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Abstract

The uncertainty in estimation of spatial animal density from line

transect surveys depends on the degree of spatial clustering in the

animal population. To quantify the clustering we model line transect

data as independent thinnings of spatial shot-noise Cox processes.

Likelihood-based inference is implemented using Markov chain Monte

Carlo (MCMC) methods to obtain efficient estimates of spatial cluster-

ing parameters. Uncertainty is addressed using parametric bootstrap

or by consideration of posterior distributions in a Bayesian setting.
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Maximum likelihood estimation and Bayesian inference are compared

in an example concerning minke whales in the northeast Atlantic.

Keywords: minke whales, shot-noise Cox process, simulation-based inference,

spatial point process, thinning.

1 Introduction

Line transecting together with point sampling are the most widely used tech-

niques for estimating abundance of wild animal or plant populations (Buck-

land et al., 2004). The spatial point pattern of the animal or plant positions is

often clustered relative to a Poisson process. We consider a Cox point process

model (defined and motivated in Section 3.1) for such clustered populations,

and develop likelihood-based methods to infer the model parameters from

line transect data on animal positions.

In a line transect survey an observer traverses an area at fixed speed along

a predetermined transect line. The transect line is often a zigzag consisting

of a number of transect legs which are possibly broken into segments due

to changes in sighting condition. The observer records the position of each

sighted animal and possibly covariate data on sighting conditions. These

data may in the first place be used for estimating the unknown detection

probability p(x, y) of observing an animal located at (x, y). Our theme, how-

ever, is not the estimation of p. Viewing the animal positions as a realization

of a spatial point process, we instead focus on estimation of the animal den-

sity and clustering parameters, assuming the detection probability p given.

Assuming independent detection, the set of detected animal positions is a
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thinned version of the population point process with thinning probability

1 − p(x, y). Line transect data were first regarded as thinnings of point pro-

cesses in Schweder (1974) and Schweder (1977).

With n animals observed over the transect,

λ̃ = n/

∫

p(x, y)dxdy (1)

is the moment estimate of mean animal density, and also the maximum likeli-

hood estimate of the intensity parameter of a spatially homogeneous Poisson

population process when animals are detected independently of each other.

Under clustering, this estimate is inefficient and to evaluate its variance it is

necessary to quantify the degree of clustering. We address these issues using

a parametric Cox process model for the clustering, and likelihood methods

to infer the unknown parameters.

A computationally easy approach to parameter estimation for a Cox pro-

cess is to match a non-parametric estimate of a second order summary statis-

tic with its theoretical expression depending on the unknown parameters.

This approach was first taken for line transect data by Hagen and Schweder

(1995) who used the so-called K-function. For a stationary point process

with intensity λ, λK(t) is the expected number of further points within dis-

tance t from a typical point of the point process. A non-parametric estimate

of the K-function may be obtained from line transect data as discussed in

Baddeley et al. (2000). Animal positions are observed within narrow strips

along the transect and an unbiased estimate of K(t) can only be obtained

for t smaller than the strip width. The estimate is moreover highly variable,
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see Section 5.4.

Other methods of inference are based on projecting the detected points

onto the transect line whereby a one-dimensional point process is obtained.

Cowling (1998) (see also Aldrin et al., 2003) considers the K-function for the

projection of a thinned Neyman-Scott process. The thinning probability is

here assumed centred Gaussian with constant scale parameter. In practice,

however, the thinning probability is usually varying along the transect ac-

cording to sighting conditions, see e.g. Skaug et al. (2004). In Buckland et

al. (2004, Chapter 4), the projected process is assumed to be inhomogeneous

Poisson with intensity depending on observed covariates. Skaug (2006) con-

siders a one-dimensional Cox point process with random intensity modulated

by a latent two-state Markov process.

In this paper we develop likelihood-based inference for a thinned spatial

Cox process both in a frequentist and a Bayesian setting. The inference

is implemented using simulation methodology. A distinct advantage of our

approach (as opposed to the one in Cowling, 1998) is that we do not need

simplifying assumptions regarding the functional form of the detection prob-

ability. Our approach can moreover easily be adapted to other sampling

designs of the distance type (Buckland et al., 2004). It can also be extended

to take into account large scale heterogeneity due to spatially varying covari-

ates (see Section 6). This would extend the approach in Hedley and Buckland

(2004) who consider spatially inhomogeneous Poisson processes.

Applications of maximum likelihood estimation and Bayesian inference

for spatial Cox processes in general are still very rare in the literature. Our

paper therefore also serves as a case study of general computational issues
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concerning the implementation of likelihood-based inference for spatial Cox

processes.

