement of students. These

studies include attempts to estimate the differential effects of public schooling on

learning for students from different socioeconomic strata. For example, Downey,

von Hippel, and Broh (2004) show that schools help to narrow differences in learning

that would result only from differences attributable to baseline family background

differences. A complementary stream of literature has shown that Catholic schooling

may generate even larger “common school effects” (see Hoffer, Greeley, and Cole-

man 1985; Bryk, Lee, and Holland 1993), though this pattern may instead reflect
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differential self-selection on the causal effect itself (see Morgan and Todd 2008).

Sociologists have also considered the differential consequences of labor mar-

ket conditions and training opportunities for young adults. For example, Mare

and Winship (1984) studied the extent to which changes in the unemployment rate

for black youths can be considered differential responses to labor market conditions

across youths who have differential propensities to enter the military or postsecondary

schooling. More recently, Brand and Xie (2010) have studied the differential payoff

of college across different types of students, challenging the position implicitly main-

tained by many economists that college provides the greatest benefits to those most

likely to enter college.

Our focal example in this chapter will be the contentious research on charter

schooling in the United States that has been the subject of substantial and recent

public debate. In an excellent book on these debates, Henig (2008:2) introduces and

defines charter schools in the following way:

Just a little more than fifteen years since the first charter school opened in
Minnesota, there are now nearly 4,000 nationwide, serving an estimated
1.1 million students. ... The laws governing charter schools differ —
sometimes substantially —from state to state, of course, but some general
characteristics have emerged. Charter schools receive public funding on a
per-student basis, are often responsible for achieving educational outcomes
defined by their government chartering entity, and are subject to at least
nominal public oversight. They typically are barred from charging tuition
on top of the public per-pupil allocation, but are free to pursue other
forms of supplementary support from donors, foundations, or corporate
sponsors. Although they must observe certain baseline regulations, such
as prohibitions on discrimination and the provision of safe environments,
they are exempt from many of the rules and regulations that bind regular
public schools to specific standards and procedures. This hybrid status ...
has made charter schools a special focus of attention and helped draw them
into ideological whirlpools that raise the stakes surrounding the research
into their actual form and consequences.

At their core, the central research questions in the debate are simple: Do students

who attend charter schools perform better on standardized tests than they would
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have performed if they had instead attended regular public schools? Would students

who attend regular public schools perform better on standardized tests if they had

instead attended charter schools?

The contentious research that has addressed these questions is distinguished

in many respects. Not only are some of its combatants leading researchers at the

nation’s top universities, many of these researchers are unusually ideological (as Henig

shows brilliantly in his book). This scholarly energy is amplified by the public atten-

tion that has been paid to charter schools by the national press, which is related to

the support that charter schools have received from celebrity donors and from presi-

dential aspirants. At the same time, the research that informs the debate is cutting

edge in the best sense. Careful attention is paid to details of measurement, and the

research designs that have been adopted are a healthy mixture of basic comparisons of

achievement levels as well as daring attempts to leverage quasi-experimental variation

from the ways in which charter school programs are administered.2

What makes pursuing these questions complex is the underlying heterogeneity

of the real world. The process by which some students become enrolled in charter

schools is only partly observed. It is likely that some students in charter schools

are much more likely to benefit from them than others, and it is even more diffi cult

to assess how students who never contemplated entering charter schools might fare

if given the opportunity to attend them. At the same time, charter schools differ

greatly from each other, such that the effect of charter schooling must surely vary

because of quality differences, as well as the match between each student and the

unique features of each charter school.

In the next section, we provide necessary background for our subsequent pre-

sentation of the new methodology of causal graphs by first offering a presentation of

2For very high quality examples of this research, see Abdulkadiroglu, Angrist, and Kane et al.
(2009), Angrist, Dynarski, and Kane et al. (2010), Center for Research on Educational Outcomes
(2009), and Hoxby, Murarka, and Kang (2009).
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the charter school effect from a path-modeling perspective. We also use this material

to explain how quantitatively oriented sociology opened itself up to the critique that

variability and context were too frequently ignored in attempts to estimate causal

effects.3

An Emergent Vulnerability to Critique

In the 1980s and early 1990s, a robust critique of dominant forms of quantitative re-

search arose in sociology (see Abbott 1988, 2001; Lieberson 1985; Lieberson and Lynn

2002; Ragin 1987). This literature objected to the overly strong causal assertions

in the published literature in many areas of sociology, which these authors claimed

were based on misplaced faith in the capacity of linear regression results to generate

warranted causal conclusions from the analysis of survey data. A great deal of this

critique of research practice was on target, and it arose in response to the naivety of

what we labeled elsewhere “the age of regression”(see Morgan and Winship 2007).

We will not review these critiques in this chapter, but for this section we

will use the models at the heart of these critiques —simple path diagrams and their

underlying linear regression equations —as a point of departure. In the remainder

of the chapter that follows this section, we will explain why we feel that this robust

critique of quantitatively oriented causal analysis has now been weakened by improved

practice that draws on a virtuous combination of causal graphs with nonparametric

foundations and causal effects with potential outcome definitions.

To understand the graphical appeal of traditional path models, consider the

3Before carrying on, we should note that our title “Bringing Context and Variability Back in to
Causal Analysis”is slightly misleading, since we will explain how context and variability have been
brought back into causal analysis in the past fifteen years in ways that provide a solid foundation for
future research. Thus, the tone of our chapter is optimistic and forward looking, not an indictment of
current practice (which is often how the phrase “Bringing ____ Back In”has been used in the long
series of critical papers in sociology that followed from Homans’classic manifesto on methodological
individualism, delivered as “Bringing Men Back In”in his 1964 Presidential Address to the American
Sociological Association).
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path diagram presented in Figure 1, and suppose that we have data on all sixth graders

in a large metropolitan school district. For this path diagram, Y is a standardized

test taken at the end of the sixth grade, and C indicates whether or not a student

attended a charter school for the past year. The variable P represents an omnibus

parental backgroundmeasure that captures differences in economic standing and other

basic dimensions of resources that predict school performance. The variable N is

neighborhood of residence, and we assume that there are meaningful differences in

the extent to which neighborhood environments are conducive to engagement with

schooling.. Thus, C is the cause of primary interest, P is a baseline confounder that

represents individual determinants of C that also have direct causes on the outcome

Y , and N is a measure of the social context in which the effect of C on Y occurs.

The structure of the path diagram in Figure 1 implies that the proper regres-

sion specification for Y is

Y = aY + bC→YC + bP→Y P + bN→YN + eY , (1)

where eY is a regression representation of all omitted factors that determine Y . The

final eY term in Equation 1 is suppressed in Figure 1 because it is assumed to be

independent of C, P, and N . (Similarly, as we will discuss later, no other analogous

error terms are depicted in Figure 1, such as eC , eP , or eN .)

[INSERT FIGURE 1 ABOUT HERE]

In the literature on path models that swept through the social sciences in

the 1960s and 1970s, the effects bC→Y , bP→Y , and bN→Y were presumed to be linear

and constant across individuals. Accordingly, the directed arrows in Figure 1 were

interpreted as linear additive effects. With the example just specified, this assumption

then requires that there are separable and linear additive effects of families, schools,

and neighborhoods on student achievement, and furthermore, that these effects apply
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with equal force to all sixth graders in the school district.4

How would such a path diagram have been presented and then discussed in a

typical research methods class in the 1970s (assuming that the charter school research

question was on the table)? Following an introduction to graphical representations

of causal relationships via path models, at least one student would invariably ask the

instructor:

Can the effect of C on Y vary across P? That seems reasonable, since
it would seem that the effect of a charter school would depend on family
background. Parents with college degrees probably help their kids get
more out of school. Actually, now that I think about it, since N cap-
tures neighborhood characteristics, don’t we think that there are better
schools in some neighborhoods? In fact, charter schools are more likely to
be established in areas with troubled neighborhood-based schools. And
neighborhoods with weaker schools also tend to have stronger deviant
subcultures with gangs and such. So the effect of charter schooling prob-
ably also depends on the neighborhood in which one lives. How do we
represent such variation in effects in the path model?5

In response, an instructor would typically explain that one can think of such effects

as supplemental arrows from a variable to an arrow in the path diagram, such that

the variable itself modifies the arrow. Yet, since these sorts of arrows are not formally

justified in traditional path diagrams, the instructor would almost surely have then

recommended a shift toward a more complex regression specification, such as

Y = aY + bC→YC + bP→Y P + bCP→Y (C × P ) + bN→YN + bCN→Y (C ×N) + eY . (2)

In this case, the path diagram ceases to represent an underlying set of structural

4Such assumptions are entirely implausible, of course, and one doubts that any researchers
would ever have endorsed them had they been asked to do so. Rather, such assumptions would
have been implicitly maintained, in part because the methodological literature had not yet shown
how restrictive such assumptions can be nor offered alternative models to relax them in productive
ways.

