

Stabilization and tracking of a nonholonomic mobile robot with saturating actuators

Citation for published version (APA): Jiang, Z. P., Lefeber, A. A. J., & Nijmeijer, H. (1998). Stabilization and tracking of a nonholonomic mobile robot with saturating actuators. In A. Dourado (Ed.), Proceedings of CONTROL'98, 3rd Portuguese conference on automatic control : Coimbra, Portugal, September 9-11, 1998. Vol. 1 (pp. 315-320). Coimbra: APCA.

Document status and date: Published: 01/01/1998

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

STABILIZATION AND TRACKING OF A NONHOLONOMIC MOBILE ROBOT WITH SATURATING ACTUATORS

Zhong-Ping Jiang * Erjen Lefeber ** Henk Nijmeijer **.***

* Department of Electrical Engineering, Building J13, University of Sydney, NSW 2006, Australia zjiang@cassius.ee.usyd.edu.au ** Faculty of Mathematical Sciences, Department of Systems Signals and Control, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands, {A.A.J.Lefeber, H.Nijmeijer}@math.utwente.nl *** Faculty of Mechanical Engineering Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

Abstract: The stabilization and tracking problem for the kinematic model and simplified dynamic model of a wheeled mobile robot with input saturations is considered. The results form a direct extension of the case where no actuator constraints are involved. Simulations illustrate the proposed control strategy.

Keywords: Nonholonomic mobile robot; Stabilization; Tracking; Backstepping; Bounded feedback control.

1. INTRODUCTION

In recent years a lot of interest has been devoted to the stabilization and tracking of a wheeled mobile robot, see e.g. (Bloch and Drakunov, 1996; Canudas de Wit et al., 1996; Escobar et al., 1998; Fliess et al., 1995; Jiang and Nijmeijer, 1997; Kanayama et al., 1990; Kolmanovsky and McClamroch, 1995; Samson and Ait-Abderrahim, 1991; Walsh et al., 1994). One of the reasons for this is, undoubtedly, that no smooth timeinvariant stabilizing controller for this system exists, which is a corollary from the fact that Brockett's necessary condition for smooth stabilization is not met, see (Brockett, 1983). Many of the above references, as well as (Coron, 1992; Escobar et al., 1998; Jiang, 1996; Jiang and Pomet, 1996; Lin, 1996; Pomet, 1992) therefore aim at developing suitable time varying stabilizing (tracking) controllers for mobile robots or more general chained form nonholonomic systems.

In the present note we want to study the stabilization and tracking problem for a wheeled mobile robot under saturation constraints on the inputs. At this point we exploit the normalization technique known from adaptive control, see e.g. (Jiang and Praly, 1992; Krstić *et al.*, 1995), for solving the stabilization and tracking problem under saturating velocities. Also, for a simplified dynamic model of the mobile robot (cf. (Jiang and Nijmeijer, 1997)) the same technique turns out to be of great value. The proposed controller design is inspired by previous work of Pomet, (Pomet, 1992) (see also (Lin, 1996)) where for general driftless systems time-varying stabilizing controllers are developed. Our stabilizing and tracking controllers for the kinematic model of the robot globally fulfill the given input constraints, and for the dynamic extended model semi-globally fulfill the given input constraints, thus given the initial condition to belong to some compact set, appropriate parameter tuning for the bounded controller is possible.

A different approach using cascaded ideas for the same problems can be found in (Panteley *et al.*, 1998). The paper is organized as follows. In section 2 the bounded state feedback stabilization problem for the wheeled mobile robot is addressed, while in section 3 the bounded state feedback tracking problem is investigated. Section 4 contains the conclusions.

2. STABILIZATION VIA BOUNDED STATE FEEDBACK

The purpose of this section is to show that it is not difficult to extend Pomet's method (Pomet, 1992) to the kinematic model of a wheeled mobile robot under saturation constraints on the control inputs. Then, we employ the integrator backstepping idea to establish a similar result for a simplified dynamic model of the robot.

2.1 Kinematic model

The benchmark wheeled mobile robot considered by many researchers (see, e.g., (Kolmanovsky and Mc-Clamroch, 1995; Canudas de Wit *et al.*, 1996) and references therein) is described by the following kinematic model:

$$\begin{aligned} \dot{x}_c &= \nu \cos \theta \\ \dot{y}_c &= \nu \sin \theta \\ \dot{\theta} &= \omega \end{aligned} \tag{1}$$

where v is the forward velocity, ω is the steering velocity. (x_c , y_c) is the position of the mass center of the robot moving in the plane and θ denotes its heading angle from the horizontal axis. Here, the velocities v and ω are subject to the following constraints:

$$|\omega| \leq \omega_{max}, \quad |\nu| \leq \nu_{max}$$
 (2)

where ω_{max} and ν_{max} are arbitrary positive constants. The stabilization problem to be addressed, is to construct a time-varying state-feedback law of the form

$$\omega = \alpha_1(t, \theta, x_c, y_c), \quad \nu = \alpha_2(t, \theta, x_c, y_c) \quad (3)$$

in such a way that (2) holds and the zero solution of the robot system (1) in closed-loop with (3) is globally uniformly asymptotically stable (GUAS).

