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Shortest-weight paths in random regular graphs

Hamed Amini∗ Yuval Peres†

Abstract

Consider a random regular graph with degree d and of size n. Assign to each edge
an i.i.d. exponential random variable with mean one. In this paper we establish a precise
asymptotic expression for the maximum number of edges on the shortest-weight paths
between a fixed vertex and all the other vertices, as well as between any pair of vertices.
Namely, for any fixed d ≥ 3, we show that the longest of these shortest-weight paths has

about α̂ logn edges where α̂ is the unique solution of the equation α log
(

d−2

d−1
α
)
−α = d−3

d−2
,

for α > d−1

d−2
.

1 Introduction

The focus of this paper is on first passage percolation on a random regular graph, namely
on G ∼ G(n, d), a graph uniformly distributed over the set of all graphs on n vertices [n] :=
{1, . . . , n}, in which every vertex has degree d, for d ≥ 3 and n large. We assume that each
edge in this graph has an i.i.d. exponential weight with mean one. We consider the shortest-
weight paths between any pair of vertices of this graph, and establish that the longest of these
shortest-weight paths has about α̂ log n edges for some positive constant α̂ depending on d that
we will shortly define. We also derive a similar precise asymptotic expression for the maximum
number of edges on the shortest-weight paths between a fixed vertex and all the other vertices,
see Theorem 1 for the exact statement.

Let G = (V,E,w) be a weighted graph, defined as the data of a graph G = (V,E) and a
collection of weights w = {we}e∈E associated to each edge e ∈ E. For two vertices a, b ∈ V ,
the weighted distance between a and b is given by

distw(a, b) = min
π∈Π(a,b)

∑

e∈π

we ,

where the minimum is taken over the set Π(a, b) of all paths between a and b in the graph. For
a, b ∈ V we denote by π(a, b) the shortest-weight path between a and b.
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We define the function f : R+ → R as follows

f(α) := α log

(
d− 2

d− 1
α

)
− α+

1

d− 2
. (1)

Note that f ′(α) = log
(
d−2
d−1α

)
is positive for α > d−1

d−2 , and f
(
d−1
d−2

)
= −1.

We let α∗ and α̂ be respectively the unique solutions to f(α) = 0 and f(α) = 1 for α > d−1
d−2 .

The main result of this paper is the following theorem.

Theorem 1. Fix d ≥ 3 and let G ∼ G(n, d) be a weighted random d-regular graph with n
vertices and i.i.d. rate one exponential variables on its edges. Then, as n → ∞, we have

maxj∈[n] |π(1, j)|
log n

p−→ α∗, (2)

and

maxi,j∈[n] |π(i, j)|
log n

p−→ α̂, (3)

where
p−→ denotes the convergence in probability.

In order to compare our result with the existing ones, we reproduce here a result of Bhamidi,
van der Hofstad and Hooghiemstra [8] concerning the number of edges in the shortest-weight
path between two uniformly chosen nodes (as well as the weighted distance); see also [23] for
the joint distribution of (weighted) distances in random regular graphs. Remark that, the
following theorem is stated in [8] in a more general setting (random graphs with i.i.d. degrees).

Theorem 2 (Bhamidi, van der Hofstad and Hooghiemstra [8]). Fix d ≥ 3 and let G ∼ G(n, d)
be a random d-regular graph with n vertices and i.i.d. rate one exponential variables on its
edges. Then, as n → ∞,

|π(1, 2)| − γ log n√
γ log n

d−→ Z, (4)

where Z has a standard normal distribution, γ = d−1
d−2 , and

d−→ denotes the convergence in
distribution. Furthermore, there exists a non-degenerate random variable W such that

distw(1, 2) −
1

d− 2
log n

d−→ W. (5)

By the above theorem, the ratio of the length and the weight along a shortest-weight path
between two (uniformly chosen) nodes is asymptotically d− 1 while this ratio for a minimum
length path between two nodes is asymptotically 1. Our proof of Theorem 1 (see Section 4)
implies that, there exists with high probability (that is, with probability tending to 1 as n → ∞)
shortest-weight paths of length about α̂ log n whose total weight is about 1

d−2 log n (typical
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weighted distance between two uniformly chosen nodes). This means that, for these paths, the
ratio of the length and the weight is even larger, i.e., asymptotically (d− 2)α̂!

For completeness, we also include results of Ding, Kim, Lubetzky and Peres [13] concerning
the weighted diameter in random regular graphs; see also [4] for a generalization.

Theorem 3 (Ding, Kim, Lubetzky and Peres [13]). Fix d ≥ 3 and let G ∼ G(n, d) be a random
d-regular graph with n vertices and i.i.d. rate one exponential variables on its edges. Then, as
n → ∞, we have

maxj∈[n] distw(1, j)

log n

p−→ 1

d− 2
+

1

d
, (6)

and

maxi,j∈[n] distw(i, j)

log n

p−→ 1

d− 2
+

2

d
. (7)

In particular, the result of [13] implies that there exists with high probability shortest-
weight paths of length about d−1

d−2 log n (the same as the length between two uniformly chosen

nodes, see Theorem 2) whose total weight is about
(

1
d−2 + 2

d

)
log n. This result is used in [3]

to analyze an asynchronous randomized broadcast algorithm for random regular graphs.