5Were this exchange occurring in the substance of the day, a path model from the status attain-
ment tradition would represent the substance of the exchange. The outcome variable Y would be
career success, and C would be college education. All of the same interactions noted for the charter
school case would then apply in this case, though based on different narratives of causation.
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causal relationships and is instead best interpreted as only a simplified reflection of

a more specific regression model. After all, the interaction between the effects of C

and P on Y (as well as the interaction between the effects of C and N on Y ) can be

estimated with little trouble. One need only calculate effects of interest, for example,

by plugging in values for b̂C→YC+ b̂P→Y P + b̂CP→Y (C×P ), after producing standard

regression output from estimation of Equation 2. The differences then produced can

be imbued with causal interpretations, assuming no other variables that are common

causes of P , C, N , or Y have been mistakenly omitted from Equation 2.

We see two related outcomes of the rise and then demise of linear path models.

First, when it became clear that there was no agreed upon way to represent variability

and context within path diagrams, they came to seem much less useful. Researchers

interested in such variability and context may have continued to draw path diagrams

on yellow pads in their offi ces, but rarely did their drawings turn up in published

articles. Path diagrams were thereby relegated to heuristic devices for laying out

possible causal relationships of interest to researchers. Estimation and reporting

became a word and number affair, often with too much of each.

Second, and far more troubling, many scholars apparently chose to retain a

linear additive orientation, even while no longer using path diagrams. For some,

empirical research could be fruitfully advanced by ignoring the genuine interactive

nonlinearity of the real world, in pursuit of a “first approximation” pragmatism.

This might have been an acceptable form of pragmatism if the approximation spirit

had carried over to model interpretation. Too frequently it did not, and many causal

assertions can be found in the literature based on linear additive models that are

overly reductionist.

This incautious literature then opened up quantitative research to the claims of

critics that too many practitioners had fallen prey to the belief that linear regression

modeling reveals strong causal laws in which variability and context play minor roles.
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The most cogent presentation of this criticism is Abbott’s oft-cited “Transcending

General Linear Reality”(see Abbott 1988). Although its straw-man style is irksome to

methodologists who knew of these problems all along, and who urged better practice,

it was a reasonable critique of much practice at the time. In the next section, we

explain how the literature has since advanced by scaling back the ambitiousness of

the regression enterprise, while at the same time adopting a dedicated set of notation

to define causal effects that had no necessary connection to regression methodology.

Moving Beyond Path Diagrams and Simplistic Lin-
ear Regression Models

Consider the general multiple regression model of the form

Y = a+ b1X1 + b2X2 + ... + bkXk + eY , (3)

where Y is an interval-scaled outcome variable and X1 through Xk are predictor

variables. Estimation of the slope parameters b1 through bk can be motivated as a

descriptive data reduction exercise where the goal is to obtain a best-fitting linear

approximation to the population-level relationship between Y and X1 through Xk.

Alternatively, and more ambitiously, the model can be estimated as a full causal model

where the interest is in identifying the expected shifts in Y that would result from

what-if interventions on all possible values of the variables X1 through Xk. The path

model tradition embraced the second and more ambitious of these two approaches.

The more recent literature that we will consider in this chapter has examined

an intermediate case. For this model, the variable X1 in Equation 3 is an indicator

variable C, as in

Y = aY + bCC + b2X2 + ... + bkXk + eY , (4)
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and the goal of the analysis is to estimate the causal effect on Y under what-if shifts

of C from 0 to 1. In this case, the variables X2 throughXk are considered adjustment

variables that are entered into the regression equation solely to aid in the effective

estimation of the causal effect bC . Accordingly, estimates of b2 through bk are of

secondary interest and are not necessarily given a causal interpretation.

Most importantly, under this motivation it is generally presumed that individual-

level causal effects may vary, such that the effect on Y of shifting C from 0 to 1 is not

the same for all individuals. For our focal charter school example, suppose that the

population of interest is again sixth graders in a large metropolitan school district,

and the outcome is performance on a standardized test. The variable C is again an

indicator variable for whether a student attended a charter school in the past year,

and the causal effect of charter schooling, bC , is presumed to vary across students,

either because of their own characteristics, those of their schools, or even those of the

neighborhoods in which they live.

The first step in moving toward models that give substantial attention to

heterogeneous effects was the introduction of interaction-based multilevel modeling.

One way to introduce heterogeneity of this form into Equation 4 is to define bC

as a random coeffi cient and then to model it as a function of other variables. A

simple version of this strategy was already introduced in the last section, where such

variability would have been estimated by forming cross-product interactions between

C and other variables withinX2 throughXk, which were variables such as P andN for

parental background and neighborhoods (see Equation 2). A more general approach

was then developed in a new multilevel modeling tradition, in which any variable

could be seen as a predictor of the variability of bC , especially higher-level predictors

in nested social structures. Although technically these variables were specified as

additional variables withinX2 throughXk, the multilevel modeling framework offered

considerable conceptual appeal as well as some elegant methods for modeling variance
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components (see Raudenbush and Bryk 2002 and Gelman and Hill 2007).

At the same time that this multilevel modeling literature was reaching ma-

turity, and its power for modeling heterogeneity came to be utilized in practice, a

potential outcomes model of causality, which had been in development since at least

the early 1970s, took center stage in observational data analysis from the 1990s on-

ward. The most important foundational work on this potential outcomes framework

was completed in statistics and econometrics (see the citations offered in Heckman

2000, Manski 1995, Rosenbaum 2002, and Rubin 2005, 2006 to their own work and

that of their respective predecessors).

Consider the focal charter schools example again. The outcome of interest Y

remains a standardized test score for sixth graders. Within the potential outcome

framework, the outcome variable Y is given a definition that is based on potential

outcomes associated with the causal effect of interest. Accordingly, y1i is the potential

outcome in the treatment state (a charter school) for individual i, and y0i is the

potential outcome in the control state (a regular public school) for individual i. The

individual-level causal effect of the treatment is then defined as

δi = y1i − y0i , (5)

which is the causal effect of charter schooling instead of regular schooling for each

individual i.

The variables Y 1 and Y 0 are then population-level potential outcome random

variables, and the average treatment effect (ATE) in the population is

E[δ] = E[Y 1 − Y 0], (6)

whereE[.] is the expectation operator from probability theory. The observed outcome
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variable Y is defined as

Y = CY 1 + (1− C)Y 0. (7)

Thus, the observed values for the variable Y are yi = y1i for individuals with ci = 1

and yi = y0i for individuals with ci = 0.

Although quite simple, this notational shift changed perspectives and allowed

for the development of new techniques, as we will discuss later. It also made clear

(to social scientists who may have forgotten) that causal effects exist independent of

regression models and can be expressed without relying on regression-based language.

With this notation, causal effects could be defined over any subset of the population.

Two particular average causal effects of interest became common to investigate. The

average treatment effect for the treated (ATT) is

E[δ|C = 1] = E[Y 1 − Y 0|C = 1] (8)

while the average treatment effect for the controls (ATC) is

E[δ|C = 0] = E[Y 1 − Y 0|C = 0]. (9)

For the charter school example, these are, respectively, the average effect of charter

schooling for those who attend charter schools and for those who attend regular public

schools. If there is reason to expect that these average causal effects do not equal each

other, then this is suffi cient a priori grounds to expect meaningful heterogeneity of

individual-level causal effects. In this case, a simple regression model, as in Equation

4, that attempts to develop an estimate of a single charter school effect would be

misleading, since it would mask the difference in the expected effect for those who

typically do and do not attend charter schools.

More generally, individual-level heterogeneity exists if δi 6= E[δ] for all individ-
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uals i. Variability of δi across individuals could be produced by an observed variable

or by an unobserved variable, and such variability is particularly consequential when

the other variables that produce it are not independent of the cause. Heterogeneity

of this type, for example, is present if the average causal effects in Equations 8 and

9 do not equal each other. Many other forms of heterogeneity are of interest as well

and can be masked by standard forms of data analysis (see Angrist and Pischke 2009;

Elwert and Winship 2010, and Morgan and Winship 2007, esp. Chapter 5).

The third major advancement that has allowed scholarship to move beyond

simple regression models is the elaboration of a new form of graph-based causal mod-

eling. Here, the contribution is in enabling new methodological insight and in pro-

viding new levels of clarity to researchers. Since this perspective is less familiar to

social scientists, and often both misunderstood and underappreciated, we present it

in considerable detail in the next section.