We follow (Pomet, 1992) to achieve our control objective. First, define a set BF_r of continuous and bounded functions indexed by a parameter r > 0, i.e.

$$BF_r = \{\phi : \mathbb{R} \to \mathbb{R} \mid \phi \text{ is continuous and} \\ -r \le \phi(x) \le r \quad \forall x \in \mathbb{R}\}$$
⁽⁴⁾

and a corresponding set of saturation functions S_r , i.e

$$S_r = \{\phi : \mathbb{R} \to \mathbb{R} \in BF_r \mid s\phi(s) > 0 \text{ for all } s \neq 0\}(5)$$

Examples of nontrivial functions in S_r include for instance

$$\phi(x) = \frac{2rx}{1+x^2}, \quad \phi(x) = \frac{rx^2}{1+x^2}, \quad \phi(x) = \frac{2r}{\pi} \arctan(x) \quad (6)$$

Denote

$$x = (\theta, x_c, y_c)^T \tag{7}$$

Introduce a Lyapunov function candidate

$$V_1(t, x) = \frac{1}{2} \left(\theta + \varepsilon_1 g_1 (x_c^2 + y_c^2) \cos t \right)^2 + \frac{1}{2} x_c^2 + \frac{1}{2} y_c^2$$
(8)

for (1) in closed-loop with (3) which is written in more compact form

$$\dot{x} = f_1(x)\omega + f_2(x)\nu \tag{9}$$

In (8) $\varepsilon_1 > 0$ is a design parameter to be chosen later and g_1 is a smooth (i.e., of class C^{∞}) function in BF_1 with the property that $g_1(s) = 0$ if and only if s = 0. It is direct to verify that the conditions of (Pomet, 1992, Theorem 2) hold for such choice of Lyapunov function V_1 in (8). Using the controller design scheme proposed in (Pomet, 1992), we obtain the time-varying state feedback laws

$$\omega = \varepsilon_1 g_1 (x_c^2 + y_c^2) \sin t - -h_{\varepsilon_2} (\theta + \varepsilon_1 g_1 (x_c^2 + y_c^2) \cos t)$$
(10)

$$:= \alpha_1 (t, \theta, x_c, y_c)$$
$$\nu = -h_{\varepsilon_3} ([x_c \cos \theta + y_c \sin \theta] \times \\\times [1 + 2\varepsilon_1 (\theta + \varepsilon_1 g_1 \cos t) g_1' \cos t])$$
(11)

$$:= \alpha_2 (t, \theta, x_c, y_c)$$

where ε_2 and ε_3 are two positive design parameters, $h_{\varepsilon_2} \in S_{\varepsilon_2}, h_{\varepsilon_3} \in S_{\varepsilon_3}$ and $g'_1 := \frac{dg_1}{ds}(x_c^2 + y_c^2)$. We establish the following result.

Proposition 1. The equilibrium x = 0 of the closedloop system (1), (10) and (11) is globally uniformly asymptotically stable (GUAS) for any positive ε_1 , ε_2 and ε_3 . In particular, given any saturation levels $\omega_{max} > 0$, $\nu_{max} > 0$ as in (2), we can always tune ε_1 , ε_2 and ε_3 so that (2) holds while x = 0 is GUAS.

PROOF. Noticing that

$$\alpha_1(t,\theta,x_c,y_c) = \varepsilon_1 g_1(x_c^2 + y_c^2) \sin t - h_{\varepsilon_2} \Big(L_{f_1} V_1(t,x) \Big),$$

$$\alpha_2(t,\theta,x_c,y_c) = -h_{\varepsilon_3} \Big(L_{f_2} V_1(t,x) \Big),$$

the time derivative of V_1 as defined in (8) satisfies:

$$\dot{V}_{1}(t,x) = -\left(L_{f_{1}}V_{1}(t,x)\right)h_{\varepsilon_{2}}\left(L_{f_{1}}V_{1}(t,x)\right) - \left(L_{f_{2}}V_{1}(t,x)\right)h_{\varepsilon_{3}}\left(L_{f_{2}}V_{1}(t,x)\right)$$
(12)

The proof is completed along the same lines of (Pomet, 1992, Proof of Theorem 1) using LaSalle's invariance principle. We can meet (2) choosing $\varepsilon_1 + \varepsilon_2 \le \omega_{max}$ and $\varepsilon_3 \le v_{max}$.