Our discussion will be focused on a particular line transect study of minke

whale abundance in the northeast Atlantic, see Section 2. Sections 3 and 4

describe our model and the computational approach while Section 5 contains

an application to the minke whale data including model assessment using the

K-function. Section 6 contains some final remarks.

2 Minke whales

Minke whales (balaneoptera acutorostrata) are subject to commercial whaling

in the northeast Atlantic. Catch quotas are calculated using, among other

sources of information, periodic abundance estimates (International Whaling

Commission, 2004). Skaug et al. (2004) gave the most recent abundance

estimate of about 107 000 (coef. of var. 0.13) summering minke whales in

the northeast Atlantic including waters around Jan Mayen. The total area

is divided into blocks and the abundance estimate is based on separate line

transect surveys within the blocks. Each block was surveyed once in one of

the years 1996-2001 except the Lofoten block which was surveyed twice.

Here we focus on the survey block named VSS located west of Spitzbergen.

This block was visually surveyed in 1999 with 50 whales observed over a

transect with m = 7 transect legs (see Figure 1). A few comments regarding

maximum likelihood estimation for a neighbouring survey block VSN (not

shown) are given in Section 5 and 6. Following Skaug et al. (2004), we regard

the whales as immobile since the vessel travels much faster than minke whales
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usually do.

[Figure 1 about here.]

The probability of detecting a whale is considerably less than one even

when located right on the transect. Let Q(x, y, x̃) denote the hazard proba-

bility of initially detecting a whale surfacing at position (x, y) when the ship

is at position (x̃, 0) on a transect leg along the x-axis. Sightings must be

forward of perpendicular to the vessel so Q(x, y, x̃) is zero for x ≤ x̃. As-

suming that the whales surface according to a Poisson process in time with

intensity φ > 0 and that the ship moves at unit speed, the detection prob-

ability is p(x, y) = 1 − exp
(

− φ
∫ x

−∞
Q(x, y, x̃)dx̃

)

. To estimate Q(x, y, x̃),

a double platform design is used in the minke whale surveys. There is no

communication between the platforms, and from each platform tracks of suc-

cessive surfacings of detected whales are recorded. An estimate of Q(x, y, x̃)

can then be obtained from trinomial data with outcomes: surfacing whale

observed from a) both platforms b) only from first platform c) only from

second platform, see Skaug et al. (2004) for further details.

In the Norwegian minke whale surveys, radial distance from the ship to

the surfacing whale is estimated by eye, and the angle between the transect

leg and the sighting line is estimated by way of an angle board fixed to the

rim of the barrel or platform fence. Time and ship positions are accurately

measured, but the angle and particularly radial distance measurements are

rather imprecise. Due to measurement error, tracks and surfacings from the

two platforms might be wrongly matched. This induces bias in the estimation

of p(x, y). The bias is estimated by regression analysis on simulated data,

and a bias-corrected estimate is obtained, see Skaug et al. (2004).
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For our present purpose of fitting a spatial cluster model, the detection

probability is given by the estimate obtained in Skaug et al. (2004) and

we ignore the uncertainty due to the estimation of the detection probability.

The right plots in Figure 1 show the estimated detection probabilities for two

transect leg segments in the VSS block. The detection probability depends on

covariates (sea state, glare, observation team etc) recorded every hour, and

cannot easily be explicitly given here. An important feature of our likelihood-

based approach is that it easily accommodates the spatially varying detection

probability.

3 Spatial point process modelling of whale

positions

In this section we discuss the modelling of whale positions observed along one

transect leg. Within the time-span of traversing a transect leg the whales are

regarded as immobile and occur at spatial locations ξ = (x, y) where these

locations are relative to a coordinate system with the transect leg along the

x-axis and origin at the start of the transect leg. The whales in the vicinity of

the transect leg are regarded as a subset of a planar stationary point process

X whose intensity λ is the parameter of main interest. The process Y of

positions of observed whales is regarded as an independent thinning of X

with thinning probabilities 1− p(·) where p(ξ) is the probability of detecting

a whale positioned at ξ. In practice p(·) has bounded support so that Y is a

finite point process.
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3.1 Shot-noise Cox processes