A New Methodology of Causal Graphs

Since the 1990s, the rationale for graphical depictions of causal relationships has

been strengthened by scholars working at the margins of the social sciences. Judea

Pearl’s 2000 book, Causality: Models, Reasoning, and Inference, has been the most

important contribution, although much of the work within it was developed in collab-

oration with others in the prior decade (see Pearl 2000, 2009). Morgan and Winship

(2007, Chapter 3) provide an introduction to the directed acyclic graphs (DAGs)

that Pearl and his colleagues are credited with developing, and we will present here

only the essential points necessary to demonstrate how variability and context can be

incorporated into current graphical methods for causal analysis.6

6We will not discuss the new literature in epidemiology on the distinction between an interaction
and an effect modification (see VanderWeele 2009 and VanderWeele and Robins 2007). This litera-
ture uses causal graphs and associated structural equations to clarify many subtle points, which we
will note briefly later when discussing contextual effects.
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The causal graph in Figure 1 is not only a traditional linear additive path

model, it can also be understood as a fully non-parametric causal graph. Moreover,

it also has a foundation in structural equations, though these are written in quite

different form than in the older path model tradition. For the two endogenous

variables C and Y in Figure 1, the path model’s structural equations would have

been

C = aC + bP→CP + eC , (10)

Y = aY + bC→YC + bP→Y P + bN→YN + eY . (11)

When seen as a causal graph as developed in the more recent literature, the structural

equations for Figure 1 would have a more flexible form. They would be written for all

variables in the graph and in unrestricted (possibly nonlinear and interactive) form

as

P = fP (eP ), (12)

C = fC(P, eC), (13)

N = fN(eN), (14)

Y = fY (P,C,N, eY ). (15)

Reading from left to right in the causal graph in Figure 1 and top to bottom in

these equations, P is defined as an unspecified function, fP (.), with eP as its sole

argument. The function fP (.) is often labeled a “kernel” (which can be confusing

because the word kernel is also used in other ways in statistics and mathematics). For

our purposes, the input eP represents all causes of P that are external to the causal

model in the sense that they are completely independent of C, N , and Y .7 This

7There is considerable debate over how to interpret these external causes. Their existence implies
to some scholars that causality is fundamentally probabilistic. However, Pearl (2009) would maintain
that the variables embedded in eP are simply implicit causes of P . Under this interpretation,
causality can still be considered a structural, deterministic relation. Freedman (2010, esp. Chapter
15) discusses some of the drawbacks for statistical inference of assuming determinism of this form.
Although convincing in some sense, his critique does not alter the utility of these sorts of causal
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idiosyncratic determinant of P is suppressed in the causal graph for simplicity, since

it could be included by simply adding the causal relationship eP → P (as would have

been common in the path model tradition). The next three equations then represent

analogous unrestricted functions with inputs that represent all causes of the variables

on the left-hand sides of the equations. The last is the most elaborate, in that Y is a

function of three observed variables P , C, and N , as well as eY , all of which transmit

their effects on Y via the function fY (.).

In this tradition, causal identification can be considered (and, indeed, is often

best understood) without introducing any functional form for fP (.), fC(.), fN(.), or

fY (.). A value is produced for the outcome variable of each equation for every

combination of the values in the corresponding function on the right-hand sides of

these equations. For example, Y takes on a distinct value for each combination

of values for P = p, C = c, and N = n (typically then with the assumption that

values of eY are drawn at random from some common distribution that is presumed

to have finite moments; see Freedman [2010, Chapter 15] for discussion of alternative

approaches).

An implication of this flexibility deserves particular emphasis, and preexisting

knowledge of path models can hinder full recognition of its importance. All interac-

tions between the effects of P , C, and N on Y are implicitly permitted by the lack of

restrictions placed on fY (.). Most importantly, this also means that the causal graph

in Figure 1 is consistent with all such interactions, since the arrows merely signal

which causes of Y in the graph belong in the function fY (.). Thus, no new arrows

are needed to represent interactions for more specific parameterizations where, for

example, the effect of C on Y varies with the level of P or N .

As a result, even though it may feel natural to want to “see”a specific arrow

present in the causal graph to represent an interaction effect that corresponds to

graphs for clarifying when causal effects are identified.
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a cross-product term in a regression equation, one must learn to suppress such a

desire. The key point, in considering an analysis that utilizes causal graphs, is to

drop regression models from one’s mind when thinking about identification issues.

Instead, if one must use a data analytic machine to conceptualize how to perform an

appropriate empirical analysis of the puzzle under consideration, one should default

to simple tabular stratification. In this case, one should think of a suffi ciently large

sample, such that one could, for example, estimate with great precision the value of

Y for every conceivable combination of values for P = p, C = c, and N = n. Average

causal effects can then be calculated by appropriately weighting differences calculated

within such a stratification of the data.

Representing Variability and Contextual Effects in
Causal Graphs

Although there are tremendous advantages that accrue from the general nonparamet-

ric structure of causal graphs, it can still be hard to encode heterogeneity in causal

graphs in transparent ways for social scientists. Moreover, many scholars who work

with causal graphs but who are not social scientists (including those who have de-

veloped the case for their general applicability to all causal analysis) do not fully

understand how social scientists think about heterogeneity, especially when produced

by an interaction with an unobserved variable. To promote understanding by making

the key conceptual linkages, we start with a model that is simpler even than the one

in Figure 1. We will then add complexity to build an explicit model for a full pattern

of heterogeneity that represents variability of effects that emerge in consequential

contexts, using the focal charter schools example.

Two Separate Causal Graphs for Two Latent Classes

Consider the two causal graphs in Figure 2, and suppose that the population is
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partitioned into two latent classes, each of which has its own graph in panel (a) or

panel (b). Suppose again that P is a family’s parental background, C is charter school

attendance, and Y is a standardized test for all sixth graders in a large metropolitan

school district. For these two graphs, the subscripts refer to the latent classes, which

are also indicated by a latent class membership variable G that takes on values of 1

and 2.8

[INSERT FIGURE 2 ABOUT HERE]

Although surely a gross oversimplification, suppose nonetheless that the pop-

ulation is composed of sixth graders who have been raised in two types of families.

Families with G = 1 choose schools predominantly for lifestyle reasons, such as prox-

imity to their extended families and tastes for particular school cultures, assuming

that all schools are similar in instructional impact because achievement is largely a

function of individual effort. Families with G = 2 choose elementary schools for their

children by selecting the school, subject to constraints, that they feel will maximize

the achievement of their children, assuming that schools differ in quality and that

their children may learn more in some schools than in others. Accordingly, they are

attentive to the national press on educational policy, in which both the Bush and

Obama administrations argued for increasing the number of charter schools in the

country because some researchers had argued that charter schools are more effective.

As a consequence, the second group of families is more likely to send their children

to charter schools, such that the mean of C is higher for those families with G = 2

than G = 1.

Finally, suppose that parents with college degrees are more likely to value

distinctive forms of education, and as a result are more likely to send their children

to charter schools (independent of whether or not highly educated parents are more

likely to be found in the latent class for whom G = 2, which we will discuss later).
8The lower case values x, d, and y for the two causal graphs are meant to connote that these are

realized values of X, D, and Y that may differ in their distributions across the two latent classes.
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They are also more likely to be able to support children in completing homework and

otherwise making the most of the educational opportunities that are offered to their

children. Accordingly, suppose that in both groups the causal effects P → C and

P → Y are positive and substantial (i.e., that α1, β1, α2, and β2 in Figure 2 are

positive and substantial).

The question for investigation is whether the effect of C on Y is positive for

both groups, and if so, whether it is the same size for both groups. If we are willing to

assume, as some of the literature suggests, that the second group of families is correct

in the sense that school quality does matter for student learning, and further that

charter schools are higher quality (as authors of this chapter, we neither agree nor

disagree with this position; see Henig 2008), then we should expect that both δ1 and

δ2 are more likely positive than not. And, if we believe that parents with G = 2 have

some sense that this is correct, then not only will more of them send their children

to charter schools, they will also sort their children more effectively into charter and

noncharter schools. In other words, they will also be more likely to continue to

enroll their children in regular public schools if they feel that their children will not

benefit from the distinctive characteristics of available charter schools (e.g., if the

charter schools that have openings have instructional themes that their children find

distasteful). Because both of these self-selection effects are reinforcing, is it likely

that δ2 > δ1.9

If this plausible scenario is true in reality, what would happen if a researcher

ignored the latent classes (either by mistake or, more realistically, because the mem-

bership variable G is unobserved) and simply assumed that a single DAG prevailed?

