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Abstract

We study a problem of estimation of a Hermitian nonnegatively definite matrix
ρ of unit trace (for instance, a density matrix of a quantum system) based on n i.i.d.
measurements (X1, Y1), . . . , (Xn, Yn), where

Yj = tr(ρXj) + ξj , j = 1, . . . , n,

{Xj} being random i.i.d. Hermitian matrices and {ξj} being i.i.d. random variables
with E(ξj |Xj) = 0. The estimator

ρ̂ε := argminS∈S

[
n−1

n∑
j=1

(Yj − tr(SXj))2 + ε tr(S logS)
]

is considered, where S is the set of all nonnegatively definite Hermitian m×m ma-
trices of trace 1. The goal is to derive oracle inequalities showing how the estimation
error depends on the accuracy of approximation of the unknown state ρ by low-rank
matrices.
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1 Introduction

Let Mm(C) be the set of all m×m matrices with complex entries. In what follows, tr(S)
denotes the trace of S ∈ Mm(C) and S∗ denotes its adjoint matrix. Let Hm(C) be the set
of all Hermitian m×m matrices and let S := {S ∈ Hm(C) : S ≥ 0, tr(S) = 1} be the set
of all nonnegatively definite Hermitian matrices of trace 1. The matrices from the set S
can be interpreted, for instance, as density matrices, describing the states of a quantum
system. Let X ∈ Hm(C) be a matrix (an observable) with spectral representation X =∑m

j=1 λjPj , where λj are the eigenvalues of X and Pj are its spectral projectors. Then,
a measurement of X in a state ρ ∈ S would result in outcomes λj with probabilities
tr(ρPj) and its expectation is EρX = tr(ρX). Let X1, . . . , Xn ∈ Hm(C) be given matrices
(observables) and let ρ ∈ S be an unknown state of the system. An important problem
in quantum state tomography is to estimate ρ based on the observations (Xj , Yj), j =
1, . . . , n, where Y1, . . . , Yn are outcomes of measurements of the observables X1, . . . , Xn

for the system identically prepared n times in the state ρ. In other words, the unknown
state ρ of the system is to be learned from a set of linear measurements in a number of
“directions” Xj , j = 1, . . . , n (see Artiles, Gill and Guta (2004) for a general discussion of
statistical problems in quantum state tomography). In what follows, it is assumed that
the design variables X1, . . . , Xn are also random, specifically, they are i.i.d. Hermitian
m×m matrices with distribution Π. In this case, the observations (X1, Y1), . . . , (Xn, Yn)
are i.i.d. and they satisfy the following model

Yj = tr(ρXj) + ξj , j = 1, . . . , n,

ξj , j = 1, . . . , n being i.i.d. random variables with E(ξj |Xj) = 0, j = 1, . . . , n.

A typical choice of the design variables already discussed in the literature (see Gross
et al (2010), Gross (2011)) can be described as follows. The linear space of matrices
Mm(C) can be equipped with the Hilbert-Schmidt inner product: 〈A,B〉 := tr(AB∗). Let
Ei, i = 1, . . . ,m2 be an orthonormal basis of Mm(C) consisting of Hermitian matrices
Ei. Let Xj , j = 1, . . . , n be i.i.d. random variables sampled from a distribution Π on the
set {E1, . . . , Em2}. We will refer to this model as sampling from an orthonormal basis.
Most often, the uniform distribution Π that assigns probability m−2 to each basis matrix
Ei is used. Note that in this case E|〈A,X〉|2 = m−2‖A‖2

2, where ‖ · ‖2 := 〈·, ·〉1/2 is the
Hilbert-Schmidt (or the Frobenius) norm.

The following simple example is related to the problems of matrix completion ex-
tensively discussed in the recent literature (see, e.g., Candes and Recht (2009), Candes
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and Tao (2010) and references therein). More precisely, it deals with a version of matrix
completion for Hermitian matrices (see Gross (2011)).

Example 1. Matrix completion. Let {ei : i = 1, . . . ,m} be the canonical basis
of Cm. Then, the set of Hermitian matrices

{
Ejk : 1 ≤ j, k ≤ m

}
, where

Ejj := ej ⊗ ej , j = 1, . . . ,m, Ejk :=
1√
2

(
ej ⊗ ek + ek ⊗ ej

)
,

Ekj :=
i√
2

(
ej ⊗ ek − ek ⊗ ej

)
, j, k = 1, . . . ,m, j < k,

forms an orthonormal basis of Hm(C). Here and in what follows ⊗ denotes the tensor
product of vectors or matrices. For j < k, the Fourier coefficients of a Hermitian matrix
ρ in this basis are equal to the real and imaginary parts of the entries ρkj , j < k of matrix
ρ multiplied by

√
2; for j = k, they are just the diagonal entries of ρ that are real. If

now Π is the uniform distribution in this basis, then E|〈A,X〉|2 = m−2‖A‖2
2. Sampling

from this distribution is equivalent to sampling at random real and imaginary parts of
the entries of matrix ρ.

Another example was studied by Gross et al (2010) and by Gross (2011). It is more
directly related to the problems of quantum state tomography.

Example 2. Pauli basis. Let m = 2k. Consider the Pauli basis in the space of
2× 2 matrices M2(C): Wi := 1√

2
σi, where

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
and σ4 :=

(
1 0
0 1

)
are the Pauli matrices (they are both Hermitian and unitary). The Pauli basis in M2(C)
can be extended to a basis in the space of m×m matrices Mm(C). These matrices define
linear transformations acting in the linear space Cm = C2k (that is, the k-fold tensor
product of spaces C2 : C2k = (C2)⊗k). Then, the Pauli basis in the space of matrices
M2k(C) consists of all tensor products Wi1 ⊗ · · · ⊗Wik , (i1, . . . , ik) ∈ {1, 2, 3, 4}k. As
before, X1, . . . , Xn are i.i.d. random variables sampled from this basis. Essentially, this
is a standard measurement model for a k qubit system frequently used in quantum infor-
mation, in particular, in quantum state and quantum process tomography (see Nielsen
and Chuang (2000), section 8.4.2).

Example 3. Subgaussian design. Another interesting class of examples includes
subgaussian design matrices X such that 〈A,X〉 is a subgaussian random variable for
each A ∈ Hm(C). (Recall that a random variable η is called subgaussian with parameter
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σ iff, for all λ ∈ R, Eeλη ≤ eλ
2σ2/2). These examples are, probably, of less interest

in applications to quantum state tomography, but this is an important model, closely
related to randomized designs in compressed sensing, for which one can use powerful
tools developed in the high-dimensional probability. For instance, one can consider the
Gaussian design, where X is a symmetric random matrix with real entries such that
{Xij : 1 ≤ i ≤ j ≤ m} are independent centered normal random variables with EX2

ii =
1, i = 1, . . . ,m and EX2

ij = 1
2 , i < j. Alternatively, one can consider the Rademacher

design assuming that Xii = εii, i = 1, . . . ,m and Xij = 1√
2
εij , i < j, where {εij : 1 ≤ i ≤

j ≤ m} are i.i.d. Rademacher random variables (that is, random variables taking values
+1 or −1 with probability 1/2 each). In both cases, E|〈A,X〉|2 = ‖A‖2

2, A ∈ Mm(C)
(such random matrices X will be called isotropic) and 〈A,X〉 is a subgaussian random
variable whose subgaussian parameter is equal to ‖A‖2 (up to a constant).

The problems of this nature belong to a rapidly growing area of low rank matrix
recovery. The most popular methods developed so far are based on nuclear norm regu-
larization. In what follows, the Euclidean norm in the space Cm will be denoted by | · |
and the inner product will be denoted by 〈·, ·〉 (with a little abuse of notation since it
has been already used for the Hilbert–Schmidt inner product between matrices). We will
denote by ‖ · ‖p, p ≥ 1 the Schatten p-norm of matrices in Mm(C) (and, if needed, in

other matrix spaces). Specifically, ‖A‖p :=
(∑m

j=1 λ
p
k(|A|)

)1/p

, where |A| := (A∗A)1/2

and, for a Hermitian matrix B, λk(B), k = 1, . . . ,m are the eigenvalues of B (usually
arranged in the decreasing order). In particular, ‖ ·‖1 is the usual nuclear norm and ‖ ·‖2

is the Hilbert-Schmidt norm. We will use the notation ‖ · ‖ for the operator norm. Given
a design distribution Π, we will write

‖A‖2
L2(Π) :=

∫
〈A, x〉2Π(dx) = E〈A,X〉2, A ∈ Mm(C),

where X is sampled from Π. We will often use the corresponding L2(Π)-distance between
matrices, that represents the prediction error in statistical problems in question.

In the noiseless case (i.e., when ξj ≡ 0), the following estimator of ρ has been
extensively studied, especially, in the case of matrix completion problems (see Candes
and Recht (2009), Candes and Tao (2010), Gross (2011), Recht (2009) and references
therein):

ρ̂ := argmin
{
‖S‖1 : S ∈ Mm(C), 〈S,Xj〉 = Yj , j = 1, . . . , n

}
.

Under so called “low coherence assumptions” on the target matrix ρ, it was shown that,
with a high probability, ρ̂ = ρ provided that the number n of observations is sufficiently
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large. Namely, up to logarithmic factors and constants, it should be of the order mr,
where r is the rank of the target matrix ρ.

In the noisy case, the following penalized least squares estimator, which is akin to
the LASSO used in sparse regression, was proposed and studied (see, e.g., Candes and
Plan (2009), Rohde and Tsybakov (2011), Koltchinskii (2011) and references therein):

ρ̂ε := argminS∈Mm(C)

[
n−1

n∑
j=1

(Yj − tr(SXj))2 + ε‖S‖1

]
, (1.1)

where ε is a regularization parameter. Candes and Plan (2009) have also studied an
estimator based on nuclear norm minimization subject to linear constraints that resem-
bles the Dantzig selector; Rohde and Tsybakov (2011) suggested estimators based on
nonconvex penalties involving Schatten “p-norms” for p < 1; Koltchinskii, Lounici and
Tsybakov (2011) studied a modification of nuclear norm penalized least squares estimator
that requires the precise knowledge of the design distribution.

We will study the following estimator of the unknown state ρ defined as a solution
of a penalized empirical risk minimization problem

ρ̂ε := argminS∈S

[
n−1

n∑
j=1

(Yj − tr(SXj))2 + ε tr(S logS)
]
, (1.2)

where ε > 0 is a regularization parameter. The penalty term is based on the functional
tr(S logS) = −E(S), where E(S) is the von Neumann entropy of state S. Thus, the
method considered in this paper is based on a trade-off between fitting the model by
the least squares in the class of all density matrices and maximizing the entropy of the
state. Note that optimization problem (1.2) is convex (this is based on convexity of the
penalty term that follows from the concavity of von Neumann entropy, see Nielsen and
Chuang (2000)). It is also easy to see that the solution ρ̂ε of (1.2) is always a full rank
matrix (see the proof of Proposition 3). Nevertheless, it will be shown that when the
target matrix ρ is nearly low rank, ρ̂ε is also well approximated by low rank matrices
and the error ‖ρ̂ε − ρ‖2

L2(Π) can be controlled in terms of the “approximate rank” of ρ.

One can also consider a version of optimization problem (1.2) that is further con-
strained to a closed convex subset D ⊂ S of density matrices containing the target
matrix ρ. The analysis of such problems is exactly the same as in the case when D = S,
considered in the paper, and the results are also the same (subject to straightforward
modifications). In particular, when D is the set of all diagonal matrices with nonnegative
diagonal entries summable to 1 and the design matrices Xj are also diagonal, this allows
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one to deduce the results on sparse recovery in convex hulls of finite dictionaries via
entropy penalization that are akin to what was obtained earlier by Koltchinskii (2009).

2 An Overview of Main Results

The results of this paper include oracle inequalities for the L2(Π)-error of the empirical
solution ρ̂ε. They will be stated in a general form in sections 5 and 6. Here we formulate
them only in two of the special examples outlined in the Introduction: random sam-
pling from an orthonormal basis and subgaussian isotropic design (such as Gaussian or
Rademacher). Assume, for simplicity, that the noise {ξj} is a sequence of i.i.d. N(0, σ2

ξ )
random variables independent of (X1, . . . , Xn) (a Gaussian noise).

In what follows, we write f(S) :=
∑m

j=1 f(λj)(φj ⊗ φj) for any Hermitian matrix S
with spectral representation S =

∑m
j=1 λj(φj ⊗ φj) and any function f defined on a set

that contains the spectrum of S.

First, we consider the case of sampling from an orthonormal basis {E1, . . . , Em2} of
Mm(C) (that consists of Hermitian matrices). Let us call the distribution Π in {E1, . . . , Em2}
nearly uniform iff there exist constants c1, c2 > 0 such that max1≤j≤m2 Π({Ej}) ≤ c1m

−2

and ‖A‖2
L2(Π) ≥ c2m

−2‖A‖2
2, A ∈ Hm(C). Clearly, both the matrix completion design

(Example 1) and sampling from the Pauli basis (Example 2) are special cases of sam-
pling from such nearly uniform distributions, so, the next result does apply to these two
examples.

Let t > 0 be fixed and denote tm := t+ log(2m), τn := t+ log log2(2n).

To simplify the bounds, assume that log log2 n ≤ log(2m) (so, τn ≤ tm), that n ≥
mtm log2m, and, finally, that σξ ≥ m−1/2. The last condition just means that the variance
of the noise is not “too small” which allows one to suppress “exponential tail terms” in
Bernstein type inequalities used in the derivation of the bounds.

Recall that ρ ∈ S.

Theorem 1 Suppose that X is sampled at random from a nearly uniform distribution
Π. Then, there exists a constant C > 0 such that, for all ε ∈ [0, 1], with probability at
least 1− e−t,

‖ρ̂ε − ρ‖2
L2(Π) ≤ C

[
ε

(
‖ log ρ‖ ∧ log

(
m

ε

)) ∨
σξ

√
tm
nm

]
. (2.1)

In addition, for all sufficiently large D > 0, there exists a constant C > 0 such that, for
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ε := Dσξ

√
tm
mn , with probability at least 1− e−t,

‖ρ̂ε − ρ‖2
L2(Π) ≤ inf

S∈S

[
2‖S − ρ‖2

L2(Π) + Cσ2
ξ

rank(S)mtm log2(mn)
n

]
. (2.2)

Theorem 1 follows from the results of Section 5 (see theorems 3 and 4, the Remark
after Theorem 4 and Corollary 1). A simple consequence of Theorem 1 is the following
bound

‖ρ̂ε − ρ‖2
L2(Π) ≤ C

[
σξ

√
tm
mn

log(mn)
∧
σ2
ξ

rank(ρ)mtm log2(mn)
n

]
that holds with probability at least 1 − e−t and with some C > 0 for ε = Dσξ

√
tm
mn . It

follows by substituting S = ρ in bound (2.2) and combining it with (2.1).

Next we consider the case of subgaussian isotropic design for which ‖A‖L2(Π) =
‖A‖2, A ∈ Mm(C). To simplify the bounds, we assume again that the noise is Gaussian.

Theorem 2 Suppose X is a subgaussian isotropic matrix. There exist constants C >

0, c > 0 such that the following holds. Under the assumptions that τn ≤ cn and tm ≤ n,

for all ε ∈ [0, 1], with probability at least 1− e−t

‖ρ̂ε − ρ‖2
L2(Π) ≤ C

(
ε

(
‖ log ρ‖ ∧ log

m

ε

) ∨
σξ

√
mtm
n

∨
(σξ ∨

√
m)

√
m(τn log n ∨ tm)

n

)]
. (2.3)

Moreover, there exist a constant c > 0 and, for all sufficiently large D > 0, a constant
C > 0 such that, for ε := Dσξ

√
mtm
n , with probability at least 1− e−t,

‖ρ̂ε−ρ‖2
L2(Π) ≤ inf

S∈S

[
2‖S−ρ‖2

L2(Π)+C
(
σ2
ξ rank(S)mtm log2(mn)

n

∨ m(τn log n ∨ tm)
n

)]
.

(2.4)

This theorem follows from the results of Section 6 (see theorems 5, 6 and Corollary
3). As it was the case with Theorem 1, one cas easily derive from Theorem 2 (by sub-
stituting S = ρ in (2.4) and combining it with (2.3)) the following inequality that holds,
for ε := Dσξ

√
mtm
n , with probability at least 1− e−t and with some C > 0 :

‖ρ̂ε−ρ‖2
L2(Π) ≤ C

[(
σξ

√
mtm
n

log
m

ε

∧ σ2
ξ rank(ρ)mtm log2(mn)

n

) ∨ m(τn log n ∨ tm)
n

]
.
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Note that the first bounds of theorems 1 and 2 (bounds (2.1) and (2.3)) hold for
all ε ≥ 0, even in the case of unpenalized least squares estimator with ε = 0. The
random error parts of these bounds are (up to logarithmic factors) of the order n−1/2 as
n → ∞. Bounds (2.2) and (2.4) are based on more subtle analysis taking into account
the ranks of oracles S approximating the true density matrix ρ. In these bounds, the size
of the L2(Π)-error ‖ρ̂ε−ρ‖2

L2(Π) is determined by a trade-off between the approximation
error ‖S − ρ‖2

L2(Π) of an oracle S and the random error. In the case of bounds (2.2)

and (2.4), the last error is of the order
σ2
ξ rank(S)m

n (up to logarithmic factors), and it
depends on the rank of the oracle S. In particular, taking S = ρ, we can conclude
that ‖ρ̂ε − ρ‖2

L2(Π) is bounded by
σ2
ξ rank(ρ)m

n (up to constants and logarithmic factors).
This means that von Neumann entropy penalization mimics oracles that know precisely
which low rank matrices approximate ρ well and can estimate ρ by estimating a “small”
number of parameters needed to describe such oracles. This is comparable with recent
results for nuclear norm penalization. For instance, Candes and Plan (2009) obtained
low rank oracle inequalities for the Frobenius norm under subgaussian type assumptions;
Rohde and Tsybakov (2011) proved low rank bounds for the empirical prediction error;
Koltchinskii, Lounici and Tsybakov (2011) obtained bounds of the same flavor as in
theorems 2, 1, but for a modification of nuclear norm penalized least squares estimator
in the case of known design distribution; Negahban and Wainwright (2010) proved similar
inequalities for a version of nuclear penalization method with further constraints on the
`∞-norm of the matrix. Depending on the values of σξ,m, n and other characteristics
of the problem more “rough” bounds (2.1) and (2.3) might become even sharper than
more “subtle” bounds (2.2) and (2.4) (see Rohde and Tsybakov (2011) for a discussion
of a similar phenomenon). Thus, the rate of convergence of the L2(Π)-error to zero in a
particular asymptotic scenario (when certain characteristics are large) is determined by
the bounds of both types.

Theorems 1, 2 and other results of a similar nature will follow as corollaries from
more general oracle inequalities that we establish under broader assumptions on the de-
sign distributions and on the noise. To prove these results, we need several tools from the
empirical processes and random matrices theory, such as noncommutative Bernstein type
inequalities and generic chaining bounds for empirical processes. We will discuss these
results in Section 3 (as well as some properties of noncommutative Kullback-Leibler,
Hellinger and other distances between density matrices). We will then study approxi-
mation error bounds for the solution of von Neumann entropy penalized true risk min-
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imization problem (Section 4) and, finally, in sections 5 and 6, derive main results of
the paper concerning random error bounds for the empirical solution ρ̂ε. More precisely,
we bound the squared L2(Π)-distance ‖ρ̂ε − S‖2

L2(Π) and symmetrized Kullback-Leibler
distance K(ρ̂ε;S) from ρ̂ε to an arbitrary “oracle” S ∈ S and derive oracle inequalities
for the squared L2(Π)-error ‖ρ̂ε − ρ‖2

L2(Π) of the empirical solution ρ̂ε. These results are
first established for oracles S of full rank and expressed in terms of certain characteristics
of the operator logS (which is, essentially, a subgradient of the von Neumann entropy
penalty used in (1.2)). Using simple techniques discussed in Section 4, we then develop
the bounds for low rank oracles S (such as the bounds of theorems 1 and 2) and also
obtain oracle inequalities for so called “Gibbs oracles”.

Recently, several authors obtained minimax lower bounds on the errors of low rank
matrix recovery, in particular, in matrix completion problems (see Rohde and Tsybakov
(2011), Negahban and Wainwright (2010), Koltchinskii, Lounici and Tsybakov (2011)
and references therein). Although it was not our goal in this paper, it would not be hard
to extend these results to the framework of low rank density matrix estimation showing
the optimality (up to logarithmic factors) of the main terms of our L2(Π)-error bounds.

It is worth mentioning that the results of sections 4, 5 provide a way to bound
the error of estimator ρ̂ε not only in the L2(Π)-distance, but also in other statistically
important distances such as noncommutative Kullback-Leibler, Hellinger and nuclear
norm distance.1 For instance, under the assumptions of Theorem 2, the following bound
for the Kullback-Leibler distance holds with probability at least 1− e−t

K(ρ‖ρ̂ε) := Eρ(log ρ− log ρ̂ε) ≤ C

ε

[
σ2
ξ rank(ρ)mtm log2(mn)

n

∨ m(τn log n ∨ tm)
n

]
(2.5)

for ε := Dσξ

√
mtm
n . In the case of sampling from a nearly uniform distribution in an

orthonormal basis (as in Theorem 1), it is easy to derive from Theorem 4 of Section 5
(using also some bounds from the proofs of Proposition 4 and Corollary 1) the following
bound on the squared Hellinger distance between ρ̂ε and ρ :

H2(ρ̂ε; ρ) ≤ Cσξ
rank(ρ)m3/2t

1/2
m log2(mn)√
n

that holds with probability at least 1− e−t for ε = Dσξ

√
tm
mn .

1A possibility to control Kullback-Leibler and Hellinger distances can be viewed as an advantage of
von Neumann entropy penalization method.
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3 Preliminaries: Distances in S, Empirical Processes and
Exponential Inequalities for Random Matrices

Noncommutative Kullback-Leibler and other distances. We will use noncommu-
tative extensions of classical distances between probability distributions such as Kullback-
Leibler and Hellinger distances. These extensions are common in quantum information
theory (see Nielsen and Chuang (2000)). In particular, we will use the symmetrized
Kullback-Leibler distance between two states S1, S2 ∈ S defined as

K(S1;S2) := ES1(logS1 − logS2) + ES2(logS2 − logS1) = tr((S1 − S2)(logS1 − logS2)).

We will also use a noncommutative version of Hellinger distance defined as follows. For

any two states S1, S2 ∈ S, let F (S1, S2) := tr
√
S

1/2
1 S2S

1/2
1 . This quantity is called the

fidelity of states S1, S2 (see, e.g., Nielsen and Chuang (2000), p. 409). Then, a natural def-
inition of the squared Hellinger distance is H2(S1, S2) := 2(1−F (S1, S2)). A remarkable
property of this distance is that

H2(S1, S2) = supH2({pi}; {qi}) = sup
∑
i

(√
pi −

√
qi

)2
,

where the supremum is taken over all POVMs {Ei} (positive operator valued measures)2

and pi := tr(S1Ei), qi := tr(S2Ei). Thus, the quantum Hellinger distance is just the
largest “classical” Hellinger distance between the probability distributions {pi}, {qi} of
a “measurement” {Ei} in the states S1, S2 (see Nielsen and Chuang (2000), p. 412). The
same property also holds for two other important “distances”, the trace distance ‖S1 −
S2‖1 and the Kullback-Leibler distance K(S1;S2) (see, e.g., Klauck et al (2007)). These
properties immediately imply an extension of classical inequalities for these distances:

‖S1 − S2‖2
1 ≤ H2(S1, S2) ≤ K(S1;S2).

They also imply the following simple proposition used below. It shows that, if two matri-
ces S1, S2 are close in the Hellinger distance and one of them (say, S2) is “approximately
low rank” in the sense that there exists a subspace L ⊂ Cm of small dimension such that
‖PL⊥S2PL⊥‖1 is small, then another matrix S1 is also “approximately low rank” with
the same “support” L. 3

2In the discrete case, a positive operator valued measure is a set {Ei} of Hermitian nonnegatively
definite matrices such that

P
iEi = I.

3Here and in what follows PL denotes the orthogonal projection onto L and L⊥ denotes the orthogonal
complement of L.
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Proposition 1 For all subspaces L ⊂ Cm and all S1, S2 ∈ S,

‖PLS1PL‖1 ≤ 2‖PLS2PL‖1 + 2H2(S1, S2).

Proof. Indeed, take an orthonormal basis {e1, . . . , em} in Cm such that L = l.s.({e1, . . . , ek}).
Let pj := 〈S1ej , ej〉 = tr(S1(ej ⊗ ej)) and qj := 〈S2ej , ej〉 = tr(S2(ej ⊗ ej)). Then

H2(S1, S2) ≥
m∑
j=1

(√
pj −

√
qj

)2
≥

k∑
j=1

(√
pj −

√
qj

)2
=

k∑
j=1

pj +
k∑
j=1

qj − 2
k∑
j=1

√
pj
√
qj ,

which implies (using that 2
√
ab ≤ a/2 + 2b)

‖PLS1PL‖1 =
k∑
j=1

pi ≤ 2
k∑
j=1

√
pj
√
qj −

k∑
j=1

qj +H2(S1, S2) ≤

1
2

k∑
j=1

pj +
k∑
j=1

qj +H2(S1, S2) =
1
2
‖PLS1PL‖1 + ‖PLS2PL‖1 +H2(S1, S2),

and the result follows.

Empirical processes bounds. We will use several inequalities for empirical pro-
cesses indexed by a class of measurable functions F defined on an arbitrary measurable
space (S,A). Let X,X1, . . . , Xn be i.i.d. random variables in (S,A) with common dis-
tribution P. If F is uniformly bounded by a number U, then Bousquet’s version of the
famous Talagrand’s concentration inequality for empirical processes implies that, for all
t > 0, with probability at least 1− e−t

sup
f∈F

∣∣∣∣n−1
n∑
j=1

f(Xj)− Ef(X)
∣∣∣∣ ≤ 2

[
E sup
f∈F

∣∣∣∣n−1
n∑
j=1

f(Xj)− Ef(X)
∣∣∣∣ + σ

√
t

n
+ U

t

n

]
,

where σ2 := supf∈F VarP (f(X)). We will also need a version of this bound for function
classes that are not necessarily uniformly bounded. Such a bound was recently proved
by Adamczak (2008). Recall that, for a convex increasing function ψ with ψ(0) = 0,

‖f‖ψ := inf
{
C > 0 :

∫
S
ψ

(
|f |
C

)
dP ≤ 1

}
(see van der Vaart and Wellner (1996), p. 95). If ψ(u) = up, u ≥ 0, for some p ≥ 1,
the corresponding ψ-norm is just the Lp-norm. Other important choices are functions
ψα(t) = et

α − 1, t ≥ 0, α ≥ 1, especially, ψ2 that is related to subgaussian tails of f
and ψ1 that is related to subexponential tails. Let F (x) ≥ supf∈F |f(x)|, x ∈ S, be an

11



envelope of the class. It follows from Theorem 4 of Adamczak (2008) that there exists a
constant K > 0 such that for all t > 0 with probability at least 1− e−t

sup
f∈F

∣∣∣∣n−1
n∑
j=1

f(Xj)−Ef(X)
∣∣∣∣ ≤ K

[
E sup
f∈F

∣∣∣∣n−1
n∑
j=1

f(Xj)−Ef(X)
∣∣∣∣+σ

√
t

n
+

∥∥∥ max
1≤j≤n

|F (Xj)|
∥∥∥
ψ1

t

n

]
.

In addition to this, we will need bounds on empirical processes indexed by the class
of “squares” {f2 : f ∈ F} for a given function class F . A usual approach to this prob-
lem is based on combining of symmetrization inequality with Talagrand’s comparison
(contraction) inequality for Rademacher sums (see, e.g., Ledoux and Talagrand (1991),
Section 4.5). This, however, would require the class F to be uniformly bounded by a
relatively small constant U > 0, which is not sufficient in the case of subgaussian design
considered in the last section. A more subtle approach has been developed in the recent
years by Klartag and Mendelson (2005), Mendelson (2010) and it is based on generic
chaining bounds. Talagrand’s generic chaining complexity (see Talagrand (2005)) of a
metric space (T, d) is defined as follows. An admissible sequence {∆n}n≥0 is an increasing
sequence of partitions of T (i.e., each next partition is a refinement of the previous one)
such that card(∆0) = 1 and card(∆n) ≤ 22n , n ≥ 1. For t ∈ T, ∆n(t) denotes the unique
subset in ∆n that contains t. For a set A ⊂ T, D(A) denotes its diameter. Then, define
the generic chaining complexity γ2(T ; d) as

γ2(T ; d) := inf
{∆n}n≥0

sup
t∈T

∑
n≥0

2n/2D(∆n(t)),

where the inf is taken over all admissible sequences of partitions.

The generic chaining complexities were used by Talagrand (2005) to characterize
the size of the expected sup-norms of Gaussian processes. Similar quantities can be also
used to control the size of empirical processes indexed by a function class F . It is natural
to define γ2(F ;L2(P )), that is, γ2(F ; d), where d is the L2(P )-distance. Some other
distances are also useful, for instance, the ψ2-distance associated with the probability
space (S,A, P ). The generic chaining complexity that corresponds to the ψ2-distance will
be denoted by γ2(F ;ψ2). Mendelson (2010) proved the following deep result. Suppose
that F is a symmetric class, that is, f ∈ F implies −f ∈ F , and Pf = Ef(X) = 0, f ∈ F .
Then, for some universal constant K > 0,

E sup
f∈F

∣∣∣∣n−1
n∑
j=1

f2(Xj)− Ef2(X)
∣∣∣∣ ≤ K

[
sup
f∈F

‖f‖ψ1

γ2(F ;ψ2)√
n

∨ γ2
2(F ;ψ2)
n

]
.
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Noncommutative Bernstein type inequalities. We will need an operator ver-
sion of Bernstein’s inequality which is due to Ahlswede and Winter (2002) (and which
has been already successfully used in the low rank recovery problems by Gross et al
(2010), Gross (2011), Recht (2009)). Assume that X,X1, . . . , Xn are i.i.d. random Her-
mitian m×m matrices with EX = 0 and σ2

X := ‖EX2‖. The following bound is an easy
consequence of Bernstein type inequality of Ahlswede and Winter (2002): for all t > 0,
with probability at least 1− e−t∥∥∥∥X1 + · · ·+Xn

n

∥∥∥∥ ≤ 2
(
σX

√
t+ log(2m)

n

∨
U
t+ log(2m)

n

)
. (3.1)

Moreover, it is possible to replace the L∞-bound U on ‖X‖ in the above inequality by
bounds on the weaker ψα-norms (see also Koltchinskii (2011)). Namely, suppose that,
for α ≥ 1 and for some constant U (α)

X , U
(α)
X ≥ max

(∥∥∥‖X‖∥∥∥
ψα
, 2E1/2‖X‖2

)
.

Proposition 2 Let α ≥ 1. There exists a constant C > 0 such that, for all t > 0, with
probability at least 1− e−t∥∥∥∥X1 + · · ·+Xn

n

∥∥∥∥ ≤ C

(
σX

√
t+ log(2m)

n

∨
U

(α)
X

(
log

U
(α)
X

σX

)1/α t+ log(2m)
n

)
. (3.2)

Proof. Similarly to the proof of (3.1) discussed in the literature (Ahlswede and
Winter (2002), Gross (2011)), we follow the standard derivation of classical Bernstein’s
inequality and we use the well known Golden-Thompson inequality 4 (see, e.g., Simon
(1979), p. 94): for arbitrary A,B ∈ Hm(C), tr(eA+B) ≤ tr(eAeB). Let Yn := X1+· · ·+Xn.

Note that ‖Yn‖ < t if and only if −tIm < Yn < tIm (here and in what follows A < B

means that B −A is positively definite). Therefore,

P{‖Yn‖ ≥ t} ≤ P{Yn 6< tIm}+ P{Yn 6> −tIm}. (3.3)

The following bounds are straightforward by simple matrix algebra:

P{Yn 6< tIm} = P{eλYn 6< eλtIm} ≤ P
{

tr
(
eλYn

)
≥ eλt

}
≤ e−λtEtr(eλYn). (3.4)

To bound the expected value in the right hand side, we use independence of random
variables X1, . . . , Xn and Golden-Thompson inequality:

Etr(eλYn) = Etr
(
eλYn−1+λXn

)
≤ Etr

(
eλYn−1eλXn

)
= tr

(
E

(
eλYn−1eλXn

))
=

4See Oliveira (2010), Tropp (2010), Koltchinskii (2011) for other approahes that do not rely on
Golden-Thompson inequality.
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tr
(

EeλYn−1EeλXn
)
≤ Etr

(
eλYn−1

)∥∥∥EeλXn
∥∥∥.

Since Etr
(
eλX1

)
= tr

(
EeλX1

)
≤ m

∥∥∥EeλX
∥∥∥, it is easy to conclude by induction that

Etr(eλYn) ≤ m
∥∥∥EeλX

∥∥∥n. (3.5)

It remains to bound the norm ‖EeλX‖. To this end, we use Taylor expansion and the
condition EX = 0 to get

EeλX = Im + Eλ2X2

[
1
2!

+
λX

3!
+
λ2X2

4!
+ . . .

]
≤

Im + λ2EX2

[
1
2!

+
λ‖X‖

3!
+
λ2‖X‖2

4!
+ . . .

]
= Im + λ2EX2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]
.

Therefore, for all τ > 0,∥∥∥EeλX
∥∥∥ ≤ 1 + λ2

∥∥∥∥EX2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]∥∥∥∥ ≤
1 + λ2

∥∥∥EX2
∥∥∥[
eλτ − 1− λτ

λ2τ2

]
+ λ2E‖X‖2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]
I(‖X‖ ≥ τ).

Let M := 2(log 2)1/αU (α)
X and assume that λ ≤ 1/M. Then

E‖X‖2

[
eλ‖X‖ − 1− λ‖X‖

λ2‖X‖2

]
I(‖X‖ ≥ τ) ≤M2E1/2e2‖X‖/MP1/2{‖X‖ ≥ τ}.

Since, for α ≥ 1, M = 2(log 2)1/αU (α)
X ≥ 2

∥∥∥‖X‖∥∥∥
ψ1

(see van der Vaart and Wellner

(1996), p. 95), we have Ee2‖X‖/M ≤ 2 and also P{‖X‖ ≥ τ} ≤ exp
{
−2α log 2

(
τ
M

)α}
.

As a result, we get the following bound∥∥∥EeλX
∥∥∥ ≤ 1 + λ2σ2

X

[
eλτ − 1− λτ

λ2τ2

]
+ 21/2λ2M2 exp

{
−2α−1 log 2

(
τ

M

)α}
.

Let τ := M 21/α−1

(log 2)1/α
log1/α M2

σ2
X

and suppose that λ satisfies the condition λτ ≤ 1. Then,
the following bound holds with some constant C1 > 0 :∥∥∥EeλX

∥∥∥ ≤ 1 + C1λ
2σ2
X ≤ exp{C1λ

2σ2
X}.

Thus, we proved that there exist constants C1, C2 > 0 such that, for all λ satisfying the
condition

λ U
(α)
X

(
log

U
(α)
X

σX

)1/α

≤ C2, (3.6)
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we have
∥∥∥EeλX

∥∥∥ ≤ exp{C1λ
2σ2
X}. This can be combined with (3.3), (3.4) and (3.5) to

get
P{‖Yn‖ ≥ t} ≤ 2m exp

{
−λt+ C1λ

2nσ2
X

}
.

It remains now to minimize the last bound with respect to all λ satisfying (3.6) to get
that, for some constant K > 0,

P{‖Yn‖ ≥ t} ≤ 2m exp
{
− 1
K

t2

nσ2
X + tU

(α)
X log1/α(U (α)

X /σX)

}
,

which immediately implies (3.2).

Note that, in the limit α → ∞, inequality (3.2) coincides with (3.1) (up to a con-
stant).

4 Approximation Error

A natural first step in the analysis of the problem is to study its version with the true
risk instead of the empirical risk. The true risk with respect to the quadratic loss is equal
to E(Y −〈S,X〉)2 = E〈S−ρ,X〉2 +Eξ2, where we used the assumption that E(ξ|X) = 0.
Thus, the penalized true risk minimization problem becomes

ρε := argminS∈SL(S), L(S) := E〈S − ρ,X〉2 + ε tr(S logS) (4.1)

and the goal is to study the error of approximation of ρ by ρε depending on the value
of regularization parameter ε > 0. The next proposition shows that if there exists an
oracle S ∈ S that provides a good approximation of the target matrix ρ in a sense that
‖S− ρ‖L2(Π) is small, then ρε belongs to an L2(Π)-ball around S of small enough radius
that can be controlled in terms of the operator norm ‖ logS‖ or in terms of more subtle
characteristics of the oracle S. It also provides upper bounds on the Kullback-Leibler
distance K(ρε;S) to the oracle and on the approximation error ‖ρε − ρ‖L2(Π). We will
first obtain such bounds for an arbitrary oracle S ∈ S of full rank expressed in terms of
the operator norm ‖ logS‖ of its logarithm. For simplicity, we assume that ‖ logS‖ = +∞
in the case when rank(S) < m (and logS is not defined). Note, however, that tr(S logS)
is well defined and finite even in the case when rank(S) < m. To obtain more subtle
bounds with approximation error of the order O(ε2) instead of O(ε), we introduce and
use the following quantity

a(W ) := aΠ(W ) := aX(W ) := sup
{
〈W,U〉 : U ∈ Hm(C), tr(U) = 0, ‖U‖L2(Π) = 1

}
,
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which will be called the alignment coefficient of W. This is a straightforward extension
of similar quantities in the commutative case (Koltchinskii (2009)). Note that, for all
constants c,

a(W + cIm) = a(W ) (4.2)

(since 〈Im, U〉 = 0 for all U of zero trace). In addition, we have

acX(W ) =
1
|c|
aX(W ), c 6= 0. (4.3)

Let {Ei : i = 1, . . . ,m2} be an orthonormal basis of Mm(C) consisting of Hermitian

matrices and let K :=
(
〈Ej , Ek〉L2(Π)

)m2

j,k=1
be the Gram matrix of the functions {〈Ej , ·〉 :

j = 1, . . . ,m2} in the space L2(Π). Clearly, the mapping J : Mm(C) 7→ `m
2

2 (C),

JU =
(
〈U,Ej〉 : j = 1, . . . ,m2

)
, U ∈ Mm(C),

is an isometry. If now we define K̄ : Mm(C) 7→ Mm(C) as K̄ := J−1KJ, then we also
have K̄1/2 = J−1K1/2J, K̄−1/2 = J−1K−1/2J. As a consequence, for any matrix U =∑m2

j=1 ujEj ,

‖U‖2
L2(Π) =

m2∑
j,k=1

〈Ej , Ek〉L2(Π)uj ūk = 〈Ku, u〉`2 = ‖K1/2u‖2
`2 = ‖K̄1/2U‖2

2,

and it is not hard to conclude that a(W ) ≤ ‖K̄−1/2W‖2. Moreover, in view of (4.2), for
an arbitrary scalar c, a(W ) ≤ ‖K̄−1/2(W + cIm)‖2. This shows that the size of a(W )
depends on how W is “aligned” with the eigenspaces of the Gram matrix K. In a special
case when, for all A, ‖A‖L2(Π) = ‖A‖2, the functions {〈Ej , ·〉 : j = 1, . . . ,m2} form an
orthonormal system in L2(Π) and K is the identity matrix. In this case, we simply have
the bound a(W ) ≤ infc ‖W + cIm‖2.

Proposition 3 For all S ∈ S,

‖ρε − ρ‖2
L2(Π) + ‖ρε − S‖2

L2(Π) + εK(ρε;S) ≤ ‖S − ρ‖2
L2(Π) + 2ε‖ logS‖.

Moreover, for all S ∈ S,

‖ρε − S‖2
L2(Π) + 2εK(ρε;S) ≤ 2‖S − ρ‖2

L2(Π) + ε2a2(logS)

and

‖ρε − ρ‖2
L2(Π) ≤ inf

S∈S

[
‖S − ρ‖2

L2(Π) +
ε2

4
a2(logS)

]
.
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For a differentiable mapping g from an open subset G ⊂ Mm(C) into Mm(C), denote
by Dg(A;H) its differential at a matrix A ∈ G in the direction H ∈ Mm(C), that is,
g(A+H) = g(A)+Dg(A;H)+ o(‖H‖) as ‖H‖ → 0 and Dg(A;H) is linear with respect
to H. The following lemma is a simple corollary of Theorem V.3.3 in Bhatia (1996):

Lemma 1 Let f be a function continuously differentiable in an open interval I ⊂ R.
Suppose that A is a Hermitian matrix whose spectrum belongs to I. Then the mapping
B 7→ g(B) := tr(f(B)) is differentiable at A and Dg(A;H) = tr(f ′(A)H).

Proof of Proposition 3. It is easy to see that the solution ρε of problem (4.1) is
a full rank matrix. To prove this, assume that rank(ρε) < m. Let ρ̃ := (1 − δ)ρε + δIm,

where Im is the m×m identity matrix. Then, for small enough δ, ρ̃ is a full rank matrix
and it is straightforward to show that the penalized risk L(ρ̃) is strictly smaller than
L(ρε) (for some small δ > 0). It is also easy to check that, for any S ∈ S of full rank,
the differential of the functional L in the direction ν ∈ Mm(C) is equal to

DL(S; ν) = 2E〈S − ρ,X〉〈ν,X〉+ ε tr(ν(logS + Im)).

This follows from the fact that the first term of the functional L is differentiable since it
is quadratic. The differentiability of the penalty term is based on Lemma 1 (it is enough
to apply this lemma to the function f(u) = u log u). Since ρε is the minimal point of L
in S, we can conclude that, for an arbitrary S ∈ S, DL(ρε;S−ρε) ≥ 0. This implies that
DL(S;S − ρε)−DL(ρε;S − ρε) ≤ DL(S;S − ρε), which, by a simple algebra, becomes

2‖S − ρε‖2
L2(Π) + εK(S; ρε) ≤ 2〈S − ρ, S − ρε〉L2(Π) + ε 〈S − ρε, logS〉. (4.4)

Taking into account that

2〈S − ρ, S − ρε〉L2(Π) = ‖ρε − S‖2
L2(Π) + ‖S − ρ‖2

L2(Π) − ‖ρε − ρ‖L2(Π),

(4.4) can be rewritten as

‖ρε − ρ‖2
L2(Π) + ‖ρε − S‖2

L2(Π) + εK(S; ρε) ≤ ‖S − ρ‖2
L2(Π) + ε 〈S − ρε, logS〉. (4.5)

The first inequality of the proposition immediately follows from (4.5) since∣∣∣〈S − ρε, logS〉
∣∣∣ ≤ ‖ logS‖‖S − ρε‖1 ≤ 2‖ logS‖.

To prove the remaining bounds, note that by the definition of alignment coefficient

ε
∣∣∣〈S − ρε, logS〉

∣∣∣ ≤ εa(logS)‖ρε − S‖L2(Π),
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and, using an elementary bound

εa(logS)‖ρε − S‖L2(Π) ≤
ε2a2(logS)

2α2
+
α2

2
‖ρε − S‖2

L2(Π)

for α = 1 and α =
√

2, it is easy to complete the proof.

A consequence of Proposition 3 is that ‖ρε − ρ‖2
L2(Π) ≤

ε2

4 a
2(log ρ) ∧ ε‖ log ρ‖.

We will now provide versions of approximation error bounds for special types of
oracles S ∈ S.

Low Rank Oracles. First we show how to adapt the bounds of Proposition 3
expressed in terms of the alignment coefficient a(logS) for a full rank matrix S (for
which logS is well defined) to the case when S is an oracle of a small rank r < m.

For a subspace L of Cm, denote Λ(L) := sup‖A‖L2(Π)≤1 ‖PLAPL‖2. Suppose that S ∈ S
is a matrix of rank r. To be specific, let S =

∑r
j=1 γj(ej ⊗ ej), where γj are positive

eigenvalues of S and {e1, . . . , em} is an orthonormal basis of Cm. Let L be the linear
span of the vectors e1, . . . , er.

Proposition 4 There exists a numerical constant C > 0 such that, for all ε > 0,

‖ρε − ρ‖2
L2(Π) ≤

(
‖S − ρ‖L2(Π) + CE1/2‖X‖2ε

)2
+ Cε2Λ2(L)r log2

(
1 +

m

ε ∧ 1

)
.

Proof. Note that, for all matrices W of rank r “supported” in the space L in the
sense that W = PLWPL, we have

a(W ) ≤ sup
‖U‖L2(Π)≤1

〈W,U〉 = sup
‖U‖L2(Π)≤1

〈W,PLUPL〉 ≤ Λ(L)‖W‖2.

For δ ∈ (0, 1), consider Sδ := (1 − δ)S + δ Imm . Then, using the fact that a(W + cIm) =
a(W ), we get

logSδ =
r∑
j=1

(
log((1− δ)γj + δ/m)− log(δ/m)

)
(ej ⊗ ej) + log(δ/m)Im

and

a(logSδ) = a

( r∑
j=1

(
log((1− δ)γj + δ/m)− log(δ/m)

)
(ej ⊗ ej)

)
≤

Λ(L)
∥∥∥∥ r∑
j=1

(
log((1− δ)γj + δ/m)− log(δ/m)

)
(ej ⊗ ej)

∥∥∥∥
2

≤
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Λ(L)
( r∑
j=1

log2

(
1 +

mγj
δ

))1/2

≤ Λ(L)
√
r log

(
1 +

m‖S‖
δ

)
.

Note also that ‖S − Sδ‖2
L2(Π) = δ2‖S − Im/m‖2

L2(Π) ≤ 4δ2E‖X‖2, since

‖S − Im/m‖2
L2(Π) ≤ 2(E〈S,X〉2 + E〈Im/m,X〉2) ≤

2(‖S‖2
1E‖X‖2 + ‖Im/m‖2

1E‖X‖2) ≤ 4E‖X‖2.

Thus, it easily follows from the last bound of Proposition 3 that

‖ρε − ρ‖2
L2(Π) ≤ ‖Sδ − ρ‖2

L2(Π) + (ε2/4)a2(logSδ) ≤(
‖S − ρ‖L2(Π) + ‖Sδ − S‖L2(Π)

)2
+ (ε2/4)Λ2(L)r log2

(
1 +

m

δ

)
.

Taking δ = ε ∧ 1 and using the bound on ‖S − Sδ‖L2(Π), this yields the claim of the
proposition.

Note that if {Ei, i = 1, . . . ,m2} is an orthonormal basis of Mm(C) consisting
of Hermitian matrices and X is uniformly distributed in {Ei, i = 1, . . . ,m2}, then,
for all Hermitian A, ‖A‖2

L2(Π) = m−2‖A‖2
2. Therefore Λ(L) ≤ sup‖A‖L2(Π)≤1 ‖A‖2 =

sup‖A‖2≤m ‖A‖2 = m. Also, in this case ‖X‖ ≤ ‖X‖2 = 1. Thus, Proposition 4 yields

‖ρε − ρ‖2
L2(Π) ≤ (‖S − ρ‖L2(Π) + Cε)2 + Cm2rε2 log2

(
1 +

m

ε ∧ 1

)
.

Gibbs Oracles. Let H be a Hermitian matrix (“a Hamiltonian”) and let β > 0.
Consider the following density matrix (a “Gibbs oracle”): ρH,β := e−βH

tr(e−βH)
. For simplicity,

assume in what follows that β = 1 (in fact, one can always replace H by βH) and denote
ρH := e−H

tr(e−H)
. Let γ1 ≤ γ2 ≤ · · · ≤ γm be the eigenvalues of H and e1, . . . , em be the

corresponding eigenvectors. Let Lr = l.s.({e1, . . . , er}) and

H≤r :=
r∑
j=1

γj(ej ⊗ ej), H>r :=
m∑

j=r+1

γj(ej ⊗ ej).

It is easy to see that

‖PL⊥r ρHPL⊥r ‖1 =

∑
k≥r+1 e

−γk∑
k≥1 e

−γk
=: δr(H).

Denote δ̃r(H) := max1≤k≤m E1/2〈Xek, ek〉2δr(H). Under reasonable conditions on the
spectrum of H, the quantity δ̃r(H) decreases fast enough when r increases. Thus, ρH
can be well approximated by low rank matrices.
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The next statement follows immediately from Proposition 3. Here the unknown
density matrix ρ is approximated by a Gibbs model with an arbitrary Hamiltonian. The
error is controlled in terms of the L2(Π)-distance between ρ and the oracle ρH and also in
terms of the alignment coefficient a(H≤r) for a “low rank part” H≤r of the Hamiltonian
H and the quantity δr(H).

Proposition 5 For all Hermitian nonnegatively definite matrices H and for all ε > 0,

‖ρε − ρ‖2
L2(Π) ≤

(
‖ρH − ρ‖L2(Π) + 2δ̃r(H)

)2
+ a2(H≤r)ε2.

Proof. We will use the last bound of proposition 3 with S = ρH≤r . Note that

a(log ρH≤r) = a(−H≤r − log tr(e−H≤r)Im) = a(H≤r).

Therefore, we have ‖ρε−ρ‖2
L2(Π) ≤ ‖ρH≤r −ρ‖2

L2(Π) +(ε2/4)a2(H≤r). In addition to this,

‖ρH − ρH≤r‖L2(Π) =
∥∥∥∥∑m

k=1 e
−γk(ek ⊗ ek)∑m
k=1 e

−γk
−

∑r
k=1 e

−γk(ek ⊗ ek)∑r
k=1 e

−γk

∥∥∥∥
L2(Π)

,

which can be easily bounded from above by

2δr(H) max
1≤k≤m

‖ek ⊗ ek‖L2(Π) = 2δr(H) max
1≤k≤m

E1/2〈Xek, ek〉2 = 2δ̃r(H).

The result follows immediately.

5 Random Error Bounds and Oracle Inequalities

We now turn to the analysis of random error of the estimator ρ̂ε. We obtain upper
bounds on the L2(Π) and Kullback-Leibler distances of this estimator to an arbitrary
oracle S ∈ S of full rank, and, as a consequence, oracle inequalities for the empirical
solution ρ̂ε. The size of both errors ‖ρ̂ε − S‖2

L2(Π) and K(ρ̂ε;S) will be controlled in
terms of the squared L2(Π)-distance ‖S − ρ‖2

L2(Π) from the oracle to the target density
matrix ρ and also in terms of such characteristics of the oracle as the norm ‖ logS‖
or the alignment coefficient a(logS) that have been already used in the approximation
error bounds of the previous section (see Proposition 3). However, in the case of the
random error, we also need some additional quantities that describe the properties of
the design distribution Π and of the noise ξ. These quantities are explicitly involved in
the statements of the results below which makes them somewhat complicated. At the

20



same time, it is easy to control these quantities in concrete examples and to derive in
special cases the bounds that are easier to understand.

Assumptions on the design distribution. In this section, it will be assumed that
X is a random Hermitian m×m matrix and that, for some constants 0 < U ≤ U2, ‖X‖ ≤
U and ‖X‖2 ≤ U2. We will denote σ2

X := ‖EX2‖, σ2
X⊗X := ‖E(X ⊗X − E(X ⊗X))2‖.

5

Let L ⊂ Cm be a subspace of dimension r ≤ m and let PL : Mm(C) 7→ Mm(C),
PLx := x− PL⊥xPL⊥ . We will use the following quantity:

β(L) := sup
A∈Hm(C),‖A‖L2(Π)≤1

‖PLA‖L2(Π).

Note that ‖PLA‖2 ≤ ‖A‖2 (for a proof, choose a basis {e1, . . . , em} of Cm such that L =
l.s.(e1, . . . , er) and represent A,PLA in this basis). If, for all A, K1‖A‖2 ≤ ‖A‖L2(Π) ≤
K2‖A‖2, then β(L) ≤ K2/K1. In particular, if K1 = K2, then β(L) = 1 (which is the
case, for instance, when X is sampled at random from an orthonormal basis).

Assumptions on the noise. Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. copies of (X,Y ).
Denote ξ := Y −tr(ρX). Then ξ1, . . . , ξn are i.i.d. copies of ξ. Recall also that E(ξ|X) = 0
and assume that P a.s. E(ξ2|X) ≤ σ2

ξ , where σ2
ξ ≥ 0 is a constant. We will further assume

that the noise is uniformly bounded by a constant cξ > 0 : |ξ| ≤ cξ.

Given t > 0, denote tm := t+ log(2m), τn := t+ log log2(2n) and

εn,m := (σξσX ∨ σX⊗X)

√
tm
n

∨
cξU

tm
n
.

We will start with a simple result akin to the first bound of Proposition 3.

Theorem 3 There exists a constant C > 0 such that, for all S ∈ S and for all ε ≥ 0,
with probability at least 1− e−t

‖ρ̂ε − S‖2
L2(Π) ≤ ‖S − ρ‖2

L2(Π) + C

[
ε(‖ logS‖

∧
log Γ)

∨
‖S − ρ‖L2(Π)U

√
tm
n

∨
(σξσX ∨ σX⊗X)

√
tm
n

∨
(cξU ∨ U2

2 )
tm
n

]
(5.1)

5In this section, the notation A⊗B means the tensor product of the matrices A,B viewed as vectors
of the Euclidean space (Mm(C), 〈·, ·〉) : (A⊗B)V = A〈B, V 〉, V ∈ Mm(C).
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and

‖ρ̂ε − ρ‖2
L2(Π) ≤ ‖S − ρ‖2

L2(Π) + C

[
ε(‖ logS‖ ∧ log Γ)

∨
‖S − ρ‖L2(Π)U

√
tm
n

∨
(σξσX ∨ σX⊗X)

√
tm
n

∨
(cξU ∨ U2

2 )
tm
n

]
, (5.2)

where Γ := mE1/2‖X‖2√
ε

∨m. In particular,

‖ρ̂ε − ρ‖2
L2(Π) ≤ C

[
ε(‖ log ρ‖ ∧ log Γ)

∨
(σξσX ∨ σX⊗X)

√
tm
n

∨
(cξU ∨ U2

2 )
tm
n

]
. (5.3)

Note that this result holds for all ε ≥ 0, including the case of ε = 0 that corresponds
to the least squares estimator over the set S of all density matrices. The approximation
error term ‖ logS‖ε in the bounds of Theorem 3 is of the order O(ε) (as in the first
bound of Proposition 3) and the random error terms are, up to logarithmic factors, of
the order O( 1√

n
) with respect to the sample size n.

The next result provides a more subtle oracle inequality in spirit of the second and
third bounds of Proposition 3. In this oracle inequality, the approximation error term
due to von Neumann entropy penalization is a2(logS)ε2 (as in Proposition 3), so, it is
of the order O(ε2). Note that it is assumed implicitly that a2(logS) < +∞, i.e., that
S is of full rank and the matrix logS is well defined. The random error terms are of
the order O(n−1) as n → ∞ (up to logarithmic factors) with an exception of the term
σξσX‖PL⊥SPL⊥‖1

√
tm
n , which depends on how well the oracle S is approximated by

low rank matrices. If ‖PL⊥SPL⊥‖1 is small, say of the order n−1/2 for a subspace L

of a small dimension r, this term becomes comparable to other terms in the bound,
or even smaller. The inequalities hold only for the values of regularization parameter ε
above certain threshold. The first bound shows that if there is an oracle S ∈ S such
that: (a) it is “well aligned”, that is, a(logS) is small; (b) there exists a subspace L of
small dimension r such that the oracle matrix S is “almost supported” in L, that is,
‖PL⊥SPL⊥‖1 is small; and (c) S provides a good approximation of the density matrix ρ,
that is, ‖S−ρ‖2

L2(Π) is small, then the empirical solution ρ̂ε will be in the intersection of
the L2(Π)-ball and the Kullback-Leibler “ball” of small enough radii around the oracle
S. The second bound is an oracle inequality showing how the L2(Π)-error ‖ρ̂ε − ρ‖2

L2(Π)

depends on the properties of the oracle S.

Theorem 4 There exist numerical constants C > 0, D > 0 such that the following holds.
For all t > 0, for all ε ≥ Dεn,m, for all subspaces L ⊂ Cm with dim(L) := r, and for all
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S ∈ S, with probability at least 1− e−t,

‖ρ̂ε − S‖2
L2(Π) +

ε

4
K(ρ̂ε;S) ≤ 2‖S − ρ‖2

L2(Π) + C

[
a2(logS)ε2

∨
(5.4)

σ2
ξβ

2(L)
mr + τn

n

∨
σξσX‖PL⊥SPL⊥‖1

√
tm
n

∨
cξU

τn ∨ tm
n

∨
U2

2

tm
n

]
and

‖ρ̂ε − ρ‖2
L2(Π) ≤ ‖S − ρ‖2

L2(Π) + C

[
a2(logS)ε2

∨
‖S − ρ‖L2(Π)U

√
tm
n

∨
σ2
ξβ

2(L)
mr + τn

n

∨
σξσX‖PL⊥SPL⊥‖1

√
tm
n

∨
cξU

τn ∨ tm
n

∨
U2

2

tm
n

]
. (5.5)

Remark. In the case when the noise is not necessarily bounded, but ‖ξ‖ψ1 < +∞
(for instance, Gaussian noise), the results still hold with the following simple modifica-
tions. In bounds (5.1), (5.2), (5.3) and in the definition of εn,m, the term cξU

tm
n is to be

replaced by ‖ξ‖ψ1U log
(
‖ξ‖ψ1
σξ

U
σX

)
tm
n . In the bounds of Theorem 4, the term cξU

τn∨tm
n

is to be replaced by ‖ξ‖ψ1U
τn logn

n

∨
‖ξ‖ψ1U log

(
‖ξ‖ψ1
σξ

U
σX

)
tm
n . For such an unbounded

noise, one should replace in the proofs of theorems 3 and 4 the noncommutative Bern-
stein inequality of Ahlswede and Winter by the bound of Proposition 2. One should also
use a version of concentration inequality for empirical processes by Adamczak (2008)
instead of the usual version of Talagrand for bounded function classes (see Section 3).

We will provide a detailed proof of Theorem 4. The proof of Theorem 3 is its
simplified version and it will be skipped. Throughout the proofs below, C,C1, . . . are
numerical constants whose values might be different in different places.

Proof of Theorem 4. Denote

Ln(S) := n−1
n∑
j=1

(Yj − tr(SXj))2 + ε tr(S logS).

For any S ∈ S of full rank and any direction ν ∈ Mm(C), we have

DLn(S; ν) = 2n−1
n∑
j=1

(〈S,Xj〉 − Yj)〈ν,Xj〉+ ε tr(ν(logS + Im)).

By necessary conditions of extrema in the convex optimization problem (1.2),DLn(ρ̂ε; ρ̂ε−
S) ≤ 0, which implies

DL(ρ̂ε; ρ̂ε−S)−DL(S; ρ̂ε−S) ≤ −DL(S; ρ̂ε−S)+DL(ρ̂ε; ρ̂ε−S)−DLn(ρ̂ε; ρ̂ε−S). (5.6)
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By a simple algebra similar to what has been already used in the proof of Proposition 3
(see the derivation of (4.4), (4.5)), we get from (5.6) the following bound:

2‖ρ̂ε − S‖2
L2(Π) + 2〈S − ρ, ρ̂ε − S〉L2(Π) + εK(ρ̂ε;S) = (5.7)

‖ρ̂ε − S‖2
L2(Π) + ‖ρ̂ε − ρ‖2

L2(Π) − ‖S − ρ‖2
L2(Π) + εK(ρ̂ε;S) ≤

εa(logS)‖ρ̂ε − S‖L2(Π) −
2
n

n∑
j=1

(
〈ρ̂ε − S,Xj〉2 − E〈ρ̂ε − S,X〉2

)
+

2
n

n∑
j=1

(
〈S − ρ,Xj〉〈ρ̂ε − S,Xj〉 − E〈S − ρ,X〉〈ρ̂ε − S,X〉

)
− 2
n

n∑
j=1

ξj〈ρ̂ε − S,Xj〉,

where we also used that ε|tr((ρ̂ε − S) logS)| ≤ εa(logS)‖ρ̂ε − S‖L2(Π).

We need to bound the empirical processes in the right hand side of bound (5.7).
We will do it in three steps by bounding each term separately (which leads to different
ingredients in bounds (5.4) and (5.5)). The first two steps are based on simple applica-
tions of noncommutative Bernstein’s inequality (3.1); the third step relies in addition on
Talagrand’s concentration inequality and empirical processes bounds.

Step 1. To bound the first term note that

1
n

n∑
j=1

(
〈ρ̂ε−S,Xj〉2−E〈ρ̂ε−S,X〉2

)
=

〈
(ρ̂ε−S)⊗(ρ̂ε−S),

1
n

n∑
j=1

((Xj⊗Xj)−E(X⊗X))
〉
.

Applying (3.1) to the sum of independent random matrices Xj⊗Xj−E(X⊗X), we can
claim that with probability at least 1− e−t∣∣∣∣ 1n

n∑
j=1

(
〈ρ̂ε − S,Xj〉2 − E〈ρ̂ε − S,X〉2

)∣∣∣∣ ≤ ‖ρ̂ε − S‖2
1

∥∥∥∥ 1
n

n∑
j=1

((Xj ⊗Xj)− E(X ⊗X))
∥∥∥∥ ≤

4
(
σX⊗X

√
t+ log(2m2)

n

∨
U2

2

t+ log(2m2)
n

)
‖ρ̂ε − S‖2

1 ≤

4σX⊗X

√
t+ log(2m2)

n
‖ρ̂ε − S‖2

1

∨
16U2

2

t+ log(2m2)
n

.

We also used the fact that ‖X ⊗X‖ = ‖X‖2
2 ≤ U2

2 , ‖X ⊗X −E(X ⊗X)‖ ≤ 2U2
2 as well

as the bounds ‖(ρ̂ε − S)⊗ (ρ̂ε − S)‖1 = ‖ρ̂ε − S‖2
2 ≤ ‖ρ̂ε − S‖2

1 and ‖ρ̂ε − S‖1 ≤ 2.

Note that the term σX⊗X

√
tm
n in the threshold εn,m originates in this step.

Step 2. The second term can be written as

1
n

n∑
j=1

(
〈S − ρ,Xj〉〈ρ̂ε − S,Xj〉 − E〈S − ρ,X〉〈ρ̂ε − S,X〉

)
=
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〈
ρ̂ε − S,

1
n

n∑
j=1

(
〈S − ρ,Xj〉Xj − E〈S − ρ,X〉X

)〉
and bounded as follows: with probability at least 1− e−t,∣∣∣∣ 1n

n∑
j=1

(
〈S − ρ,Xj〉〈ρ̂ε − S,Xj〉 − E〈S − ρ,X〉〈ρ̂ε − S,X〉

)∣∣∣∣ ≤
‖ρ̂ε − S‖1

∥∥∥∥ 1
n

n∑
j=1

(
〈S − ρ,Xj〉Xj − E〈S − ρ,X〉X

)∥∥∥∥ ≤
2
∥∥∥∥ 1
n

n∑
j=1

(
〈S − ρ,Xj〉Xj − E〈S − ρ,X〉X

)∥∥∥∥ ≤
8U‖S − ρ‖L2(Π)

√
t+ log(2m)

n

∨
8U2‖S − ρ‖1

t+ log(2m)
n

.

Here we applied bound (3.1) to sums of independent random matrices Yj − EYj , where
Yj = 〈S − ρ,Xj〉〈ρ̂ε − S,Xj〉 and also used simple bounds

‖ρ̂ε−S‖1 ≤ 2, ‖E〈S−ρ,X〉2X2‖ ≤ U2‖S−ρ‖2
L2(Π) and ‖〈S−ρ,X〉X‖ ≤ U2‖S−ρ‖1.

The bound of this step is the origin of the terms ‖S − ρ‖L2(Π)

√
tm
n , U

2 tm
n in the

inequalities of the Theorem.

Step 3. We turn now to bounding the third term in the right hand side of (5.7). It
is easy to decompose it as follows:

1
n

n∑
j=1

ξj〈ρ̂ε − S,Xj〉 =
〈
PL⊥(ρ̂ε − S)PL⊥ ,

1
n

n∑
j=1

ξjPL⊥XjPL⊥

〉
+

1
n

n∑
j=1

ξj〈ρ̂ε − S,PLXj〉. (5.8)

Note that∣∣∣∣〈PL⊥(ρ̂ε − S)PL⊥ ,
1
n

n∑
j=1

ξjPL⊥XjPL⊥

〉∣∣∣∣ ≤ ‖PL⊥(ρ̂ε − S)PL⊥‖1

∥∥∥∥ 1
n

n∑
j=1

ξjPL⊥XjPL⊥

∥∥∥∥.
Applying bound (3.1) one more time, we have that with probability at least 1− e−t∣∣∣∣〈PL⊥(ρ̂ε − S)PL⊥ ,

1
n

n∑
j=1

ξjPL⊥XjPL⊥

〉∣∣∣∣ ≤
25



2‖PL⊥(ρ̂ε − S)PL⊥‖1

[
σξσX

√
t+ log(2m)

n

∨
2cξU

t+ log(2m)
n

]
,

where we also used a simple bound ‖Eξ2(PL⊥XPL⊥)2‖ ≤ σ2
ξ‖EX2‖ = σ2

ξσ
2
X .

To bound the second term in the right hand side of (5.8), denote

αn(δ) := sup
ρ1,ρ2∈S,‖ρ1−ρ2‖L2(Π)≤δ

∣∣∣∣ 1n
n∑
j=1

ξj〈ρ1 − ρ2,PLXj〉
∣∣∣∣.

Clearly,
∣∣∣∣ 1
n

∑n
j=1 ξj〈ρ̂ε − S,PLXj〉

∣∣∣∣ ≤ αn(‖ρ̂ε − S‖L2(Π)). To control αn(δ), we use Ta-

lagrand’s concentration inequality for empirical processes. It implies that, for all δ > 0,
with probability at least 1− e−s,

αn(δ) ≤ 2
[
Eαn(δ) + σξβ(L)δ

√
s

n
+ 4cξU

s

n

]
. (5.9)

Here we used the facts that Eξ2〈ρ1 − ρ2,PLX〉2 ≤ σ2
ξβ

2(L)‖ρ1 − ρ2‖2
L2(Π) and∣∣∣ξ〈ρ1 − ρ2,PLX〉

∣∣∣ ≤ cξ‖ρ1 − ρ2‖1‖PLX‖ ≤ 2cξ(‖X‖+ ‖PL⊥XPL⊥‖) ≤ 4cξ‖X‖ ≤ 4cξU.

We will make the bound on αn(δ) uniform in δ ∈ [Un−1, 2U ]. To this end, we apply
bound (5.9) for δ = δj = 2−j+1U, j = 0, 1, . . . and with s = τn := t + log log2(2n).
The union bound and the monotonicity of αn(δ) with respect to δ implies that with
probability at least 1− e−t for all δ ∈ [Un−1, 2U ]

αn(δ) ≤ C

[
Eαn(δ) + σξβ(L)δ

√
τn
n

+ cξU
τn
n

]
, (5.10)

where C > 0 is a numerical constant. Now it remains to bound the expected value
Eαn(δ). Let e1, . . . , em be the orthonormal basis of Cm such that L = l.s.{e1, . . . , er}.
Denote Eij(x) the entries of the linear transformation x ∈ Mm(C) in this basis. Clearly,
the function 〈ρ1 − ρ2,PLx〉 belongs to the space L := l.s.{Eij : i ≤ r or j ≤ r} of
dimension m2 − (m− r)2 = 2mr − r2. Therefore,

Eαn(δ) ≤ E sup
f∈L,‖f‖L2(Π)≤β(L)δ

∣∣∣∣ 2n
n∑
j=1

ξjf(Xj)
∣∣∣∣.

Using standard bounds for empirical processes indexed by finite dimensional function
classes, we get Eαn(δ) ≤ 2

√
2σξβ(L)δ

√
mr
n . We can conclude that the following bound

on αn(δ) holds with probability at least 1− e−t for all δ ∈ [Un−1, 2U ] :

αn(δ) ≤ C

[
σξβ(L)δ

√
mr

n
+ σξβ(L)δ

√
τn
n

+ cξU
τn
n

]
. (5.11)
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Note that since ‖ρ̂ε−S‖1 ≤ 2 and ‖X‖ ≤ U, we have ‖ρ̂ε−S‖2
L2(Π) = E〈ρ̂ε−S,X〉2 ≤ 4U2,

so, ‖ρ̂ε − S‖L2(Π) ≤ 2U. As a result, with probability at least 1 − e−t, we either have
‖ρ̂ε − S‖L2(Π) < Un−1, or∣∣∣∣ 1n

n∑
j=1

ξj〈ρ̂ε−S,PLXj〉
∣∣∣∣ ≤ C

[
σξβ(L)‖ρ̂ε−S‖L2(Π)

√
mr

n
+σξβ(L)‖ρ̂ε−S‖L2(Π)

√
τn
n

+cξU
τn
n

]
.

In the first case, we still have∣∣∣∣ 1n
n∑
j=1

ξj〈ρ̂ε − S,PLXj〉
∣∣∣∣ ≤ C

[
σξβ(L)

U

n

√
mr

n
+ σξβ(L)

U

n

√
τn
n

+ cξU
τn
n

]
.

Let us assume in what follows that ‖ρ̂ε − S‖L2(Π) ≥ Un−1 since another case is even
easier to handle.

The terms σ2
ξβ

2(L)mr+τnn , σξσX‖PL⊥SPL⊥‖1

√
tm
n in the inequalities of the Theorem

have their origin in this step.

We now substitute the bounds of steps 1–3 in the right hand side of (5.7) to get the
following inequality that holds with some constant C > 0 and with probability at least
1− 4e−t :

‖ρ̂ε − S‖2
L2(Π) + ‖ρ̂ε − ρ‖2

L2(Π) + εK(ρ̂ε;S) ≤ (5.12)

‖S − ρ‖2
L2(Π) + εa(logS)‖ρ̂ε − S‖L2(Π) +

16σX⊗X

√
tm
n
‖ρ̂ε − S‖2

1 + 64U2
2

tm
n

+ 16U‖S − ρ‖L2(Π)

√
tm
n

∨
16U2 tm

n
+

4‖PL⊥(ρ̂ε − S)PL⊥‖1

[
σξσX

√
tm
n

∨
2cξU

tm
n

]
+

C

[
σξβ(L)‖ρ̂ε − S‖L2(Π)

√
mr + τn

n

∨
cξU

τn
n

]
.

Under the assumption ε ≥ Dεn,m with a sufficiently large constant D > 0, it is easy to
get that

16σX⊗X

√
tm
n
‖ρ̂ε − S‖2

1 ≤
ε

2
‖ρ̂ε − S‖2

1 ≤
ε

2
K(ρ̂ε;S). (5.13)

Also, by Proposition 1,

‖PL⊥(ρ̂ε − S)PL⊥‖1 ≤ ‖PL⊥ ρ̂εPL⊥‖1 + ‖PL⊥SPL⊥‖1 ≤ 3‖PL⊥SPL⊥‖1 + 2K(ρ̂ε;S),
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and, under the same assumption that ε ≥ Dεn,m with a sufficiently large constant D > 0,

4‖PL⊥(ρ̂ε − S)PL⊥‖1

[
σξσX

√
tm
n

∨
2cξU

tm
n

]
≤ (5.14)

C‖PL⊥SPL⊥‖1

[
σξσX

√
tm
n

∨
cξU

tm
n

]
+
ε

4
K(ρ̂ε;S).

Combining bounds (5.13) and (5.14) with (5.12) yields

‖ρ̂ε − S‖2
L2(Π) + ‖ρ̂ε − ρ‖2

L2(Π) +
ε

4
K(ρ̂ε;S) ≤ (5.15)

‖S − ρ‖2
L2(Π) + εa(logS)‖ρ̂ε − S‖L2(Π) +

C

[
‖ρ̂ε − S‖L2(Π)σξβ(L)

√
mr + τn

n

∨
U‖S − ρ‖L2(Π)

√
tm
n

∨
‖PL⊥SPL⊥‖1σξσX

√
tm
n

∨
cξU

τn ∨ tm
n

∨
U2

2

tm
n

]
with some constant C > 0. It follows from the last inequality that

‖ρ̂ε − S‖2
L2(Π) ≤ A‖ρ̂ε − S‖L2(Π) +B − ε

4
K(ρ̂ε;S), (5.16)

where A := ε
2a(logS) + Cσξβ(L)

√
mr+τn
n and

B := ‖S − ρ‖2
L2(Π) − ‖ρ̂ε − ρ‖2

L2(Π) +

C

[
‖S − ρ‖L2(Π)U

√
tm
n

∨
‖PL⊥SPL⊥‖1σξσX

√
tm
n

∨
cξU

τn ∨ tm
n

∨
U2

2

tm
n

]
.

It is easy to check that

‖ρ̂ε−S‖2
L2(Π) ≤

(
A+

√
A2 + 4(B − (ε/4)K(ρ̂ε;S))

2

)2

≤
(
A+

√(
B − ε

4
K(ρ̂ε;S)

)
+

)2

.

If ε
4K(ρ̂ε;S) ≥ B, then ‖ρ̂ε − S‖2

L2(Π) ≤ A2, which, in view of (5.16), implies

‖ρ̂ε − S‖2
L2(Π) +

ε

4
K(ρ̂ε;S) ≤ A2 +B.

Otherwise, we have ‖ρ̂ε − S‖2
L2(Π) ≤ A2 + 2A

√
B +B − ε

4K(ρ̂ε;S), which implies that

‖ρ̂ε − S‖2
L2(Π) +

ε

4
K(ρ̂ε;S) ≤ 3A2 +

3
2
B.
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Thus, the last bound holds in both cases, and, by the definitions of A and B and ele-
mentary algebra, one can easily get that

‖ρ̂ε − S‖2
L2(Π) +

3
2
‖ρ̂ε − ρ‖2

L2(Π) +
ε

4
K(ρ̂ε;S) ≤

3
2
‖S − ρ‖2

L2(Π) + C

[
a2(logS)ε2

∨
‖S − ρ‖L2(Π)U

√
tm
n

∨
σ2
ξβ

2(L)
mr + τn

n

∨
σξσX‖PL⊥SPL⊥‖1

√
tm
n

∨
cξU

τn ∨ tm
n

∨
U2

2

tm
n

]
, (5.17)

which holds with probability at least 1 − 4e−t and with a sufficiently large constant C.
To replace the probability 1− 4e−t by 1− e−t, it is enough to replace t by t+ log 4 and
to adjust the values of constants C,D accordingly. Then, (5.17) easily imply the bounds
of the theorem.

Remark. Note that replacing in Step 1 of the proof rather simple bounds based
on Ahlswede-Winter inequality by a more sophisticated argument based on Talagrand’s
generic chaining, one can obtain another version of the bounds of Theorem 4 that might
be stronger in certain applications. For instance, one can use Theorem 3 in [4] (that relies
on the results of [11]) to obtain the following version of (5.5) that holds for ε ≥ Dεn,m

with εn,m = σξσX

√
tm
n ∨ cξU tm

n :

‖ρ̂ε − ρ‖2
L2(Π) ≤ ‖S − ρ‖2

L2(Π) + C

[
a2(logS)ε2

∨
‖S − ρ‖L2(Π)U

√
tm
n

∨
σ2
ξβ

2(L)
mr + τn

n

∨
σξσX‖PL⊥SPL⊥‖1

√
tm
n

∨
cξU

τn ∨ tm
n

∨
U2 t+ log5m log n

n

]
.

This could be better than (5.5) since there is no term σX⊗X

√
tm
n in the new definition

of εn,m and also because U2 t+log5m logn
n could be smaller than U2

2
tm
n when U is much

smaller than U2 (for instance, in the case of sampling from the Pauli basis, U2 = 1 and
U = m−1/2).

Example. Sampling from an orthonormal basis. Recall that in this case Π is
the distribution in an orthonormal basis E1, . . . , Em2 that consists of Hermitian matrices.
Since ‖X‖2 = 1, one can always assume that U2 = 1 and U ≤ 1. Denote πj := Π({Ej})
and π̄m := max1≤j≤m2 πj . Then, it is easy to check that σ2

X ≤ mπ̄m, σ2
X⊗X ≤ π̄m.
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Indeed, for an orthonormal basis e1, . . . , em of Cm,

σ2
X = ‖EX2‖ = sup

v∈Cm,|v|=1
E〈X2v, v〉 = sup

v∈Cm,|v|=1
E〈Xv,Xv〉 = sup

v∈Cm,|v|=1
E|Xv|2 =

sup
v∈Cm,|v|=1

m∑
j=1

E|〈Xv, ej〉|2 = sup
v∈Cm,|v|=1

m∑
j=1

m2∑
k=1

πk|〈Ek, v ⊗ ej〉|2 ≤

π̄m sup
v∈Cm,|v|=1

m∑
j=1

‖v ⊗ ej‖2
2 ≤ mπ̄m,

where we used Bessel’s inequality for the basis {E1, . . . , Em2}. Similarly,

σ2
X⊗X ≤ ‖E(X ⊗X)2‖ = sup

‖V ‖2=1
E‖(X ⊗X)V ‖2

2 = sup
‖V ‖2=1

E|〈X,V 〉|22‖X‖2
2 ≤

sup
‖V ‖2=1

m2∑
k=1

πk|〈Ek, V 〉|22 ≤ π̄m sup
‖V ‖2=1

‖V ‖2
2 = π̄m,

where we used the fact that ‖X‖2 = 1 and, again, Bessel’s inequality. Note also that
‖A‖2

L2(Π) ≤ π̄m‖A‖2
2, A ∈ Mm(C).

In the case of a nearly uniform design already defined in Section 2, σ2
X ≤

c1m
−1, σ2

X⊗X ≤ c1m
−2, and ‖A‖2

L2(Π) ≤ c1m
−2‖A‖2

2. We also have that ‖A‖2
L2(Π) ≥

c2m
−2‖A‖2

2, A ∈ Hm(C), which implies that the quantity β(L) involved in Theorem 4 is
bounded by

√
c1
c2
.

We can derive the following corollary of Theorem 4. To simplify its statement, we
will assume that, for some λ > 0,

log log2(2n) ≤ log(2m), σξ ≥ m−1/2, cξU ≤ λ

(
σξ

√
n

mtm

∧
σ2
ξm log2(mn)

)
. (5.18)

Essentially, it means that the variance σ2
ξ of the noise is not too small 6 and the constant

cξ is not too large comparing with the variance, which makes it possible to suppress the

exponential tails in Bernstein type inequalities. In this case, we can take εn,m := σξ

√
tm
mn

and let ε = Dεn,m for a sufficiently large constant D > 0.

Corollary 1 Suppose that Π is a nearly uniform distribution in a basis {E1, . . . , Em2}
that consists of Hermitian matrices. There exists a numerical constant C > 0 such that

6Using the remark after the proof of Theorem 4, one can drop the condition that σξ ≥ m−1/2; however,
some additional terms will be needed in the bound of Corollary 1.
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the following holds. For all t > 0, for all sufficiently large D and for ε = Dεn,m, with
probability at least 1− e−t,

‖ρ̂ε − ρ‖2
L2(Π) ≤ inf

S∈S

[
2‖S − ρ‖2

L2(Π) + CD2σ2
ξ

rank(S)mtm log2(mn)
n

]
. (5.19)

Proof (sketch). We will use the second bound of Theorem 4. Note that in the
case under consideration Λ(L) ≤ m√

c2
.7 Suppose now that S ∈ S is an arbitrary oracle

of rank r. Then there exists a subspace L of dimension r such that PL⊥SPL⊥ = 0. We
will use bound (5.5) for Sδ := (1− δ)S + δ Imm , where δ = ε ∧ 1, as we did in the proof of
Proposition 4. As in this proof, we have, for some constant C1 > 0,

a(logSδ) ≤ m
√
r log

(
1 +

m

δ

)
≤ C1m

√
r log(mn)

and ‖S − Sδ‖2
L2(Π) ≤ 4δ2E‖X‖2 ≤ 4δ2 ≤ 4ε2. Finally, note that

‖PL⊥SδPL⊥‖1 ≤ (1− δ)‖PL⊥SPL⊥‖1 + δ‖PL⊥(Im/m)PL⊥‖1 ≤ δ ≤ ε.

Substituting these inequalities in (5.5) (with S replaced by Sδ), taking into account
the bounds on σX , σX⊗X and β(L) that hold in the case of nearly uniform design and
bounding ‖Sδ − ρ‖2

L2(Π) in terms of ‖S − ρ‖2
L2(Π) and ‖Sδ − S‖2

L2(Π) (similarly to what
was done in the proof of Proposition 4), it is easy to derive (5.19) from (5.5).

Similarly, it is easy to obtain another corollary where the L2(Π)-error of estimator
ρ̂ε is controlled in terms of Gibbs oracles. Recall the notations at the end of Section 4
and also denote Γr := ‖H≤r‖2

2 =
∑r

k=1 γ
2
k . and assume that Γ1 ≥ 1 and also that (5.18)

holds.

Corollary 2 There exists a numerical constant C > 0 such that the following holds. For
all t > 0, for all sufficiently large D and for ε = Dεn,m, for all Hermitian matrices H
and for all r ≤ m, with probability at least 1− e−t,

‖ρ̂ε − ρ‖2
L2(Π) ≤ 2‖ρH − ρ‖2

L2(Π) + C

[
σ2
ξ (D

2tmΓr + r)m
n

∨
m−2δ2r (H)

]
. (5.20)

Remarks. Note that both the matrix completion design of Example 1 in the
Introduction and sampling from the Pauli basis (Example 2) are special cases of
nearly uniform design. In the case of matrix completion c1 = 2, c2 = 1 and U = 1. In the

7recall the definition of Λ(L) given before Proposition 4
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case of sampling from the Pauli basis, c1 = c2 = 1 and it is easy to see that U = m−1/2.

Thus, in these two examples the statements of corollaries 1 and 2 hold under assumption
(5.18) with proper values of U.

Note also that the bounds of theorems 3, 4 and corollaries 1,2 can be proved in the
case when the noise is unbounded, in particular, Gaussian (see the remark after Theorem
4). This immediately leads to Theorem 1 stated in the Introduction. To this end, it is
enough to modify slightly conditions (5.18) by replacing cξ by another quantity defined
in terms of ‖ξ‖ψ1 , which, in the case of Gaussian noise, is of the same order as σξ (again,
see the remark after Theorem 4). Then, the bound of Corollary 1 becomes the second
bound of Theorem 1; the first bound follows from Theorem 3.

6 Oracle Inequalities: Subgaussian Design Case

In this section, we turn to the case of subgaussian design matrices. More precisely, we
assume that X is a Hermitian random matrix with distribution Π such that, for some
constant b0 > 0 and for all Hermitian matrices A ∈ Mm(C), 〈A,X〉 is a subgaussian
random variable with parameter b0‖A‖L2(Π). This implies that EX = 0 and, for some
constant b1 > 0, ∥∥∥〈A,X〉∥∥∥

ψ2

≤ b1‖A‖L2(Π), A ∈ Mm(C). (6.1)

In addition to this, assume that, for some constant b2 > 0,

‖A‖L2(Π) =
∥∥∥〈A,X〉∥∥∥

L2(Π)
≤ b2‖A‖2, A ∈ Mm(C). (6.2)

A Hermitian random matrix X satisfying the above conditions will be called a subgaus-
sian matrix. Moreover, if X also satisfies the condition

‖A‖2
L2(Π) = E|〈A,X〉|2 = ‖A‖2

2, A ∈ Mm(C), (6.3)

then it will be called an isotropic subgaussian matrix. As it was already mentioned in
the introduction, the last class of matrices includes such examples as Gaussian and
Rademacher design matrices. It easily follows from the basic properties of Orlicz norms
(see, e.g., van der Vaart and Wellner (1996), p. 95) that for subgaussian matrices ‖A‖Lp(Π) =

E1/p
∣∣∣〈A,X〉∣∣∣p ≤ cpb1b2‖A‖2

2 and ‖A‖ψ1 :=
∥∥∥〈A,X〉∥∥∥

ψ1

≤ cb1b2‖A‖2, A ∈ Mm(C), p ≥ 1,

with some numerical constants cp > 0 and c > 0. The following fact is well known (see,
e.g., Rudelson and Vershynin (2010), Proposition 2.4).
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Proposition 6 Let X be a subgaussian m × m matrix. Then, there exists a constant
B > 0 such that

∥∥∥‖X‖∥∥∥
ψ2

≤ B
√
m.

Below, we give oracle inequalities and random error bounds in the subgaussian
design case. We will use the following notations. Given t > 0, let

tm := t+ log(2m), τn := t+ log log2(2n), and tn,m := τn log n ∨ tm.

In what follows, the noise satisfies the assumptions of the previous section except the
boundedness assumption. Instead, it is supposed that ‖ξ‖ψ2 < +∞. Denote cξ :=
‖ξ‖ψ2 log ‖ξ‖ψ2

σξ
and let

εn,m := σξ

√
mtm
n

∨
cξ

√
mtm
n

.

Theorem 5 There exist constants C > 0, c > 0 such that the following holds. For all
t > 0 such that τn ≤ cn, for all S ∈ S and for all ε ∈ [0, 1], with probability at least
1− e−t

‖ρ̂ε − S‖2
L2(Π) ≤ 2‖S − ρ‖2

L2(Π) + C

[
ε

(
‖ logS‖

∧
log

m

ε

) ∨
σξ

√
mtm
n

∨
mtm
n

∨
(cξ ∨

√
m)

√
mtn,m
n

]
(6.4)

and

‖ρ̂ε − ρ‖2
L2(Π) ≤ ‖S − ρ‖2

L2(Π) + C

[
ε

(
‖ logS‖ ∧ log

m

ε

) ∨
‖S − ρ‖L2(Π)

√
mtm
n

∨
σξ

√
mtm
n

∨ mtm
n

∨
(cξ ∨

√
m)

√
mtn,m
n

]
. (6.5)

In particular,

‖ρ̂ε − ρ‖2
L2(Π) ≤ C

[
ε

(
‖ log ρ‖ ∧ log

m

ε

) ∨
σξ

√
mtm
n

∨
(cξ ∨

√
m)

√
mtn,m
n

]
.

We now turn to more subtle oracle inequalities that take into account low rank
properties of oracles S ∈ S.

Theorem 6 There exist numerical constants C > 0, D > 0, c > 0 such that the following
holds. For all t > 0 such that τn ≤ cn, for all ε ≥ Dεn,m, for all subspaces L ⊂ Cm with

33



dim(L) := r and for all S ∈ S, with probability at least 1− e−t,

‖ρ̂ε − S‖2
L2(Π) +

ε

4
K(ρ̂ε;S) ≤ 2‖S − ρ‖2

L2(Π) + (6.6)

C

[
a2(logS)ε2

∨
σ2
ξβ

2(L)
mr + τn

n

∨
σξ‖PL⊥SPL⊥‖1

√
mtm
n

∨
(cξ ∨

√
m)

√
mtn,m
n

]
and

‖ρ̂ε − ρ‖2
L2(Π) ≤ ‖S − ρ‖2

L2(Π) + C

[
a2(logS)ε2

∨
‖S − ρ‖L2(Π)

√
mtm
n

∨
σ2
ξ

mr + τn
n

∨
σξ‖PL⊥SPL⊥‖1

√
mtm
n

∨
(cξ ∨

√
m)

√
mtn,m
n

]
. (6.7)

Proof of Theorem 6. It follows the lines of the proof of Theorem 4 very closely
with only minor modifications in steps 2,3 and with more substantial changes in Step
1, where one has to control 1

n

∑n
j=1(〈ρ̂ε − S,Xj〉2 − E〈ρ̂ε − S,X〉2). To this end, we will

study the empirical process

∆n(δ) := sup
f∈Fδ

∣∣∣∣n−1
n∑
j=1

(f2(Xj)− Pf2)
∣∣∣∣,

where Fδ := {〈S1 − S2, ·〉 : S1, S2 ∈ S, ‖S1 − S2‖L2(Π) ≤ δ}. Clearly,∣∣∣∣ 1n
n∑
j=1

(
〈ρ̂ε − S,Xj〉2 − E〈ρ̂ε − S,X〉2

)∣∣∣∣ ≤ ∆n(‖ρ̂ε − S‖L2(Π)).

Our goal is to obtain an upper bound on ∆n(δ) uniformly in δ ∈ [(m/n)1/2, 2b2]. First
we use a version of Talagrand’s concentration inequality for empirical processes indexed
by unbounded functions due to Adamczak (see Section 3). It implies that with some
constant C > 0 and with probability at least 1− e−t

∆n(δ) ≤ 2E∆n(δ) + Cδ2
√
t

n
+ C

mt log n
n

. (6.8)

Here we used the following bounds on the uniform variance and on the envelope of the
function class F2

δ : for the uniform variance, with some constant c > 0,

sup
f∈Fδ

(Pf4)1/2 = sup
S1,S2∈S,‖S1−S2‖L2(Π)≤δ

‖S1 − S2‖2
L4(Π) ≤ cδ2,

by the equivalence properties of the norms in Orlicz spaces. For the envelope,

sup
f∈Fδ

f2(X) = sup
S1,S2∈S,‖S1−S2‖L2(Π)≤δ

〈S1 − S2, X〉2 ≤ 4‖X‖2
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and ∥∥∥ max
1≤i≤n

sup
f∈Fδ

f2(Xi)
∥∥∥
ψ1

≤ c1

∥∥∥‖X‖2
∥∥∥
ψ1

log n ≤ c2

∥∥∥‖X‖∥∥∥2

ψ2

log n ≤ c3m log n,

for some constants c1, c2, c3 > 0, where we used well known inequalities for maxima of
random variables in Orlicz spaces (see, e.g., Lemma 2.2.2 in van der Vaart and Wellner
(1996)).

To bound the expectation E∆n(δ) we use a recent result by Mendelson (2010) (see
Section 3).8 It gives

E∆n(δ) ≤ c

[
sup
f∈Fδ

‖f‖ψ1

γ2(Fδ;ψ2)√
n

∨ γ2
2(Fδ;ψ2)

n

]
(6.9)

with some constant c > 0. It follows from (6.1) that the ψ1 and ψ2-norms of functions
from the class Fδ can be bounded from above by a constant times the L2(P )-norm. As
a result,

sup
f∈Fδ

‖f‖ψ1 ≤ cδ (6.10)

and the following bound holds for Talagrand’s generic chaining complexities:

γ2(Fδ;ψ2) ≤ γ2(Fδ; c‖ · ‖L2(Π)), (6.11)

where c is a constant. Let G be a symmetric real valued random matrix with independent
centered Gaussian entries {gij} on the diagonal and above, where Eg2

ii = 1 and Eg2
ij =

1
2 , i 6= j. Under condition (6.2), E|〈S1, G〉 − 〈S2, G〉|2 = ‖S1 − S2‖2

2 ≥ c1‖S1 − S2‖2
L2(Π)

for some constant c1, and it easily follows from Talagrand’s generic chaining bound that,
for some constant C > 0,

γ2(Fδ; c‖ · ‖L2(Π)) ≤ CE sup
S1,S2∈S,‖S1−S2‖L2(Π)≤δ

|〈S1 − S2, G〉| =: Cω(G; δ). (6.12)

It follows from (6.9), (6.10), (6.11) and (6.12) that

E∆n(δ) ≤ C

[
δ
ω(G; δ)√

n

∨ ω2(G; δ)
n

]
. (6.13)

By Proposition 6, we get

ω(G; δ) = E sup
S1,S2∈S,‖S1−S2‖L2(Π)≤δ

∣∣∣〈S1−S2, G〉
∣∣∣ ≤ E‖G‖ sup

S1,S2∈S
‖S1−S2‖1 ≤ 2E‖G‖ ≤ c

√
m.

8In fact, even earlier result by Klartag and Mendelson (2005) with the ψ2-diameter instead of ψ1-
diameter would suffice for our purposes.
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Substituting this bound in (6.13) yields that, for some constant C > 0,

E∆n(δ) ≤ C

[
δ

√
m

n

∨ m

n

]
(6.14)

and combining (6.14) with (6.8) gives that with probability at least 1− e−t

∆n(δ) ≤ C

[
δ

√
m

n

∨ m

n

∨
δ2

√
t

n

∨ mt log n
n

]
. (6.15)

It is easy to make bound (6.15) uniform in δ ∈ [(m/n)1/2, 2b2] by a simple discretization
argument (as we did in Step 3 of the proof of Theorem 4). This leads to the following
result: with probability at least 1− e−t, for all δ ∈ [(m/n)1/2, 2b2],

∆n(δ) ≤ C

[
δ

√
m

n

∨ m

n

∨
δ2

√
τn
n

∨ mτn log n
n

]
, (6.16)

where τn = t + log log2(2n). Thus, with the same probability and with a proper choice
of constant C > 0 ∣∣∣∣ 1n

n∑
j=1

(
〈ρ̂ε − S,Xj〉2 − E〈ρ̂ε − S,X〉2

)∣∣∣∣ ≤
C

[
‖ρ̂ε − S‖L2(Π)

√
m

n

∨ m

n

∨
‖ρ̂ε − S‖2

L2(Π)

√
τn
n

∨ mτn log n
n

]
provided that ‖ρ̂ε − S‖L2(Π) ∈ [(m/n)1/2, 2b2].

The rest is a straightforward modification of the proof of Theorem 4.

For simplicity, we state the next corollary (similar to corollary 1) only in the case
of subgaussian isotropic design. Recall that in this case ‖ · ‖L2(Π) = ‖ · ‖2 and β(L) = 1.

Corollary 3 There exist numerical constants C > 0, c > 0 such that the following holds.
For all t > 0 such that τn ≤ cn, for all sufficiently large D > 0 and for ε = Dεn,m, for
all matrices S ∈ S of rank r, with probability at least 1− e−t,

‖ρ̂ε − ρ‖2
L2(Π) ≤ 2‖S − ρ‖2

L2(Π) + C

[
D2

(
σ2
ξ

rmtm
n

∨
c2ξ
rmt2m
n2

)
log2(mn)

∨
σ2
ξ

τn
n

∨
(cξ ∨

√
m)

√
mtn,m
n

]
. (6.17)

In a special case of Gaussian noise, the bounds of the above corollary can be sim-
plified since in this case cξ ≤ cσξ for some numerical constant c. In particular, Theorem
5 and Corollary 3 immediately imply the bounds of Theorem 2 in the Introduction (to
this end, one just has to drop the terms in the bounds of Theorem 5 and Corollary 3
that are dominated by the main terms under the assumption that the noise is Gaussian
and other assumptions of Theorem 2).
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