2.2 Dynamic model

In the preceding subsection we have solved the stabilization problem for the kinematic model (1) of the benchmark wheeled robot with saturating velocities. In this subsection, we demonstrate that the same control task can be achieved for a simplified dynamic model of the robot with saturation on the control torques. More precisely, we consider the following dynamic extension of the robot (1), see also (Jiang and Nijmeijer, 1997):

$$\dot{x}_{c} = v \cos \theta$$

$$\dot{y}_{c} = v \sin \theta$$

$$\dot{\theta} = \omega$$
 (13)

$$\dot{\omega} = u_{1}$$

$$\dot{v} = u_{2}$$

where u_1 and u_2 are generalized torque-inputs subject to the constraints:

$$|u_1| \leq u_{1,max}, |u_2| \leq u_{2,max}$$
 (14)

with $u_{1,max} > 0$ and $u_{2,max} > 0$ arbitrary positive constants.

Introduce two new variables $\overline{\omega}$ and $\overline{\nu}$ as

$$\overline{\omega} = \omega - \alpha_1(t, \theta, x_c, y_c), \quad \overline{\nu} = \nu - \alpha_2(t, \theta, x_c, y_c) \quad (15)$$

with $\alpha_1(t, \theta, x_c, y_c)$ and $\alpha_2(t, \theta, x_c, y_c)$ as defined in (10) and (11).

Consider the positive definite proper Lyapunov function candidate for system (13)

$$V_2(t, X) = \varepsilon_4 \log(1 + V_1(t, \theta, x_c, y_c)) + \frac{1}{2}\overline{\omega}^2 + \frac{1}{2}\overline{\nu}^2$$
(16)

where $X := (x^T, \omega, \nu)^T = (x_c, y_c, \theta, \omega, \nu)^T$ and $\varepsilon_4 > 0$ is a design parameter to be chosen later.

In view of (12) and (15), differentiating V_2 along the solutions of system (13) yields

$$\dot{V}_{2}(t,X) = -\left[\left(L_{f_{1}}V_{1}(t,x)\right)h_{\varepsilon_{2}}\left(L_{f_{1}}V_{1}(t,x)\right)+\right.\\\left.\left.\left.\left.\left(L_{f_{2}}V_{1}(t,x)\right)h_{\varepsilon_{3}}\left(L_{f_{2}}V_{1}(t,x)\right)\right]\right.\right]\right.\\\left.\left.\left.\left.\left.\left.\left(\frac{\varepsilon_{4}(\theta+\varepsilon_{1}g_{1}\cos t)}{1+V_{1}(t,x)}\overline{\omega}+\right)\right.\right.\right.\\\left.\left.\left.\left.\left.\left(\frac{\varepsilon_{4}(\alpha_{c}\cos\theta+y_{c}\sin\theta)(1+2\varepsilon_{1}(\theta+\varepsilon_{1}g_{1}\cos t))g_{1}'\cos t)}{1+V_{1}(t,x)}\overline{\omega}+\right.\right.\right.\right.\\\left.\left.\left.\left.\left.\left.\left(\frac{\varepsilon_{4}(x_{c}\cos\theta+y_{c}\sin\theta)(1+2\varepsilon_{1}(\theta+\varepsilon_{1}g_{1}\cos t))g_{1}'\cos t)}{1+V_{1}(t,x)}\overline{\omega}+\right.\right.\right.\right.\right]\right]\right]\right]$$

where

$$\dot{\alpha}_1 = \frac{\partial \alpha_1}{\partial t} + \frac{\partial \alpha_1}{\partial \theta} \omega + \left(\frac{\partial \alpha_1}{\partial x_c} \cos \theta + \frac{\partial \alpha_1}{\partial y_c} \sin \theta\right) \nu$$
$$\dot{\alpha}_2 = \frac{\partial \alpha_2}{\partial t} + \frac{\partial \alpha_2}{\partial \theta} \omega + \left(\frac{\partial \alpha_2}{\partial x_c} \cos \theta + \frac{\partial \alpha_2}{\partial y_c} \sin \theta\right) \nu$$

