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ABSTRACT 
 

In the design of bridges and other overhead structures that support high-speed trains, 

particularly complex or unproven structural systems, an analysis accounting for the dynamic 

interaction between the train and the structure is required. This is termed dynamic vehicle-

track-structure interaction (VTSI). In this paper, we present an approach to such analysis 

where the bridge structure and the train are modeled independently and coupled by time-

varying kinematic constraints. Specifically, displacements of the train wheels are constrained 

to be equal to the track displacements at their locations. The contact forces between the 

wheels and the track appear in this formulation as Lagrange multipliers corresponding to 

these constraints. Particular consideration is needed in the interpolation of the constraints to 

avoid spurious oscillations in the Lagrange multipliers, and consequently accelerations, 

which we solve using a cubic B-spline constraint interpolation. For three-dimensional bridge 

and train models, including curved bridges, we adopt a corotational approach to representing 

the deformations of the suspension system within the vehicle body. We also use an energy-

conserving time integration scheme that reduces to Newark’s constant average acceleration 

method in the absence of constraints. Implementation in the structural analysis software 

LARSA 4D is discussed, with particular emphasis on implications for users. 
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ABSTRACT 
 
 In the design of bridges and other overhead structures that support high-speed trains, 

particularly complex or unproven structural systems, an analysis accounting for the dynamic 

interaction between the train and the structure is required. This is termed dynamic vehicle-

track-structure interaction (VTSI). In this paper, we present an approach to such analysis 

where the bridge structure and the train are modeled independently and coupled by time-

varying kinematic constraints. Specifically, displacements of the train wheels are constrained 

to be equal to the track displacements at their locations. The contact forces between the 

wheels and the track appear in this formulation as Lagrange multipliers corresponding to these 

constraints. Particular consideration is needed in the interpolation of the constraints to avoid 

spurious oscillations in the Lagrange multipliers, and consequently accelerations, which we 

solve using a cubic B-spline constraint interpolation. For three-dimensional bridge and train 

models, including curved bridges, we adopt a corotational approach to representing the 

deformations of the suspension system within the vehicle body. We also use an energy-

conserving time integration scheme that reduces to Newark’s constant average acceleration 

method in the absence of constraints. Implementation in the structural analysis software 

LARSA 4D is discussed, with particular emphasis on implications for users. 

 

 

Introduction 

 

When bridges and structures that support elevated tracks are designed to carry high-speed 

trains, it is often necessary to consider the effect of dynamic interaction between the train, 

tracks and the structure. Conceptually, this interaction could be thought of in the following 

manner. As a train traverses a bridge, the vertical deflections of the bridge as well as 

irregularities in the track act as support displacement input to the train at the wheels. The 

ensuing dynamics of the train in turn cause time-varying forces and vibration in the bridge. 

This is termed dynamic vehicle-track-structure interaction (VTSI). It is particularly 

significant for high-speed trains since the dynamic forces applied on the bridge are more 

likely to be in the range of resonant frequencies of the bridge. Undue deformations and 

accelerations resulting from dynamic VTSI could result in excessive changes in track 

geometry and rail stress, dynamic magnification of loads and passenger discomfort. 

Therefore, extensive dynamic analysis considering VTSI is recommended to verify track 

safety and passenger comfort, and ensure certain design limits particularly for complex and 

non-standard structural systems (example, [1]). 
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A number of approaches have been adopted for dynamic VTSI analysis. A description of 

some of these is presented in the book [2]. On the one hand, simple models are used that 

represent the effect of interaction by means of dynamic impact factors (example [3]). At the 

other extreme are sophisticated models intended to obtain highly detailed information on 

various aspects of the response of train cars (example [4]). Such models are necessary in the 

mechanical design train of high-speed train cars. Some approaches also employ specialized 

bridge-train interaction elements (example [5]). 

 

We seek a formulation that is in between these extremes in terms of detail for use in bridge 

analysis and design. We wish to include sufficient detail so that the train dyanmics that is 

important in meaningfully computing bridge response can be modeled. We also wish to 

represent track irregularities. Further, we take an approach characterized by the following 

features. 