Minke whales in the northeast Atlantic tend to form loose and variable clus-

ters, partially due to stochastic clustering in the prey distribution (Skaug

et al., 2004). Therefore a Cox process seems an appropriate model for the

whale positions. The distribution of a Cox process in the plane is governed

by a non-negative random intensity function Z = {Z(ξ)|ξ ∈ R2}. Given a

realization z of the random intensity function, the Cox process is a Pois-

son process with intensity function z. In this paper we consider an example

of a so-called shot-noise Cox process (Brix, 1999; Møller, 2003; Møller and

Waagepetersen, 2003). The random intensity function is given by

Z(ξ|Φ) =
∑

(c,γ)∈Φ

γk(ξ − c) (2)

where the kernel k is a probability density and Φ is a homogeneous marked

Poisson process. That is, Φ = {(c, γ)|c ∈ C} where C is a homogeneous

Poisson process and given C, the marks γ > 0 are independent and identically

distributed. This Cox process can also be viewed as a cluster process, i.e.

conditional on Φ, X is distributed as a superposition of Poisson processes

X(c,γ), (c, γ) ∈ Φ, each with intensity function γk(·− c) where c is the cluster

centre. Conditional on Φ, γ is the expected number of points in the cluster.

The process Y of observed whales is a shot-noise Cox process with random

intensity function

ZY (·|Φ) = p(·)Z(·|Φ).
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3.2 Parametric model

In the minke whale context we parametrize the model by θ = (κ, α, ω) where

exp(κ) is the intensity of cluster centres, α = Eγ is the mean number of

whales per cluster, and ω is the scale parameter (spread) of the kernel. The

whale intensity λ = α exp(κ) is the parameter of main interest.

We assume that γ, the number of whales per cluster, is standard gamma

distributed with shape and scale parameter α and 1, respectively, and that

the kernel is a truncated bivariate Gaussian density with scale parameter

ω > 0, i.e.

k((x, y); ω) = 1[max(|x|, |y|) < Tω] exp
(

−(x2 +y2)/(2ω2)
)

/(2πω2c(T )) (3)

where T > 0 and c(T ) is a normalizing constant ensuring that k integrates

to 1. In our application, T = 3 so that c(3) = 0.9973. Working with a k of

bounded support is advantageous for computational reasons, see Appendix B.

For a region A the overdispersion index (i.e. the ratio between the variance

and mean of the number of points in X ∩ A) is approximately 2 + α.

In addition to being an example of a shot noise G Cox process (see Ap-

pendix A), our shot-noise Cox process is moreover an example of a Neyman-

Scott process with negative binomial numbers of points in each cluster. From

the point of view of constructing a random intensity function, the use of

gamma distributed marks γ in (2) adds additional flexibility compared to

more common examples of Neyman-Scott processes like the Thomas process

(first used in the line transect context by Hagen and Schweder, 1995). For

the Thomas process, the random intensity function is obtained by a super-
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position of Gaussian kernels all multiplied with the same positive parameter.

The Thomas model does not seem to allow for the amount of dispersion seen

in our example, see Figure 1 where there are many isolated points and at

least one cluster with many points.

4 Likelihood-based inference

The set of spatial locations with positive probability of detecting a whale

is essentially a union of narrow bands around the transect legs. The geom-

etry of this set is rather complicated from a computational point of view.

We therefore use a composite likelihood approach: log likelihood functions

are computed for each transect leg separately and then added to obtain a

composite log likelihood function based on all of the transect legs.

For a survey with m transect legs, we use the composite log likelihood

l(θ) =
∑m

i=1 log Li(θ) where Li(θ) is the likelihood of the data from the ith

leg. Dependence between the likelihood components Li(θ) is due to clus-

ters of whales which can be observed from more than one transect leg. For

our whale data the spatial extent (determined by ω) of the clusters is small

relative to the separation between the transect legs. It thus seems reason-

able to consider the likelihood components independent. We therefore in the

following refer to the composite likelihood function and maximum compos-

ite likelihood estimates as the likelihood function and maximum likelihod

estimates, respectively.

In Section 5.1 we use a profile likelihood approach where l(θ) is maximized

with respect to (κ, α) for a finite set of ω values using Newton-Raphson. The
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reason for using the profile likelihood approach is that it is computationally

very involved to compute the first and second derivatives with respect to the

kernel scale parameter ω. The likelihood may further be highly multimodal

as a function of ω, see Figure 2, in which case gradient based maximization

is not reliable. We are not aware of theoretical results concerning the prop-

erties of maximum likelihood estimates for spatial Cox processes so we use a

parametric bootstrap to investigate the repeated sampling properties of our

estimates.

The score function and information matrix are obtained by summing the

corresponding quantities obtained from the log likelihood functions log Li(θ)

for each transect leg. Similarly, for two values θ1 = (κ1, α1, ω1) and θ2 =

(κ2, α2, ω2) of the parameter vector, the log likelihood ratio l(θ1) − l(θ2) is

given by the sum
∑m

i=1 log(Li(θ1)−Li(θ2)). It therefore suffices to work out

the likelihood function for one generic transect leg.