In this case, a researcher might estimate the effect of C on Y for each value of P

and then average these effects over the distribution of P , yielding a population-level

estimate δ. At best, this estimate would be uninformative about the underlying

9These target parameters, δ2 and δ1, are defined implicitly as the average effect of charter
schooling for all students from families with G = 2 and G = 1, respectively.
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pattern of heterogeneity that suggests that δ2 > δ1. At worst, this estimate would

be completely wrong as an estimate of the average causal effect of C on Y . For ex-

ample, if P predicts latent class membership G, and G predicts the size of the effect

of C on Y , then P -stratum-specific effects mix together individual-level causal effects

that vary with the conditional distribution of G within the strata of P . Combining

P -stratum-specific effects by calculating an average effect across only the distribution

of P does not properly weight the G-stratum-specific effects that are embedded in

differential patterns within the strata of P .

In order to consider these possibilities, we need to have a model of selection

into C that is informed by a model of the traits of individuals that would cause them

to be found in underlying latent classes. It is most natural to pursue such a model

in a single causal graph that explicitly represents the latent classes by including the

variable G as a node within it.

A Single Causal Graph for Two Latent Classes

Consider Figure 3, which contains a standard triangular system where C has an effect

on Y and where both C and Y share a common cause P . To this standard triangle,

the latent class membership variable G is introduced as an explicit cause of C.10 The

variable G is given a hollow node, ◦, to indicate that it is unobserved. The arrow

from G to C is present because there are alternative groups of families, coded by the

alternative values of the unobserved variable G, that approach differently the decision

of whether to send their children to charter schools. As a result, G predicts charter

school attendance, C.11

The corresponding structural equations for the causal graph in Figure 3 are

10See Elwert and Winship (2010) for a related usage of a latent class variable G to represent effect
heterogeneity.

11Although we will continue to write as if G only takes on two values that identify two latent
classes, this restriction is no longer necessary. G may take on as many values as there are alternative
groups of families who approach differently the decision of whether to send their children to a charter
school.

19



then

P = fP (eP ), (16)

G = fG(eG), (17)

C = fC(P,G, eC), (18)

Y = fY (P,C, eY ). (19)

The latent class membership variable G only enters these structural equations in two

places, on its own in Equation 17 and then as an input to fC(.) in Equation 18.

[INSERT FIGURE 3 ABOUT HERE]

To accept Figure 3 as a full representation of the true causal model that relates

G to P , C, and Y , we must be able to assume thatG shares no common causes with P ,

C, or Y that have been mistakenly suppressed. For our focal example, the necessary

assumptions are that students who have parents with high levels of education are

no more likely to know of the educational policy dialogue that claims that charter

schools have advantages and also are no more likely to think that school quality has

any effects on achievement when student effort and skill are held constant. We must

also be willing to assume that, within values of P and C, G has no causal effect on

Y , which with our example is tantamount to assuming that those who attempt to

maximize the learning of their children by selecting optimal schools (a) do not manage

to do so well enough so that the obtained effect is any larger on average, conditional

on other factors, for their own children than for those who do not attempt to select

on the causal effect of schooling and (b) do not do anything else that helps their

children to benefit from the learning opportunities provided to them in school or in

the home that is not already captured by the direct effect P → Y . This would

require that the impulse to select into charter schools based on beliefs about the size

of the charter school effect for one’s own child is a completely ignorable process, since

it does not result in any actual selection on the variation in the causal effect nor
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generate any reinforcing behavior that might complement the charter school effect.

For the charter school effect, there is no literature to support such a dismissal of the

power of self-selection.

Accordingly, for Figures 4(a) and 4(b), we add an arrow from G to Y to the

graph presented earlier in Figure 3, which brings these two new graphs into alignment

with the discussion earlier of the heterogeneity in the causal graphs in Figure 2. For

Figure 4(a), which includes only this one additional arrow, the structural equations

are then

P = fP (eP ), (20)

G = fG(eG), (21)

C = fC(P,G, eC), (22)

Y = fY (P,C,G, eY ). (23)

[INSERT FIGURE 4 ABOUT HERE]

For Figure 4(b), we drop the assumption that G is independent of P . This elaborated

graph now includes an arrow from P to G. As a result, fG(eG) is no longer the

appropriate function for G. Equation 21 must be replaced by

G = fG(P, eG) (24)

so that family background is an explicit cause of latent class membership. It is likely

that parents with high socioeconomic status are more likely to select on the possible

causal effect of charter schooling, which is how the latent classes were discussed for

Figure 2. Still, how these latent classes emerge is not suffi ciently transparent in

Figure 4. A more explicit causal model that gives structure to the causal pathway

from P to G may help to clarify the self-selection dynamic, as we show next.

Self-Selection into the Latent Classes
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Suppose that latent class membership G is determined by a variable that measures a

family’s subjective expectation of their child’s likely benefit from attending a charter

school instead of a regular public school. Although we could enter this variable into a

causal graph with a single letter, such as S or E, for Figure 5 we use a full mnemonic

representation as a variable labeled Exp(C → Y ). For Figure 5(a), which is a direct

analog to Figure 4(a), this subjective expectation is the sole determinant of G. The

structural equations are then

P = fP (eP ), (25)

Exp(C → Y ) = fExp(eExp), (26)

G = fG[Exp(C → Y ), eG], (27)

C = fC(P,G, eC), (28)

Y = fY (P,C,G, eY ). (29)

Note that Exp(C → Y ) is determined solely by eExp in Equation 26. Thus, Figure

5(a) would be an accurate representation of the system of causal relationships if

subjective expectations were either completely random or instead based solely on

characteristics of families that are independent of the family background variables in

P .

[INSERT FIGURE 5 ABOUT HERE]

Given what we have written in the last section about the likelihood that fam-

ilies with different patterns of P will end up in different latent classes represented by

G, it seems clear that Figure 5(a) is not the proper representation for the research

scenario we have already specified. Accordingly, in Figure 5(b), eExp is joined by

an unspecified additional input I into the subjective expectation of the child-specific

causal effect of C on Y , which is then presumed to be caused, in part, by family back-

ground. As a result, there is now a path from P to G through I and Exp(C → Y ).

The structural equations are now augmented as
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P = fP (eP ), (30)

I = fI(P, eI) (31)

Exp(C → Y ) = fExp(I, eExp), (32)

G = fG[Exp(C → Y ), eG], (33)

C = fC(P,G, eC), (34)

Y = fY (P,C,G, eY ). (35)

In sociology, the causal effect of P on Exp(C → Y ) via I follows from the

position that privileged positions in social structure are occupied by advantaged fam-

ilies. From these positions, individuals acquire information I that allows them to

recognize benefits that are available to them.12

By elaborating the causal graph progressively from Figure 3 through Figure

5(b), we have explicitly elaborated what is often presumed in models that incorporate

self-selection. Background variables in P are related to the cause C by way of a set of

latent classes in G that encode subjective evaluations of the individual-specific causal

effect of C on Y . These expectations are functions of characteristics in P by way

of the information I that is differentially available to families that differ on P . Yet,

even though we now have an elaborate representation of self-selection, we still have

not brought contextual effects into the model.

Self-Selection into the Treatment and a Complementary Context

How hard is the task of allowing for contextual effects? With causal graphs, it is

considerably easier than one might expect. Consider Figure 6, which incorporates a

contextual variableN into the causal graph in Figure 5(b). The variableN represents

all causes of student achievement that can be conceptualized as either features of a

12In addition, it may be that there are also additional common causes of P and I, which would
then require that a double-headed arrow between P and I be added to the graph. This would
be reasonable if informational advantages that structure expectations for optimal school choices are
determined by deeper structural factors that also confer socioeconomic advantages on parents before
they arrive at the decision point of whether or not to send their children to charter schools.
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student’s residential neighborhood or features of a charter school’s surrounding neigh-

borhood. The component variables in N might be access to resources not measured

by P or specific local cultures that may or may not promote student achievement.13

With the addition of N , the function for Y is now fY (P,C,G,N, eY ). Recall, again,

that N is not restricted by any functional form assumption for fY (.). As a result,

the causal effect of N can modify or interact with the partial effects of G, C, and P

on Y .14

[INSERT FIGURE 6 ABOUT HERE]

Figure 6 also allows for even more powerful effects of self-selection. Suppose

that self-selection into the latent classes in G is associated with self-selection into N

as well. We see two separate and countervailing tendencies. Parents attuned to the

potential benefits of charter schooling are also more likely to choose neighborhood

contexts that best allow them to encourage their children to study hard in school.