Therefore, we choose the time-varying control laws as

$$u_{1} = -h_{\varepsilon_{5}}(\overline{\omega}) + \dot{\alpha}_{1} - \frac{\varepsilon_{4}(\theta + \varepsilon_{1}g_{1}\cos t)}{1 + V_{1}(t, x)}$$
(18)
$$u_{2} = -h_{\varepsilon_{6}}(\overline{\nu}) + \dot{\alpha}_{2} - -\frac{\varepsilon_{4}(x_{c}\cos\theta + y_{c}\sin\theta)(1 + 2\varepsilon_{1}(\theta + \varepsilon_{1}g_{1}\cos t)g_{1}'\cos t)}{1 + V_{1}(t, x)}$$
(19)

where $\varepsilon_6 > 0$ and $\varepsilon_6 > 0$ are design parameters and $h_{\varepsilon_5} \in S_{\varepsilon_5}, h_{\varepsilon_6} \in S_{\varepsilon_6}$.

We are now ready to state the result.

Proposition 2. The equilibrium X = 0 of the closed-loop system (13), (18) and (19) is GUAS for any

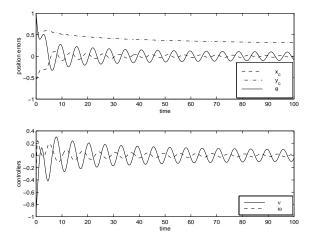


Fig. 1. Stabilization of the kinematic model with initial conditions $[x_c(0), y_c(0), \theta(0)]^T = [-0.5, 0.5, 1]^T$.

positive values of ε_i , $1 \le i \le 5$. In particular, given any saturation levels $u_{1,max} > 0$, $u_{2,max} > 0$ as in (14) and any compact set Ω_1 in \mathbb{R}^5 , we can always tune our design constants ε_i ($1 \le i \le 6$) so that (14) holds for all trajectories starting in Ω_1 .

PROOF. Under the choice of (18) and (19) for the torques inputs, it holds

$$\dot{V}_{2}(t,X) = -\left[\left(L_{f_{1}}V_{1}(t,x)\right)h_{\varepsilon_{2}}\left(L_{f_{1}}V_{1}(t,x)\right) + \left(L_{f_{2}}V_{1}(t,x)\right)h_{\varepsilon_{3}}\left(L_{f_{2}}V_{1}(t,x)\right)\right]\frac{\varepsilon_{4}}{1+V_{1}(t,x)} \\ -\overline{\omega}h_{\varepsilon_{5}}(\overline{\omega}) - \overline{\nu}h_{\varepsilon_{6}}(\overline{\nu})$$
(20)

The first part of Proposition 2 readily follows from LaSalle's invariance principle as in the proof of Proposition 1.

The second statement is more or less direct from the expressions (18) and (19) of the control laws u_1 and u_2 .

2.3 Simulations

To support our results, we simulated with MATLABTM the wheeled mobile robot (1) in closed-loop with the controller (10, 11) with $\varepsilon_1 = 1$ and $g_1(s) = h_{\varepsilon_2}(s) = h_{\varepsilon_3} = \tanh(s)$, which guarantees that $|\omega(t)| \le 2$ and $|\nu(t)| \le 1$ for all $t \ge 0$. The resulting performance is depicted in Figure 1.

From the initial condition $[x_c(0), y_c(0), \theta(0)]^T = [-0.5, 0.5, 1]^T$ we see a very slow convergence to the origin, which is a well known consequence from using Pomet's method (cf. (M'Closkey and Murray, 1997)). If we then consider the simple dynamic extension (13) in closed-loop with the controller (18, 19) where we additionally use $\varepsilon_4 = 1$, and $h_{\varepsilon_5}(s) = h_{\varepsilon_6} = \tanh(s)$ the resulting performance if we start from the initial condition $[x_c(0), y_c(0), \theta(0), \omega(0), \nu(0)]^T = [-0.5, 0.5, 1, 0, 0]^T$ is depicted in Figure 2.

Again we see a very slow convergence to the origin.

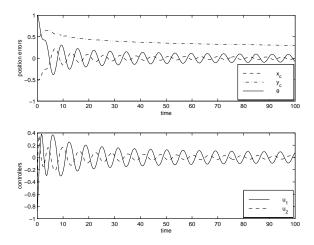


Fig. 2. Stabilization of the dynamic model with initial conditions $[x_c(0), y_c(0), \theta(0), \omega(0), \nu(0)]^T = [-0.5, 0.5, 1, 0, 0]^T$.