4.1 Likelihood function for one transect leg

To simplify notation we drop the transect leg index i in this and the following

section. Let S denote the bounded support of the detection probability for

a transect leg - in our application S is a narrow rectangular strip around

the transect leg, see the right plots in Figure 1. The conditional density of

YS = Y ∩ S given Φ in (2) is the Poisson process density

f
(

y|ZY (·|Φ; ω)
)

= exp
(

|S| −

∫

S

ZY (ξ|Φ; ω)dξ
)

∏

η∈y

ZY (η|Φ; ω). (4)
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Note that the conditional density only depends on Φ through the finite point

process of cluster centres with positive probability of contributing with off-

spring inside S. More specifically, this finite point process is ΦE = {(c, γ) ∈

Φ|c ∈ E} where E is the rectangle {ξ ∈ R2|∃η ∈ S : k(ξ − η; ω) > 0}. The

likelihood function for the transect leg is thus

L(θ) = E(κ,α)f
(

y|ZY (·|Φ; ω)
)

= E(κ,α)f
(

y|ZY (·|ΦE ; ω)
)

where E(κ,α) denotes expectation with respect to Φ or ΦE whose distributions

depend on κ and α. Denote by v the number of points in ΦE and let w =
∑

(c,γ)∈ΦE
log γ. The marginal density of ΦE is given by the Poisson process

density of the cluster centres times the densities of the standard gamma

marks:

f(φ; κ, α) = exp
(

|E|(1 − exp(κ)
)

exp(κ)v
∏

(c,γ)∈φ

γα−1 exp(−γ)/Γ(α) =

exp
(

|E|(1 − exp(κ)) + (κ − log Γ(α))v + (α − 1)w −
∑

(c,γ)∈φ

γ
)

. (5)

Approximations of likelihood ratios L(θ2)/L(θ1) are obtained using bridge

sampling, see Appendix C. To compute approximate derivatives of log L(θ)

(see Section 4.2) or bridge sampling likelihood ratios L(θ2)/L(θ1) we need

conditional simulations of the “missing data” ΦE given YS. An algorithm for

this is discussed in Appendix B. This algorithm also forms the backbone in

an algorithm for posterior simulation in a Bayesian setting, see Section 4.3.
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4.2 Computation of log likelihood derivatives

Consider a fixed ω and let Vθ(YS, ΦE) = d log f(YS, ΦE; θ)/d(κ, α) where

f(y, φ; θ) ∝ f
(

y|ZY (·|φ; ω)
)

f(φ; κ, α) (6)

is the joint density of (YS, ΦE), see (4) and (5). Following Section 8.6.2 in

Møller and Waagepetersen (2003), the score function is given by

u(κ, α) = Eθ,yVθ(YS, ΦE) = (Eθ,yv − exp(κ)|E|, Eθ,yw −
Γ′(α)

Γ(α)
Eθ,yv)

where Eθ,y denotes conditional expectation with respect to ΦE given YS = y

and Γ(α) is the gamma function. Similarly, the observed information matrix

is

j(κ, α) = −Eθ,ydVθ(YS, ΦE)/d(κ, α)T − Varθ,yVθ(YS, ΦE) =






exp(κ)|E| 0

d2 log Γ(α)
dα2 Eθ,yv






−







Varθ,yv Covθ,y[v, w] − Γ′(α)
Γ(α)

Varθ,yv

Varθ,y[w − Γ′(α)
Γ(α)

v]






(7)

where Varθ,y and Covθ,y denotes conditional variance and covariance, and

where the matrices are symmetric with only the upper triangle shown. The

first term in (7) is the conditional expectation of the observed information

in the case where v and w are observed. The first and second derivatives of

the gamma function are known as the digamma and trigamma functions and

are available in many statistical or mathematical software packages.

We could reparametrize letting κ := log(κ − Γ(α)) in which case an ex-

ponential family density with sufficient statistic t = (v, w) would be ob-
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tained for ΦE, cf. (5). Then we obtain particularly neat expressions for

the score function and observed information: u(κ, α) = Eθ,yt − Eθt and

j(κ, α) = Varθt−Varθ,yt. However, with the original parametrization a more

well-conditioned observed information matrix is obtained. A third option is

to parametrize in terms of (κ, log λ) = (κ, κ + log α). This gives a somewhat

better conditioned observed information than with the (κ, α) parametrization

but the expression is rather messy and omitted here.