At the same time, after obtaining an attendance offer from a charter school, a family

may also decide to move to an alternative neighborhood in the catchment area of a

suboptimal regular public school, since attendance at such a school may no longer be

a consideration in the family’s residential decision. If either effect is present, then

the function for N is equal to fN(G, eN), and we then have seven structural equations

as
13If the latter are only diffuse cultural understandings that only weakly shape local norms about

the appropriateness of enacting the role of achievement-oriented student, then such variables may
be diffi cult to observe. In this case, N might then be coded as a series of neighborhood dummy
identifier variables. Analysis of these effects would then only be possible if there were suffi cient
numbers of students to analyze from within each neighborhood studied. Without such variation,
the potential effects of N could not be separated from individual characteristics of students and
their families. And, if modeled in this way, only the total effects of N would be identified, since the
dummy variables for N would not contain any information on the underlying explanatory factors
that structure the neighborhood effects that they identify.

14See VanderWeele (2009) for an incisive analysis of the difference between an interaction and an
effect modification. Our interest, conceptually at least, is in instances of genuine causal interaction,
although much of what we write would hold under simpler structures of only effect modification.
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P = fP (eP ), (36)

I = fI(P, eI) (37)

Exp(C → Y ) = fExp(I, eExp), (38)

G = fG[Exp(C → Y ), eG], (39)

C = fC(P,G, eC), (40)

N = fN(G, eN), (41)

Y = fY (P,C,G,N, eY ). (42)

With this set of structural equations, the nonparametric nature of the kernels allows

for fully interactive effects. Again, the function for Y , fY (P,C,G,N, eY ), allows

for the effects of C and N to vary within each distinct combination of values be-

tween them, as would be the case if the charter school effect varied based on the

neighborhood within which students lived.15

Empirical Strategies for Modeling Variability and
Context in Causal Analysis

There are two basic goals of writing down a causal graph: (1) to represent the set

of causal relationships implied by the available state of knowledge, (2) to assess the

feasibility of alternative estimation strategies. Figure 6 represents a causal graph

that is a reasonable representation of the causal structure that generates the charter

school effect. This is a matter of judgment, and one might contend, for example,

that the claim that self-selection on the charter school effect generates movement

between neighborhoods is overly complex. If so, then G → N could be removed

from the graph, which would simplify the function in Equation 41 to fN(eN) and the

15We should also note that we could enrich the causal model further by drawing from the literature
that posits deeper causal narratives for the joint determination of P and N , as well as other causal
pathway that link P to N . This additional detail would not change the analysis of the conditioning
strategies that follows in the next section.
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estimation procedures required.

Suppose that one has access to observational data, such as the National As-

sessment of Education Progress (NAEP) data analyzed by Lubienski and Lubienski

(2003), that provide data on standardized test scores, school type, and some family

background characteristics. For the sake of our exposition, suppose further that

these NAEP data had even better measures of family background and neighborhood

characteristics, so that we could conclude that high quality data are available for

all of the variables in Figure 6 with solid nodes: Y , C, N , and P . Yet, no data

are available for the variables with hollow nodes: I, Exp(C → Y ), and G. The

primary goal of analysis is to estimate the average causal effect of C on Y , as this

effect interacts with the complementary causal effect of N on Y . Can one adjust for

confounding in order to estimate these effects?

We answer this question by drawing on the identification rule developed by

Pearl (2000, 2009), which he labels the “back-door criterion.” Many explications of

the back-door criterion are available, and we draw directly from our own presentation

in Morgan and Winship (2007, Section 3.1.3), which contains additional explanation

beyond what we have space to offer here.

For Pearl, a back-door path is any sequence of arrows between a causal variable

and an outcome variable that includes an arrow that points to the causal variable.

Pearl’s back-door criterion states that if one or more back-door paths connects the

causal variable to the outcome variable, the causal effect is identified by conditioning

on a set of variables W if all back-door paths between the causal variable and the

outcome variable are blocked after conditioning on W . Pearl proves that all back-

door paths are blocked by W if each back-door path:

1. contains a chain of mediation A→ M → B where the middle variable M is in
W , or

2. contains a fork of mutual dependence A ← M → B where the middle variable
M is in W , or
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3. contains an inverted fork of mutual causation A → M ← B where the middle
variable M and all of M’s descendants are not in W .16

Consider now how this back-door criterion applies to the causal graph in Figure 6.

The relevant back-door paths are

For C :

1. C ← P → Y,

2. C ← P → I → Exp(C → Y )→ G→ Y

3. C ← P → I → Exp(C → Y )→ G→ N → Y ,

4. C ← G→ N → Y ,

5. C ← G→ Y .

and

For N :

6. N ← G→ Y ,

7. N ← G→ C → Y ,

8. N ← G← Exp(C → Y )← I ← P → Y ,

9. N ← G← Exp(C → Y )← I ← P → C → Y ,

10. N ← G← Exp(C → Y )← I ← P → C ← G→ Y .

How many of these paths can be blocked by conditioning on the observed data? For

models that estimate the effect of C on Y , the paths 1 through 4 can be blocked

by conditioning on P and N . However, path 5 remains unblocked. Likewise, the

paths 7 through 10 can be blocked by conditioning on P and C, but path 6 remains

unblocked.

For the two unblocked paths, the same problematic arrow is present G → Y ,

16Pearl (2000, 2009) expresses his back-door criterion in a more extended way, using the concept
of d-separation. This more elaborate explanation allows for the development of additional specificity
that can be important. For example, the variables in the permissible conditioning set W cannot
include any variables that are affected by the cause of primary interest (i.e., “descendants of C”).
This point is irrelevant to our discussion here, since the only variable that descends from C in our
graphs is the outcome variable Y . In other scenarios, where multiple outcomes of the cause are
included in the graph, this additional restriction on the permissible set of conditioning variables in
W can become very important. For a full discussion of the back-door criterion, we recommend a
careful reading of Pearl (2009).
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which carries forward exogenous causal determinants of I, Exp(C → Y ), and G (i.e.,

eI , eExp, and eG) and which are not fully blocked by conditioning on P and N . Thus,

if there is selection on the causal effect itself, independent of family background, then

it enters the model through G and confounds the conditional association between C

and Y . As a result, effective estimation of the effects of C and N on Y is impossible

given the available data. Selection into charter schools and neighborhoods is partly

on an unobserved variable (the concatenation of I →Exp(C → Y )→ G), and this

confounding cannot be eliminated by conditioning on the observed data.17

How can analysis proceed under these circumstances? There are two main

choices. First, the analyst can concede that self-selection on the causal effect is

present, which may even generate neighborhood-based selection as a byproduct. In

these circumstances, the presence of the causal relationship G→ Y renders estimates

of C and N on Y unidentified, either in interactive fashion or when averaging one over

the other. In this case, analysis must then be scaled back, and we would recommend

that set identification results be pursued (see Manski 1995, 2003). The new goal

would be to estimate an interval within which the average causal effect must fall.

In the actual empirical literature on the charter school effect, this humble

option has not been pursued by any of the main combatants in the debates. The

desire to provide point estimates of causal effects has been too strong, even though

it would seem clear to many outside readers that the debate persists simply because

the point-estimate of the average causal effect is unidentified.

Instead, researchers have used the lottery nature of charter school enrollments

in order to define the charter school effect in a different way: the effect of charter

schooling among those who would self-select into it. This is a type of bounded

analysis, and it is entirely appropriate. The problem is that these same scholars too

17This conclusion is hardly revelatory for readers who already know the literature on self-selection
bias. Nonetheless, we would argue that there is substantial didactic and communicative value in
seeing this result expressed with a causal graph to which the back-door criterion is then applied.
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quickly forget the bounded nature of their conclusions, issuing overly broad claims.

For example, in their study of charter schools in New York City, Hoxby, Murarka,

and Kang (2009:vii) introduce their results in their Executive Summary with three

bullet points:

• Lottery-based analysis of charter schools’effects on achievement is, by far, the
most reliable method of evaluation. It is the only method that reliably elim-
inates “selection biases”which occur if students who apply to charter schools
are more disadvantaged, more motivated, or different in any other way than
students who do not apply.

• On average, a student who attended a charter school for all of grades kinder-
garten through eight would close about 86 percent of the “Scarsdale-Harlem
achievement gap”in math and 66 percent of the achievement gap in English. A
student who attended fewer grades would improve by a commensurately smaller
amount.

• On average, a lotteried-out student who stayed in the traditional public schools
for all of grades kindergarten through eight would stay on grade level but would
not close the “Scarsdale-Harlem achievement gap” by much. However, the
lotteried-out students’performance does improve and is better than the norm
in the U.S. where, as a rule, disadvantaged students fall further behind as they
age.