3. TRACKING VIA BOUNDED STATE FEEDBACK

3.1 Kinematic model

In this section, we address the tracking problem for the robot (1) under a constraint on the velocities. To quantify the saturation level, it is assumed that the reference trajectory (x_r, y_r, θ_r) satisfies

$$\dot{x}_r = v_r \cos \theta_r \dot{y}_r = v_r \sin \theta_r$$

$$\dot{\theta}_r = \omega_r$$
(21)

where ω_r and ν_r are bounded reference velocities. The objective is to find time-varying state-feedback controllers of the form

$$\omega = \omega^*(t, \theta, x_c, y_c), \quad \nu = \nu^*(t, \theta, x_c, y_c) \quad (22)$$

such that $x_c(t) - x_r(t)$, $y_c(t) - y_r(t)$ and $\theta(t) - \theta_r(t)$ tend to zero as $t \to +\infty$ while guaranteeing the following property:

$$|\omega(t)| \le \omega_{max}$$
, $|\nu(t)| \le \nu_{max}$ for all $t \ge 0$ (23)

where $\omega_{max} > \sup_{t \ge 0} |\omega_r(t)|$ and $\nu_{max} > \sup_{t \ge 0} |\nu_r(t)|$ are arbitrary.

As in (Jiang and Nijmeijer, 1997) (see also (Kanayama *et al.*, 1990)), consider the following tracking errors

$$\begin{bmatrix} x_e \\ y_e \\ \theta_e \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_r - x_c \\ y_r - y_c \\ \theta_r - \theta \end{bmatrix}$$
(24)

Obviously, for any value of θ , $(x_e, y_e, \theta_e) = 0$ if and only if $(x_c, y_c, \theta) = (x_r, y_r, \theta_r)$.

It can be directly checked, the tracking error dynamics of the robot satisfy

$$\begin{aligned} \dot{x}_e &= \omega y_e - \nu + \nu_r \cos \theta_e \\ \dot{y}_e &= -\omega x_e + \nu_r \sin \theta_e \\ \dot{\theta}_e &= \omega_r - \omega . \end{aligned}$$
(25)

We show next that the following control laws solve our tracking problem:

$$\omega = \omega_r + \frac{\lambda_1 v_r y_e}{1 + x_e^2 + y_e^2} \int_0^1 \cos(s\theta_e(t)) ds + h_{\lambda_2}(\theta_e)$$

$$:= \beta_1(t, \theta_e, x_e, y_e) \tag{26}$$

$$\nu = \nu_r \cos \theta_e + h(\lambda_3)(x_e) := \beta_2(t, \theta_e, x_e) \quad (27)$$

where λ_1 , λ_2 , λ_3 are positive design parameters and $h_{\lambda_1} \in S_{\lambda_1}$, $h_{\lambda_2} \in S_{\lambda_2}$.

Proposition 3. Assume that ω_r and ν_r are bounded and uniformly continuous over $[0, \infty)$. If either $\omega_r(t)$ or $\nu_r(t)$ does not converge to zero, then the zero equilibrium of the closed-loop system (25), (26) and (27) is globally asymptotically stable. In particular, given any $\omega_{max} > \sup_{t\geq 0} |\omega_r(t)|$ and $\nu_{max} > \sup_{t\geq 0} |\nu_r(t)|$, we can always tune our design parameters λ_1 , λ_2 and λ_3 so that the condition (23) is met.

PROOF. Consider the positive definite and proper Lyapunov function candidate

$$W_1(x_e, y_e, \theta_e) = \frac{\lambda_1}{2} \log(1 + x_e^2 + y_e^2) + \frac{1}{2} \theta_e^2$$
(28)

Differentiating W_1 along the solutions of the closed-loop system (25), (26) and (27) yields:

$$\dot{W}_1(x_e, y_e, \theta_e) = -\frac{\lambda_1 x_e h_{\lambda_3}(x_e)}{1 + x_e^2 + y_e^2} - \theta_e h_{\lambda_2}(\theta_e) \le 0 \ (29)$$

Therefore, the trajectories $(x_e(t), y_e(t), \theta_e(t))$ are uniformly bounded on $[0, \infty)$. It follows, as in (Jiang and Nijmeijer, 1997), by direct application of Barbălat's lemma (Khalil, 1996) that

$$\lim_{t \to \infty} [x_e(t)h_{\lambda_3}(x_e(t)) + \theta_e(t)h_{\lambda_2}(\theta_e(t))] = 0 \quad (30)$$

which, in turn, gives

$$\lim_{t \to \infty} (|x_e(t)| + |\theta_e(t)|) = 0$$
(31)

It remains to prove that $y_e(t)$ goes to zero as $t \to \infty$. Indeed, this fact can be established by mimicking the arguments used in the proof of (Jiang and Nijmeijer, 1997, Proposition 2).

The last statement of Proposition 3 is more or less direct. $\hfill \Box$

3.2 Dynamic model

We extend the tracking result from subsection 3.1 to the simplified dynamic model (13) of the robot. The tracking error dynamics are described by

$$\dot{x}_{e} = \omega y_{e} - \nu + \nu_{r} \cos \theta_{e}$$

$$\dot{y}_{e} = -\omega x_{e} + \nu_{r} \sin \theta_{e}$$

$$\dot{\theta}_{e} = \omega_{r} - \omega$$

$$\dot{\omega} = u_{1}$$

$$\dot{\nu} = u_{2}$$
(32)

where u_1 and u_2 are torque-inputs subject to the contraint:

$$|u_1| \leq u_{1,max}, |u_2| \leq u_{2,max}$$
 (33)

where $u_{1,max}$ and $u_{2,max}$ are two arbitrary saturation levels satisfying the property

$$u_{1,max} > \sup_{t \ge 0} |\dot{\omega}_r(t)|, \quad u_{2,max} > \sup_{t \ge 0} |\dot{\nu}_r(t)|.$$
 (34)

Contrary to the kinematic model (25) considered in the subsection 3.1, ω and ν are not the actual control inputs to the dynamic model (32) of the robot. Consequently, the tracking control laws obtained in (26) and (27) cannot be implemented in the present situation. To invoke integrator backstepping (see (Krstić *et al.*, 1995)) for the purpose of designing our true tracking controllers subject to (33), we introduce two new variables

$$\omega_e = \omega - \beta_1(t, \theta_e, x_e, y_e), \quad \nu_e = \nu - \beta_2(t, \theta_e, x_e)$$
(35)

where β_1 and β_2 are defined as in (26) and (27), respectively.

Consider the positive definite and proper Lyapunov function candidate for system (32)

$$W_{2}(t, X_{e}) = \lambda_{4} \log(1 + W_{1}(t, x_{e}, y_{e}, \theta_{e})) + \frac{1}{2}\omega_{e}^{2} + \frac{\lambda_{5}}{2}\log(1 + v_{e}^{2})$$
(36)

where $X_e := (x_e, y_e, \theta_e, \omega_e, \nu_e)$ and λ_4 , $\lambda_5 > 0$ are two design parameters to be chosen later.

Using (29), the time derivative of W_2 along the solutions of (32) satisfies

$$\dot{W}_{2}(t, X_{e}) = -\left(\frac{\lambda_{1}x_{e}h_{\lambda_{3}}(x_{e})}{1+x_{e}^{2}+y_{e}^{2}} + \theta_{e}h_{\lambda_{2}}(\theta_{e})\right)\frac{\lambda_{4}}{1+W_{1}} + \left(\frac{-\lambda_{1}x_{e}}{1+x_{e}^{2}+y_{e}^{2}}\nu_{e} - \theta_{e}\omega_{e}\right)\frac{\lambda_{4}}{1+W_{1}} + \omega_{e}(u_{1} - \dot{\beta}_{1}) + \frac{\lambda_{5}\nu_{e}}{1+\nu_{e}^{2}}(u_{2} - \dot{\beta}_{2}) \quad (37)$$

where

$$\dot{\beta}_{1} = \frac{\partial \beta_{1}}{\partial t} + \frac{\partial \beta_{1}}{\partial x_{e}} (\omega y_{e} - \nu + \nu_{r} \cos \theta_{e}) + \\ + \frac{\partial \beta_{1}}{\partial y_{e}} (-\omega x_{e} + \nu_{r} \sin \theta_{e}) + \frac{\partial \beta_{1}}{\partial \theta_{e}} (\omega_{r} - \omega) \\ \dot{\beta}_{2} = \frac{\partial \beta_{2}}{\partial t} + \frac{\partial \beta_{2}}{\partial x_{e}} (\omega y_{e} - \nu + \nu_{r} \cos \theta_{e}) + \frac{\partial \beta_{2}}{\partial \theta_{e}} (\omega_{r} - \omega) \\ = \nu_{r} \omega_{e} \sin \theta_{e} + \dot{\nu}_{r} \cos \theta_{e} + \\ + \left(\frac{\lambda_{1} \nu_{r} y_{e}}{1 + x_{e}^{2} + y_{e}^{2}} \int_{0}^{1} \cos(s \theta_{e}(t)) ds + h_{\lambda_{2}}(\theta_{e}) \right) \nu_{r} \sin \theta_{e} + \\ + h'_{\lambda_{3}} (x_{e}) (\omega y_{e} - \nu + \nu_{r} \cos \theta_{e})$$

Let $\lambda_6 > 0$, $\lambda_7 > 0$ be design parameters. By making the following choice of tracking control laws for the torques u_1 and u_2

$$u_1 = -h_{\lambda_6}(\omega_e) + \dot{\beta}_1 + \frac{\lambda_4 \theta_e}{1 + W_1} + \frac{\lambda_5 \nu_e}{1 + \nu_e^2} \nu_r \sin \theta_e$$
(38)

$$u_{2} = -h_{\lambda_{7}}(v_{e}) + \frac{\lambda_{1}\lambda_{4}x_{e}(1+v_{e}^{2})}{\lambda_{5}(1+W_{1})(1+x_{e}^{2}+y_{e}^{2})} + \dot{v}_{r}\cos\theta_{e} + +h_{\lambda_{3}}'(x_{e})(\omega y_{e} - \nu + \nu_{r}\cos\theta_{e}) + \left[\frac{\lambda_{1}v_{r}y_{e}}{1+x_{e}^{2}+y_{e}^{2}}\int_{0}^{1}\cos(s\theta_{e}(t))ds + h_{\lambda_{2}}(\theta_{e})\right]v_{r}\sin\theta_{e} (39)$$

with $h_{\lambda_6} \in S_{\lambda_6}$, $h_{\lambda_7} \in S_{\lambda_7}$, it follows from (37) that

$$\dot{W}_{2}(t, X_{e}) = -\left(\frac{\lambda_{1}x_{e}h_{\lambda_{3}}(x_{e})}{1 + x_{e}^{2} + y_{e}^{2}} + \theta_{e}h_{\lambda_{2}}(\theta_{e})\right)\frac{\lambda_{4}}{1 + W_{1}} - \omega_{e}h_{\lambda_{6}}(\omega_{e}) - \nu_{e}h_{\lambda_{7}}(\nu_{e})$$
(40)

We are now in a position to state our tracking result for the dynamic model (32).

Proposition 4. Assume that ω_r , $\dot{\omega}_r$, v_r and \dot{v}_r are bounded over $[0, \infty)$. If either $\omega_r(t)$ or $v_r(t)$ does not converge to zero, then the zero equilibrium $X_e =$ 0 of the closed-loop system (32), (38) and (39) is globally asymptotically stable. In particular, given any $u_{1,max} > \sup_{t\geq 0} |\dot{\omega}_r(t)|$ and $u_{2,max} > \sup_{t\geq 0} |\dot{v}_r(t)|$ and any compact set Ω_2 in \mathbb{R}^5 , we can always tune our design parameters λ_1 to λ_7 so that the condition (33) is also met for all trajectories starting from Ω_2 .

PROOF. As in the proof of Proposition 3, the first part of Proposition 4 follows from (40) together with a straightforward application of Barbălat's lemma (Khalil, 1996).

The second part of Proposition 4 is more or less direct from the expressions of the time-varying feedbacks (38) and (39). \Box

3.3 Simulations

To support our results, we simulated the closedloop system (25, 26, 27). The desired trajectory has been given to be $\omega_r(t) = 1$, $\nu_r(t) = 1$, i.e. a circle. Using $\lambda_1 = 1$ and $h_{\lambda_2}(s) = h_{\lambda_3} = \tanh(s)$, which guarantees us that $|\omega(t)| \le 3$ and $|\nu(t)| \le 2$ for all $t \ge 0$, we obtained starting from the initial condition $[x_e(0), y_e(0), \theta_e(0)]^T = [-0.5, 0.5, 1]^T$ the performance as depicted in Figure 3.

We see that the control inputs obviously remain within their bounds and yield a quick convergence to the desired trajectory.

Next, we simulated the closed-loop system (32, 38, 39) where $\lambda_4 = \lambda_5 = 1$ and $h_{\lambda_6}(s) = h_{\lambda_7} = \tanh(s)$, where we want to track the same desired trajectory again. The resulting performance if we start from the initial condition $[x_e(0), y_e(0), \theta_e(0), \omega_e(0), v_e(0)]^T = [-0.5, 0.5, 1, 1, 1]^T$ is depicted in Figure 4.

We see an even quicker convergence of the tracking errors than in the previous case for the kinematic model.

4. CONCLUSIONS

(Semi-)global solutions for the stabilization and tracking problem for the kinematic and simplified dynamic

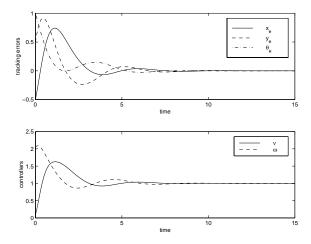


Fig. 3. Tracking of the kinematic model with initial errors $[x_e(0), y_e(0), \theta_e(0)]^T = [-0.5, 0.5, 1]^T$.