The expectations appearing in the score function and the information

matrix cannot be evaluated analytically. In order to estimate the expecta-

tions using importance sampling methods (see Section 8.6.2 in Møller and

Waagepetersen, 2003) we use conditional simulations of ΦE given YS = y,

see Appendix B.

4.3 Bayesian approach

In the Bayesian framework we introduce a prior density p(θ) and consider the

joint posterior distribution of (θ, (ΦEi
)m
i=1) where we reintroduce the index i =

1, . . . ,m, for the m transect legs. Assuming independence between transect

legs, the posterior density is given by

p(θ, (φi)
m
i=1|(yi)

m
i=1) ∝ p(θ)

m
∏

i=1

fi(yi, φi; θ).

A Markov chain Monte Carlo (MCMC) algorithm for posterior simulation

can be obtained by combining the MCMC algorithm from Appendix B with

Metropolis-Hastings updates for θ (see e.g. Robert and Casella, 2004, for

background on MCMC).
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5 Application to whale data

Precise Monte Carlo estimation of the score function and in particular the

observed information and log likelihood ratios requires large MCMC sam-

ples. Hence our approach to maximum likelihood estimation is demanding

in terms of computing time. The Bayesian approach on the other hand is

computationally less demanding, see Section 5.3. To give an idea of the com-

putational complexity we report below computing times on a 2.4 GHz/256

MB Intel 4 processor.

5.1 Maximum likelihood estimation

Estimates (κl, αl) = arg max(κ,α) l(κ, α, ωl) and λl = exp(κl)αl are obtained

for different values ωl = l/10km, l = 2, . . . , 30, using Newton-Raphson. Occa-

sionally, Monte Carlo error results in negative definite Monte Carlo estimates

of the observed information so we use a Marquardt-Levenberg variant of the

Newton-Raphson algorithm where positive terms are added to the diagonal

of the estimated observed information when it is negative definite.

The left plot in Figure 2 shows the profile log likelihood function for

ω obtained by cumulating log likelihood ratios l(θl+1) − l(θl) (with θl =

(κl, αl, ωl)) obtained using bridge sampling.

[Figure 2 about here.]

The profile likelihood function for VSS has a well-defined maximum for ω =

ω6 = 0.6 with corresponding estimates κ6 = −3.7, α6 = 2.4 and λ6 =

0.06. In Section 6 we comment on the second more flat and multimodal

profile likelihood function for the VSN block. The small vertical bars in
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Figure 2 indicate Monte Carlo confidence intervals for the log likelihood ratios

l(θl+1)− l(θl). We consider the Monte Carlo error for the estimates (κl, αl, λl)

in the simulation study in Section 5.2. The computation of an estimate

(κl, αl) and a log likelihood ratio l(θl+1) − l(θl) took around 70 minutes.

To illustrate how (κl, αl, λl) depends on ωl, a collection of estimates are

given in Table 1.

[Table 1 about here.]

The estimates κl and αl are vary considerably as a function of ωl whereas λl

is essentially constant.

5.2 Parametric bootstrap

The repeated sampling properties of the parameter estimates are studied

using a parametric bootstrap based on 100 independent simulated data sets.

The data sets are simulated under the fitted model with parameters equal to

the maximum likelihood estimates obtained in Section 5.1. It is very time

consuming to repeat the whole profile likelihood procedure for each simulated

data set. We therefore use an adaption of the parametric bootstrap where ω

is assumed known and equal to the maximum likelihood estimate. In a full

parametric bootstrap we should also maximize with respect to ω. However,

Table 1 suggests that regarding the estimate of λ, it does not matter much

whether we maximize the likelihood function over all three parameters κ, α,

or ω or maximize only over κ and α for fixed ω.

Bootstrap estimates of the means for the sampling distributions of the

estimates κ6, α6 and λ6 for fixed ω = ω6 = 0.6 and the moment estimate (1)
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are -3.6 (-3.7), 2.3 (2.4), 0.06 (0.06), and 0.06 (0.06), respectively, with the

parameter values used for the bootstrap simulation given in parantheses. The

2.5% and 97.5% quantiles are κ6: (-4.2;-2.9), α6: (0.7;4.5), λ6: (0.03;0.08),

and moment estimate: (0.03;0.08). The estimates of κ, α, and λ for fixed ω

seem close to unbiased but displays considerable variation. The right plot

in Figure 2 shows a so-called confidence net for λ obtained from its confi-

dence distribution (Schweder and Hjort, 2002) estimated from the bootstrap

simulations. For each level of confidence on the vertical axis, the horizontal

interval from the left to the right branch of the net provides a tail-symmetric

confidence interval.