Nowhere in their Executive Summary is it stated that these comparisons across

lotteried-in and lotteried-out students are only informative about those who self-select

into charter schools. It is not conceded that the results are uninformative about the

first order question: What is the expected charter school effect for a randomly chosen

student from New York City?

How else can analysis proceed even though back-door conditioning is infeasi-

ble? The second choice is simply to assume away the unblocked paths that include

G → Y , which is tantamount to assuming that self-selection does not exist. The

study by the Center for Research on Education Outcomes (CREDO 2009) is closer

to this position, and they offer a complex set of conclusions based on national results

where charter school students are matched to students from traditional public schools:
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In our nationally pooled sample, two subgroups fare better in charters
than in the traditional system: students in poverty and ELL [English
Language Learner] students. ... These findings are particularly heartening
for the charter advocates who target the most challenging educational
populations or strive to improve education options in the most diffi cult
communities. Charter schools that are organized around a mission to
teach the most economically disadvantaged students in particular seem to
have developed expertise in serving these communities. ... The flip-side
of this insight should not be ignored either. Students not in poverty and
students who are not English language learners on average do notably
worse than the same students who remain in the traditional public school
system. Additional work is needed to determine the reasons underlying
this phenomenon. Perhaps these students are “off-mission”in the schools
they attend.(CREDO 2009:7)

These conclusions are offered based on models that match students on observable

characteristics, leaving unobserved selection on the causal effect unaccounted for. In

fact, past research on private school effects on achievement suggests that self-selection

may be able to account for the pattern of findings reported in the CREDO study. It is

possible that students from families who are living in poverty but who make their way

into charter schools are fleeing poor alternatives in their own neighborhood schools

and, furthermore, have extra amounts of motivation to succeed in school. At the

same time, it is likely that students from more advantaged families are more likely to

be attending charter schools solely for lifestyle reasons. In fact, they may be trading

off academic opportunities in high quality schools that they have found distasteful

for medium quality charter schools with peer cultures that are more appealing.

When back-door conditioning does not identify the causal effect, there is one

final possibility for analysis. One can attempt to eliminate the self-selection bias

problem by locating a natural experiment. This research design has not been utilized

in the charter schools debate to attempt to estimate the unconditional average causal

effect (i.e., Equation 6), and we offer a cautionary assessment on its prospects in an

appendix to this chapter. However, as we explain in the appendix, instrumental

variables that encode natural experiments have strong potential to illuminate some
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aspects of the estimation challenge, even though they cannot be considered a general

solution for estimating all average causal effects of interest.

Important Caveats on the Utility of Causal Graphs

In the last section, we argued that one of the primary benefits of Pearl’s causal graphs

is that they are nonparametric. As such, they implicitly incorporate nonlinearities

and interactions among the variables that are causes of any outcome. In many

circumstances, this feature is an enormous advantage because one can state the causal

relationships among variables without having to worry about the specification of the

functional relationships among the variables. In this way, causal graphs allow for a

careful consideration of identification challenges without also requiring that an analyst

simultaneously grapple with specification issues.18

In this section, we want to temper our enthusiasm for this property of graphs,

embedded within a more general discussion of types of heterogeneity. The main mes-

sage is the following: Precisely because of their flexibility, causal graphs can obscure

important distinctions. In some circumstances, whether a relationship is nonlinear

and/or a set of variables interact in their effects on an outcome is of considerable

theoretical and substantive interest.

We have already discussed a variety of models in which it has been critical

to explicitly model the effects of heterogeneity in order to understand how family

18For example, a researcher can first determine whether a conditioning strategy can identify
relevant causal effects by examining a causal graph. If the effects of interest are identified, then the
researcher can proceed to consider the alternative specifications that might be used to estimate the
effects from the data, considering whether interactions between causes should be explicitly modeled
or instead averaged in some meaningful way. If, however, it is clear from the causal graph that the
effects of interest cannot be identified, then the issue of how to specify any subsequent empirical
models would be far different, since the goal of the analysis would then be to understand in a
provisional way how the unidentified causal effects may appear in masked form under alternative
fallible models. The goal would be to represent the contingencies in the data, not offer up estimates
that warrant causal conclusions.
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background and neighborhood characteristics might interact with the effect of en-

rolling in a charter school. In situations such as these, the fact that it is possible

to bury nonlinearities and interactions in a causal graph can become a disadvantage,

especially if the science of the problem demands that the particular nature of the

heterogeneity be emphasized. For many applications, it would be unwise to move

quickly from model identification to estimation without giving due consideration to

how one should represent heterogeneity in the model specification that is selected.

In order to make some of these issues explicit, in this section we consider

three different types of heterogeneity, which we label compositional heterogeneity,

specification-dependent heterogeneity, and fundamental heterogeneity.19 Each of

these types of heterogeneity can be obscured by a causal graph, if such a graph and

the estimation strategy that it suggests are not handled with due care.

Compositional Heterogeneity

In our presentation of the charter school example, we did not give any attention to an

important source of heterogeneity: charter schools themselves are heterogeneous in

the programs they offer to students. Indeed, charter schools are established precisely

to cultivate distinctive identities, and there seems to be widespread recognition among

all researchers engaged in this area that these differences matter.

In this sense, the two-category variable C in the causal graphs presented earlier

is reductive. Research on charter schools must assiduously attend to variation across

charter schools, as well as regular public schools that serve as comparative cases, in

order to generate suffi ciently meaningful results. Causal graphs are powerful precisely

because they are compact representations of underlying structural equations, but they

pose a danger in suppressing too much detail. If subdividing a causal variable into

meaningfully different groups then yields alternative causal effects that depend on

19These are our own labels. Other scholars have offered their own categorizations of types of
heterogeneity, but we have not found a typology that matches our own explanatory goals for this
section of the chapter.
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the contrast that is selected, then compositional heterogeneity exists and is obscured

by the original causal graph.20

Specification-Dependent Heterogeneity

In many situations, a “natural”metric for a variable may not be clear. An obvious

example is the relationship between education and income. Should we think about

earnings in dollars or in the logarithm of dollars? It would make sense to think about

earnings in dollars if we thought that an additional year of education increased one’s

earnings by the same amount independent of one’s current education (or income).

In fact, a vast literature primarily from economics has argued that an increase in

education by one year increases one’s earnings by differing amounts depending on

one’s education, but, roughly at least, increases earnings by the same percentage

amount for individuals with differing years of education.21

To understand when specification-dependent heterogeneity can arise, and then

how it can be eliminated by model respecification, suppose that we have a fully

specified causal structural model, including parameter values for all causal variables,

that is the same for everyone in the population under consideration. In this situation,

there are no fundamental differences in the way that the causal process operates

because the same causal model applies to all individuals.

In this case, apparent individual differences may emerge in the effect of a

particular causal variable if differences between individuals in the true model are not

reflected in a constrained specification chosen by an analyst. This would occur, for

example, when (1) a cross-product interaction between two variables appears to fit

the data, (2) the true functional relationship between the outcome variable and one

20In the philosophy of the social sciences, compositional heterogeneity exists when token-level
differences exist within a type-level causal analysis. If it is the case that token-level causal accounts
are to be privileged, then compositional heterogeneity is easy to solve. One must simply define
causal states carefully so that their instantiations are suffi ciently homogeneous.

21And a more recent literature has suggested that these effects vary substantially between adjacent
years. As such, there is no general functional relationship between earnings and years of education,
and only piecewise year-by-year comparisons make sense to consider.
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of the variables in the cross-product interaction is quadratic, and (3) this variable in

the cross-product interaction term was mistakenly parameterized only with a single

linear term for its main effect when the empirical specification was submitted for

estimation.

Moving away from this abstract description of specification-dependent hetero-

geneity, consider the charter school example when both compositional and specification-

dependent heterogeneity are likely present together. Suppose that for an estimated

model the effect of C on Y appears to differ by a students’race, where the effect of

C on Y is larger for black and Hispanic students than for white and Asian students.

Suppose that this pattern revealed itself during empirical analysis after interactions

between C and dummy variables for race were added to the model. This result

does not necessarily imply that black and Hispanic students experience their charter

schools in any fundamentally different way. Instead, it may be the case that (1) on

average the regular schools that black and Hispanic students would have attended

are worse than those that white and Asian students would have attended and/or

(2) a crucial variable with a nonlinear effect on achievement and with a distribution

that differs by race, such as family income, is given only a linear parameterization

in the model. Compositional heterogeneity would arise because of the former while

specification-dependent heterogeneity would arise because of the latter. If either (1)

or (2) were present, the estimates would suggest incorrectly that the charter school

experience is more effective for black and Hispanic students.

Fundamental Heterogeneity

Suppose now that we have a causal graph and its associated structural equations,

but suppose that the parameter values attached to the variables vary across individu-

als. Suppose further that no unappreciated compositional or specification-dependent

heterogeneity is present.