1. We describe the dynamics of the train and the bridge independently, and represent 

coupling between the two using constraints. This results in the forces between the bridge 

and the train taking the form of Lagrange multipliers.  

2. We use a predictor-corrector format in implementing the numerical integration schemes 

for the bridge and train systems.  

3. The effect of the bridge dynamics on the train dynamics is represented by means of an 

influence matrix for the bridge.  

We find that these result in greatest modularity and ease of implementation. As will be seen 

later, the bridge-train contact forces are a direct product of the computation. 

 

Mathematical formulation 

 

A conceptual model of a high-speed train passing over a bridge is shown in Figure 1. As 

discussed above, the bridge and train are modeled completely independently, and are coupled 

together by kinematic constraints. 

 

Bridge and train models 

 

The bridge may be represented as is usually done for dynamic structural analysis using beam 

elements, truss elements, plate elements, cable elements, dashpots or other finite elements as 

appropriate. Our VTSI formulation imposes no inherent additional restrictions on how the 

bridge structure may be modeled. If a more detailed model explicitly including the rails, 

ballast etc. is desired, these could be represented by suitable finite element models as well. 

 

The train is modeled as a sequence of cars, with each car consisting of an assembly of rigid 

bodies, springs and dashpots. In fact, as discussed later, the train could be considered as 

another independent structure (with stiff members used to approximate rigid bodies). 

 

Kinematic constraints 

 

The bridge and train models are coupled together using a constraint condition, namely that 

the displacement of each wheel of the train is equal to the displacement of the bridge at the 

location of the wheel. Interestingly, track irregularities may be introduced naturally through 

these constraints as well. When track irregularities are present, the difference between the 

wheel displacement and the corresponding bridge displacement equals the track irregularity 

at that location. 

 



 
Figure 1. Conceptual model of train traversing a bridge 

 

Additional simplifications 

 

In the initial implementation described in this paper, we use the following additional 

simplifications for convenience, although these are not necessary for the general formulation. 

1. The train moves on a straight-line path along the bridge, so that the train dynamics is 

entirely planar, and the train loads on the bridge are in the global z  direction. 

2. The train and bridge displacements are small, so that linearized kinematics can be used 

for both. Material behavior is also linear. As described later, when curved paths are 

considered, geometric nonlinearity naturally enters the picture. 

3. Train wheels do not lose contact with the bridge. If tension forces develop between the 

bridge and the train, we deem the analysis invalid. Contact seperation can be readily 

included in our formulation within the framework of kinematic constraints using 

inequality constraints. 

4. When a wheel is outside the span of the bridge, we take its displacement to be zero.  

5. There is no simultaneous uniform base acceleration input to the bridge. As a result, all 

displacement, of the train and bridge, can be taken as total displacements with respect to 

an inertial frame.  

Dead loads are applied to the bridge and train models prior to dynamic VTSI analysis using 

an initial static analysis stage. 

 

Governing equations 

 

Using the bridge and train models and kinematic constraints described above, we obtain the 

following governing equations for dynamic VTSI. 
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Here, tu  and bu  are the train and bridge displacements respectively, tM , tC  and tK  are the 

mass, stiffness and damping matrices of the train model, bM , bC  and bK  are the 

corresponding matrices of the bridge model, and tP  and bP  are the external loads on the 

train and bridge models respectively. In the third equation that represents the kinematic 

constraint, tL  is a matrix that extracts the wheel displacements (with a negative sign) from 



the vector of displacements of the train model; b ( )ijL t  is an influence matrix, containing the 

vertical displacement of the bridge at the location of wheel i  at time t , due to unit 

displacement at degree of freedom j  of the bridge.   is the vector of track irregularities at 

the wheel locations.   is the vector of contact forces between the train wheels and the bridge 

(positive downward on the bridge/upward on the wheels). It is the Lagrange multiplier 

corresponding to the kinematic constraint. We see that the terms tL   (forces applied by 

bridge on wheels) and 
b ( )L t   (force applied by train on bridge at wheel locations) appear in 

the equations of motion of the train and bridge respectively. 

 

Special consideration is necessary in the construction of the matrix 
b ( )L t . Roughly speaking, 

we note that accelerations of the train and bridge are related by the second derivative with 

respect to time of the third of equations (1), which would contain the second derivative of 
b ( )L t . Thus if the 

b ( )L t  is not twice continuously differentiable, we observe spurious 

discontinuities in computed accelerations and contact forces . This would be the case if 
b ( )L t  were constructed using cubic polynomials that are used for interpolation in beam 

elements in the bridge model, for with such functions the displacement and rotation are 

continuous but the curvature (second derivative) is not. Instead we use B-spline functions that 

are globally twice continuously differentiable to construct 
b ( )L t . In the next section, we 

present the numerical algorithm used to compute a solution to equation (1). 

 

Solution algorithm 

 

We discretize equation (1) in time for numerical integration using a method proposed by 

Bauschau [6] for constrained dynamical systems. When there is no damping, this method is 

energy conserving. Interestingly, the equations of motion (the first two of equations (1)) are 

enforced at the half time-step, and the kinematic constraint (the last of equations (1)) at the 

end of the time step. The task is, given the bridge and train displacements and velocities at 

time n, to compute the same quantities at time n+1 and the contact forces at time n+1/2. The 

kinematics are discretize as follows (similar to Newmark’s method). 
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where tv  and bv  are the train and bridge veocities respectively, and subscripts denote 

increment index. Equations (1) are discretized as 
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This reduces to Newmark’s method with parameters 0.25, 0.5 in the absence of constraints. 

We now define 
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It is most convenient to rearrange equation Error! Reference source not found. so as to 

solve for 
t b

12( , , )nv v   . Doing so results in the following linear system of equations. 
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where  
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We solve this (at each time increment) in such a manner that the train model is treated 

completely independent of the structural analysis code where the bridge is modeled. This is 

accomplised by means of a predictor-corrector scheme. The structural analysis code simply 

calls some functions for the train model-related computations. We next describe the 

implementation of this algorithm in the structural analysis software LARSA 4D. 

 

Implementation in LARSA 4D 

 

The VTSI procedure described in the last section has been implemented within the 

commercial software package LARSA 4D as an extension of the linear time history analysis 

option. In place of time history excitation curves, the user instead provides as input for VTSI: 

 the stiffness, mass, and damping of vehicles 

 a track 

 the velocity of the vehicles 

 a vertical track irregularity profile (optional) 

 

A VTSI project will contain both the bridge and one or more vehicles all in the same file. In 

other words, the vehicles are explicitly represented with joints and structural elements in the 

same input file as the bridge. The bridge and the vehicles will not be structurally connected in 

the project file, however. The changing connectivity between the vehicles and track is 



managed during the analysis. It does not matter where the vehicles are in space in relation to 

the bridge or what coordinates are given to the vehicles. 

 

While we envision providing the user with a standard database of vehicles in the future, we 

chose to have the vehicles explicitly represented in the project file to offer the most flexibility 

both in input and output. In input, the user is able to define any structure for the vehicles that 

would be permitted in a standard linear time history analysis using any linear elements 

(including the beam, spring, shell, and linear viscous dashpot). And in output, because the 

results for both the bridge and vehicle are tied to records in the same project file, the user 

may use any LARSA 4D post-processing tool in the regular way, such as the tool for creating 

time series plots normally used in a standard time history analysis. 

 

LARSA 4D identifies the joints and elements as being a part of the vehicles (and not the 

bridge) through the use of special displacement user coordinate systems assigned to the 

vehicles’ wheels. These coordinate systems serve both to identify the vehicles to the program 

as well as to anchor the arbitrary coordinates of vehicles to a reference point. 

 

The track is defined as a list of beam elements that the vehicles’ path follows. The two-

dimensional nature of the VTSI analysis has two consequences for the track. First, the track is 

positioned at the vehicle centerline. If the bridge model includes rails, the rails must be 

rigidly connected to dummy elements at the vehicle centerline to form the track. Second, the 

track must be perfectly straight. But note that beyond these requirements for the track, the 

remainder of the bridge model may be fully three-dimensional. Additionally, a vertical 

profile on the track may be created through loading, and a vertical track irregularity curve can 

be entered to offset the vehicle’s path from the members that form the track. The irregularity 

curve is entered within LARSA 4D’s database editor. 

 

To run a VTSI analysis, the user creates a new load case and sets its type to Time History as 

in a normal time history analysis. However, inside the load case, the user uses the “moving 

loads” spreadsheet to enter the track and the vehicle velocity, in a similar manner for how the 

user would prepare a live load analysis. Joint loads and automatic self-weight computation 

(for both the bridge and the vehicles) are also permitted. Finally the user runs a Linear Time 

History Analysis from the Analysis menu. The VTSI analysis is triggered by the presence of 

the “moving load” in the time history load case. 

 

As the vehicles and bridge are explicitly modeled in the structure, results for both the 

vehicles and bridge are accessed as in any other LARSA 4D analysis. All results typically 

available in a static analysis, plus those available in a linear time history analysis, will be 

available. The changing connectivity between the vehicles and the track is given in a special 

output spreadsheet. The “lambda” term in the VTSI formulation is reported as joint reactions 

on the wheels. 

 

Example 

 

We have run the VTSI analysis for a number of scenarios including the one described in this 

section. In this example, a two-car train passes at 200 km/h over a 300 m two-span straight 

bridge. 

 

The two cars each are 20 m in length, have four wheels, are identical, and are spaced 10.5 m 

apart. Figure 2 shows the structure of each car. The wheels are connected by springs to 



bogies, which are in turn suspended from the train car by additional springs. Linear viscous 

dashpots acting in the vertical direction are coincident with the car-bogie suspension and act 

to dampen the connections. The bogies and car bodies are rigid. Mass is specified at the 

wheels and at the middle of the bogies and car bodies. 

 

 
Figure 2. One of the two train cars in the model 

The bridge is composed of two continuous spans of 150 meters which also make up the track. 

To ensure that the train cars enter and exit the track smoothly, the ends of the track are fixed. 

In addition, a track irregularity curve is applied. This curve specifies a vertical deviation of 

the track from -1.0 to 1.2 centimeters. The curve is shown in Figure 3. 

 
Figure 3. Vertical track irregularity profile 

The model additionally includes a uniform load on the track and vertical loading at the 

locations of mass in the vehicles. 

 

This example problem was analyzed using our implementation of the VTSI algorithm in 

LARSA 4D using a 0.01 sec time step and an ending time of 6 sec. (The last wheel of the 

train exits the track at 4.51 sec.) The analysis takes two minutes to run on typical desktop 

hardware. 

 

We used LARSA 4D’s graphing tool to produce the plot in Figure 4 of the vertical 

displacement at the center of the front car as a function of time. 

 



 
Figure 4. Vertical displacement at the center of the front car as a function of time. 

Although the cars have left the track at 4.51 sec, the vehicle remains a part of the 

analysis until the final time step with wheels assumed to have zero displacement. 

 

Extension to three-dimensional models and curved paths 

 

Although the example presented is of a two-dimensional model, the algorithm described 

above applies as is to three-dimensional models. However paths containing horizontally or 

vertically curved segments require additional considerations. For example, to properly 

account for centrifugal and Coriolis forces resulting from the train traversing such curves, 

large geometry changes in the bridge must be modeled. Therefore, geometric nonlinearity 

naturally enters the picture. This can however be incorporated by allowing for large rigid-

body displacements of the train cars while restricting displacements within each car to be 

small using a corotational formulation. We are currently implementing such a formulation. 

 

Summary 

 

We have developed a formulation for dynamic bridge-train interaction that can be used for 

dynamic VTSI analysis of bridges with high-speed trains. The formulation consists of 

representing the train and bridge models independently and coupling them using kinematic 

constraints. The contact forces between the train and the bridge at the wheel locations appear 

as Lagrange multipliers. Track irregularities can also be considered through the kinematic 

constraints. Efficient solution, where the largest linear system solved is the size of the bridge 

stiffness matrix, is accomplished through a predictor-corrected scheme. A special energy-

conserving time integration algorithm and B-spline approximation for the kinematic 

constrains are used. The formulation is implemented in the structural analysis software 

LARSA 4D, which allows for modeling both the train and bridge as independent structures 

and applying the kinematic constraints. This facilitates dynamic VTSI analysis for bridge 

engineers. Extensions to three-dimensional models and curved paths are underway. 
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