Our estimates are affected by sampling variation, but also by Monte Carlo

error due to the likelihood derivatives being evaluated using MCMC. We es-

timate the Monte Carlo error by pairwise comparison of two independent

optimizations for each simulated data set. The estimated Monte Carlo stan-

dard deviations for κ6, α6, and λ6 are 0.1, 0.2, and 0.002. The Monte Carlo

standard deviations seem reasonably small compared with the variability of

the bootstrap distributions.

The average time used for a bootstrap simulation and subsequent opti-

mization is around 30 minutes.

5.3 Bayesian inference

From a numerical point of view the Bayesian approach is very advantageous

since Monte Carlo estimation of posterior expectations is rather simple com-

pared with maximization of the likelihood function.
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Hedley and Buckland (2004) mention that minke whales in the Antarc-

tic comes in pods of 1-3 animals. We use this information to illustrate a

Bayesian approach. About 90% of the probability mass of a negative bino-

mial distribution with mean α = 2 and variance 2α = 4 falls on {0, 1 . . . , 5}.

It therefore seems reasonable to use an informative N(2, 1) prior (truncated

at zero) for α. We further impose uniform priors on exp(κ) and ω on the

bounded intervals ]0.01, 0.2[ and ]0.1, 1.5[, respectively.

The marginal posterior means and 2.5% and 97.5% quantiles for κ, α, ω,

and λ are -3.6 (-4.3;-2.8), 2.2 (1.0;3.5), 0.7 (0.4;1.0), and 0.06 (0.04;0.08). A

posterior credibility net for λ is shown in the right plot in Figure 2, i.e., for

a probability q on the vertical axis, the horizontal interval from the left to

the right branch of the credibility net provides a tail-symmetric q posterior

credibility interval. The posterior means are very similar to the maximum

likelihood estimates. The credibility net for λ agrees well with the confidence

net, but is slightly narrower due to the use of prior information.

The MCMC computations for the Bayesian analysis took about 20 min-

utes.

5.4 Spatial K-function for whales

We conclude our study of the VSS whale data by considering a non-parametric

estimate of the K-function for the whale process X. Based on the data yi for

the ith transect leg, a non-parametric estimate of the K-function is given by

K̂i(t) =
∑

ξ,η∈yi

1[0 < ‖ξ − η‖ < t]

λ̃p(ξ)λ̃p(η)
wξ,η
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where λ̃ is the moment estimate (1) of the intensity and wξ,η is an edge

correction factor, see Baddeley et al. (2000) or Section 4.3.2 in Møller and

Waagepetersen (2003). The edge correction requires that t is less than the

width of the strip Si (4 km in our application). Our estimate based on

all the transect legs is simply the average K̂(t) =
∑m

i=1 K̂i(t)/m. Figure 3

shows L̂(t) − t where L̂(t) =

√

K̂(t)/π. For a Poisson process, L(t) − t =
√

K(t)/π − t is zero for all t so our estimate L̂(t) − t which takes values

larger than zero indicates clustering (the theoretical value of L(t) − t is
√

t2 + [1 − exp(−(t/(2ω)2)]/(πκ)− t > 0 under the shot noise Cox process).

The dotted curves in Figure 3 are 95% pointwise confidence bands: for each

t > 0 the corresponding values of the dotted curves provide a 95% confidence

interval for L̂(t)− t under the shot noise Cox process. The confidence bands

illustrates the large variability of K̂(t). Except for very small t, L̂(t)− t falls

within the confidence bands. Thus the plot does not provide strong evidence

against our model (the p-value obtained from a Monte Carlo test based on

the integrated squared distance between L̂(t)− t and the theoretical value of

L(t) − t under the fitted shot noise Cox process is 21%).

[Figure 3 about here.]

The K-function uniquely characterizes the second order properties of a

stationary point process. We also investigated the first order properties of

our model by comparing the observed counts of whales within each transect

leg with their sampling distributions under the fitted shot noise Cox process.

Only the high count (18) of whales in the lower left transect leg in Figure 1

falls outside the 0.025% and 0.975% quantiles (0 and 11, respectively).
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6 Discussion

The profile likelihood function (Figure 2) for the VSS data has a well-defined

maximum at ω = 0.6. In addition to the VSS block, we considered another

block, VSN, for which the profile likelihood function was nearly flat with

multiple local maxima, see Figure 2. One may speculate whether this in-

dicates aggregation at different spatial scales where large scale aggregation

might be explained by spatial covariates concerning, say, sea depth or water

temperature. It is also plausible that such covariates might explain the high

count of whales in the lower left transect leg in Figure 1 which is also causes

the slight lack of fit seen in Figure 3 for small t. Failing to take possible

extra sources of variation into account may lead to an underestimation of

the uncertainty of the whale intensity estimate. Including too many sources

of variation might on the other hand lead to lack of identification given the

relatively sparse data.

Covariates can easily be incorporated in our model by multiplying a pos-

itive function e(·) depending on the covariates to the random intensity func-

tion (2). The random intensity function for the observed whales is then

ZY (ξ|Φ) = e(ξ)p(ξ)Z(ξ|Φ)

which accounts for both small scale clustering and large scale aggregation

due to the covariates. Note that ZY (ξ|Φ) = p̃(ξ)MZ(ξ|Φ), ξ ∈ S, where

M = maxξ∈S e(ξ)p(ξ) and p̃(ξ) = e(ξ)p(ξ)/M . Hence, our simulation algo-

rithm from Appendix B is still applicable if we replace p(·) with p̃(·) and the

standard gamma marks with Γ(α,M) marks.
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Another very flexible class of Cox processes is given by log Gaussian

Cox processes (Møller et al., 1998) where the log random intensity function

is a Gaussian process. For these processes we would not need to consider

extended regions E since the marginal distribution of X ∩ B is known for a

log Gaussian Cox process X on R
2 and a bounded region B. On the other

hand, for computational reasons it is required to discretize the Gaussian

process and this introduce the problem of choosing a suitable discretization,

see Waagepetersen (2004).

Skaug et al. (2004) estimated the detection probability p through a para-

metric model for the hazard probability Q. A simulation approach accounting

for uncertainty in this estimate and that of the surfacing rate φ was em-

ployed to obtain an approximate confidence distribution for the abundance

of minke whales in the survey area. A similar approach might be taken in our

shot-noise Cox process setup to account also for uncertainty in the detection

probability.

Our approach to maximum likelihood estimation is computationally de-

manding, but the computing times do not seem prohibitive. The computing

time can moreover easily be reduced by running optimization and bridge sam-

pling computations in parallel on several computers. The Bayesian approach

is a computationally much easier alternative. However, the specification of

priors may be a controversial issue. For instance, not everyone might agree

on the informative prior for α used in Section 5.3 which in turn induces an

informative prior on λ.
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In Appendix A-C a working knowledge of spatial point process densities

and Markov chain Monte Carlo methods is assumed. Background material
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A Relation to shot noise G Cox processes

Our shot-noise Cox process is a special case of a shot noise G Cox process

(Brix, 1999) which is obtained when Φ is a Poisson process with intensity

function of the form

ζ(c, γ) = exp(κ)β−αγα−1 exp(−γ/β)/Γ(α) (8)
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where κ ∈ R, α > −1, and β > 0. With our rather small data set we can not

determine well both α and β and hence choose to fix β = 1. Alternatively

one might fix α = 0 whereby a so-called Poisson-gamma process (Wolpert

and Ickstadt, 1998) is obtained. With α ≤ 0 the process of cluster centres

C = {c ∈ R
2 : (c, γ) ∈ Φ for some γ} is not locally finite and this is a

nuisance for computational reasons.

The notation in the following appendices B and C is as in Sections 4.1 and

4.2 where we omit the index i for the different transect legs.

B Conditional simulation using MCMC

The conditional density of ΦE given YS = y is proportional to the joint

density (6). Simulations from the conditional distribution of ΦE can be

obtained using a birth/death MCMC algorithm as described in Chapter 7

in Møller and Waagepetersen (2003). In each MCMC iteration it is then

required to compute the integral

∫

S

ZY (ξ|φ′; ω)dξ =

∫

S

p(ξ)Z(ξ|φ′; ω)dξ

appearing in f(y, φ′; θ) (cf. (4) and (6)) when φ′ is the proposal for a new

state of the MCMC chain. Numerical quadrature is required to compute the

integral due to the rather irregular form of the detection probability p(·).

Instead we consider a data augmentation approach where we simulate the

joint distribution of Φ and the unobserved whales XS = (X ∩ S) \ YS within

S given YS = y. Given ΦE, XS and YS are independent Poisson processes
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and the joint density of (YS, XS, ΦE) is given by

fA(y, x, φ; θ) ∝ p(y|y ∪ x)f
(

y ∪ x|Z(·|φ; ω)
)

f(φ) (9)

where p(y|y ∪ x) =
∏

η∈y p(η)
∏

η∈x(1 − p(η)) is the probability of observing

y given all whales YS ∪ XS = y ∪ x and

f
(

y ∪ x|Z(·|φ; ω)
)

= exp(|S| −

∫

S

Z(ξ|φ; ω)dξ)
∏

η∈y∪x

Z(η|φ; ω)

is the Poisson process density of YS ∪ XS given ΦS = φ.

The conditional density of ΦE given YS = y and XS = x is proportional to

fA(y, x, φ; θ) and easy to evaluate since Z(η|φ; ω) is just a sum of scaled trun-

cated Gaussian densities, cf. Section 3.1. The full conditional of XS given YS

and ΦE is simply a Poisson process with intensity function (1−p(·))Z(·|φ; ω).

We then simulate (XS, ΦE) given YS = y using a Gibbs/Metropolis-within-

Gibbs algorithm where we alternate between the following two steps:

1. Gibbs update for XS given ΦE and YS where the current state of XS

is replaced by a simulation of a Poisson process with intensity function

(1 − p(·))Z(·|φ; ω).

2. Single point Metropolis birth/death updates for ΦE given XS and YS.

For computational speed it is convenient to work with a kernel of bounded

range since a birth or death of a marked cluster centre then only influences

the intensity function for the whales in a neighbourhood of the added or

removed marked cluster centre.
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C Computation of log likelihood ratios

A likelihood ratio L(θ2)/L(θ1) can be calculated using bridge sampling (Gel-

man and Meng, 1998; Møller and Waagepetersen, 2003):

L(θ2)

L(θ1)
=

k−1
∏

l=0

Eθb

2l
,y[f

A(y,XS, ΦE ; θb
2l+1)/f

A(y,XS, ΦE; θb
2l)]

Eθb

2l+2
,y[f

A(y,XS, ΦE , θb
2l+1)/f

A(y,XS, ΦE; θb
2l+2)]

(10)

where fA is given by (9), θb
0 = θ1, θb

2k = θ2 and θb
j , j = 1, . . . , 2k − 1

are “intermediate” parameter values between θ1 and θ2, e.g. obtained by

linear interpolation. In each factor in (10), fA(y,XS, ΦE; θb
2l+1) is a “bridge”

between fA(y,XS, ΦE; θb
2l) and fA(y,XS, ΦE ; θb

2l+2). An approximation of

the likelihood ratio is obtained by replacing the conditional expectations

with Monte Carlo estimates.

If θb
j+1 and θb

j are not sufficiently “close”, the conditional variance of a

ratio fA(y,XS, ΦE ; θb
j+1)/f

A(y,XS, ΦE ; θb
j) may be huge so that very large

Monte Carlo samples are need to compute the conditional expectation of the

ratio. Some pilot experiments are typically needed in order to determine a

suitable number k.

Note that for each expectation Eθb

2l
,y[f

A(y,XS, ΦE; θb
2l+1)/f

A(y,XS, ΦE; θb
2l)],

the extended window E must be chosen according to the maximal ω value

in θb
2l and θb

2l+1, see Section 4.1.
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Figure 1: Left: transect and observed whales for the VSS block with dis-
tances in km. The transecting was broken when sighting conditions became
unsuitable due to sea state, fog, or darkness, and restarted along the transect
leg when conditions improved. Right: gray scale plots of the detection prob-
ability for the two rightmost transect leg segments in the VSS block. Dark
means high detection probability and white dots show positions of observed
whales. The numbers on the x and y axes refer to distances in km.
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Figure 2: Left: Profile log likelihood functions lp(ω) = max(κ,α) l(θ) obtained
for the VSS (solid line) and VSN (dotted line) blocks by cumulating log
likelihood ratios l(θl+1)− l(θl). The small vertical bars indicate Monte Carlo
confidence intervals for the differences l(θl+1)− l(θl). Right: confidence (solid
line) and posterior credibility nets (dotted line) for λ, see Section 5.2 and
Section 5.3. For each confidence level/posterior probability on the vertical
axis, the horizontal intervals between the left and right branches of the curves
provide a confidence and posterior credibility interval, respectively.
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Figure 3: Solid line, L̂(t)− t (distance t in km); dotted lines, 95% confidence
band based on simulations of the fitted shot noise Cox process; dashed line,
L(t) − t > 0 for the fitted shot noise Cox process. A Poisson process has
L(t) − t = 0.
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ωl 0.2 0.4 0.6 0.8 1
κl -2.2 -3.0 -3.7 -4.1 -4.4
αl 0.5 1.2 2.4 3.7 4.9
λl 0.06 0.06 0.06 0.06 0.06

Table 1: A collection of estimates κl, αl and λl obtained by maximizing the
log likelihood l(κ, α, ωl) with respect to κ and α.
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