Why would the parameter values differ across individuals? We will argue in
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this section that this can only happen if the causal processes differ fundamentally

across individuals, such that the mechanism by which the cause generates its effect

differs across individuals.

Suppose again that the effect of charter schools is thought to be larger for

black and Hispanic students than for white and Asian students. Suppose that this is

still thought to be the case, even though compositional and specification-dependent

heterogeneity have been explained away because the model now properly adjusts for

quality differences across schools that students of different races would typically at-

tend and all adjustment variables are given suffi ciently flexible parameterizations.

Fundamental heterogeneity would be present across race if the mechanism that gen-

erates the charter school effect differs in meaningful ways across racial groups.

A prominent strand of literature in education research suggests that stereo-

types of inherent intellectual inferiority plague black and Hispanic students in regular

public schools. It may be that some charter schools are effective at mitigating the

effects of these stereotypes for black and Hispanic students, either by directly con-

fronting the stereotypes as completely unfounded or instead by making students feel

that they are attending unique schools that shield them from the effects of stereo-

types that exist in the broader culture. As a result, for black and Hispanic students,

the charter school effect emerges from two sources: (1) the mitigation of stereotype

effects and (2) quality differences in instruction. For white and Asian students, the

same stereotypes are irrelevant, and they therefore benefit only from the same higher

quality instruction that is offered to all students. We would regard any such differ-

ence in the causal process as a form of fundamental heterogeneity, since part of the

causal mechanism is distinct for subgroups of the population.

One might counter this presentation of fundamental heterogeneity with the

argument that it is simply a more virulent form of specification-dependent hetero-

geneity. The argument would run as follows. A more complete causal graph can
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be written down, with its structural equations including structural zeros, such that

subgroup-distinct portions of the mechanism switch off and on depending on the in-

dividuals’characteristics at the time they are exposed to the cause. For the example

just given, stereotype effects would exist nominally for white and Asian students in

the causal graph, but the joint distribution of the variables in the mechanism would

give them no weight in the production of the charter school effect for white and Asian

students.

Technically, this argument is sound. However, much is lost, in our view, when

such fundamental differences in the causal processes within a population are explained

away so artificially. We would argue that separate causal graphs should be specified

instead.22

Conclusion

In this chapter, we have explained how a new methodology of causal graphs can be

used to represent variability and context in causal analysis in the social sciences.

In developing this explanation, we have also provided a brief analysis of why the

practice of quantitatively-oriented sociology between the 1960s and the 1980s opened

itself up to the critique that its methods could not represent such features of causal

systems. We have also discussed some alternative empirical strategies for estimating

these effects, demonstrating the limited power that back-door conditioning offers when

heterogeneity due to unobserved variables is present. Finally, we have concluded with

a cautionary perspective on causal graphs, noting that their simplifying power has

the potential to obscure the heterogeneity that they so easily accommodate. Still,

we would maintain that their flexibility enables careful and precise consideration of

22This position is consistent with (1) arguments from philosophy that mechanistic explanations
should “bottom out ”at a level that is appropriate to practitioners in a field (see Machamer, Darden,
and Craver 2000) and (2) Cartwright’s perspective that alternative nomological machines should be
used to define distinct causal relations (see Cartwright 1999, Ch. 3).
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the challenges of causal effect identification, separated in helpful ways from many

specification issues that are less fundamental.
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Appendix

The Alternative Natural Experiment Approach

Because the natural experiment perspective may be unfamiliar to readers when

expressed with the econometric language of instrumental variables, we will build to-

ward the charter schools example from a more basic set of causal graphs. Figure A1

presents a standard causal graph where identification is achieved through an instru-

mental variable. For simplicity, assume that no data are available for confounders

such as P , and thus the analyst is left with no feasible way to even begin to enact a

back-door conditioning strategy for the effect of charter schools C on achievement Y .

In this situation, a double-headed, dashed, and curved arrow can be used to signify

the existence of common unobserved variables that cause both C and Y .

[INSERT FIGURE A1 ABOUT HERE]

Suppose, however, that a variable Z is observed that is a cause of C and that

has no effect on Y except through its causal effect on C. This variable Z is an

instrumental variable, and it can be thought of as a shock to C that is independent

of the confounders represented by the double-headed arrow in C L9999K Y . If such

an instrumental variable exists, the classical econometric literature demonstrates that

an estimate of the causal effect of C on Y can be obtained by first calculating the

association between Z and Y and then dividing by the association between Z and C.

Are there any plausible instrumental variables for charter school attendance?

A typical candidate, as one might find in the economics literature, would be the

distance between the treatment site and an individual’s residence. The justification

would be that the location of the treatment site is arbitrary but has an effect on

enrollment propensity because of the implicit costs of traveling to the site. For the
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charter school example, it is unclear whether such an instrument would have any

chance of satisfying the relevant assumptions, and it would depend crucially on the

extent to which charter schools are located in arbitrary places. One would tend

to assume, in fact, that they are located nearer to students more likely to benefit

from charter schooling, both because many have missions to serve disadvantaged

students who are thought to benefit most from having a charter school opportunity

and because families may then move to neighborhoods that are closer to the charter

schools that they elect to attend. It is possible that these problems could be mitigated

by conditioning out some other determinants of the location of charter schools within

the district and also obtaining family residence data before students entered charter

schools.

For the sake of methodological clarity in our presentation, we will use as our

example a more convincing but unlikely instrumental variable (in the sense that it has

never yet become available and is unlikely to become available). Suppose that in New

York City conditional cash transfers are offered to families that send their children

to charter schools. Suppose that this program is modeled on New York City’s recent

Opportunity NYC program, which was justified by the position that families should

be given incentives to make decisions that promote their children’s futures. Suppose

that for the new hypothetical program $2500 in cash is offered each year to families

for each child that they enroll in a charter school. Since charter schools do not charge

tuition, families can spend the $2500 per child however they see fit.

Suppose further that, because of a budget constraint, cash transfers cannot be

extended to all eligible families. For fairness, it is decided that families should be

drawn at random from among all families resident in New York City with school-age

children. Accordingly, a fixed number of letters is sent out notifying a set of winning

families.

It is later determined that ten percent of students in charter schools received
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cash transfers. A dataset is then compiled with performance data on all students in

the school district, and the cash transfer offer is coded as a variable Z, which is equal

to 1 for those who were offered a cash transfer and 0 for those who were not.

A quick analysis of the data shows that many families who received offers of

cash transfers turned them down and chose to send their children to regular public

schools. Moreover, it is then assumed that at least some of the charter school students

who received cash transfers would have attended charter schools anyway, and they

were simply lucky to have also received a cash transfer.

Relying on the classical literature in econometrics, this variable Z would typ-

ically be considered a valid instrumental variable. It is randomly assigned in the

population, and it has a direct causal effect on C because it is an effective incentive

for charter school attendance (recall that we have assumed that the data show that

Z predicts C). The crucial assumption is then that the entire association between

Z and Y is attributable solely to the causal pathway through C.

As we will further discuss in the conclusion to this appendix, this assumption is

debatable because the subsidy is cash and, without further restrictions, could be used

by families to purchase other goods that have effects on Y . Any such alternative

uses of the cash transfer would open up additional causal pathways from Z to Y

that are not intercepted by C. For now, however, we will provisionally accept the

identification assumptions. In this case, an IV estimator would deliver an estimate of

the causal effect of C on Y that would be considered valid by the standards articulated

in the classical literature in econometrics.

Would this causal effect then apply to everyone in the population? A more

recent literature has provided an answer to this question: No, unless one is willing to

make the artificial assumption that the causal effect is constant in the population.23

23This clarity has been provided by Angrist, Imbens, and Rubin (1996), Heckman and Vytlacil
(2005), and Manski (2003), both in these pieces an in their prior work. An explanation of this
literature, written for non-economists, can be found in Morgan and Winship (2007, Chapter 7).
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Instead, in this case Z will be interpretable as the average effect of charter schooling

among those who enter charter schools in response to the cash transfer.24 This effect

is known as the local average treatment effect (LATE), or sometimes the complier

average causal effect. Figure A2 explains how to interpret estimators of this form.

[INSERT FIGURE A2 ABOUT HERE]

Suppose that the population can be partitioned into two mutually exclusive

groups, compliers and non-compliers. Compliers are those who, in theory, would

send their children to charter schools if they received the cash transfer but would

not send their children to charter schools if they did not receive the cash transfer.

