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Abstract

In this paper, we investigate some nonlinear integral inequalities with an advanced
argument which provide explicit bounds on unknown functions. The inequalities
given here can be used as tools in the qualitative theory of certain advanced nonlin-
ear differential equations. In the end of this paper, an illustrated example is given.
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1. Introduction

It is well known that the integral inequalities involving functions of one and more than
one independent variables which provide explicit bounds on unknown functions play
a fundamental role in the development of the theory of differential equations. In the
past few years, a number of integral inequalities had been established by many scholars,
which are motivated by certain applications. For example, we refer the reader to litera-
tures [1–10] and the references therein. However, it is much to be regretted that nobody
studied the integral inequalities with an advanced argument, as far as we know.

Our aim in this paper is to study the following nonlinear integral inequalities with
an advanced argument of the form

xp(t) ≤ a(t) + c(t)

∫ ∞

t

[f(s)x(s + σ) + g(s)]ds , t ∈ R+, (1.1)
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xp(t) ≤ a(t) +

∫ ∞

t

b(s)xp(s)ds +

∫ ∞

t

[f(s)x(s + σ) + g(s)]ds , t ∈ R+, (1.2)

and

xp(t) ≤ a(t) +

∫ ∞

t

b(s)xp(s)ds +

∫ ∞

t

L(s, x(s + σ))ds , t ∈ R+, (1.3)

whereR+ = [0,∞) is the given subset ofR, p ≥ 1, σ ∈ R+ are constants, and
L ∈ C(R2

+, R+).
Throughout this paper, all the functions which appear in the inequalities are assumed

to be real–valued and all the integrals involved exist on the respective domains of their
definitions, andC(M, S) denotes the class of all continuous functions defined on setM
with range in the setS.

2. Main Results

We firstly introduce two lemmas which are useful in our main results.

Lemma 2.1: Assume thatp ≥ 1, a ≥ 0. Then

a
1
p ≤

(
1

p
k

1−p
p a +

p− 1

p
k

1
p

)
, (2.1)

for anyk > 0.

Lemma 2.2 [6]: Assume thatu(t), a(t) andb(t) are nonnegative functions defined for
t ∈ R+, anda(t) is nonincreasing fort ∈ R+. If

u(t) ≤ a(t) +

∫ ∞

t

b(s)u(s)ds , t ∈ R+, (2.2)

then

u(t) ≤ a(t) exp

( ∫ ∞

t

b(s)ds

)
, t ∈ R+. (2.3)

Nextly, we establish our main results.

Theorem 2.3: Assume thatx(t), a(t), c(t), f(t) and g(t) are nonnegative functions
defined fort ∈ R+. If a(t) andc(t) are nonincreasing inR+, then the inequality (1.1)
implies

x(t) ≤
[
a(t) + c(t)h(t) exp

( ∫ ∞

t

f(s)c(s)

pk
p−1

p

ds

)] 1
p

, (2.4)

for anyk > 0, t ∈ R+, where

h(t) =

∫ ∞

t

[
f(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

)
+ g(s)

]
ds . (2.5)
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Proof: Fixing anyδ ≥ 0, we define a functionz(t) by

z(t) =

{
a(t) + δ + c(t)

∫ ∞

t

[f(s)x(s + σ) + g(s)]ds

} 1
p

, t ∈ R+. (2.6)

It is easy to see thatz(t) is a nonnegative and nonincreasing function, and

x(t) ≤ z(t), t ∈ R+. (2.7)

Therefore, we obtain

x(t + σ) ≤ z(t + σ) ≤ z(t), t ∈ R+. (2.8)

It follows from (2.6) and (2.8) that

zp(t) ≤ a(t) + δ + c(t)

∫ ∞

t

[f(s)z(s) + g(s)]ds , t ∈ R+. (2.9)

Takingδ → 0 in (2.9), we have

zp(t) ≤ a(t) + c(t)

∫ ∞

t

[f(s)z(s) + g(s)]ds , t ∈ R+. (2.10)

Define a functionu(t) by

u(t) =

∫ ∞

t

[f(s)z(s) + g(s)]ds , t ∈ R+. (2.11)

Then (2.10) can be restated as

zp(t) ≤ a(t) + c(t)u(t). (2.12)

Using Lemma 2.1, from (2.12), for anyk > 0, we easily obtain

z(t) ≤
(

a(t) + c(t)u(t)

) 1
p

≤ p− 1

p
k

1
p +

a(t)

pk
p−1

p

+
c(t)u(t)

pk
p−1

p

. (2.13)

Combining (2.11) and (2.13), we have

u(t) ≤
∫ ∞

t

[
f(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

+
c(s)u(s)

pk
p−1

p

)
+ g(s)

]
ds

= h(t) +

∫ ∞

t

f(s)c(s)u(s)

pk
p−1

p

ds , t ∈ R+, (2.14)

whereh(t) is defined by (2.5). Obviously,h(t) is nonnegative and nonincreasing for
t ∈ R+.
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(i) If h(t) > 0 for t ∈ R+. From (2.14), we easily observe that

u(t)

h(t)
≤ 1 +

∫ ∞

t

f(s)c(s)

pk
p−1

p

· u(s)

h(s)
ds .

Setting

y(t) = 1 +

∫ ∞

t

f(s)c(s)

pk
p−1

p

· u(s)

h(s)
ds , (2.15)

we obtain

y(t) = −f(t)c(t)

pk
p−1

p

· u(t)

h(t)
≥ −f(t)c(t)

pk
p−1

p

y(t). (2.16)

Noting that lim
t→∞

y(t) = 1, it follows from (2.16) that

y(t) ≤ exp

( ∫ ∞

t

f(s)c(s)

pk
p−1

p

ds

)
.

Therefore,

u(t) ≤ h(t) exp

( ∫ ∞

t

f(s)c(s)

pk
p−1

p

ds

)
. (2.17)

It is easy to see that the desired inequality (2.4) follows from (2.7), (2.12) and
(2.17).

(ii) If h(t) is nonnegative fort ∈ R+, we carry out the above procedure withh(t) + ε
instead ofh(t), whereε > 0 is an arbitrary small constant, and subsequently pass
to the limit asε → 0 to obtain (2.4).

This completes the proof of Theorem 2.3. ¥

Theorem 2.4: Assume thatx(t), a(t), b(t), f(t) andg(t) are nonnegative functions for
t ∈ R+, anda(t) is nonincreasing inR+. Then the inequality (1.2) implies

x(t) ≤ B(t)

[
a(t) + F (t) exp

( ∫ ∞

t

f(s)B(s)

pk
p−1

p

ds

)] 1
p

, (2.18)

for anyk > 0, t ∈ R+, where

B(t) =

[
exp

( ∫ ∞

t

b(s)ds

)] 1
p

, (2.19)

F (t) =

∫ ∞

t

[
f(s)B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

)
+ g(s)

]
ds . (2.20)
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Proof: Fixing anyδ ≥ 0, we define a functionz(t) by

z(t) =

{
a(t)+δ+

∫ ∞

t

b(s)xp(s)ds+

∫ ∞

t

[f(s)x(s+σ)+g(s)]ds

} 1
p

, t ∈ R+. (2.21)

Using a similar way in the proof of Theorem 2.3, we easily see thatz(t) is nonin-
creasing,

x(t) ≤ z(t), t ∈ R+, (2.22)

and
x(t + σ) ≤ z(t + σ) ≤ z(t), t ∈ R+.

Therefore,

zp(t) ≤ a(t) +

∫ ∞

t

b(s)zp(s)ds +

∫ ∞

t

[f(s)z(s) + g(s)]ds , t ∈ R+. (2.23)

Define a functionu(t) by

u(t) = a(t) + v(t), (2.24)

where

v(t) =

∫ ∞

t

[f(s)z(s) + g(s)]ds . (2.25)

Then (2.23) can be restated as

zp(t) ≤ u(t) +

∫ ∞

t

b(s)zp(s)ds . (2.26)

Obviously,u(t) is a nonnegative and nonincreasing function fort ∈ R+. Therefore,
using Lemma 2.2 to (2.29), we obtain

zp(t) ≤ u(t) exp

( ∫ ∞

t

b(s)ds

)
,

i.e.,
z(t) ≤ B(t)[a(t) + v(t)]

1
p , (2.27)

whereB(t) is defined by (2.19). Using Lemma 2.1, for anyk > 0, it follows from
(2.27) that

z(t) ≤ B(t)[a(t) + v(t)]
1
p ≤ B(t)

[
p− 1

p
k

1
p +

a(t)

pk
p−1

p

+
v(t)

pk
p−1

p

]
. (2.28)

Combining (2.25) and (2.28), we obtain

v(t) ≤
∫ ∞

t

{
f(s)B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

+
v(s)

pk
p−1

p

)
+ g(s)

}
ds

= F (t) +

∫ ∞

t

f(s)B(s)v(s)

pk
p−1

p

ds , (2.29)
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whereF (t) is defined by (2.20).
We easily see thatF (t) is nonnegative and nonincreasing fort ∈ R+. Using Lemma

2.2, it follows from (2.29) that

v(t) ≤ F (t) exp

( ∫ ∞

t

f(s)B(s)

pk
p−1

p

ds

)
. (2.30)

Combining (2.27) and (2(30), we have

z(t) ≤ B(t)

[
a(t) + F (t) exp

( ∫ ∞

t

f(s)B(s)

pk
p−1

p

)
ds

] 1
p

. (2.31)

Therefore, the desired inequality (2.18) follows from (2.22) and (2.31). The proof is
complete. ¥

Theorem 2.5: Assume thatx(t), a(t) andb(t) are nonnegative functions fort ∈ R+,
anda(t) is nonincreasing inR+. If

0 ≤ L(t, x)− L(t, y) ≤ K(t, y)(x− y), (2.32)

for x ≥ y ≥ 0, whereK ∈ C(R2
+, R), then the inequality (1.3) implies

x(t) ≤ B(t)

[
a(t) + G(t) exp

( ∫ ∞

t

K

(
s,B(s)

(
p− 1

p
k

1
p

+
a(s)

pk
p−1

p

))
B(s)

pk
p−1

p

ds

)] 1
p

, (2.33)

for anyk > 0, t ∈ R+, where

G(t) =

∫ ∞

t

Ł

(
s,B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

))
ds , (2.34)

andB(t) is defined by (2.19).

Proof: Fixing anyδ ≥ 0, we define a functionz(t) by

z(t) =

{
a(t) + δ +

∫ ∞

t

b(s)xp(s)ds +

∫ ∞

t

L(s, x(s + σ))ds

} 1
p

, t ∈ R+. (2.35)

Using a similar way in the proof of Theorem 2.3, we easily obtain thatz(t) is a
nonnegative and nonincreasing function,

x(t) ≤ z(t), t ∈ R+, (2.36)

and
x(t + σ) ≤ z(t + σ) ≤ z(t), t ∈ R+. (2.37)
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Noting the condition (2.32) and combining (2.35)–(2.37), we have

zp(t) ≤ a(t) +

∫ ∞

t

b(s)zp(s)ds +

∫ ∞

t

L(s, z(s))ds , t ∈ R+. (2.38)

Define a functionu(t) by

u(t) = a(t) + w(t),

where

w(t) =

∫ ∞

t

L(s, z(s))ds . (2.39)

Then (2.38) can be restated as

zp(t) ≤ u(t) +

∫ ∞

t

b(s)zp(s)ds . (2.40)

We easily see thatu(t) is a nonnegative and nonincreasing function fort ∈ R+.
Therefore, it follows from (2.40) that

z(t) ≤ B(t)[a(t) + w(t)]
1
p . (2.41)

Using Lemma 2.1, for anyk > 0, from (2.41) we have

z(t) ≤ B(t)

[
p− 1

p
k

1
p +

a(t)

pk
p−1

p

+
w(t)

pk
p−1

p

]
. (2.42)

Combining (2.32), (2.39) and (2.42), we obtain

w(t) ≤
∫ ∞

t

{
L

(
s,B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

+
w(s)

pk
p−1

p

))

− L

(
s,B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

))

+ L

(
s,B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

))}
ds

≤ G(t) +

∫ ∞

t

K

(
s, B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

))
B(s)w(s)

pk
p−1

p

ds , (2.43)

whereG(t) is defined by (2.34).
It is obvious thatG(t) is nonnegative and nonincreasing fort ∈ R+. Using Lemma 2.2,

from (2.43), we have

w(t) ≤ G(t) exp

( ∫ ∞

t

K

(
s,B(s)

(
p− 1

p
k

1
p +

a(s)

pk
p−1

p

))
B(s)

pk
p−1

p

ds

)
. (2.44)
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It follows from (2.41) and (2.44) that

z(t) ≤ B(t)

[
a(t) + G(t) exp

( ∫ ∞

t

K

(
s,B(s)

(
p− 1

p
k

1
p

+
a(s)

pk
p−1

p

))
B(s)

pk
p−1

p

ds

)] 1
p

. (2.45)

Therefore, the desired inequality (2.33) follows from (2.36) and (2.45). The proof is
complete. ¥

3. An Application

In this section, using Theorem 2.3, we obtain the bound on the solution of a nonlinear
differential equation with an advanced argument.

Example: Consider the final value problems of differential equation with an advanced
argument {

pxp−1(t)x
′
(t) = H(t, x(t + σ)) + q(t), t ∈ R+,

x(∞) = x∞,
(3.1)

wherep ≥ 1, σ ∈ R+ are constants,H ∈ C(R+×R, R), q ∈ C(R+, R), andx∞ ∈ R+.
Assume that 




|H(t, x(t + σ))| ≤ f(t)|x(t + σ)|+ g(t),

∣∣∣∣x∞ −
∫ ∞

t

q(s)ds

∣∣∣∣ ≤ a(t), t ∈ R+.
(3.2)

If x(t) is a solution of the equation (3.1). Then

|x(t)| ≤
[
a(t) + h(t) exp

( ∫ ∞

t

f(s)

pk
p−1

p

ds

)] 1
p

, (3.3)

for anyk > 0, t ∈ R+, wherea(t), f(t), g(t) andh(t) are defined as in Theorem 2.3.
In fact, if x(t) is a solution of the equation (3.1), then, by using the ideas in [1], the

equation (3.1) can be written as

xp(t) = xp
∞ −

∫ ∞

t

q(s)ds −
∫ ∞

t

H(s, x(s + σ))ds . (3.4)

Therefore,

|xp(t)| ≤
∣∣∣∣xp
∞ −

∫ ∞

t

q(s)ds

∣∣∣∣ +

∫ ∞

t

|H(s, x(s + σ))|ds . (3.5)

Noting the assumption (3.2), we easily obtain

|xp(t)| ≤ a(t) +

∫ ∞

t

(
f(s)|x(s + σ)|+ g(s)

)
ds . (3.6)

Now a suitable application of Theorem 2.3 to (3.6) immediately yields (3.3).
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