Related work. First passage percolation model has been mainly studied on lattices moti-
vated by its subadditive property and its link to a number of other stochastic processes, see e.g.,
[17, 20, 18] for a more detailed discussion. First passage percolation with exponential weights
has received substantial attention, in particular on the complete graph [16, 19, 2, 1, 12, 22],
and more recently on random graphs [7, 8, 9, 13, 4, 5]. In particular, Janson [19] considered the
case of the complete graph with fairly general i.i.d. weights on edges, including the exponential
distribution with parameter one. It is shown that, when n goes to infinity, the asymptotic
distance for two given points is log n/n, that the maximum distance if one point is fixed and
the other varies is 2 log n/n, and the maximum distance over all pairs of points is 3 log n/n. He
also derives asymptotic results for the corresponding number of hops or hopcount (the number
of edges on the paths with the smallest weight). It is shown that (when n goes to infinity) the
number of hops is log n for two given nodes, and the maximum hops if one point is fixed and
the other varies is e log n. More recently, Addario-Berry, Broutin and Lugosi [1] showed that
the longest of these shortest-weight paths in a complete graph has about α̃ log n edges where
α̃ ∼ 3.5911 is the unique solution of the equation α log(α)− α = 1, which answered a question
posed by Janson [19]. Note that α∗ → e and α̂ → α̃ as d → ∞.

Organization of the paper. The remainder of the paper is organized as follows. In the next
section we provide several preliminary facts on random regular graphs. We also consider in this
section the exploration process for configuration model which consists in growing balls (neigh-
borhoods) simultaneously from each vertex. In addition, the section provides some necessary
notations and definitions that will be used throughout the paper. Sections 3 and 4 form the
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heart of the proof. We first prove that the above bound is an upper bound in Sections 3. The
final section provides the corresponding lower bound using the second moment method, applied
to a suitably defined set of shortest paths with special properties that make them amenable to
analysis.

Basic notations. Let {Xn}n∈N be a sequence of real-valued random variables on a sequence

of probability spaces {(Ωn,Pn)}n∈N. If c ∈ R is a constant, we write Xn
p→ c to denote that Xn

converges in probability to c. That is, for any ε > 0, we have Pn(|Xn − c| > ε) → 0 as n → ∞.
Let {an}n∈N be a sequence of real numbers that tends to infinity as n → ∞. We write Xn =
op(an) if |Xn|/an converges to 0 in probability. Additionally, we write Xn = Op(an) to denote
that for any positive-valued function ω(n) → ∞, as n → ∞, we have P(|Xn|/an ≥ ω(n)) = o(1).
If En is a measurable subset of Ωn, for any n ∈ N, we say that the sequence {En}n∈N occurs
with high probability (w.h.p.) if P(En) = 1− o(1), as n → ∞.

The notation Bin(k, p) denotes a binomially distributed random variable corresponding to the
number of successes of a sequence of k independent Bernoulli trials each having probability of
success equal to p.

We recall here that for two real-valued random variables A and B, we say A is stochastically
dominated by B and write A ≤st B if for all x, we have P(A ≥ x) ≤ P(B ≥ x). If C is another
random variable, we write A ≤st (B |C) if for all x, P(A ≥ x) ≤ P(B ≥ x |C) almost surely.

2 Preliminaries

2.1 Configuration model

We recall first the setup of the configuration model (CM), as introduced by Bender and
Canfield[6] and Bollobás [10]. To construct a graph using this method, to each of the n (even)
vertices allocate d distinct half-edges, and select a uniform perfect matching on these points.
When a half-edge of i is paired with a half-edge of j, we interpret this as an edge between i
and j.

The random graph obtained following this procedure may not be simple, i.e., may contain
self-loops due to the pairing of two half-edges of i, and multi-edges due to the existence of more
than one pairing between two given nodes. Conditional on the event that the graph produced is
simple, it is uniformly distributed over the set of all d-regular graphs on n vertices. The prob-

ability of this event is uniformly bounded away from zero, equivalent to (1 + o(1)) exp
(
1−d2

4

)

as n tends to infinity [24]. Hence, any event that holds w.h.p. for the graph obtained via the
configuration model also holds w.h.p. for G ∼ G(n, d).

Note that the assumption d ≥ 3 implies that G ∼ G(n, d) is connected with high probabil-
ity [10, 24]. We will assume this in what follows.

The advantage of using the configuration model is that it allows one to construct the graph
gradually, exposing the edges of the perfect matching one at a time. This way, each additional
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edge is uniformly distributed among all possible edges on the remaining (unmatched) half-edges.

2.2 Neighborhoods and tree excess

For a, b ∈ V , let dist(a, b) = distG(a, b) denote the typical distance between a and b. For a
vertex a ∈ V and an integer number m, the m-step neighborhood of a, denoted by B(a,m)
and its boundary ∂B(a,m), are defined as

B(a,m) := {v ∈ V | dist(a, v) ≤ m}, and, ∂B(a,m) := B(a,m)\B(a,m− 1). (8)

For a vertex a ∈ V and a real number t > 0, the t-radius neighborhood of a in the weighted
graph, or the ball of radius t centered at a, is defined as

Bw(a, t) :=
{
b, distw(a, b) ≤ t

}
.

The first time t where the ball Bw(a, t) reaches size k+1 ≥ 1 will be denoted by Tk(a), i.e.,

Tk(a) = min
{
t : |Bw(a, t)| ≥ k + 1

}
, T0(a) = 0.

Note that there is a vertex in Bw(a, Tk(a)) which is not in any ball of smaller radius around
a. When the weights are i.i.d. according to a random variable with continuous density, this
vertex is in addition unique with probability one. We will assume this in what follows. Let
vk(a) denote this node. Furthermore, let Hk(a) denote the number of edges (hopcounts) in the
shortest path between the node a and vk(a), i.e., the generation of vk(a).

For a connected graph F , the tree excess of F is denoted by tx(F ), which is the maximum
number of edges that can be deleted from F while still keeping it connected. By an abuse of
notation, for a subset W ⊆ V , we denote by tx(W ) the tree excess of the induced subgraph
G[W ] of G on W . (If G[W ] is not connected, then tx(W ) := ∞.)

We need the following lemma which demonstrates the well known locally tree-like properties
of G ∼ G(n, d) for d ≥ 3.

Lemma 4. Let G ∼ G(n, d) for some fixed d ≥ 3, and let m = ⌊15 logd−1 n⌋. Then w.h.p.,
tx(B(u,m)) ≤ 1 for all u ∈ V (G).

Proof. See [21, Lemma 2.1] .

Consider now the growing balls Bw(a, Tk(a)) for 0 ≤ k ≤ n− 1 centered at a and let Xk(a)
be the tree excess of Bw(a, Tk(a)), i.e.,

Xk(a) := tx (Bw(a, Tk(a)) ).

The number of edges crossing the boundary of the ball Bw(a, Tk(a)) is denoted by Sk(a).
A simple calculation shows that (for G ∼ G(n, d))

Sk(a) = d+ (d− 2)k − 2Xk(a). (9)
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2.3 Shortest-weight paths on a tree

Assume we have positive integers d1, d2, .... We consider the following construction of a branch-
ing process (with these degrees) in discrete time:

• At time 0, start with one alive vertex (the root);

• At each time step k, pick one of the alive vertices at random, this vertex dies giving birth
to dk children.

This type of random tree is known as (random) increasing trees which have been well-
studied, see e.g. [11, 14, 15]. We will need the following basic result, the proof of which is easy
and can be found for example in [8, Proposition 4.2]. Let sk := d1 + ...+ dk − (k − 1).

Lemma 5. Pick an alive vertex at time k ≥ 1 uniformly at random among all vertices alive at
this time. Then, the generation of the k-th chosen vertex is equal in distribution to

Gk
d
=

k∑

i=1

Ii,

where {Ii}∞i=1 are independent Bernoulli random variables with parameter

P(Ii = 1) =
di
si
.

In what follows, instead of taking a graph at random and then analyzing the balls, we use
a standard coupling argument in random graph theory which allows to build the balls and the
graph at the same time. Fix two vertices, say u and v. We grow the balls around these vertices
simultaneously at rate 1, so that at time t, Bw(u, t) and Bw(v, t) are the constructed balls
from u and v. When these two balls intersect via the formation of an edge (u∗v, v

∗
u) between

two vertices u∗v ∈ Bw(u, .) and v∗u ∈ Bw(v, .), then the shortest-weight path between the two
vertices has been found. Furthermore, we have

|π(u, v)| = |π(u, u∗v)|+ |π(v, v∗u)|+ 1.

2.4 The exploration process

Fix a vertex a, and consider the following continuous-time exploration process. At time t = 0,
we have a neighborhood consisting only of a, and for t > 0, the neighborhood is precisely
Bw(a, t). We now give an equivalent description of this process.

• Start with B = {a}, where a has d half-edges. For each half edge, decide (at random
depending on the previous choices) if the half-edge is matched to a half-edge adjacent
to a or not. Reveal the matchings consisting of those half-edges adjacent to a which are
connected amongst themselves (creating self-loops at a) and assign weights independently
at random to these edges. The remaining unmatched half-edges adjacent to a are stored
in a list L. (See the next step including a more precise description of this first step.)
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• Repeat the following exploration step as long as the list L is not empty.

Given there are ℓ ≥ 1 half-edges in the current list, say L = (h1, . . . , hℓ), let Ψ ∼ Exp(ℓ) be
an exponential variable with mean ℓ−1. After time Ψ select a half-edge from L uniformly
at random, say hi. Remove hi from L and match it to a uniformly chosen half-edge in the
entire graph excluding L, say h. Add the new vertex (connected to h) to B and reveal
the matchings (and weights) of any of its half-edges whose matched half-edge is also in
B. More precisely, let 2x be the number of already matched half-edges in B (including
the matched half-edges hi and h). There is a total of dn − 2x unmatched half-edges.
Consider one of the d− 1 half-edges of the new vertex (excluding h which is connected to
hi); with probability (ℓ−1)/(dn−2x−1) it is matched with a half-edge in L and with the
complementary probability it is matched with an unmatched half-edge outside L. In the
first case, match it to a uniformly chosen half-edge of L and remove the corresponding
half-edge from L. In the second case, add it to L. We proceed in the similar manner for
all the d− 1 half-edges of the new vertex.

To verify the validity of the above process, let Bt(a) and L(a, t) be respectively the set
of vertices and the list generated by the above procedure at time t, where a is the initial
vertex. Considering the usual configuration model and using the memoryless property of the
exponential distribution, we have Bw(a, t) = Bt(a) for all t. To see this, we can continuously
grow the weights of the half-edges h1, . . . , hℓ in L until one of their rate 1 exponential clocks fire.
Since the minimum of ℓ i.i.d exponential variables with rate 1 is exponential with rate ℓ, this
is the same as choosing uniformly a half-edge hi after time Ψ (recall that by our conditioning,
these ℓ half-edges do not pair within themselves). Note that the final weight of an edge is
accumulated between the time of arrival of its first half-edge and the time of its pairing (except
edges going back into B whose weights are revealed immediately). Then the equivalence follows
from the memoryless property of the exponential distribution.

Note that Ti(a) is the time of the i-th exploration step in the above continuous-time ex-
ploration process. Assuming L(a, Ti(a)) is not empty, at time Ti+1(a), we match a uniformly
chosen half-edge from the set L(a, Ti(a)) to a uniformly chosen half-edge among all other half-
edges, excluding those in L(a, Ti(a)). Let Ft be the σ-field generated by the above process
until time t. Given FTi(a), Ti+1(a) − Ti(a) is an exponential random variable with rate Si(a)
given by Equation (9) which is equal to |L(a, Ti(a))| the size of the list consisting of unmatched
half-edges in BTi(a)(a). In other words,

(
Ti+1(a)− Ti(a) | FTi(a)

) d
= Exp(Si(a)),

this is true since the minimum of k i.i.d. rate one exponential random variables is an exponential
of rate k.

We will need the following coupling lemma the proof of which can be found in [8, Proposition
4.5].

Lemma 6 (Coupling shortest-weight graphs on a tree and CM). For a uniformly chosen vertex
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u, we have (for all k ≥ 1)

Hk(u)
d
=

k∑

i=1

Ii,

where {Ii}∞i=1 are independent Bernoulli random variables with parameter

P(Ii = 1) =
d− 1

Si(u)
,

and Si(u) is given by Equation 9.

3 Proof of the upper bound

In this section we present the proof of the upper bound for Theorem 1.

As described above, we grow the balls around each vertex simultaneously (at rate one) so
that at time t, Bt(a) = Bw(a, t) is the ball constructed from vertex a.

We let q := ⌊2√dn log n⌋. The following lemma says that for all vertices u and v, the
growing balls centered at u and v intersect w.h.p. provided that they contain each at least q
nodes. More precisely,

Lemma 7. We have with high probability

Bw(u, Tq(u)) ∩Bw(v, Tq(v)) 6= ∅, for all u and v. (10)

For the sake of readability, we postpone the proof of the lemma to the end of this section.

Fix two vertices u and v. Let

C(u, v) := min{k ≥ 0 : Bw(u, Tk(u)) ∩Bw(v, Tk(v)) 6= ∅},

be the first time that Bw(u, T.(u)) and Bw(v, T.(v)) share a vertex. Thus, by the above lemma
w.h.p. C(u, v) < q for all u and v. Let us denote by Q the following event:

Q := {C(u, v) < q for all u and v}.

Consider now the exploration process started at a vertex u. We will need to find lower
bounds for Sk(u) in the range 1 ≤ k ≤ q. We let r := ⌊(log n)3⌋.

By the uniform choice of the matching, for every k ≥ 0, the number of half-edges introduced
by the new vertex at time Tk+1(u) and connecting back to Bw(u, Tk(u)) (given FTk(u)) is
stochastically dominated by a binomial variable

Bin(d− 1, α), where α =
d+ (d− 2)(k + 1)

dn− 2k
≤ k + 2

n
,

where the above inequality is valid for k ≤ n
2 − 5. Therefore, the tree excess of Bw(u, Tk(u)) is

stochastically dominated by a binomial variable Bin(dk, k+2
n ).
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We have (for large n)

P(Xr(u) ≥ 2) ≤ P

(
Bin

(
dr,

r + 2

n

)
≥ 2

)
≤ O(

r4

n2
) = o(n−3/2). (11)

Moreover, for any k satisfying r ≤ k ≤ 2q, we have by Chernoff’s inequality

P({Xk(u) ≥ k/
√
r}) ≤ P

(
Bin

(
dk,

k + 2

n

)
≥ k/

√
r

)
≤ exp

(
−1

3
k/

√
r

)
< n−5, (12)

for any sufficiently large n, since k2/n = o(k/
√
r).

We conclude by a union bound over all r ≤ k ≤ 2q,

P({Xk(u) < k/
√
r, for all r ≤ k ≤ 2q}) ≥ 1− o(n−4).

Define the event

Ru := {Xr(u) ≤ 1, and Xk(u) < k/
√
r, for all r < k ≤ 2q}, (13)

such that P(Ru) ≥ 1− o(n−3/2) by above inequalities.

Thus defining R :=
⋂

u∈[n]Ru, we get by union bound

P(R) ≥ 1− o(n−1/2).

Consider now two uniformly chosen vertices u and v. We have

(|π(u, v)| | Q) ≤st (Hq(u) +Hq(v) | Q) .

Furthermore, we have

(Hq(u) | R,Q) ≤st H :=

q∑

i=1

Ii,

where {Ii}∞i=1 are independent Bernoulli random variables with parameter

P(Ii = 1) =
d− 1

1 + (d− 2)i
,

for all 1 ≤ i ≤ r, and

P(Ii = 1) =
d− 1

1 + (d− 2)i − 2i/
√
r
,

for all r < i ≤ q.

We conclude

(|π(u, v)| | R,Q) ≤st H1 +H2, (14)

where H1 and H2 are two independent copies of H defined above.

We have the following lemma.
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Lemma 8. We have for some constant C (depending only on d)

P(H1 +H2 > α∗(log n+ log log n)) ≤ C(n log n)−1,

and,
P(H1 +H2 > α̂(log n+ log log n)) ≤ C(n log n)−2.

We postpone the proof of this lemma to the end of this section.

We conclude by (14), Lemma 8 and union bound that

P

(
max
j∈[n]

|π(1, j)| > α∗(log n+ log log n)

)
≤ P(Rc) + P(Qc) + C/ log n,

and,

P

(
max
i,j∈[n]

|π(i, j)| > α̂(log n+ log log n)

)
≤ P(Rc) + P(Qc) + C/ log2 n.

Since R and Q hold with high probability, we get (w.h.p.)

max
j∈[n]

|π(1, j)| ≤ α∗(log n+ log log n),

and,

max
i,j∈[n]

|π(i, j)| ≤ α̂(log n+ log log n).

This completes the proof of the upper bound for Theorem 1.

We end this section by presenting the proof of Lemma 7 and Lemma 8.

Proof of Lemma 7. Fix two vertices u and v. First consider the exploration process for Bw(u, t)
until reaching t = Tq(u). We know that w.h.p. the event R holds. Conditioned on R we have

Sq(u) ≥ (d− 1− o(1))q.

Next, consider the exploration process started at v. Each matching adds a uniform half-
edge to the neighborhood of v. Therefore, the probability that Bw(v, Tq(v)) does not intersect
Bw(u, Tq(u)) is at most

(
1− (d− 1− o(1))q

dn

)q

≤ exp (4(d − 1− o(1)) log n) < n−7,

for any large n. A union bound over u and v completes the proof.
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Proof of Lemma 8. We have for λ > 0,

EeλH1 =

r∏

i=1

(
1 + (eλ − 1)

d− 1

1 + (d− 2)i

) q∏

i=r+1

(
1 + (eλ − 1)

d− 1

1 + (d− 2)i − 2i/
√
r

)
.

Then using the fact that log(1 + x) ≤ x, we obtain

1

2
logEeλ(H1+H2) =

r∑

i=1

log

(
1 + (eλ − 1)

d− 1

1 + (d− 2)i

)

+

q∑

i=r+1

log

(
1 + (eλ − 1)

d− 1

1 + (d− 2)i− 2i/
√
r

)

≤ (eλ − 1)

(
r∑

i=1

d− 1

1 + (d− 2)i
+

q∑

i=r+1

d− 1

1 + (d− 2)i− 2i/
√
r

)

≤ (eλ − 1)

(
d− 1

d− 2

r∑

i=1

1

i
+

d− 1

d− 2

1

1− 2r−1/2

q∑

i=r+1

1

i

)

≤ (eλ − 1)
d− 1

d− 2

(
1 +O(r−1/2)

)
(log q + 2)

≤ (eλ − 1)
d− 1

d− 2
(log q + 3).

Recall that q = ⌊2√dn log n⌋. Choosing λ := log
(
d−2
d−1α

∗
)
, we get

logEeλ(H1+H2) ≤
(
α∗ − d− 1

d− 2

)
(log n+ log log n+ log d+ 10).

By Markov’s inequality we have

P(H1 +H2 > α∗(log n+ log log n)) ≤ Eeλ(H1+H2) exp(−λα∗(log n+ log log n))

≤ exp

(
(α∗ − d− 1

d− 2
)(log n+ log log n+ log d+ 10)

)

exp

(
−α∗ log(

d− 2

d− 1
α∗)(log n+ log log n)

)

= C exp

(
(α∗ − d− 1

d− 2
− α∗ log

(
d− 2

d− 1
α∗

)
)

)

exp (log n+ log log n)

= C exp (− log n− log log n)

= C(n log n)−1.
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Similarly, by taking λ := log
(
d−2
d−1 α̂

)
we get

logEeλ(H1+H2) ≤
(
α̂− d− 1

d− 2

)
(log n+ log log n+ log d+ 10),

and by Markov’s inequality we have

P(H1 +H2 > α̂(log n+ log log n)) ≤ Eeλ(H1+H2) exp(−λα̂(log n+ log log n))

≤ exp

(
(α̂− d− 1

d− 2
)(log n+ log log n+ log d+ 10)

)

exp

(
−α̂ log(

d− 2

d− 1
α̂)(log n+ log log n)

)

= C exp

(
(α̂− d− 1

d− 2
− α̂ log

(
d− 2

d− 1
α̂

))

exp (log n+ log log n))

= C exp (−2(log n+ log log n))

= C(n log n)−2,

as required.

4 Proof of the lower bound

In this section we present the proof of the lower bound for Theorem 1.

For ǫ > 0 (small enough) we define the function fǫ : R
+ → R as follows

fǫ(α) := α log

(
d− 2

(d− 1)(1 − ǫ)
α

)
− α(1− ǫ) +

1

d− 2
(15)

= f(α) + α(ǫ− log(1− ǫ)). (16)

Let α∗
ǫ and α̂ǫ be respectively the unique solutions to fǫ(α) = 0 and fǫ(α) = 1 for α > d−1

d−2 .
Note that α∗

ǫ < α∗, α̂ǫ < α̂, and furthermore, α∗
ǫ → α∗ and α̂ǫ → α̂ as ǫ → 0.

To prove the lower bound, it suffices to show that for all ǫ > 0, there exist w.h.p. a vertex
a such that

|π(1, a)| ≥ α∗
ǫ log n,

and there exists w.h.p. two vertices u and v such that

|π(u, v)| ≥ α̂ǫ log n.

12



For a path γl = v0, e1, v1, . . . , el, vl where vi−1 and vi are endpoints of ei for all i ∈ [l], let

w(γl) =

l∑

i=1

w(ei).

We first show that given that a path P (u, v) between u and v has small weight, it is very likely
to be the shortest-weight path between its endpoints. More precisely, we have the following.

Lemma 9. For all n sufficiently large, and any path γk = v0, e1, v1, . . . , ek, vk with k =
O(log n), we have (for all ǫ > 0)

P(γk 6= π(v0, vk) | w(γk) ≤
1− ǫ

d− 2
log n) = o(1).

For the sake of readability, we postpone the proof of the lemma to the end of this section.
Consider a path γl = v0, e1, v1, . . . , el, vl. It is easily seen that for t > 0, letting Po(t) denote a
Poisson mean t random variable, we have

P(w(γℓ) ≤ t) = P(Po(t) ≥ ℓ) ≥ exp(−t)
tℓ

ℓ!
= exp (−t+ ℓ log t− log ℓ!) . (17)

In the following, we let ℓ = ℓǫ be large enough such that (by Stirling formula)

log ℓ! ≤ ℓ log ℓ− ℓ(1− ǫ).

Thus we have for α > 0,

P

(
w(γℓ) ≤

ℓ(1− ǫ)

(d− 2)α

)
≥ exp

(
− ℓ(1− ǫ)

(d− 2)α
+ ℓ log

(
ℓ(1− ǫ)

(d− 2)α

)
− ℓ log ℓ+ ℓ(1− ǫ)

)

= exp

(
− ℓ

α

(
1− ǫ

d− 2
+ α log

(
(d− 2)α

1− ǫ

)
− α(1 − ǫ)

))

= exp

(
− ℓ

α

(
− ǫ

d− 2
+ fǫ(α) + α log(d− 1)

))
. (18)

We get for α = α∗
ǫ in (18) (since fǫ(α

∗
ǫ ) = 0)

P

(
w(γℓ) ≤

ℓ(1− ǫ)

(d− 2)α∗
ǫ

)
≥ (d− 1)−ℓ exp

(
ǫℓ

(d− 2)α∗
ǫ

)
, (19)

and for α = α̂ǫ in (18) (since fǫ(α̂ǫ) = 1)

P

(
w(γℓ) ≤

ℓ(1− ǫ)

(d− 2)α̂ǫ

)
≥ (d− 1)−ℓ exp

((
−1 +

ǫ

d− 2

)
ℓ

α̂ǫ

)
. (20)
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Lemma 10. Assume tn = ⌊c log n⌋ for some positive constant c. For any function ω(n) tending
to ∞ with n, w.h.p., there exists v ∈ ∂B(1, tn) such that

w(γ1(v)) ≤
tn(1− ǫ)

(d− 2)α∗
ǫ

+ ω(n),

where γ1(v) denote the path from 1 to v in B(1, tn).

Proof. We first prove the lemma for the case c < 1
5 log(d−1) .

Consider now B(1, ⌊c log n⌋) for c < 1
5 log(d−1) . By Lemma 4 w.h.p. tx(B(1, ⌊c log n⌋) ≤ 1,

and then by removing at most one of the children of 1 (and its descendants) we have the tree
structure and then, |∂B(1, ⌊c log n⌋)| ≥ (d − 1)⌊c logn⌋. In the following we assume that one of
the children of node 1 is removed (even if tx(B(1, ⌊c log n⌋) = 0) such that |∂B(1, ⌊c log n⌋)| =
(d− 1)⌊c logn⌋.

Let t0 = logd−1 logω(n). Note that for any path γt0 of length t0, by Markov inequality

P(w(γt0) ≥ ǫω(n))) ≤ t0
ǫω(n)

.

Thus, by union bound, the probability that this would be true for one of the nodes at level t0
of node 1 (i.e., in ∂B(1, t0)) is smaller than

(d− 1)t0
to

ǫω(n)
=

log ω(n) logd−1 logω(n)

ǫω(n)
,

which goes to zero as n goes to ∞. Then w.h.p. the path from the root (1) to all nodes at level
t0 has weight smaller that ǫω(n).

We assume ℓ = ℓǫ is large enough such that exp
(

ǫℓ
(d−2)α∗

ǫ

)
> 1. Now consider the following

branching process starting from a node r at level t0, i.e., r ∈ ∂B(1, t0).

We call a vertex v good if either v is the root (v = r), or if v lies ℓ levels below a good vertex

u and w(γ1(u, v)) ≤ ℓ(1−ǫ)
(d−2)α∗

ǫ

, where γ1(u, v) denote the path from u to v (in B(1, ⌊c log n⌋)).

The collection of good nodes form a Galton-Watson tree. Let Z denote the progeny distribution
of this process. Without need to calculate its distribution, from (19) we know that

EZ = (d− 1)ℓP

(
w(γℓ) ≤

ℓ(1− ǫ)

(d− 2)α∗
ǫ

)
≥ exp

(
ǫℓ

(d− 2)α∗
ǫ

)
> 1.

Hence, with some positive probability qǫ this process survives. We conclude with probability at
least qǫ we have a good node at level ⌊c log n⌋ from the root r at level t0. Considering the same
process for all nodes at level t0, we conclude that there exists a good vertex at level ⌊c log n⌋,
with probability at least (by independence of these processes)

1− (1− qǫ)
(d−1)t0 = 1− (1− qǫ)

logω(n) → 1,
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as n → ∞. Then w.h.p. we have a node v at level tn, such that

w(γ1(v)) ≤
tn(1− ǫ)

(d− 2)α∗
ǫ

+ ǫω(n).

This completes the proof of lemma for the case c < ⌊ 1
5 log(d−1)⌋.

Now consider the case c ≥ 1
5 log(d−1) , and let K be an integer such that c′ := c/K < 1

5 log(d−1) .

By previous argument, we know that w.h.p. there exists a node v1 at level ⌊c′ log n⌋ such that

w(γ1(v1)) ≤ ⌊c′ logn⌋(1−ǫ)
(d−2)α∗

ǫ

+ ǫω(n). We know repeat the same argument to find a node v2 at

level ⌊c′ log n⌋ below of node v1 such that w(γ1(v1, v2)) ≤ ⌊c′ logn⌋(1−ǫ)
(d−2)α∗

ǫ

+ ǫω(n), where γ1(u, v)

denote the path from u to v on B(1, t). Note that the tree excess is again at most one, and the
number of nodes at level t0 of node v1 is at least (d − 2)(d − 1)t0−1 which goes to infinity as
n → ∞, and we have the similar arguments. Now repeating this process K−1 times completes
the proof.

Thus, by above lemma, there exists w.h.p. a node a at level α∗
ǫ log n such that w(γ1(a)) ≤

1−ǫ
d−2 log n. By Lemma 9, this path is optimal. We conclude w.h.p. there exists a node a such
that π(1, a) ≥ α∗

ǫ log n.

We now prove that there exists w.h.p. two vertices u and v such that

|π(u, v)| ≥ α̂ǫ log n.

Indeed, we prove that there exists w.h.p. a path γ of length α̂ǫ log n such that w(γ) ≤ 1−ǫ
d−2 log n.

Then again using Lemma 9, we conclude the proof.

Consider the following exploration process starting from a node a. We call a vertex v, a-good
if either v is the root (v = a), or if v lies ℓ levels below a good vertex u and w(γa(u, v)) ≤ ℓ(1−ǫ)

(d−2)α̂ǫ
,

where γa(u, v) denote the path from u to v in B(a, .).

To find the nodes which are a-good, we first explore the nodes in B(a, ℓ), and we find the set
of nodes at this level which are a-good. Then, for each of these (a-good) nodes, we explore
again ℓ level behind and we continue the exploration until finding all of the a-good nodes. Let
us denote by Gℓ(a) the explored graph (starting from a) to find the set of all a-good nodes.

The following lemma bounds from above the size of Gℓ(a).

Lemma 11. Let G ∼ G(n, d) for some fixed d ≥ 3. Then there exists a constant A such that
w.h.p., |Gℓ(u)| ≤ A log n for all u ∈ V (G).

The proof of this lemma is given at the end of this section. Hence, we can assume Gℓ(u) ≤
A log n for all u ∈ V (G) in the rest of the proof.

We now call a vertex u nice if Gℓ(u) is a tree and the height of Gℓ(u), denoted by Dℓ(u),
is at least α̂ǫ log n, i.e., Dℓ(u) ≥ α̂ǫ log n.
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Note that when u is nice, then there exists a node v at level α̂ǫ log n behind u such that
w(γu(v)) ≤ 1−ǫ

d−2 log n, where γu(v) denote the path from u to v in B(u, .). Using the second
moment method, we now prove that there exists at least one nice vertex.

Let Na denote the event that node a is nice, and X =
∑

a∈[n] 1(Na) be the total number of
nice vertices. We now show that X ≥ 1 w.h.p., which concludes the proof.

Let Z be the distribution of the number of a-good nodes at level ℓ in (d− 1)-array tree having
a as a root. Conditioning on the tree structure of Gℓ(a) and by removing one of the children
of a (and all its descendants), the set of a-good nodes are distributed as a branching process
with distribution Z. Note that by (20), we have

EZ = (d− 1)ℓP

(
w(γℓ) ≤

ℓ(1− ǫ)

(d− 2)α̂ǫ

)
≥ exp

((
−1 +

ǫ

d− 2

)
ℓ

α̂ǫ

)
. (21)

Let Pk(a) be the probability that this branching process survives for at least k generations. By
basic recurrent argument, we have

Pk+1(a) = 1− ΦZ(1− Pk(a)),

where ΦZ(s) = EsZ denote the generation function of Z.

Note that EZ < 1 (for ǫ small enough) and the branching process is subcritical. Hence,
Pk(a) → 0 as k → ∞. Using 1 − ΦZ(1 − x) = Φ′

Z(1)x + O(x2), and Φ′
Z(1) = EZ, it follows

easily that

Pk(a) = (EZ + o(1))k, as k → ∞. (22)

Thus, conditioning on the tree-structure of Gℓ(a) (and by choosing k = α̂ǫ

ℓ log n), we get

P(Dℓ(a) ≥ α̂ǫ log n) ≥ (1± o(1))n−1+ ǫ

d−2 .

Since the size of Gℓ(a) is (w.h.p.) smaller that A log n (by Lemma 11), with probability at least
1−O(log n/n), Gℓ(a) is a tree.

Putting all these together, we have

EX =
∑

a

P(Na) ≥
2

3
n

ǫ

d−2 .

And,

EX2 = E(
∑

a

1(Na))
2 = E

∑

a,b

1(Na)1(Nb)

= E


∑

a

1(Na)
∑

b: Gℓ(a)∩Gℓ(b)6=∅

1(Nb) +
∑

a,b: Gℓ(a)∩Gℓ(b)=∅

1(Na)1(Nb)




≤ (A log n)2EX + (EX)2,
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where the last inequality follows by Lemma 11. We conclude that

V ar[X] = EX2 − (EX)2 ≤ (A log n)2EX.

Then, by Chebysev’s inequality w.h.p. X ≥ 1
2n

ǫ

d−2 .

This completes the proof of the lower bound.

We end this section by presenting the proof of Lemma 9 and Lemma 11.

Proof of Lemma 9. We condition on the path γk between v0 and vk. We now remove the path
γk and consider the exploration process defined is Section 2.4 starting from v0. (The proof is
similar to [13, Lemma 3.5].)
Let τi denote the time of the i’th exploration step (for i ≥ 0, τ0 = 0). Note that τi+1−τi ≥st Yi,
where Yi are independent exponential random variables with

E[Yi] = (1 + (d− 2)(i+ 1))−1 .

Note that this is true since the worst case is when Xi(a) = 0, i.e., the explored set forms a tree.

We let z = ⌊
√

n/ log n⌋. We will show later that the growing balls in the exploration process
starting from v0 and vk will not intersect w.h.p. provided that they are of size less than z. We
now prove that τz >

1−ǫ
2(d−2) log n with high probability.

We have

P(τz ≤ t) ≤
∫
∑

z

i=1
xi≤t

z∏

i=1

[1 + (d− 2)i]e−
∑

z

i=1
(1+(d−2)i)xidx1 . . . dxz

=

∫

0≤y1≤···≤yz≤t

z∏

i=1

[1 + (d− 2)i]e−yze−(d−2)
∑

z

i=1
yidy1 . . . dyz,

where yk =
∑k−1

i=0 xz−i. Letting y = yz and accounting for all permutations over y1, . . . , yz−1

(by giving to these variables the range [0, y]), we obtain

P(τz ≤ t) ≤
∫ t

0
e−(d−1)y

∏z
i=1(i+

1
d−2)

(z − 1)!

.

(∫

[0,y]z−1

(d− 2)ze−(d−2)
∑

z−1

i=1
yidy1 . . . dyz−1

)
dy

≤
∫ t

0
e−(d−1)y

∏z
i=1(i+

1
d−2)

(z − 1)!
.

(
z−1∏

i=1

∫ y

o
(d− 2)e−(d−2)yidyi

)
dy

≤ C(d− 2)z
d−1

d−2

∫ t

0
e−(d−1)y

(
1− e−(d−2)y

)z−1
dy,

where C > 0 is an absolute constant. Now using the fact that
(
1− e−(d−2)y

)z−1 ≤ e−nα

, for
some α > 0 and for all 0 ≤ y ≤ 1−ǫ

2(d−2) log n =: t0, we obtain

P

(
τz ≤

1− ǫ

2(d− 2)
log n

)
≤ C(d− 2)z

d−1

d−2

∫ t0

0
e−nα

dy = o(n−4).
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Similarly considering the exploration process for vk, again after time t0, we obtain w.h.p. a
set of size at most z. Now remark that, because each matching is uniform among the remaining
half-edges, the probability of hitting the ball of size t0 around v0 is at most z/n. Altogether,

P(γk 6= π(v0, vk) | w(γk) ≤
1− ǫ

d− 2
log n) ≤ z2

n
+ o(1) = o(1),

as desired.

Proof of Lemma 11. Let Zℓ(a) denote the number of a-good nodes in Bℓ(a) (i.e., the nodes

in generation ℓ behind a with (weighted) distance smaller than ℓ(1−ǫ)
(d−2)α̂ǫ

from a). By Markov

inequality and from (20), we obtain

P(Zℓ(a) ≥ 1) ≤ EZℓ(a)

≤ d(d − 1)ℓ−1(d− 1)−ℓ exp

((
−1 +

ǫ

d− 2

)
ℓ

α̂ǫ

)

=
d

d− 1
exp

((
−1 +

ǫ

d− 2

)
ℓ

α̂ǫ

)
=: βǫ

(this follows from the fact that the worst case is when Bℓ(a) forms a tree).

Thus, for ℓ = ℓǫ large enough, we have P(Zℓ(a) ≥ 1) ≤ βǫ < 1.

We conclude (for any integer K)

P

(
Gℓ(a) ≤ Kd(d− 1)ℓ−1

)
≤ βK

ǫ .

Now by choosing K = 2 log n/| log βǫ|, we get

P

(
Gℓ(a) ≤ 2d(d− 1)ℓ−1 log n/| log βǫ|

)
≤ n−2.

Taking a union bound over all a finishes the proof.
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[5] T. Antunović, Y. Dekel, E. Mossel, and Y. Peres. Competing first passage percolation on
random regular graphs. arXiv:1109.2575, 2011.

[6] E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with given
degree sequences. Journal of Combinatorial Theory, Series A, 24:296–307, 1978.

[7] S. Bhamidi. First passage percolation on locally tree-like networks. I. dense random graphs.
Journal of Mathematical Physics, 49(12):125218, 2008.

[8] S. Bhamidi, R. van der Hofstad, and G. Hooghiemstra. First passage percolation on
random graphs with finite mean degrees. Annals of Applied probability, 20(5):1907–1965,
2010.

[9] S. Bhamidi, R. van der Hofstad, and G. Hooghiemstra. First passage percolation on
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