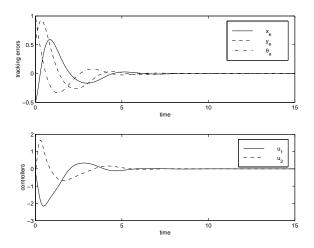


Fig. 4. Tracking of the dynamic model with initial errors $[x_e(0), y_e(0), \theta_e(0), \omega_e(0), \nu_e(0)]^T = [-0.5, 0.5, 1, 1, 1]^T$.

model of a wheeled mobile robot with input saturations are derived. On the basis of these results it becomes plausible that the same problems admit similar solutions if a complete dynamic model for the mobile robot is considered. Further research in this direction is however, still needed.

5. REFERENCES

- Bloch, A.M. and S. Drakunov (1996). Stabilization and tracking in the nonholonomic integrator via sliding modes. *Systems and Control Letters* 29, 91–99.
- Brockett, R.W. (1983). Asymptotic stability and feedback stabilization. In: *Differential Geometric Control Theory* (R.W. Brockett, R.S. Millman and H.J. Sussmann, Eds.). pp. 181–191. Birkhäuser. Boston, MA, USA.
- Canudas de Wit, C., B. Siciliano and G. Bastin (1996). *Theory of Robot Control.* Springer-Verlag. London.

- Coron, J.-M. (1992). Global asymptotic stabilization for controllable nonlinear systems without drift. *Math. Control, Systems Signals* **5**, 295–312.
- Escobar, G., R. Ortega and M. Reyhanoglu (1998). Regulation and tracking of the nonholonomic double integrator: A field-oriented control approach. *Automatica* **34**(1), 125–132.
- Fliess, M., J. Levine, P. Martin and P. Rouchon (1995). Design of trajectory stabilizing feedback for driftless flat systems. In: *Proc. 3rd ECC*. Rome. pp. 1882–1887.
- Jiang, Z.-P. (1996). Iterative design of time-varying stabilizers for multi-input systems in chained form. Systems and Control Letters 28, 255–262.
- Jiang, Z.-P. and H. Nijmeijer (1997). Tracking control of mobile robots: A case study in backstepping. *Automatica* 33(7), 1393–1399.
- Jiang, Z.-P. and J.-B. Pomet (1996). Global stabilization of parametric chained-form systems by timevarying dynamic feedback. *Int. J. Adaptive Contr. Signal Processing* 10, 47–59.
- Jiang, Z. P. and L. Praly (1992). Preliminary results about robust Lagrange stability in adaptive regulation. *International Journal of Adaptive Control* and Signal Processing 6, 285–307.
- Kanayama, Y., Y. Kimura, F. Miyazaki and T. Noguchi (1990). A stable tracking control method for an autonomous mobile robot. In: *Proc. IEEE Int. Conf. Robotics Automation*. pp. 384–389.
- Khalil, H.K. (1996). *Nonlinear Systems*. second ed.. Prentice-Hall. Upper Saddle River, NJ, USA.
- Kolmanovsky, I. and N.H. McClamroch (1995). Developments in nonholonomic control problems. *IEEE Control Systems Magazine* 16(6), 20–36.
- Krstić, M., I. Kanellakopoulos and P. Kokotović (1995). Nonlinear and Adaptive Control Design. John Wiley and Sons.
- Lin, W. (1996). Time-varying feedback control of nonaffine nonlinear systems without drift. *Systems* and Control Letters **29**, 101–110.
- M'Closkey, R.T. and R.M. Murray (1997). Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. *IEEE Trans. Automatic Control* **42**(5), 614–628.
- Panteley, E., E. Lefeber, A. Loría and H. Nijmeijer (1998). Exponential tracking control of a mobile car using a cascaded approach. In: *IFAC Workshop Motion Control*. Grenoble. pp. 221–226.
- Pomet, J. B. (1992). Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. *Systems and Control Letters* 18, 147–158.
- Samson, C. and K. Ait-Abderrahim (1991). Feedback control of a nonholonomic wheeled cart in cartesian space. In: *Proc. IEEE Int. Conf. Robotics Automation*. Sacramento, USA. pp. 1136–1141.
- Walsh, G., D. Tilbury, S. Sastry, R. Murray and J.P. Laumond (1994). Stabilization of trajectories for systems with nonholonomic constraints. *IEEE Trans. Automatic Control* 39(1), 216–222.