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Abstract. We make a unified analysis of interior proximal methods of solving convex

second-order cone programming problems. These methods use a proximal distance with

respect to second-order cones which can be produced with an appropriate closed proper

univariate function in three ways. Under some mild conditions, the sequence generated is

bounded with each limit point being a solution, and global rates of convergence estimates

are obtained in terms of objective values. A class of regularized proximal distances is also

constructed which can guarantee the global convergence of the sequence to an optimal

solution. These results are illustrated with some examples. In addition, we also study

the central paths associated with these distance-like functions, and for the linear SOCP

we discuss their relations with the sequence generated by the interior proximal meth-

ods. From this, we obtain improved convergence results for the sequence for the interior

proximal methods using a proximal distance continuous at the boundary of second-order

cones.
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1 Introduction

We consider the following convex second-order cone programming problem (CSOCP):

inf f(x)

s.t. Ax = b, x ≽K 0,
(1)

where f : IRn → IR∪{+∞} is a closed proper convex function, A is an m×n matrix with

full row rankm, b is a vector in IRm, x ≽K 0 means x ∈ K, and K is the Cartesian product

of some second-order cones (SOCs), also called Lorentz cones [14]. In other words,

K = Kn1 ×Kn2 × · · · × Knr (2)

where r, n1, . . . , nr ≥ 1 with n1 + · · ·+ nr = n, and

Kni :=
{
(x1, x2) ∈ IR× IRni−1 | x1 ≥ ∥x2∥

}
with ∥·∥ being the Euclidean norm. When f reduces to a linear function, i.e. f(x) = cTx

for some c ∈ IRn, (1) becomes the standard SOCP. Throughout this paper, we denote by

X∗ the optimal set of (1), and let V := {x ∈ IRn | Ax = b}. The CSOCP, as an extension

of the standard SOCP, has a wide range of applications from engineering, control, finance

to robust optimization and combinatorial optimization; see [1, 23] and references therein.

There have proposed various methods for the CSOCP, which include the interior point

methods [2, 25, 32], the smoothing Newton methods [11, 15], the smoothing-regularization

method [17], the semismooth Newton method [22], and the merit function method [8].

These methods are all developed by reformulating the KKT optimality conditions as a

system of equations or an unconstrained minimization problem. This paper will focus

on an iterative scheme which is proximal based and handles directly the CSOCP itself.

Specifically, the proximal-type algorithm consists of generating a sequence {xk} via

xk := argmin
{
λkf(x) +H(x, xk−1) | x ∈ K ∩ V

}
, k = 1, 2, . . . (3)

where {λk} is a sequence of positive parameters, and H : IRn × IRn → IR ∪ {+∞} is a

proximal distance with respect to int K (see Def. 3.1) which plays the same role as the

Euclidean distance ∥x− y∥2 in the classical proximal algorithms (see, e.g., [24, 30]), but

possesses certain more desirable properties to force the iterates to stay in K ∩ V , thus
eliminating the constraints automatically. As will be shown in Section 4, such proximal

distances can be produced with an appropriate closed proper univariate function.
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In this paper, under mild assumptions as used in interior proximal methods for convex

programs over nonnegative orthant cones (see, e.g., [3, 4, 5, 6, 13, 20, 31]), we show that

the sequence {xk} is bounded with all limit points being a solution of (1), and obtain

global rates of convergence in terms of objective values. But, unlike interior proximal

methods for convex programs over nonnegative orthant cones, the global convergence of

{xk} to an optimal solution can be guaranteed for the class of proximal distances F1(K)

or F2(K) under a very restrictive assumption for X∗ (see Theorem 3.2(a)), or for their

subclasses F̂1(Kn) or F̂2(Kn) under mild assumptions for X∗ (see Theorem 3.2(b)), or

for the smallest subclass F̄2(Kn). These results are illustrated with some examples.

Just as proximal point methods with generalized distances, the central paths derived

from barrier functions have been the object of intensive study. Recently, the central paths

for semidefinite programming received an active study (see, e.g., [12, 18, 19, 16]). For

example, da Cruz Neto et al. [12] established the relations among the central paths in

semidefinite programming, generalized proximal point methods, and Cauchy trajectories

in Riemannian manifolds, extending the results of Iusem et al. [21] for monotone varia-

tional inequality problems. Motivated by this, we also investigate the properties of the

central paths of (1) with respect to (w.r.t.) the distance-like functions used by interior

proximal methods (see Propositions 5.2 and 5.3). For the linear SOCP, we discuss the

relations between the central paths and the sequences generated by the interior proximal

methods, and show that the sequence generated by interior proximal methods will con-

verge under the usual assumptions, if the proximal distance satisfies a certain continuity

at the boundary of second-order cones (see Theorem 5.2).

Auslender and Teboulle [4] provided a unified technique to analyze and design inte-

rior proximal methods for convex and conic optimization. However, for the CSOCP, we

notice that it seems hard to find a proximal distance example for the class F+(Kn) so

that similar global convergence results of [4, Theorem 2.2] can apply for it. In this paper,

we extend their unified analysis technique to interior proximal methods using a proxi-

mal distance which can be produced with an appropriate univariate function via three

ways, and establish the global convergence results for the smallest class F̄2(Kn), and the

class F̂2(Kn) with some mild assumptions of X∗. The examples from the two classes of

proximal distances are easy to find. Particularly, for the linear SOCP, we obtain the

improved convergence results for these interior proximal methods, by exploring the rela-

tions between the sequence generated by the interior proximal methods and the central

path associated to the corresponding proximal distances. In view of these contexts, this

paper can be regarded as a refinement of [4] for the second-order cone optimization.

Throughout this paper, I denotes an identity matrix of suitable dimension and IRn

denotes the space of n-dimensional real column vectors. For any x, y ∈ IRn, we write

x ≽Kn y if x − y ∈ Kn; and write x ≻Kn y if x − y ∈ int Kn. Given a matrix E, Im(E)
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means the subspace generated by the columns of E. A function is closed if and only if it is

lower semi-continuous (lsc), and a function is proper if f(x) <∞ for at least one x ∈ IRn

and f(x) > −∞ for all x ∈ IRn. For a lsc proper convex function f : IRn → IR ∪ {+∞},
we denote its domain by domf := { x ∈ IRn | f(x) < ∞} and the ϵ-subdifferential of f

at x̄ by ∂ϵf(x̄) := {w ∈ IRn | f(x) ≥ f(x̄) + ⟨w, x − x̄⟩ − ϵ, ∀x ∈ IRn}. If f is differen-

tiable at x, ∇f(x) means the gradient of f at x. For a differentiable h on IR, h′ and h′′

denote its first and second derivative. For any closed set S, int S denotes the interior of S.

In the rest of this paper, we focus on the case where K = Kn, and all the analysis can

be carried over to the case where K has the direct product structure as in (2). Unless

otherwise stated, we make the following minimal assumption for the CSOCP (1):

(A1) domf ∩ (V ∩ int Kn) ̸= ∅ and f∗ := inf{f(x) | x ∈ V ∩ Kn} > −∞.

2 Preliminaries

This section recalls some preliminary results that will be used in the subsequent sections.

For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, their Jordan product [14] is defined as

x ◦ y := (⟨x, y⟩, y1x2 + x1y2). (4)

It is easy to verify that the identity element under the Jordan product is e ≡ (1, 0, . . . , 0)T ∈
IRn, i.e., e ◦ x = x for all x ∈ IRn. Note that the Jordan product is not associative, but

it is power associated, i.e., x ◦ (x ◦ x) = (x ◦ x) ◦ x for all x ∈ IRn. Thus, we may without

fear of ambiguity write xm for the product of m copies of x and xm+n = xm ◦ xn for all

positive integers m and n. We stipulate x0 = e. For each x = (x1, x2) ∈ IR× IRn−1, let

det(x) := x21 − ∥x2∥2 and tr(x) := 2x1, (5)

which are called the determinant and the trace of x, respectively. A vector x is said to

be invertible if det(x) ̸= 0. If x ∈ IRn is invertible, there is a unique y ∈ IRn satisfying

x ◦ y = y ◦ x = e. We call this y the inverse of x and denote it by x−1.

We recall from [14] that each x admits a spectral factorization associated with Kn:

x = λ1(x) u
(1)
x + λ2(x) u

(2)
x , (6)

where λi(x) and u
(i)
x for i = 1, 2 are the spectral values of x = (x1, x2) ∈ IR× IRn−1 and

the associated spectral vectors, defined by

λi(x) = x1 + (−1)i∥x2∥, u(i)x =
1

2

(
1, (−1)ix̄2

)
, (7)

with x̄2 =
x2

∥x2∥ if x2 ̸= 0 and otherwise being any vector in IRn−1 such that ∥x̄2∥ = 1. If

x2 ̸= 0, then the factorization is unique. The following lemma is direct by formula (6).
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Lemma 2.1 For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, the following results hold:

(a) det(x) = λ1(x)λ2(x), tr(x) = λ1(x) + λ2(x) and ∥x∥2 = 1
2
[(λ1(x))

2 + (λ2(x))
2].

(b) x ∈ Kn ⇐⇒ λ1(x) ≥ 0 and x ∈ int Kn ⇐⇒ λ1(x) > 0.

(c) λ1(x)λ2(y) + λ2(x)λ1(y) ≤ tr(x ◦ y) ≤ λ1(x)λ1(y) + λ2(x)λ2(y).

With the spectral factorization above, one may define a vector-valued function by a

univariate function. For any given h : IIR → IR with IIR ⊆ IR, define hsoc : S → IRn by

hsoc(x) := h(λ1(x)) · u(1)x + h(λ2(x)) · u(2)x , ∀x ∈ S. (8)

The definition is unambiguous whether x2 ̸= 0 or x2 = 0. For example, let h(t) = t−1 for

any t > 0, then using formulas (6) and (8) we can compute that

x−1 := hsoc(x) =
1

x21 − ∥x2∥2
(x1,−x2) =

tr(x)e− x

det(x)
for x ∈ int Kn. (9)

Moreover, by Lemma 2.2 of [10], S is open whenever IIR is open, and S is closed whenever

IIR is closed. The following lemma shows that some favorable properties of h can be

transmitted to hsoc, whose proofs were given in Prop. 5.1 of [15] and Lemma 2.2 of [27].

Lemma 2.2 Given h : IIR → IR with IIR ⊆ IR. Let hsoc : S → IRn be the vector-valued

function induced by h via (8), where S ⊆ IRn. Then, the following results hold:

(a) If h is continuously differentiable on int IIR, then hsoc is continuously differentiable

on int S, and for any x ∈ int S with x = (x1, x2) ∈ IR× IRn−1,

∇hsoc(x) =


h′(x1)I if x2 = 0, b c

xT2
∥x2∥

c
x2

∥x2∥
aI + (b− a)

x2x
T
2

∥x2∥2

 otherwise

where a = h(λ2(x))−h(λ1(x))
λ2(x)−λ1(x)

, b = h′(λ2(x))+h′(λ1(x))
2

, c = h′(λ2(x))−h′(λ1(x))
2

.

(b) If h is continuously differentiable on int IIR, then tr(hsoc(x)) is continuously differ-

entiable on int S with ∇tr(hsoc(x)) = 2∇hsoc(x)e = 2(h′)soc(x).

(c) If h is (strictly) convex on IIR, then tr(hsoc(x)) is (strictly) convex on S.

Lemma 2.3 (a) The real-valued function ln(det(x)) is strictly concave on int Kn.
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(b) For any x, y ∈ int Kn with x ̸= y, there holds that

det(αx+ (1− α)y) > (det(x))α(det(y))1−α, ∀α ∈ (0, 1).

Proof. Clearly, part (b) is a direct consequence of part (a). The proof of part (a) was

given in [7, Prop. 2.4(a)] by computing the Hessian matrix of ln(det(x)). Here, we give

a simpler proof. Let lnx be the vector-valued function induced by ln t via (8). From

Lemma 2.1 (a), ln(det(x)) = ln(λ1(x)) + ln(λ2(x)) = tr(lnx) for any x ∈ int Kn. The

result is then direct by Lemma 2.2(c) and the strict concavity of ln t (t > 0). 2

To close this section, we review the definition of SOC-convexity and SOC-monotonicity.

The two concepts, such as the matrix-convexity and the matrix-monotonicity in the

semidefinite programming, play an important role in the solution methods of SOCPs.

Definition 2.1 [7] Given h : IIR → IR with IIR ⊆ IR. Let hsoc : S → IRn with S ⊆ IRn be

the vector-valued function induced by h via formula (8). Then,

(a) h is said to be SOC-convex of order n on IIR if for any x, y ∈ S and 0 ≤ β ≤ 1,

hsoc (βx+ (1− β)y) ≼Kn βhsoc(x) + (1− β)hsoc(y). (10)

(b) h is said to be SOC-monotone of order n on IIR if for any x, y ∈ S,

x ≽Kn y =⇒ hsoc(x) ≽Kn h
soc(y).

We say that h is SOC-convex (respectively, SOC-monotone) on IIR if h is SOC-convex of

all order n (respectively, SOC-monotone of all order n) on IIR. A function h is said to

be SOC-concave on IIR whenever −h is SOC-convex on IIR. When h is continuous on IIR,

the condition in (10) can be replaced by the more special condition:

hsoc
(
x+ y

2

)
≼Kn

1

2

(
hsoc(x) + hsoc(y)

)
. (11)

Obviously, the set of SOC-monotone functions and the set of SOC-convex functions are

both closed under positive linear combinations and under pointwise limits.

For the characterizations of SOC-convexity and SOC-monotonicity, the interested

reader may refer to [7, 9]. The following lemma collects some common SOC-concave

functions whose proofs can be found in [27] or are direct by Lemma 3.2 of [27].

Lemma 2.4 (a) For any fixed u ∈ IR, the function h(t) = (t + u)r with r ∈ [0, 1] is

SOC-concave and SOC-monotone on [−u,+∞).
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(b) For any fixed u ∈ IR, the function h(t) = −(t+ u)−r with r ∈ [0, 1] is SOC-concave

and SOC-monotone on (−u,+∞).

(c) For any fixed α ≥ 0, ln(α+ t) is SOC-concave and SOC-monotone on [−a,+∞).

(d) For any fixed u ≥ 0, t
u+t

is SOC-concave and SOC-monotone on (−u,+∞).

3 Interior proximal methods

First of all, we present the definition of a proximal distance w.r.t. the open cone int Kn.

Definition 3.1 An extended-valued function H : IRn × IRn → IR ∪ {+∞} is called a

proximal distance with respect to int Kn if it satisfies the following properties:

(P1) domH(·, ·) = C1 × C2 with int Kn × int Kn ⊂ C1 × C2 ⊆ Kn ×Kn.

(P2) For each given y ∈ int Kn, H(·, y) is continuous and strictly convex on C1, and it

is continuously differentiable on int Kn with dom∇1H(·, y) = int Kn.

(P3) H(x, y) ≥ 0 for all x, y ∈ IRn, and H(y, y) = 0 for all y ∈ int Kn.

(P4) For each fixed y ∈ C2, the sets {x ∈ C1 : H(x, y) ≤ γ} are bounded for all γ ∈ IR.

Definition 3.1 has a little difference from Definition 2.1 of [4] for a proximal distance

w.r.t. int Kn, since here H(·, y) is required to be strictly convex over C1 for any fixed

y ∈ int Kn. We denote D(int Kn) by the family of functions H satisfying Definition 3.1.

With a given H ∈ D(int Kn), we have the following basic iterative algorithm for (1).

Interior Proximal Algorithm (IPA). Given H ∈ D(int Kn) and x0 ∈ V ∩ int Kn.

For k = 1, 2, . . . , with λk > 0 and ϵk ≥ 0, generate a sequence {xk} ⊂ V ∩ int Kn with

gk ∈ ∂ϵkf(x
k) via the following iterative scheme:

xk := argmin
{
λkf(x) +H(x, xk−1) | x ∈ V

}
(12)

such that

λkg
k +∇1H(xk, xk−1) = ATuk for some uk ∈ IRm. (13)

The following proposition implies that the IPA is well-defined, and moreover, from

its proof we see that the iterative formula (12) is equivalent to the iterative scheme

(3). When ϵk > 0 for any k ∈ N (the set of natural numbers), the IPA can be viewed

as an approximate interior proximal method, and it becomes exact if ϵk = 0 for all k ∈ N.
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Proposition 3.1 For any given H ∈ D(int Kn) and y ∈ int Kn, consider the problem

f∗(y, τ) = inf {τf(x) +H(x, y) | x ∈ V} with τ > 0. (14)

Then, for each ϵ ≥ 0, there exist x(y, τ) ∈ V ∩ int Kn and g ∈ ∂ϵf(x(y, τ)) such that

τg +∇1H(x(y, τ), y) = ATu (15)

for some u ∈ IRm. Moreover, for such x(y, τ), we have

τf(x(y, τ)) +H(x(y, τ), y) ≤ f∗(y, τ) + ϵ.

Proof. Set F (x, τ) := τf(x) + H(x, y) + δV∩Kn(x), where δV∩Kn(x) is the indicator

function defined on the set V ∩ Kn. Since domH(·, y) = C1 ⊂ Kn, it is clear that

f∗(y, τ) = inf {F (x, τ) | x ∈ IRn} . (16)

Since f∗ > −∞, it is easy to verify that for any γ ∈ IR the following relation holds

{x ∈ IRn | F (x, τ) ≤ γ} ⊂ {x ∈ V ∩ Kn | H(x, y) ≤ γ − τf∗}
⊂ {x ∈ C1 | H(x, y) ≤ γ − τf∗} ,

which together with (P4) implies that F (·, τ) has bounded level sets. In addition, by

(P1)–(P3), F (·, τ) is a closed proper and strictly convex function. Hence, the problem

(16) has a unique solution, to say x(y, τ). From the optimality conditions of (16), we get

0 ∈ ∂F (x(y, τ)) = τ∂f(x(y, τ)) +∇1H(x(y, τ), y) + ∂δV∩Kn(x(y, τ))

where the equality is due to Theorem 23.8 of [29] and domf ∩ (V ∩ int Kn) ̸= ∅. Notice
that dom ∇1H(·, y) = int Kn and dom ∂δV∩Kn(·) = V ∩Kn. Therefore, the last equation

implies x(y, τ) ∈ V ∩ int Kn, and there exists g ∈ ∂f(x(y, τ)) such that

−τg −∇1H(x(y, τ), y) ∈ ∂δV∩Kn(x(y, τ)).

On the other hand, by the definition of δV∩Kn(·), it is not hard to derive that

∂δV∩Kn(x) = Im(AT ) ∀x ∈ V ∩ int Kn.

The last two equations imply that (15) holds for ϵ = 0. When ϵ > 0, (15) also holds for

such x(y, τ) and g since ∂f(x(y, τ)) ⊂ ∂ϵf(x(y, τ)). Finally, since for each y ∈ int Kn the

function H(·, y) is strictly convex, and since g ∈ ∂ϵf(x(y, τ)), we have

τf(x) +H(x, y) ≥ τf(x(y, τ)) +H(x(y, τ), y)

+⟨τg +∇1H(x(y, τ), y), x− x(y, τ)⟩ − ϵ

= τf(x(y, τ)) +H(x(y, τ), y) + ⟨ATu, x− x(y, τ)⟩ − ϵ

= τf(x(y, τ)) +H(x(y, τ), y)− ϵ for all x ∈ V ,
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where the first equality is from (15) and the last one is by x, x(y, τ) ∈ V. Thus, f∗(y, τ) =
inf{τf(x) +H(x, y) | x ∈ V} ≥ τf(x(y, τ)) +H(x(y, τ), y)− ϵ. 2

In the rest of this section, we focus on the convergence behaviors of the IPA with H

from several subclasses of D(int Kn), which also satisfy one of the following properties.

(P5) For any x, y ∈ int Kn and z ∈ C1, H(z, y)−H(z, x) ≥ ⟨∇1H(x, y), z − x⟩;

(P5’) For any x, y ∈ int Kn and z ∈ C2, H(y, z)−H(x, z) ≥ ⟨∇1H(x, y), z − x⟩.

(P6) For each x ∈ C1, the level sets {y ∈ C2 : H(x, y) ≤ γ} are bounded for all γ ∈ IR.

Specifically, we denote F1(int Kn) and F2(int Kn) by the family of functionsH ∈ D(int Kn)

satisfying (P5) and (P5’), respectively. If C1 = Kn, we denote F1(Kn) by the family of

functions H ∈ D(int Kn) satisfying (P5) and (P6). If C2 = Kn, we write F2(int Kn)

as F(Kn). It is easy to see that the class of proximal distance F(int Kn) (respectively,

F(Kn)) in [4] subsumes the (H,H) with H ∈ F1(int Kn) (respectively, F1(Kn)), but it

does not include any (H,H) with H ∈ F2(int Kn) (respectively, F2(Kn)).

Theorem 3.1 Let {xk} be the sequence generated by the IPA with H ∈ F1(int Kn) or

H ∈ F2(int Kn). Set σν =
∑ν

k=1 λk. Then, the following results hold:

(a) f(xν)− f(x) ≤ σ−1
ν H(x, x0) + σ−1

ν

∑ν
k=1 σkϵk for any x ∈ V ∩ C1 if H ∈ F1(int Kn);

f(xν)−f(x) ≤ σ−1
ν H(x0, x)+σ−1

ν

∑ν
k=1 σkϵk for any x ∈ V ∩C2 if H ∈ F2(int Kn).

(b) If σν → +∞ and ϵk → 0, then lim infν→∞ f(xν) = f∗.

(c) The sequence {f(xk)} converges to f∗ whenever
∑∞

k=1 ϵk <∞.

(d) If X∗ ̸=∅, then {xk} is bounded with all limit points in X∗ under (d1) or (d2) below:

(d1) X∗ is bounded and
∑∞

k=1 ϵk <∞;

(d2)
∑∞

k=1 λkϵk <∞ and H ∈ F1(Kn) (or H ∈ F2(Kn)).

Proof. The proofs are similar to those of [4, Theorem 4.1]. For completeness, we here

take H ∈ F2(int Kn) for example to prove the results.

(a) Since gk ∈ ∂ϵkf(x
k), from the definition of the subdifferential, it follows that

f(x) ≥ f(xk) + ⟨gk, x− xk⟩ − ϵk ∀x ∈ IRn.

This, together with equation (13), implies that

λk(f(x
k)− f(x)) ≤ ⟨∇1H(xk, xk−1), x− xk⟩+ λkϵk ∀x ∈ V ∩ C2.
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Using (P5’) with x = xk, y = xk−1 and z = x ∈ V ∩ C2, it then follows that

λk(f(x
k)− f(x)) ≤ H(xk−1, x)−H(xk, x) + λkϵk ∀x ∈ V ∩ C2. (17)

Summing over k = 1, 2, . . . , ν in this inequality yields that

−σνf(x) +
ν∑

k=1

λkf(x
k) ≤ H(x0, x)−H(xν , x) +

ν∑
k=1

λkϵk. (18)

On the other hand, setting x = xk−1 in (17), we obtain

f(xk)− f(xk−1) ≤ λ−1
k

[
H(xk−1, xk−1)−H(xk, xk−1)

]
+ ϵk ≤ ϵk. (19)

Multiplying the inequality by σk−1 (with σ0 ≡ 0) and summing over k = 1, . . . , ν, we get

ν∑
k=1

σk−1f(x
k)−

ν∑
k=1

σk−1f(x
k−1) ≤

ν∑
k=1

σk−1ϵk.

Noting that σk = λk + σk−1 with σ0 ≡ 0, the above inequality can reduce to

σνf(x
ν)−

ν∑
k=1

λkf(x
k) ≤

ν∑
k=1

σk−1ϵk. (20)

Adding the inequalities (18) and (20) and recalling that σk = λk + σk−1, it follows that

f(xν)− f(x) ≤ σ−1
ν

[
H(x0, x)−H(xν , x)

]
+ σ−1

ν

ν∑
k=1

σkϵk ∀x ∈ V ∩ C2,

which immediately implies the desired result due to the nonnegativity of H(xν , x).

(b) If σν → +∞ and ϵk → 0, then applying Lemma 2.2(ii) of [4] with ak = ϵk and

bν := σ−1
ν

∑ν
k=1 λkϵk yields σ−1

ν

∑ν
k=1 λkϵk → 0. From part (a), it then follows that

lim inf
ν→∞

f(xν) ≤ inf {f(x) | x ∈ V ∩ int Kn} .

This together with f(xν) ≥ inf {f(x) | x ∈ V ∩ Kn} implies that

lim inf
ν→∞

f(xν) = inf {f(x) | x ∈ V ∩ int Kn} = f∗.

(c) From (19), 0 ≤ f(xk)− f∗ ≤ f(xk−1)− f∗ + ϵk. Using Lemma 2.1 of [4] with γk ≡ 0

and vk = f(xk)− f∗, we have that {f(xk)} converges to f∗ whenever
∑∞

k=1 ϵk <∞.

(d) If the condition (d1) holds, then the sets {x ∈ V ∩Kn | f(x) ≤ γ} are bounded for all

γ ∈ IR, since f is closed proper convex and X∗ = {x ∈ V ∩ Kn | f(x) ≤ f∗}. Note that

(19) implies {xk} ⊂ {x ∈ V ∩ Kn | f(x) ≤ f(x0) +
∑k

j=1 ϵj}. Along with
∑∞

k=1 ϵk < ∞,

10



clearly, {xk} is bounded. Since {f(xk)} converges to f∗ and f is lsc, passing to the limit

and recalling that {xk} ⊂ V ∩Kn yields that each limit point of {xk} is a solution of (1).

Suppose that the condition (d2) holds. If H ∈ F2(Kn), then inequality (17) holds for

each x ∈ V ∩ Kn, and particularly for x∗ ∈ X∗. Consequently,

H(xk, x∗) ≤ H(xk−1, x∗) + λkϵk ∀x∗ ∈ X∗. (21)

Summing over k = 1, 2, . . . , ν for the last inequality, we obtain

H(xν , x∗) ≤ H(x0, x∗) +
ν∑

k=1

λkϵk.

This, by (P4) and
∑∞

k=1 λkϵk < ∞, implies that {xk} is bounded, and hence has an

accumulation point. Without loss of generality, let x̂ ∈ Kn be an accumulation point of

{xk}. Then there exists a subsequence {xkj} such that xkj → x̂ as j → +∞. From the

lower semicontinuity of f and part (c), we get f(x̂) ≤ limj→+∞ f(xkj) = f∗, which means

that x̂ is a solution of (1). If H ∈ F1(Kn), then the last inequality becomes

H(x∗, x
ν) ≤ H(x∗, x

0) +
ν∑

k=1

λkϵk.

By (P6) and
∑∞

k=1 λkϵk < ∞, we also have that {xk} is bounded, and hence has an

accumulation point. Using the same arguments as above, we get the desired result. 2

An immediate byproduct of the above analysis yields the following global rate of

convergence estimate for the IPA with H ∈ F1(Kn) or H ∈ F2(Kn).

Corollary 3.1 Let {xk} be the sequence given by the IPA with H ∈ F1(Kn) or F2(Kn).

If X∗ ̸= ∅ and
∑∞

k=1 ϵk <∞, then f(xν)− f∗ = O(σ−1
ν ).

Proof. The result is direct by setting x = x∗ for some x∗ ∈ X∗ in the inequalities of

Theorem 3.1(a), and noting that 0 < σk

σν
≤ 1 for all k = 1, 2, . . . , ν. 2

To establish the global convergence of {xk} to an optimal solution of (1), we need

to make further assumptions on X∗ or the proximal distances in F1(Kn) and F2(Kn).

We denote F̂1(Kn) by the family of functions H ∈ F1(Kn) satisfying (P7)–(P8) below,

F̂2(Kn) by the family of functions H ∈ F2(Kn) satisfying (P7’)–(P8’) below, and F̄(Kn)

by the family of functions H ∈ F2(Kn) satisfying (P7’)–(P9’) below:

(P7) For any {yk} ⊆ int Kn converging to y∗ ∈ Kn, we have H(y∗, yk) → 0;

(P8) For any bounded sequence {yk} ⊆ int Kn and any y∗ ∈ Kn with H(y∗, yk) → 0,

there holds that λi(y
k) → λi(y

∗) for i = 1, 2;

11



(P7’) For any {yk} ⊆ int Kn converging to y∗ ∈ Kn, we have H(yk, y∗) → 0;

(P8’) For any bounded sequence {yk} ⊆ int Kn and any y∗ ∈ Kn with H(yk, y∗) → 0,

there holds that λi(y
k) → λi(y

∗) for i = 1, 2.

(P9’) For any bounded sequence {yk} ⊆ int Kn and any y∗ ∈ Kn with H(yk, y∗) → 0,

there holds that yk → y∗.

It is easy to see that all previous subclasses of D(int Kn) have the following relations:

F̂1(Kn) ⊂ F1(Kn) ⊂ F1(int Kn), F̄2(Kn) ⊂ F̂2(Kn) ⊂ F2(Kn) ⊂ F2(int Kn).

Theorem 3.2 Let {xk} be generated by the IPA with H ∈ F1(int Kn) or F2(int Kn).

Suppose that X∗ is nonempty,
∑∞

k=1 λkϵk <∞ and
∑∞

k=1 ϵk <∞.

(a) If X∗ is a single point set, then {xk} converges to an optimal solution of (1).

(b) If X∗ at least include two elements and for any x∗ = (x∗1, x
∗
2), x̄

∗ = (x̄∗1, x̄
∗
2) ∈ X∗ with

x∗ ̸= x̄∗, it holds that x∗1 ̸= x̄∗1 or ∥x∗2∥ ̸= ∥x̄∗2∥, then {xk} converges to an optimal

solution of (1) whenever H ∈ F̂1(Kn) (or H ∈ F̂2(Kn)).

(c) If H ∈ F̄2(Kn), then {xk} converges to an optimal solution of (1).

Proof. Part (a) is direct by Theorem 3.1(d1). We next consider part (b). Assume that

H ∈ F̂2(Kn). Since
∑∞

k=1 λkϵk <∞, from (21) and Lemma 2.1 of [4], it follows that the

sequence {H(xk, x)} is convergent for any x ∈ X∗. Let x̄ be the limit of a subsequence

{xkl}. By Theorem 3.1(d2), x̄ ∈ X∗. Consequently, {H(xk, x̄)} is convergent. By (P7’),

H(xkl , x̄) → 0, and so H(xk, x̄) → 0. Along with (P8’), λi(x
k) → λi(x̄) for i = 1, 2, i.e.,

xk1 − ∥xk2∥ → x̄1 − ∥x̄2∥ and xk1 + ∥xk2∥ → x̄1 + ∥x̄2∥ as k → ∞.

This implies that xk1 → x̄1 and ∥xk2∥ → ∥x̄2∥. Together with the given assumption for

X∗, we have that xk → x̄. Suppose that H ∈ F̂1(Kn). The inequality (21) becomes

H(x∗, x
k) ≤ H(x∗, x

k−1) + λkϵk ∀x∗ ∈ X∗,

and using (P7)–(P8) and the same arguments as above then yields the result. Part (c)

is direct by the arguments above and the property (P9’). 2

When all points in the nonempty X∗ lie on the boundary of Kn, we must have x∗1 ̸= x̄∗1
or ∥x∗2∥ ̸= ∥x̄∗2∥ for any x∗ = (x∗1, x

∗
2), x̄

∗ = (x̄∗1, x̄
∗
2) ∈ X∗ with x∗ ̸= x̄∗, and the assump-

tion for X∗ in (b) is automatically satisfied. Since the solutions of (1) are generally on

the boundary of Kn, the assumption for X∗ in (b) is much weaker than the one in (a).
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To now, we have studied two types of convergence results for the IPA by the class in

which the proximal distance H lies. Theorem 3.1 and Corollary 3.1 show that the largest,

and less demanding, classes F1(int Kn) and F2(int Kn) provide reasonable convergence

properties for the IPA under minimal assumptions on the problem’s data. This coincides

with interior proximal methods for convex programming over nonnegative orthant cones;

see [4]. The smallest subclass F̄2(Kn) of F2(int Kn) guarantees that {xk} converges to an

optimal solution provided that X∗ is nonempty. The smaller class F̂2(Kn) may guarantee

the global convergence of the sequence {xk} to an optimal solution under an additional

assumption except the nonempty of X∗. Moreover, we illustrate in the next section that

there are indeed examples for the class F̄2(Kn). For the smallest subclass F̂1(Kn) of

F1(int Kn), the analysis in the next section shows that it seems hard to find an example,

although it guarantees the convergence of {xk} to an optimal solution by Theorem 3.2(b).

4 Proximal distances over SOCs

In this section, we provide three kinds of ways to construct a proximal distance w.r.t.

int Kn and analyze their own advantages and disadvantages. All of these ways exploit

a lsc proper univariate function to produce such a proximal distance. In addition, with

such a proximal distance and the Euclidean distance, we obtain the regularized ones.

The first way produces the proximal distances for the class F1(int Kn). This way is

based on the compound of a univariate function ϕ and the determinant function det(·),
where ϕ : IR → IR ∪ {+∞} is a lsc proper function satisfying the following conditions:

(B1) domϕ ⊆ [0,+∞), int(domϕ) = (0,+∞), and ϕ is continuous on its domain;

(B2) for any t1, t2 ∈ domϕ, there holds that

ϕ(tr1t
1−r
2 ) ≤ rϕ(t1) + (1− r)ϕ(t2), ∀r ∈ [0, 1]; (22)

(B3) ϕ is continuously differentiable on int(domϕ) with domϕ′ = (0,+∞);

(B4) ϕ′(t) < 0 for all t ∈ (0,+∞), limt→0+ ϕ(t) = +∞, and limt→+∞ t−1ϕ(t2) ≥ 0.

With such a univariate ϕ, we define the function H : IRn × IRn → IR ∪ {+∞} by

H(x, y) :=

{
ϕ(det(x))− ϕ(det(y))− ⟨∇ϕ(det(y)), x− y⟩ ∀x, y ∈ int(Kn);

+∞ otherwise.
(23)

By the conditions (B1)–(B4), we may prove that H has the following properties.

Proposition 4.1 Let H be defined as in (23) with ϕ satisfying (B1)–(B4). Then,

13



(a) for any fixed y ∈ int Kn, H(·, y) is strictly convex over int Kn.

(b) For any fixed y ∈ int Kn, H(·, y) is continuously differentiable on int Kn with

∇1H(x, y) = 2ϕ′(det(x))

(
x1
−x2

)
− 2ϕ′(det(y))

(
y1
−y2

)
(24)

for all x ∈ int Kn, where x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1.

(c) H(x, y) ≥ 0 for all x, y ∈ IRn, and H(y, y) = 0 for all y ∈ int Kn.

(d) For any y∈ int Kn, the sets {x ∈ int Kn : H(x, y) ≤ γ} are bounded for all γ ∈ IR.

(e) For any x, y ∈ int Kn and z ∈ int Kn, the following three point identity holds:

H(z, y) = H(z, x) +H(x, y) + ⟨∇1H(x, y), z − x⟩. (25)

Proof. (a) It suffices to prove ϕ(det(x)) is strictly convex on int Kn. By Lemma 2.3(b),

det(αx+ (1− α)z) > (det(x))α(det(z))1−α ∀α ∈ (0, 1)

for all x, z ∈ int Kn and x ̸= z. Since ϕ′(t) < 0 for all t ∈ (0,+∞), we have that ϕ is

decreasing on (0,+∞). This, together with the condition (B2), yields that

ϕ [det(αx+ (1− α)z)] < ϕ
[
(det(x))α(det(z))1−α

]
≤ αϕ[det(x)] + (1− α)ϕ[det(z)] ∀α ∈ (0, 1)

for all x, z ∈ int Kn and x ̸= z. This means that ϕ(det(x)) is strictly convex on int Kn.

(b) Since det(x) is continuously differentiable on IRn and ϕ is continuously differentiable

on (0,+∞), we have that ϕ(det(x)) is continuously differentiable on int Kn. This means

that for any fixed y ∈ int Kn, H(·, y) is continuously differentiable on int Kn. By a simple

computation, we immediately obtain the formula in (24).

(c) Since ϕ(det(x)) is strictly convex and continuously differentiable on int Kn, we have

ϕ(det(x)) > ϕ(det(y))− ⟨∇ϕ(det(y)), x− y⟩ ∀x, y ∈ int Kn with x ̸= y.

for any x, y ∈ int Kn with x ̸= y. This implies that H(y, y) = 0 for all y ∈ int Kn. In

addition, from the inequality and the continuity of ϕ on its domain, it follows that

ϕ(det(x)) ≥ ϕ(det(y))− ⟨∇ϕ(det(y)), x− y⟩

for any x, y ∈ int Kn. By the definition of H, we have H(x, y) ≥ 0 for all x, y ∈ IRn.

(d) Let {xk} ⊂ int Kn be a sequence with ∥xk∥ → ∞. For any fixed y = (y1, y2) ∈ int Kn,

we next prove that the sequence {H(xk, y)} is unbounded by three cases, and then the

desired result follows. For convenience, we write xk = (xk1, x
k
2) for each k.
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Case 1: the sequence {det(xk)} has a zero limit point. Without loss of generality, we

assume that det(xk) → 0 as k → ∞. Together with limt→0+ ϕ(t) = +∞, it readily follows

that limk→∞ ϕ(det(xk)) → +∞. In addition, for each k we have that

⟨∇ϕ(det(y)), xk⟩ = 2ϕ′(det(y))(xk1y1 − (xk2)
Ty2) (26)

≤ 2ϕ′(det(y))y1(x
k
1 − ∥xk2∥) ≤ 0

where the first inequality are using ϕ′(t) < 0 for all t > 0, the Schwartz-inequality, and

y ∈ int Kn. Now from (23), it then follows that limk→∞H(xk, y) = +∞.

Case 2: the sequence {det(xk)} is unbounded. Noting that det(xk) > 0 for each k, we

must have det(xk) → +∞ as k → ∞. Since ϕ is decreasing on its domain, we have that

ϕ(det(xk))

∥xk∥
=

√
2ϕ(λ1(x

k)λ2(x
k))√

(λ1(xk))2 + (λ2(xk))2
≥ ϕ[(λ2(x

k))2]

λ2(xk)
.

Note that λ2(x
k) → ∞ in this case, and from the last equation and (B4) it follows that

lim
k→∞

ϕ(det(xk))

∥xk∥
≥ lim

k→∞

ϕ[(λ2(x
k))2]

λ2(xk)
≥ 0.

In addition, since { xk

∥xk∥} is bounded, we without loss of generality assume that xk

∥xk∥ →
x̂ = (x̂1, x̂2) ∈ IR× IRn−1. Then, x̂ ∈ Kn, ∥x̂∥ = 1, and x̂1 > 0 (if not, x̂ = 0), and hence

lim
k→∞

⟨
∇ϕ(det(y)), xk

∥xk∥

⟩
= ⟨∇ϕ(det(y)), x̂⟩ = 2ϕ′(det(y))(x̂1y1 − x̂T2 y2)

≤ 2ϕ′(det(y))x̂1(y1 − ∥y2∥) < 0.

The two sides show that limk→∞
H(xk,y)
∥xk∥ > 0, and consequently limk→∞H(xk, y) = +∞.

Case 3: the sequence {det(xk)} has some limit point ω with 0 < ω < +∞. Without

loss of generality, we assume that det(xk) → ω as k → ∞. Since {xk} is unbounded and

{xk} ⊂ int Kn, we must have xk1 → +∞. In addition, by (26) and ϕ′(t) < 0 for t > 0,

−⟨∇ϕ(det(y)), xk⟩ ≥ −2ϕ′(det(y))(xk1y1 − ∥xk2∥∥y2∥) ≥ −2ϕ′(det(y))xk1(y1 − ∥y2∥).

This along with y ∈ int Kn implies that −⟨∇ϕ(det(y)), xk⟩ → +∞ as k → ∞. Noting

that ϕ(det(xk)) is bounded, from (23) it follows that limk→∞H(xk, y) → +∞.

(e) For any x, y ∈ int Kn and z ∈ int Kn, from the definition of H it follows that

H(z, y)−H(z, x)−H(x, y) = ⟨∇ϕ(det(x))−∇ϕ(det(y)), z − x⟩
= ⟨∇1H(x, y), z − x⟩

where the last equality is by part (b). The proof is thus completed. 2
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Proposition 4.1 shows that the function H defined by (23) with ϕ satisfying (B1)–(B4)

is a proximal distance w.r.t. int Kn and dom H = int Kn×int Kn. Also, H ∈ F1(int Kn).

The conditions (B1) and (B3)–(B4) are easy to check, whereas by Lemma 2.2 of [28] we

have the following important characterizations for the condition (B2).

Lemma 4.1 [28, Lemma 2.2] A function ϕ : (0,+∞) → IR satisfies (B2) if and only if

one of the following conditions holds:

(a) The function ϕ(exp(·)) is convex on IR.

(b) ϕ(t1t2) ≤
1

2

(
ϕ(t21) + ϕ(t22)

)
for any t1, t2 > 0.

(c) ϕ′(t) + tϕ′′(t) ≥ 0 if ϕ is twice differentiable.

Example 4.1. Take ϕ(t) = − ln t if t > 0, and otherwise ϕ(t) = +∞. It is easy to verify

that ϕ satisfies (B1)–(B4). By formula (23), the induced proximal distance is

H(x, y) :=

 − ln
det(x)

det(y)
+

2xTJny

det(y)
− 2 ∀x, y ∈ int(Kn)

+∞ otherwise

where Jn is a diagonal matrix with the first entry being 1 and the rest (n − 1) entries

being −1. This is exactly the proximal distance given by [4]. Since H ∈ F1(int Kn), we

have the results of Theorem 3.1(a)–(d1) if the proximal distance is used for the IPA.

Example 4.2. Take ϕ(t) = t1−q/(q −1) (q > 1) if t > 0, and otherwise ϕ(t) = +∞. It

is not hard to check that ϕ satisfies (B1)–(B4). By (23), we compute that

H(x, y) :=


(det(x))1−q − (det(y))1−q

q − 1
+

2xTJny

(det(y))q
− (det(y))1−q ∀x, y ∈ int(Kn)

+∞ otherwise

where Jn is the diagonal matrix same as Example 4.1. Since H ∈ F(int Kn), when using

the proximal distance for the IPA, the results of Theorem 3.1(a)–(d1) hold.

We should emphasize that using the first way can not produce the proximal dis-

tances of the class F1(Kn), and so F̂1(Kn), since the condition limt→0+ ϕ(t) = +∞ is

necessary to guarantee that H has the property (P4), but it implies that the domain of

H(·, y) for any y ∈ int Kn can not be continuously extended to Kn. Thus, when choosing

such proximal distances for the IPA, we can not apply Theorem 3.1(d2) and Theorem 3.2.

The other two ways are both based on the compound of the trace function tr(·) and a

vector-valued function induced by a univariate ϕ via (8). For convenience, in the sequel,

for any lsc proper function ϕ : IR → IR ∪ {+∞}, we write d : IR× IR → IR ∪ {+∞} as

d(s, t) :=

{
ϕ(s)− ϕ(t)− ϕ′(t)(s− t) if s ∈ domϕ, t ∈ domϕ′,

+∞ otherwise.
(27)
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The second way also produces the proximal distances for the class F1(int Kn), which

requires ϕ : IR → IR ∪ {+∞} to be a lsc proper function satisfying the conditions:

(C1) domϕ ⊆ [0,+∞) and int(domϕ) = (0,+∞);

(C2) ϕ is continuous and strictly convex on its domain;

(C3) ϕ is continuously differentiable on int(domϕ) with domϕ′ = (0,+∞);

(C4) for any fixed t > 0, the sets {s ∈ domϕ | d(s, t) ≤ γ} are bounded with all γ ∈ IR;

for any fixed s ∈ domϕ, the sets {t > 0 | d(s, t) ≤ γ} are bounded with all γ ∈ IR.

Let ϕsoc be the vector-valued function induced by ϕ via (8) and write domϕsoc = C1.
Clearly, C1 ⊆ Kn and int C1= int Kn. Define the function H : IRn× IRn → IR∪{+∞} by

H(x, y) :=

{
tr(ϕsoc(x))− tr(ϕsoc(y))− ⟨∇tr(ϕsoc(y)), x− y⟩ ∀x ∈ C1, y ∈ int Kn,

+∞ otherwise.
(28)

By Lemmas 2.1–2.2, the conditions (C1)–(C4), and similar arguments to [26, Prop. 3.1],

it is not difficult to argue that H has the following favorable properties.

Proposition 4.2 Let H be defined by (28) with ϕ satisfying (C1)–(C4). Then,

(a) for any fixed y ∈ int Kn, H(·, y) is continuous and strictly convex on C1.

(b) For any fixed y ∈ int Kn, H(·, y) is continuously differentiable on int Kn with

∇1H(x, y) = ∇tr(ϕsoc(x))−∇tr(ϕsoc(y)) = 2 [(ϕ′)soc(x)− (ϕ′)soc(y)] .

(c) H(x, y) ≥ 0 for all x, y ∈ IRn, and H(y, y) = 0 for any y ∈ int Kn.

(d) H(x, y) ≥
∑2

i=1 d(λi(x), λi(y)) ≥ 0 for any x ∈ C1 and y ∈ int Kn.

(e) For any fixed y∈ int Kn, the sets {x ∈ C1 : H(x, y) ≤ γ} are bounded for all γ ∈ IR;

for any fixed x ∈ C1, the sets {y ∈ int Kn : H(x, y) ≤ γ} are bounded for all γ ∈ IR.

(f) For any x, y ∈ int Kn and z ∈ C1, the following three point identity holds:

H(z, y) = H(z, x) +H(x, y) + ⟨∇1H(x, y), z − x⟩.

Proposition 4.2 shows that the functionH defined by (28) with ϕ satisfying (C1)–(C4)

is a proximal distance w.r.t. int Kn with dom H = C1 × int Kn, and furthermore, such

proximal distances belong to the class F1(int Kn). In particular, when domϕ = [0,+∞),

they also belong to the class F1(Kn). We next present some specific examples.
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Example 4.3. Take ϕ(t) = t ln t − t if t ≥ 0, and otherwise ϕ(t) = +∞, where we

stipulate 0 ln 0 = 0. It is easy to verify that ϕ satisfies (C1)–(C4) with domϕ = [0,+∞).

By formulas (8) and (28), we compute that H has the following expression:

H(x, y) =

{
tr(x ◦ ln x− x ◦ ln y + y − x) ∀x ∈ Kn, y ∈ int(Kn),

+∞ otherwise.
(29)

Example 4.4. Take ϕ(t) = tp − tq if t ≥ 0, and otherwise ϕ(t) = +∞, where p ≥ 1 and

0 < q < 1. We can show that ϕ satisfies the conditions (C1)–(C4) with domϕ = [0,+∞).

When p = 1 and q = 1/2, from formulas (8) and (28), we derive that

H(x, y) =

 tr

[
y

1
2 − x

1
2 +

(tr(y
1
2 )e− y

1
2 ) ◦ (x− y)

2
√

det(y)

]
∀x ∈ Kn, y ∈ int Kn,

+∞ otherwise.

Example 4.5. Take ϕ(t) = −tq if t ≥ 0, and otherwise ϕ(t) = +∞, where 0 < q < 1.

We can show that ϕ satisfies the conditions (C1)–(C4) with domϕ = [0,+∞). Now

H(x, y) =

{
(1− q)tr(yq)− tr(xq) + tr(qyq−1 ◦ x) ∀x ∈ Kn, y ∈ int Kn,

+∞ otherwise.

Example 4.6. Take ϕ(t) = − ln t+ t−1 if t > 0, and otherwise ϕ(t) = +∞. It is easy to

check that ϕ satisfies (C1)–(C4) with domϕ=(0,+∞). The induced proximal distance is

H(x, y) =

{
tr(ln y)− tr(lnx) + 2⟨y−1, x⟩ − 2 ∀x, y ∈ int Kn,

+∞ otherwise.

By a simple computation, we have that the proximal distance is same as the one given

by Example 4.1, and the one induced by ϕ(t) = − ln t (t > 0) via formula (28).

Clearly, the proximal distances in Examples 4.3–4.5 belong to the class F1(Kn). Also,

by Proposition 4.3 below, the proximal distances in Examples 4.3–4.4 also satisfy (P8)

since the corresponding ϕ also satisfies the following condition (C5):

(C5) For any bounded sequence {ak} ⊂ int(domϕ) and a ∈ domϕ such that lim
k→∞

d(a, ak)

= 0, there holds that a = limk→∞ ak, where d is defined as in (27).

Proposition 4.3 Let H be defined as in (28) with ϕ satisfying (C1)–(C5) and domϕ =

[0,+∞). Then, for any bounded sequence {yk} ⊆ int Kn and y∗∈ Kn such that H(y∗, yk)

→ 0, we have λi(y
k) → λi(y

∗) for i = 1, 2.
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Proof. From Proposition 4.2 (d) and the nonnegativity of d, for each k we have

H(y∗, yk) ≥ d(λi(y
∗), λi(y

k)) ≥ 0, i = 1, 2.

This, together with the given assumption H(y∗, yk) → 0, implies that

d(λi(y
∗), λi(y

k)) → 0, i = 1, 2.

Notice that {λi(yk)} ⊂ int(domϕ) and λi(y
∗) ∈ Kn for i = 1, 2 by Lemma 2.1 (b). From

the condition (C5), we immediately obtain λi(y
k) → λi(y

∗) for i = 1, 2. 2

Nevertheless, we should point out that the proximal distance H given by (28) with

ϕ satisfying (C1)–(C4) and domϕ = [0,+∞) generally does not have the property (P7),

even if ϕ satisfies the condition (C6) below. This fact will be illustrated by Example 4.7.

(C6) For any {ak} ⊂ (0,+∞) converging to a ∈ [0,+∞), limk→∞ d(a∗, ak) → 0.

Example 4.7. Let H be the proximal distance induced by the entropy function ϕ in

Example 4.3. It is easy to verify that ϕ satisfies the conditions (C1)–(C6). Here we shall

present a sequence {yk} ⊂ int(K3) which converges to y∗ ∈ K3, but H(y∗, yk) → ∞. Let

yk =


√

2(1 + e−k3)√
1 + k−1 − e−k3

√
1− k−1 + e−k3

 ∈ int(K3) and y∗ =


√
2

1

1

 ∈ K3.

By the expression of H(y∗, yk), i.e., H(y∗, yk) = tr(y∗ ◦ ln y∗)− tr(y∗ ◦ ln yk)+ tr(yk − y∗),

it suffices to prove that limk→∞−tr(y∗ ◦ ln yk) = +∞ since limk→∞ tr(yk − y∗) = 0 and

tr(y∗ ◦ ln y∗) = λ2(y
∗) ln(λ2(y

∗)) < +∞. By the definition of ln yk, we have

tr(y∗ ◦ ln yk) = ln(λ1(y
k))
(
y∗1 − (y∗2)

T ȳk2
)
+ ln(λ2(y

k))
(
y∗1 + (y∗2)

T ȳk2
)

(30)

for y∗ = (y∗1, y
∗
2), y

k = (yk1 , y
k
2) ∈ IR× IR2 with ȳk2 = yk2/∥yk2∥. By computing,

ln(λ1(y
k)) = ln

√
2− ln

(
1 +

√
1 + e−k3

)
− k3,

y∗1 − (y∗2)
T ȳk2 =

1

∥yk2∥

(
−k−1 + e−k3

1 +
√
1 + k−1 − e−k3

+
k−1 − e−k3

1 +
√
1− k−1 + e−k3

)
.

The last two equalities imply that limk→∞ ln(λ1(y
k))
(
y∗1 − (y∗2)

T ȳk2
)
= −∞. In addition,

by noting that yk2 ̸= 0 for each k, we compute that

lim
k→∞

ln(λ2(y
k))
(
y∗1 − (y∗2)

T ȳk2
)
= ln(λ2(y

k))

(
y∗1 + (y∗2)

T y∗2
∥y∗2∥

)
= λ2(y

∗) ln(λ2(y
∗)).

From the last two equations, we immediately have limk→∞−tr(y∗ ◦ ln yk) = +∞.
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Thus, when the proximal distance in the IPA is chosen as the one given by (28) with ϕ

satisfying (C1)–(C6) and domϕ = [0,+∞), Theorem 3.2(b) may not apply, i.e. the global

convergence to an optimal solution may not be guaranteed. This is different from interior

proximal methods for convex programming over nonnegative orthant cones by noting that

ϕ is now a univariate Bregman function. Similarly, it seems hard to find examples for

the class F+(Kn) in [4] so that Theorem 2.2 there can apply for since it also requires (P7).

The third way will produce the proximal distances for the class F2(int Kn), which

needs a lsc proper function ϕ : IR → IR ∪ {+∞} satisfying the following conditions:

(D1) ϕ is strictly convex and continuous on domϕ, and ϕ is continuously differentiable

on a subset of domϕ, where domϕ′ ⊆ domϕ ⊆ [0,+∞) and int(domϕ′) = (0,+∞);

(D2) ϕ is twice continuously differentiable on int(domϕ) and limt→0+ ϕ
′′(t) = +∞;

(D3) ϕ′(t)t− ϕ(t) is convex on domϕ′, and ϕ′ is strictly concave on domϕ′;

(D4) ϕ′ is SOC-concave on domϕ′.

With such a univariate ϕ, we define the proximal distance H : IRn× IRn → IR∪{+∞} by

H(x, y) :=

{
tr(ϕsoc(y))− tr(ϕsoc(x))− ⟨∇tr(ϕsoc(x)), y − x⟩ ∀x ∈ C1, y ∈ C2

+∞ otherwise.
(31)

where C1 and C2 are the domain of ϕsoc and (ϕ′)soc, respectively. By the relation between

domϕ and domϕ′, obviously, C2 ⊆ C1 ⊆ Kn and int C1 = int C2 = int Kn.

Lemma 4.2 Let ϕ : IR → IR∪{+∞} be a lsc proper function satisfying (D1)–(D4). Then

(a) tr [(ϕ′)soc(x) ◦ x− ϕsoc(x)] is convex in C1 and continuously differentiable on int C1.

(b) For any fixed y ∈ IRn, ⟨(ϕ′)soc(x), y⟩ is continuously differentiable on int C1, and

moreover, it is strictly concave over C1 whenever y ∈ int Kn.

Proof. (a) Let ψ(t) := ϕ′(t)t−ϕ(t). Then, by (D2) and (D3), ψ(t) is convex on domϕ′ and

continuously differentiable on int(domϕ′) = (0,+∞). Since tr [(ϕ′)soc(x) ◦ x− ϕsoc(x)] =

tr[ψsoc(x)], using Lemma 2.2(b) and (c) immediately yields part (a).

(b) From (D2) and Lemma 2.2(a), (ϕ′)soc(·) is continuously differentiable on int C1. This
implies that ⟨y, (ϕ′)soc(x)⟩ for any fixed y is continuously differentiable on int C1. We next

show that it is also strictly concave in C1 whenever y ∈ int Kn. Note that tr[(ϕ′)soc(·)] is
strictly concave on C1 since ϕ′ is strictly concave on domϕ′. Consequently,

tr[(ϕ′)soc(βx+ (1− β)z)] > βtr[(ϕ′)soc(x)] + (1− β)tr[(ϕ′)soc(z)] ∀0 < β < 1
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for any x, z ∈ C1 and x ̸= z. This implies that

(ϕ′)soc(βx+ (1− β)z)− β(ϕ′)soc(x)− (1− β)(ϕ′)soc(z) ̸= 0

In addition, since ϕ′ is SOC-concave on domϕ′, from Definition 2.1 it follows that

(ϕ′)soc[βx+ (1− β)z]− β(ϕ′)soc(x)− (1− β)(ϕ′)soc(z) ≽Kn 0.

Thus, for any fixed y ∈ int Kn, the last two equations imply that

⟨y, (ϕ′)soc[βx+ (1− β)z]− β(ϕ′)soc(x)− (1− β)(ϕ′)soc(z)⟩ > 0.

This shows that ⟨y, (ϕ′)soc(x)⟩ for any fixed y ∈ int Kn is strictly convex on C1. 2

Using the conditions (D1)–(D4) and Lemma 4.2, and following the same arguments

as Propositions 4.1 and 4.2 of [27], we may prove the following proposition.

Proposition 4.4 Let H be defined as in (31) with ϕ satisfying (D1)–(D4). Then,

(a) H(x, y) ≥ 0 for any x, y ∈ IRn, and H(y, y) = 0 for any y ∈ int Kn.

(b) For any fixed y ∈ C2, H(·, y) is continuous in C1, and it is strictly convex on C1
whenever y ∈ int Kn.

(c) For any fixed y ∈ C2, H(·, y) is continuously differentiable on int Kn with

∇1H(x, y) = 2∇(ϕ′)soc(x)(x− y). (32)

Moreover, dom∇1H(·, y) = int Kn whenever y ∈ int Kn.

(d) H(x, y) ≥
∑2

i=1 d(λi(y), λi(x)) ≥ 0 for any x ∈ C1 and y ∈ C2.

(e) For any fixed y ∈ C2, the sets {x ∈ C1 : H(x, y) ≤ γ} are bounded for all γ ∈ IR.

(f) For all x, y ∈ int Kn and z ∈ C2, H(x, z)−H(y, z) ≥ 2⟨∇1H(y, x), z − y⟩.

Proposition 4.4 demonstrates that the function H defined by (31) with ϕ satisfying

(D1)–(D4) is a proximal distance w.r.t. the cone int Kn and possesses the property (P5’),

and therefore belongs to the class F2(int Kn). If, in addition, domϕ = [0,+∞), then H

belongs to the class F2(Kn). The conditions (D1)–(D3) are easy to check, and for the

condition (D4), we can employ the characterizations in [7, 9] to verify whether ϕ′ is SOC-

concave or not. Some examples are presented as follows.
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Example 4.8. Let ϕ(t) = t ln t − t + 1 if t ≥ 0, and otherwise ϕ(t) = +∞. It is easy

to verify that ϕ satisfies (D1)–(D3) with domϕ = [0,+∞) and domϕ′ = (0,+∞). By

Lemma 2.4(c), ϕ′ is SOC-concave on (0,+∞). Using formulas (8) and (31), we have

H(x, y) =

{
tr(y ◦ ln y − y ◦ ln x+ x− y) ∀x ∈ int Kn, y ∈ Kn;

+∞ otherwise.
(33)

Example 4.9. Take ϕ(t) = tq+1

q+1
if t ≥ 0, and otherwise ϕ(t) = +∞, where 0 < q < 1. It

is easy to show that ϕ satisfies (D1)–(D3) with domϕ = [0,+∞) and domϕ′ = [0,+∞).

By Lemma 2.4(a), ϕ′ is also SOC-concave on [0,+∞). By (8) and (31), we compute that

H(x, y) =

{
1

q+1
tr(yq+1) + q

q+1
tr(xq+1)− tr(xq ◦ y) ∀ x ∈ int Kn, y ∈ Kn;

+∞ otherwise.

Example 4.10. Take ϕ(t) = (1 + t) ln(1 + t) + tq+1

q+1
if t ≥ 0, and otherwise ϕ(t) = +∞,

where 0 < q < 1. We can verify that ϕ satisfies (D1)–(D3) with domϕ = domϕ′ =

[0,+∞). From Lemma2.4 (a) and (c), ϕ′ is also SOC-concave on [0,+∞). Using (8) and

(31), it is not hard to compute that for any x, y ∈ Kn,

H(x, y) = tr [(e+ y) ◦ (ln(e+ y)− ln(e+ x))]− tr(y − x)

+
1

q + 1
tr(yq+1) +

q

q + 1
tr(xq+1)− tr(xq ◦ y).

Note that the proximal distances in Examples 4.9–4.10 belong to the class F2(Kn).

By Proposition 4.5 below, the ones in Examples 4.9–4.10 also belong to the class F̂2(Kn).

Proposition 4.5 Let H be defined as in (31) with ϕ satisfying (D1)–(D4). Suppose that

domϕ = domϕ′ = [0,+∞). Then, H possesses the properties (P7’) and (P8’).

Proof. By the given assumption, C1 = C2 = Kn. From Proposition 4.4 (b), the function

H(·, y∗) is continuous on Kn. Consequently, limk→∞H(yk, y∗) = H(y∗, y∗) = 0.

From Proposition 4.4 (d), H(yk, y∗) ≥ d(λi(y
∗), λi(y

k)) ≥ 0 for i = 1, 2. This together

with the assumption H(yk, y∗) → 0 implies d(λi(y
∗), λi(y

k)) → 0 for i = 1, 2. From this,

we necessarily have λi(y
k) → λi(y

∗) for i = 1, 2. Suppose not, then the bounded sequence

{λi(yk)} must have another limit point ν∗i ≥ 0 such that ν∗i ̸= λi(y
∗). Without loss of

generality, we assume that limk∈K,k→∞ λi(y
k) = ν∗i . Then, we have

d(ν∗i , λi(y
∗)) = lim

k→∞
d(ν∗i , λi(y

k)) = lim
k∈K,k→∞

d(ν∗i , λi(y
k)) = d(ν∗i , ν

∗
i ) = 0

where the first equality is due to the continuity of d(s, ·) for any fixed s ∈ [0,+∞), and

the second one is by the convergence of {d(ν∗i , λi(yk))} implied by the first equality. This

contradicts the fact that d(ν∗i , λi(y
∗)) > 0 since ν∗i ̸= λi(y

∗). 2
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As illustrated by the following example, the proximal distance generated by (31) with

ϕ satisfying (D1)–(D4) generally does not belong to the class F̄2(Kn).

Example 4.11. Let H be the proximal distance in Example 4.8. Let

yk =


√
2

(−1)k k
k+1

(−1)k k
k+1

 for each k and y∗ =


√
2

1

1

 .

It is not hard to check that the sequence {yk} ⊆ int(K3) satisfies H(yk, y∗) → 0. Clearly,

the sequence yk 9 y∗ as k → ∞, but λ1(y
k) → λ1(y

∗) = 0 and λ2(y
k) → λ2(y

∗) = 2
√
2.

Finally, let H1 be a proximal distance produced via one of the ways above, and define

Hα(x, y) := H1(x, y) +
α

2
∥x− y∥2 (34)

where α > 0 is a fixed parameter. Then, by Propositions 4.1, 4.2 and 4.4 and the identity

∥z − x∥2 = ∥z − y∥2 + ∥y − x∥2 + 2⟨z − y, y − x⟩, ∀x, y, z ∈ IRn,

it is easily shown that Hα is also a proximal distance w.r.t. int Kn. Particularly, when H1

is given by (31) with ϕ satisfying (D1)–(D4) and domϕ = domϕ′ = [0,+∞) (for example

the distances in Examples 4.9 and 4.10), the regularized proximal distance Hα satisfies

(P7’) and (P9’), and hence Hα ∈ F̄2(Kn). With such a regularized proximal distance,

the sequence generated by the IPA converges to an optimal solution of (1) if X∗ ̸= ∅.

To sum up, we may construct a proximal distance w.r.t. the cone int Kn via three

ways with an appropriate univariate function. The first way in (23) can only produce a

proximal distance belonging to F1(int Kn), the second way in (28) produces a proximal

distance of F1(Kn) if domϕ = [0,+∞), whereas the third way in (31) produces a proximal

distance of the class F̂2(Kn) if domϕ = domϕ′ = [0,+∞). Particularly, the regularized

proximal distances Hα in (34) with H1 given by (31) with domϕ = domϕ′ = [0,+∞)

belong to the smallest class F̄2(Kn). With such regularized proximal distances, we have

the convergence result of Theorem 3.2(c) for the general convex SOCP with X∗ ̸= ∅.

5 Central paths and interior proximal methods

In this section, for the linear SOCP, we will obtain some improved convergence results

for the IPA by exploring the relations between the sequence generated by the IPA and

the central path associated to the corresponding proximal distances.
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Given a lsc proper strictly convex function Φ with domΦ ⊆ Kn and int(domΦ) =

int Kn, the central path of (1) associated to Φ is the set {x(τ) : τ > 0} defined by

x(τ) := argmin
{
τf(x) + Φ(x) | x ∈ V ∩ Kn

}
for τ > 0. (35)

In what follows, we will focus on the central path of (1) w.r.t. a distance-like function

H ∈ D(int Kn). From Proposition 3.1, we immediately have the following result.

Proposition 5.1 For any given H ∈ D(int Kn) and x̄ ∈ int Kn, the central path {x(τ) :
τ > 0} associated to H(·, x̄) is well defined and is in V ∩ int Kn. For each τ > 0, there

exists gτ ∈ ∂f(x(τ)) such that τgτ +∇1H(x(τ), x̄) =ATy(τ) for some y(τ) ∈ IRm.

We next study the favorable properties of the central path associated toH ∈ D(int Kn).

Proposition 5.2 For any given H ∈ D(int Kn) and x̄ ∈ int Kn, let {x(τ) : τ > 0} be

the central path associated to H(·, x̄). Then, the following results hold:

(a) The function H(x(τ), x̄) is nondecreasing in τ .

(b) The set {x(τ) : τ̂ ≤ τ ≤ τ̃} is bounded for any given 0 < τ̂ < τ̃ .

(c) x(τ) is continuous at any τ > 0.

(d) The set {x(τ) : τ ≥ τ̄} is bounded for any τ̄ > 0 if X∗ ̸= ∅ and domH(·, x̄) = Kn.

(e) All cluster points of {x(τ) : τ >0} are solutions of (1) if X∗ ̸= ∅.

Proof. The proofs are similar to those of Propositions 3–5 of [21].

(a) Take τ1, τ2 > 0 and let xi = x(τi) for i = 1, 2. Then, from Proposition 5.1, x1, x2 ∈
V ∩ int Kn and there exist g1 ∈ ∂f(x1) and g2 ∈ ∂f(x2) such that

∇1H(x1, x̄) = −τ1g1 + ATy1 and ∇1H(x2, x̄) = −τ2g2 + ATy2 (36)

for some y1, y2 ∈ IRm. This together with the convexity of H(·, x̄) yields that

τ−1
1

(
H(x1, x̄)−H(x2, x̄)

)
≤ τ−1

1 ⟨∇1H(x1, x̄), x1 − x2⟩ = ⟨g1, x2 − x1⟩,
τ−1
2

(
H(x2, x̄)−H(x1, x̄)

)
≤ τ−1

2 ⟨∇1H(x2, x̄), x2 − x1⟩ = ⟨g2, x1 − x2⟩. (37)

Adding the two inequalities and using the convexity of f , we obtain(
τ−1
1 − τ−1

2

) (
H(x1, x̄)−H(x2, x̄)

)
≤ ⟨g1 − g2, x2 − x1⟩ ≤ 0.

Thus, H(x1, x̄) ≤ H(x2, x̄) whenever τ1 ≤ τ2. Particularly, from the last two equations,

0 ≤ τ−1
1

[
H(x1, x̄)−H(x2, x̄)

]
≤ τ−1

1 ⟨∇1H(x1, x̄), x1 − x2⟩ ≤ ⟨g2, x2 − x1⟩
≤ τ−1

2

[
H(x1, x̄)−H(x2, x̄)

]
, ∀τ1 ≥ τ2 > 0. (38)
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(b) By part (a), H(x(τ), x̄) ≤ H(x(τ̃), x̄) for any τ ≤ τ̃ , which implies that

{x(τ) : τ ≤ τ̃} ⊆ L1 = {x ∈ int Kn | H(x, x̄) ≤ H(x(τ̃), x̄)} .

Noting that {x(τ) : τ̂ ≤ τ ≤ τ̃} ⊆ {x(τ) : τ ≤ τ̃} ⊆ L1, the desired result follows by (P4).

(c) Fix τ̄ > 0. To prove that x(τ) is continuous at τ̄ , it suffices to prove that limk→∞ x(τk)

= x(τ̄) for any sequence {τk} such that limk→∞ τk = τ̄ . Given such a sequence {τk}, and
take τ̂ , τ̃ such that τ̂ > τ̄ > τ̃ . Then, {x(τ) : τ̂ ≤ τ ≤ τ̃} is bounded by part (b), and

τk ∈ (τ̂ , τ̃) for sufficiently large k. Consequently, the sequence {x(τk)} is bounded. Let ȳ

be a cluster point of {x(τk)}, and without loss of generality assume that limk→∞ x(τk) = ȳ.

Let K1 := {k : τk ≤ τ̄} and take k ∈ K1. Then, from (38) with τ1 = τ̄ and τ2 = τk,

0 ≤ τ̄−1 [H(x(τ̄), x̄)−H(x(τk), x̄)] ≤ τ̄−1⟨∇1H(x(τ̄), x̄), x(τ̄)− x(τk)⟩
≤ τ−1

k [H(x(τ̄), x̄)−H(x(τk), x̄)] .

If K1 is infinite, taking the limit k → ∞ with k ∈ K1 in the last inequality and using the

continuity of H(·, x̄) on int Kn yields that

H(x(τ̄), x̄)−H(ȳ, x̄) = ⟨∇1H(x(τ̄), x̄), x(τ̄)− ȳ⟩.

This together with the strict convexity of H(·, x̄) implies x(τ̄) = ȳ. If K1 is finite, then

K2 := {k : τk ≥ τ̄} must be infinite. Using the same arguments, we also have x(τ̄) = ȳ.

(d) By (P3) and Proposition 5.1, there exists gτ ∈ ∂f(x(τ)) such that for any z ∈ V∩Kn,

H(x(τ), x̄)−H(z, x̄) ≤ τ−1⟨∇1H(x(τ), x̄), x(τ)− z⟩ = ⟨gτ , z − x(τ)⟩. (39)

Particularly, taking z = x∗ ∈ X∗ in the last equality and using the fact

0 ≥ f(x∗)− f(x(τ)) ≥ ⟨gτ , x∗ − x(τ)⟩,

we have H(x(τ), x̄) − H(x∗, x̄) ≤ 0. Hence, {x(τ) : τ > τ̄} ⊂ {x ∈ int Kn | H(x, x̄) ≤
H(x∗, x̄)}. By (P4), the latter is bounded, and the desired result then follows.

(e) Let x̂ be a cluster point of {x(τ)} and {τk} be a sequence such that limk→∞ τk = +∞
and limk→∞ x(τk) = x̂. Write xk := x(τk) and take x∗ ∈ X∗ and z ∈ V ∩ int Kn. Then,

for any ϵ > 0, we have x(ϵ) := (1− ϵ)x∗ + ϵz ∈ V ∩ int Kn. From the property (P3),

⟨∇1H(x(ϵ), x̄)−∇1H(xk, x̄), xk − x(ϵ)⟩ ≤ 0.

On the other hand, taking z = x(ϵ) in (39), we readily have

τ−1
k ⟨∇1H(xk, x̄), xk − x(ϵ)⟩ = ⟨gk, x(ϵ)− xk⟩

with gk ∈ ∂f(xk). Combining the last two equations, we obtain

τ−1
k ⟨∇1H(x(ϵ), x̄), xk − x(ϵ)⟩ ≤ ⟨gk, x(ϵ)− xk⟩.
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Since the subdifferential set ∂f(xk) for each k is compact and gk ∈ ∂f(xk), the sequence

{gk} is bounded. Taking the limit in the last inequality yields 0 ≤ ⟨ĝ, x(ϵ)− x̂⟩, where ĝ
is a limit point of {gk}, and by Theorem 24.4 of [29], ĝ ∈ ∂f(x̂). Taking the limit ϵ→ 0

in the inequality, we get 0 ≤ ⟨ĝ, x∗ − x̂⟩. This implies that f(x̂) ≤ f(x∗) since x∗ ∈ X∗
and ĝ ∈ ∂f(x̂). Consequently, x̂ is a solution of the CSOCP (1). 2

Particularly, from the following theorem, we also have that the central path is con-

vergent if H ∈ D(int Kn) satisfies domH(·, x̄) = Kn, where x̄ ∈ int Kn is a given point.

Notice that H(·, x̄) is continuous on domH(·, x̄) by (P2), and hence the assumption for

H is equivalent to saying that H(·, x̄) is continuous at the boundary of the cone Kn.

Theorem 5.1 For any given x̄ ∈ int Kn and H ∈ D(int Kn) with domH(·, x̄) = Kn,

let {x(τ) : τ > 0} be the central path associated to H(·, x̄). If X∗ is nonempty, then

limτ→+∞ x(τ) exists and is the unique solution of min{H(x, x̄) | x ∈ X∗}.

Proof. Let x̂ be a cluster point of {x(τ)} and {τk} be such that limk→∞ τk = +∞ and

limk→∞ x(τk) = x̂. Then, for any x ∈ X∗, using (38) with x1 = x(τk) and x
2 = x, we get

[H(x(τk), x̄)−H(x, x̄)] ≤ τk⟨gk, x− x(τk)⟩ ≤ τk [f(x)− f(x(τk))] ≤ 0

where the second inequality is since gk ∈ ∂f(x(τk)), and the last one is due to x ∈ X∗.

Taking the limit k → ∞ in the last inequality and using the continuity of H(·, x̄), we
have H(x̂, x̄) ≤ H(x, x̄) for all x ∈ X∗. Since x̂ ∈ X∗ by Proposition 5.2 (e), this shows

that any cluster point of {x(τ) : τ > 0} is a solution of min{H(x, x̄) | x ∈ X∗}. By the

uniqueness of the solution of min{H(x, x̄) | x ∈ X∗}, we have limτ→+∞ x(τ) = x∗. 2

For the linear SOCP, we may establish the relations between the sequence generated

by the IPA and the central path associated to the corresponding distance-like functions.

Proposition 5.3 For the linear SOCP, let {xk} be the sequence generated by the IPA

with H ∈D(int Kn), x0∈ V ∩ int Kn and ϵk ≡ 0, and {x(τ) : τ > 0} be the central path

associated to H(·, x0). Then, xk = x(τk) for k = 1, 2, . . . under either of the conditions:

(a) H is constructed via (23) or (28), and {τk} is given by τk =
∑k

j=0 λj for k = 1, 2, . . .;

(b) H is constructed via (31), the mapping ∇(ϕ′)soc(·) defined on int Kn maps any vector

IRn into ImAT , and the sequence {τk} is given by τk = λk for k = 1, 2, . . ..

Moreover, for any positive increasing sequence {τk}, there exists a positive sequence {λk}
with

∑∞
k=1 λk = +∞ such that the proximal sequence {xk} satisfies xk = x(τk).
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Proof. (a) Suppose that H is constructed via (23). From (13) and Proposition 4.1 (b),

λjc+∇ϕ(det(xj))−∇ϕ(det(xj−1)) = ATuj for j = 0, 1, 2, . . . . (40)

Summing the equality from j = 0 to k and taking τk =
∑k

j=0 λj, y
k =

∑k
j=0 u

j, we get

τkc+∇ϕ(det(xk))−∇ϕ(det(x0)) = ATyk.

This means that xk satisfies the optimal conditions of the problem

min
{
τkf(x) +H(x, x0) | x ∈ V ∩ int Kn

}
, (41)

and so xk = x(τk). Now let {x(τ) : τ > 0} be the central path. Take a positive increasing

sequence {τk} and let xk ≡ x(τk). Then from Prop. 5.1 and Prop. 4.1(b), it follows that

τkc+∇ϕ(det(xk))−∇ϕ(det(x0)) = ATyk for some yk ∈ IRm.

Setting λk = τk − τk−1 and uk = yk − yk−1, from the last equality it follows that

λkc+∇ϕ(det(xk))−∇ϕ(det(xk−1)) = ATuk.

This shows that {xk} is the sequence generated by the IPA with ϵk ≡ 0. If H is given by

(28), using Proposition 4.2 (b) and the same arguments, we also have the result holds.

(b) Under this case, by Proposition 4.4 (c), the above (40) becomes

λjc+∇(ϕ′)soc(xj) · (xj − xj−1) = ATuj for j = 0, 1, 2, . . . .

Since ϕ′′(t) > 0 for all t ∈ (0,+∞) by (D1) and (D2), from Prop. 5.2 of [15] it follows

that ∇(ϕ′)soc(x) is positive definite on int Kn. Thus, the last equality is equivalent to[
∇(ϕ′)soc(xj)

]−1
λjc+ (xj − xj−1) =

[
∇(ϕ′)soc(xj)

]−1
ATuj for j = 0, 1, 2, . . . . (42)

Summing the equality (42) from j = 0 to k and making suitable arrangement, we get

λkc+∇(ϕ′)soc(xk)(xk − x0) = ATuk +∇(ϕ′)soc(xk)
k−1∑
j=0

[
∇(ϕ′)soc(xj)

]−1
(ATuj − λjc),

which, using the given assumptions and setting τk = λk, reduces to

τkc+∇(ϕ′)soc(xk)(xk − x0) = AT ȳk for some ȳk ∈ IRm.

This means that xk is the unique solution of (41), and hence xk = x(τk) for any k. Let

{x(τ) : τ > 0} be the central path. Take a positive increasing sequence {τk} and define

the sequence xk = x(τk). Then, from Proposition 5.1 and Proposition 4.4 (c),

τkc+∇(ϕ′)soc(xk)(xk − x0) = ATyk for some yk ∈ IRm,
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which, by the positive definiteness of ∇(ϕ′)soc(·) on int Kn, implies that

[∇(ϕ′)soc(xk)]−1(τkc− ATyk) + [∇(ϕ′)soc(xk−1)]−1(τk−1c− ATyk−1) + (xk − xk−1) = 0.

Consequently,

τkc+∇(ϕ′)soc(xk)(xk − xk−1) = ∇(ϕ′)soc(xk)[∇(ϕ′)soc(xk−1)]−1(ATyk−1 − τk−1c)

Using the given assumptions and setting λk = τk, we have

λkc+∇(ϕ′)soc(xk)(xk − xk−1) = ATuk for some uk ∈ IRm.

for some uk ∈ IRm. This implies that {xk} is the sequence generated by the IPA and the

sequence {λk} satisfies
∑∞

k=1 λk = +∞ since {τk} is a positive increasing sequence. 2

From Theorem 5.1 and Proposition 5.3, we readily have the following improved con-

vergence results of the sequence generated by the IPA for the linear SOCP.

Theorem 5.2 For the linear SOCP, let {xk} be the sequence generated by the IPA with

H ∈ D(int Kn), x0 ∈ V ∩ int Kn and ϵk ≡ 0. If one of the conditions is satisfied:

(a) H is constructed via (28) with domH(·, x0) = Kn and
∑∞

k=0 λk = +∞;

(b) H is constructed via (31) with domH(·, x0) = Kn, the mapping ∇(ϕ′)soc(·) defined

on int Kn maps any vector in IRn into ImAT , and limk→∞ λk = +∞;

and X∗ ̸= ∅, then {xk} converges to the unique solution of min{H(x, x0) | x ∈ X∗}.

6 Conclusions

We have extended the unified analysis technique in [4] for interior proximal methods of

the convex SOCP and presented three simple and effective ways to construct a proximal

distance w.r.t. the cone int Kn. The advantages and disadvantages of the corresponding

proximal distances were analyzed and illustrated by some examples. Particularly, a class

of regularized proximal distances was constructed, for which the global convergence re-

sult of Theorem 3.2(c) can apply. However, for the class of proximal distances F+(Kn)

in [4], as illustrated in Section 4, it seems hard to find examples so that similar global

convergence results of [4, Theorem 2.2] can apply for them.

In addition, we have also made investigations for the central paths of (1) associated

with these proximal-like functions, and for the linear SOCP, established the relations

between the central paths and the sequence generated by the interior proximal methods,

from which we particularly obtain the global convergence of the sequence under the usual

assumptions and the continuity of H(·, x0) at the boundary of second-order cones.
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