Non-compliers include two other groups, “always takers”and “never takers.”25 The

former enter charter schools regardless of whether they receive the cash transfer, and

the latter do not enter charter schools regardless of whether they receive the cash

transfer. Figure A2(a) is the causal graph for compliers, and it is isomorphic with

the causal graph in Figure A1 based on the classical instrumental variable literature.

Figure A2(b), however, applies only to non-compliers, and here the graph is different

because Z does not cause C for non-compliers. Thus, it should be clear from Figure

A2 that the estimate for the effect of C on Y that is enabled by Z cannot apply

to non-compliers without the introduction of additional assumptions that allow for

extrapolation from compliers to non-compliers. The standard assumption in the

classical literature is that the causal effect is constant in the population. Under

this assumption, the effect is fixed, such that obtaining an estimate for any subset of

the population is suffi cient to identify the fixed parameter in the population. The

24To warrant this interpretation, one additional assumption is required, which is that Z has a
monotonic effect on C. In this case, the assumption is likely satisfied, since cash transfers would not
create a disincentive to enter charter schools. For the alternative IV that we discussed —distance
from the charter school —monotonicity would probably also hold, though its tenability would be less
transparent.

25This partition holds only under the assumption (see last note) that monotonicity applies so
that there are no “defiers.” If monotonicity does not hold, then defiers exist, and the IV no longer
identifies the LATE.
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more recent literature has demonstrated how unreasonable such assumptions are in

real-world contexts, and in this case it would seem self-evident that the charter school

effect cannot be assumed to be a constant fixed effect in the population. Certainly

none of the literature that has evaluated the charter school effect is consistent with

this position.

Thus, our overall conclusion is that LATEs, generated by IVs, can be very

illuminating. But, they are limited causal parameters because they apply only to

subsets of individuals who are exposed to the treatment of interest. Moreover, one

cannot even observe who is a complier, since they are a theoretically defined group.

All one can recover from the data is the proportion of the population that is composed

of compliers.26 Nonetheless, knowing the size of the LATE and the percentage of the

population that it applies to does then allow for some policy guidance, such as offering

a lower bound on the total expected benefit for the entire population of introducing

the cash transfer program.

Given that a central theme of this chapter is the power of causal graphs to

represent complex patterns of heterogeneity, we will conclude by addressing a final

question: Can the clarity of Figure A2 be represented in a single causal graph, akin

to the move from Figure 2 to Figure 3 in the main body of the chapter? Yes, but

readers may not agree that the clarity is preserved. This may be another situation

in which separate causal graphs should be maintained.

Figure A3 is a combined representation of Figure A2, which now applies to

the full population. The representation of compliance-based heterogeneity is accom-

plished by augmenting the graph with a latent class dummy variable, Compliance,

which signifies whether an individual is a complier.27 Compliance interacts with Z

26See Morgan and Winship (2007, Equation 7.26), which explains for a similar example that the
proportion of compliers in the population would be (1− the proportion of cash transfer winners in
traditional public schools − the proportion of cash transfer losers in charter schools).

27An alternative and more compact graph could be used for Figure A3 (as well as Figure A4
introduced later). Since Compliance is unobserved, one could simply declare that it is a member of
the set of variables that generate the double-headed arrow in Figure A3 (or as a member of the set
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in determining C, and Compliance also may have its own non-zero effect on Y (if

compliers have average causal effects that differ from others).

[INSERT FIGURE A3 ABOUT HERE]

Now, to make the connection to the fully elaborated Figure 6 presented earlier,

consider Figure A4, which includes all of the relevant back-door paths between C and

Y that are packed into C L9999K Y in Figure A3. Note that for simplicity we have

replaced the path I →Exp(C → Y )→ G from Figure 6 with the single variable V .

This simplification is permissible under the assumption that an implicit error term eV

contains all of the information in the error terms eI , eExp, and eG in the causal graph

in Figure 6. The cash transfer instrumental variable is then represented as a variable

Z, which has a sole causal effect in the graph on C because we have assumed that

the cash transfer does not have other effects on Y . We then add in the additional

back-door path from C to Y through their new common cause Compliance.

[INSERT FIGURE A4 ABOUT HERE]

With the addition of C ← Compliance → Y to the graph, two sources of

confusion may arise for some readers. First, it remains true that we cannot use

back-door conditioning to estimate the effect of C on Y because of the unblockable

back-door path through C ← V → Y (which includes implicitly the unobserved

latent class variable G). However, it is important to remember that the similarly

structured back-door path C ← Compliance → Y does not present any problems

for an IV estimator because this back-door path does not generate an unblockable

path from Z to Y . It only represents an additional unblocked back-door path from

C to Y , which is yet another path that IV estimation proceeds in spite of. Second,

of variables in V that will be introduced later for Figure A4). We give Compliance its own pair of
explicit causal effects on C and Y for clarity, even thought it makes the graph more complex than
it needs to be.
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nothing in the causal graph itself explains why a resulting IV estimator delivers an

average causal effect that applies only to compliers. To understand this point, it is

more helpful to deconstruct the graph into two separate causal graphs as in Figure

A2. The single causal graph conceals the fact that there is an implicit interaction

between Z and Compliance. The instrument Z does not cause C for noncompliers,

and Compliance does not cause C for those who do not receive the offer a cash

transfer. Only the co-occurrence of Z and Compliance switches members of the

population from C = 0 to C = 1. That the single causal graph does not reveal

this point clearly might be regarded as a weakness of causal graph representations of

underlying structural equations in this context.

Now, to conclude the discussion of the estimation of the charter school effect,

consider two final points. It is likely that Figure A4 improperly omits a likely causal

effect P → Compliance. The parental background variable P implicitly includes

within it a variable for family income. Students from families with high incomes

should be less likely to switch from regular public schools to charter schools because

of a $2500 incentive offered to their parents. Adding such a path, however, would not

harm the feasibility of the IV estimator, since it does not generate an unblockable path

from Z to Y . In fact, it helps to explain who compliers likely are, since it suggests

that they are more likely to be lower income families. In this sense, recognizing the

likely presence of that path helps to interpret the LATE that the IV identifies.

But, of course, not all additional causal effects will help to clarify the IV

estimator. Suppose, for example, that Z generates an effect on N because the cash

transfer is used to pay higher rent in another neighborhood for some families. As

a result, a direct path from Z to N is opened up. Conditioning on the observed

variable N will block the new problematic pathway Z → N → Y. But, because

N is a collider on another pathway, Z → N ← V → Y , conditioning on N opens

up this pathway by inducing a relationship between Z and V . Thus, conditioning

44



away self-selection into neighborhoods then allows self-selection on the causal effect

of charter schooling to confound the IV estimate of the LATE.
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Figure 1.  A traditional linear additive path diagram 
for the effect of parental background (P), charter 
schools (C), and neighborhoods (N) on test scores (Y).
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Figure 2.  Separate causal graphs for two groups of individuals 
(G=1 and G=2) where the effects of parental background (P) and 
charter schools (C)  on test scores (Y) may differ for the two 
groups.
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Figure 5.  Two causal graphs where selection on the 
unobservables is given an explicit representation as self-selection 
on subjective expectations of variation in the causal effect of C on 
Y.  For panel b, these expectations are determined by information 
(I) that is only available to families with particular parental 
backgrounds (P).

Figure 4.  Two causal graphs where selection into charter schools 
(C) is determined by group (G) and where selection renders the 
effect of C on Y unidentified as long as G remains unobserved.  
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Figure 3.  A causal graph where groups are represented by an 
unobserved latent class variable (G) in a single causal graph.
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Figure 6.  A causal graph where self-selection on the causal effect 
of charter schooling also triggers self-selection into consequential 
and interactive neighborhood contexts (N).
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Figure A4.  Identification of the local average treatment effect 
using an instrument (Z) for the charter school causal graph 
presented earlier in Figure 6.  The unobserved variable V is a 
composite for the causal chain that generates self-selection in 
Figure 6 through information access and selection on the 
subjective evaluation of the individual-level causal effect.
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Figure A1.  Instrumental variable identification of the causal 
effect of charter schools (C) on test scores (Y), where Z is the 
instrument.

Figure A2.  Instrumental variable identification of the causal 
effect of charter schools (C) on test scores (Y), where the average 
effect for compliers is identified in (a) but the average effect for 
non-compliers is not identified in (b).

(b) Non-compliers

Compliance

Figure A3.  A combined causal graph for panels (a) and (b) from 
Figure A2, where Z is the instrument and compliance is 
represented as an unobserved latent class variable (Compliance).

Z

C Y

Z

C Y

Z

C Y


	context and variability 14
	Morgan_and_Winship_References_Cited
	Morgan_and_Winship_Figures (page 1)
	Page-1�

	Morgan_and_Winship_Figures (page 2)
	Page-2�


