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Abstract

Identification of linear parameter varying models is considered in the paper, under the assumption that both the output and
the scheduling parameter measurements are affected by bounded noise. First, the problem of computing parameter uncertainty
intervals is formulated in terms of nonconvex optimization. Then, on the basis of the analysis of the regressor structure, we
present an ad hoc convex relaxation scheme to compute parameter bounds by means of semidefinite optimization.
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1 Introduction

Linear parameter varying (LPV) models can be defined,
roughly speaking, as linear systems where either the ma-
trices of the state equations or the coefficients of the dif-
ference equation relating the input and the output sig-
nals depend on one or more time varying parameters,
whose real-time measurements are assumed to be avail-
able. These models have received a considerable atten-
tion from the identification and control community in re-
cent years and can now be considered as one of the most
popular paradigm to derive mathematical description of
nonlinear/time-varying phenomena. As to the identifi-
cation of LPV models, a significant number of contri-
butions can be found in the literature since the work
by Nemani, Ravikanth and Bamieh [12] which seems
to be the first paper addressing the problem. A good
deal of different approaches have been proposed includ-
ing prediction-error minimization for LPV models with
multiple scheduling variables [9], least square algorithms
[1], subspace identification [19,6,10,18], separable least
squares [13], algorithm based on orthonormal basis ex-
pansions [17], just to cite a few. A detailed overview
of the available LPV modeling and identification ap-
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proaches can be found in the recent book [16] by Tóth.

In all the papers mentioned above, the measurement
error is statistically described. An alternative to the
stochastic description of measurement errors is the
bounded-errors or set-membership characterization,
where uncertainties are assumed to belong to a given set
(see, e.g., [11]). In this context, all parameters belong-
ing to the feasible parameter set (FPS), i.e. parameters
consistent with measurements, error bounds and the
assumed model structure, are feasible solutions to the
identification problem. To the authors’ best knowledge,
only a couple of contributions address the identification
of LPV models when measurement errors are supposed
to be bounded. In particular, the problem of identi-
fication and model validation of LPV systems in the
presence of bounded noise and a possible nonparametric
part is considered in [15]. A solution is proposed recast-
ing the problem in terms of checking the feasibility of
a set of linear matrix inequalities. In [2] the authors
consider the identification of discrete-time LPV mod-
els with finite impulse response structure and output
measurements affected by bounded noise.

In this paper, a procedure for set-membership identifi-
cation of discrete-time LPV models when both the out-
put and the time-varying parameter measurements are
affected by bounded noise is considered. Preliminary re-
sults on this problem are presented in [5] and success-
fully applied to the problem of deriving an LPVmodel of

Preprint submitted to Automatica 14 May 2013



the vehicle lateral dynamics in [3]. A new convex relax-
ation approach is proposed in this paper to compute un-
certainty intervals on the system parameters by means
of semidefinite optimization. The obtained bounds are
proven to be tighter than those obtained in [5].

The paper is organized as follows. Section 2 is devoted
to the problem formulation. In Section 3 we show that
computation of tight parameter bounds requires the so-
lution to nonconvex optimization problems. The pro-
posed identification procedure is described in Section 4,
where the peculiar structure of the considered problem
is exploited to derive an original ad-hoc relaxation ap-
proach. A simulation example is reported in Section 5
to show the improvement of the presented procedure in
the evaluation of the uncertainty intervals with respect
to the algorithm proposed in [5].

2 Problem formulation

Consider the SISO discrete-time LPV model described
in terms of the linear difference equation

A(q−1, λt)wt = B(q−1, λt)ut, (1)

where ut and wt are the input and the output signals
respectively, while λt = [λt1λt2 . . . λtµ ]

T is a vector of
time-varying parameters which, according to the LPV
modeling and control literature (see, e.g., [14]) are as-
sumed to be measurable. A(·) and B(·) are polynomials
in the backward shift operator q−1(q−1wt = wt−1),

A(q−1, λt) = 1 + a1(λt)q
−1 + . . .+ ana(λt)q

−na, (2)

B(q−1, λt) = b0(λt)+ b1(λt)q
−1+ . . .+ bnb(λt)q

−nb, (3)

where na ≥ nb and the coefficients ai and bj are assumed
to be nonlinear memoryless mappings of parameters λt
described by

ai(λt) =

ni∑
k=0

ai,kϕi,k(λt), (4)

bj(λt) =

mj∑
h=0

bj,hψj,h(λt), (5)

where ϕi,k(·) and ψj,h(·) are known nonlinear basis func-
tions. In this work we assume that ϕi,k(·) and ψj,h(·)
belong to the canonical polynomial basis in the param-
eters λt, and we denote as dϕi,k

and dψj,h
the degree

of ϕi,k(·) and ψj,h(·), respectively. Let yt and zt be the
noise-corrupted measurements of wt and λt respectively,
i.e.

yt = wt + ηt, (6)

zt = λt + εt, (7)

where εt = [εt1εt2 . . . εtµ ]
T. Measurement uncertainties

ηt and εts are known to range within given bounds ∆ηt
and ∆εst , more precisely

|ηt| ≤ ∆ηt, (8)

and

εt ∈ Et = {εt ∈ Rµ : |εts | ≤ ∆εts , s = 1, 2, . . . , µ} . (9)

The unknown parameter vector θ ∈ Rnθ to be estimated
is defined as

θT = [a1,0 . . . a1,n1 . . . ana,0 . . . ana,nna

b0,0 . . . b0,m1 . . . bnb,1 . . . bnb,mnb
] ,

(10)

where nθ =
na∑
i=1

ni +
nb∑
j=0

mj . The problem of deriving

uncertainty intervals on the parameters θ is addressed in
this paper. For the sake of simplicity and without loss of
generality, in the rest of the paper we only consider the
case of a scalar scheduling variable λt, that is λt ∈ R.
In order to make the paper easier to follow we introduce
here a simple example that will be revisited in order to
clarify the key technical arguments and formulas which
are presented in the rest of the paper.

Example 1
Consider the problem of deriving uncertainty intervals
for the SISO discrete-time LPV model described by

wt = −(a1,0 + a1,1λt)wt−1 + b1,1ut, (11)

using a set of N = 3 measurements of the input, output
and scheduling parameter, which are assumed to be af-
fected by bounded noise according to equations (6)–(9).

3 Evaluation of tight parameter bounds

The set D of all the LPV system parameters θ and the
noise samples εt and ηt consistent with the measurement
data sequence, the assumed model structure and the er-
ror bounds is described by equations (1) - (9), i.e.

D =
{
(θ, η, ε) ∈ Rnθ+N+(N−na) : A(q−1, zt − εt)[yt − ηt]

= B(q−1, zt − εt)ut, |εt| ≤ ∆εt, |ηr| ≤ ∆ηr,

t = na+ 1, . . . , N ; r = 1, . . . , N
}
, (12)

with η = [η1, . . . , ηN ]
T
and ε = [εna+1, . . . , εN ]

T
. There-

fore, for j = 1, . . . , nθ, tight bounds on the parameter θj
can be computed by solving the optimization problems

θj = min
(θ,η,ε)∈D

θj , θj = max
(θ,η,ε)∈D

θj . (13)

Parameter uncertainty intervals on θj are defined as

PUIj =
[
θj ; θj

]
.

Example 2
The set D for the identification problem introduced in
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Example 1 is given by:

D =
{
(a1,0, a1,1, b1,1, η1, η2, η3, ε2, ε3) ∈ R8 :[
1 + a1,0q

−1 + a1,1(zt − εt)q
−1

]
[yt − ηt]

= b1,1ut, |εt| ≤ ∆εt, |ηr| ≤ ∆ηr,

t = 2, 3; r = 1, 2, 3
} (14)

�
Because of the polynomial constraints A(q−1, zt −
εt)[yt − ηt] = B(q−1, zt − εt)ut defining the FPS D,
problems (13) belong to the class of semialgebraic opti-
mization problems (see, e.g., [8] for details) which are,
in general, nonconvex. Therefore, standard nonlinear
optimization tools (gradient method, Newton method,
etc.) can not be used because they can trap in local min-
ima/maxima. As a consequence, the PUIj obtained by
using these tools is not guaranteed to contain the true
unknown parameter θj , which is a key requirement of
any set-membership identification method. A possible
solution to overcome such a problem is to relax identifi-
cation problems (13) into convex optimization problems
in order to numerically compute lower bounds of θj as

well as upper bounds of θj . Optimization problems (13)
enjoy an inherent structured sparsity due to the fact
that, roughly speaking, the constraints defining D can
be separated into a number of subsets of constraints,
each one involving only a specific subset of optimization
variables. More specifically, the constraints appearing in
(13) can be shown to satisfy the so-called running inter-
section property (see, e.g., [8] for details) and, therefore,
approximate solutions of θj and θj can be computed
through a direct implementation of the sparse LMI re-
laxation proposed in [20,7]. Unfortunately, due to high
memory usage, the relaxation order δ is supposed to
be quite low in order to implement such an identifica-
tion procedure in a commercial workstation (see [8] for
details on the concept of relaxation order). Roughly, δ
should be not greater than 2 when the number of pa-
rameters θ is 6 and the number N of measurements is
30. In the authors’ experience, relaxation of problems
(13) through the direct implementation of the sparse
LMI relaxation does not provide, in general, satisfactory
bounds for a relaxation order δ = 2. The main reason is
that, in the definition of the set D, the parameters θ to
be estimated are involved in polynomial constraints of
degree greater or equal than 3. This means, in practice,
that a relaxation order greater than 2 should be used
in order to obtain a good approximation of θj and θj .
A tractable computational method for evaluating pa-
rameter bounds of LPV systems in the set-membership
context is proposed in [5] where a linear programming
relaxation of the nonconvex problems (13) is obtained
by treating the successive occurrences of the uncertain
variables appearing in the constraints defining (12) as
independent variables. Although the relaxation method
proposed in [5], called static approach, was shown to

provide satisfactory results in general and was also suc-
cessfully applied to an automotive real world problem
in [3], it could lead, in some cases, to parameter bounds
characterized by a significant amount of conservative-
ness due to the fact that the relaxation is obtained by
neglecting the dynamic dependence across the differ-
ent constraints defining D. In this work we propose an
alternative method to compute guaranteed bounds on
the parameters θ. Such a method provides parameter
bounds significantly tighter than the ones obtained in
[5] by exploiting an ad-hoc relaxation approach which
partially retains the correlation between successive oc-
currences of the uncertain variables appearing in the
constraints defining D. For that reason, we call such a
novel approach partial-dynamic LPV relaxation.

4 Partial-dynamic LPV relaxation

In this section we present a new technique to relax (13)
into convex optimization problems. For the sake of clar-
ity, a general overview of the proposed method is first
presented in Section 4.1. Then, detailed technical results
are provided in Section 4.2.

4.1 Overview of the relaxation procedure

Let us rewrite the FPS D defined by (12) in the matrix
form

D =
{
(θ, η, ε) ∈ Rnθ+2N−na : A

[
θ

1

]
= 0, |εt| ≤ ∆εt,

|ηr| ≤ ∆ηr, t = na+ 1, . . . , N ; r = 1, . . . , N
}
,

(15)

where A ∈ RN−na,nθ+1 and the (t− na)-th row At−na
of A is

At−na = [−(yt+na − ηt+na)ϕ1,0(zt+na+1 − εt+na+1), . . . ,

− (yt − ηt)ϕna,nna(zt+na+1 − εt+na+1),

ut+na+1ψ0,0(zt+na+1 − εt+na+1), . . . ,

ut+na−nbψnb,mnb
(zt+na+1 − εt+na+1),

−yt+na+1 + ηt+na+1] .
(16)

Example 3
With reference to the identification problem of Example
1, the constraint in (14) corresponding to t = 2 can be
rewritten in the form:

A1


a1,0

a1,1

b1,1

1

 = 0, (17)
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where

A1 = − [(y1 − η1) (z2 − ε2)(y1 − η1) − u2 (y2 − η2)]
(18)

The constraints corresponding to the other values of t
can be rewritten equivalently. �

Note that the rows of the matrix A are correlated with
each other since the noise variable ηt appears in all rows
Ai, with i = t − na, t − na + 1, . . . , t. Besides, also the
columns of the matrix A are not independent of each
other, since they are correlated by the noise variable
affecting the scheduling parameter. The main idea of the
partial-dynamic LPV relaxation can be summarized in
the following steps:

(i) First, consider the rows of the matrixA independent
with each other, keeping the correlation between the
columns. This leads to the construction of an outer-
bound Dr of the original feasible set D.

(ii) Then, consider the columns of the matrix A inde-
pendent with each other, keeping the correlation be-
tween the rows. This leads to the construction of an
outer-bound Dc of D.

(iii) Define the relaxed feasible parameter set Drc as
Drc = Dr ∩ Dc and, for every j = 1, . . . , nθ, compute
the minimum and the maximum value of the param-
eter θj over the feasible set Drc.

4.2 Technical results

Result 1 Construction of the set Dr

Let us define the set Dr as

Dr =
{
(θ, η, ε) ∈ Rnθ+2N−na :

A
r

tθ ≥ yt −∆ηt, Artθ ≤ yt +∆ηt,

|εt| ≤ ∆εt, t = na+ 1, . . . , N} ,

(19)

where row vectors A
r

t and Art are defined, respectively,
as

A
r

t=
[
(−yt−1 +∆ηt−1sgn

(
ϕ1,0(zt − εt)

)
sgn(a1,0))ϕ1,0, . . . ,

(−yt−na +∆ηtsgn
(
ϕna,nna(zt − εt)

)
sgn(ana,nna))ϕna,nna ,

utψ0,0(zt − εt), . . . , ut−nbψnb,mnb
(zt − εt)] .

(20)

and

Art=
[
(−yt−1 −∆ηt−1sgn

(
ϕ1,0(zt − εt)

)
sgn(a1,0))ϕ1,0, . . . ,

(−yt−na −∆ηtsgn
(
ϕna,nna(zt − εt)

)
sgn(ana,nna))ϕna,nna ,

utψ0,0(zt − εt), . . . , ut−nbψnb,mnb
(zt − εt)] .

(21)

Then, the set Dr is an outer-approximation of the feasi-
ble parameter set D, i.e. Dr ⊇ D.

Proof Let us rewrite the constraint A(q−1, zt −
εt)[yt − ηt] = B(q−1, zt − εt)ut defining D in (15) as

na∑
i=1

ni∑
k=0

−ai,kϕi,k(zt − εt)yt−i +

nb∑
j=0

mj∑
h=0

bj,hψj,h(zt − εt)ut−j

− yt = −
na∑
i=1

ni∑
k=0

ai,kϕi,k(zt − εt)ηt−i − ηt.

(22)

By taking the absolute value of both sides of eq. (22),
from the triangle inequality and the condition |ηt| ≤
∆ηt, the following conditions hold:

∣∣∣ na∑
i=1

ni∑
k=0

−ai,kϕi,k(zt − εt)yt−i+
nb∑
j=0

mj∑
h=0

bj,hψj,h(zt − εt)ut−j − yt

∣∣∣
≤

na∑
i=1

ni∑
k=0

|ai,k||ϕi,k(zt − εt)||ηt−i|+ |ηt|

≤
na∑
i=1

ni∑
k=0

sgn(ai,k)sgn(ϕi,k(zt − εt))ai,kϕi,k(zt − εt)∆ηt−i

+∆ηt.
(23)

Condition (23) can be written in the compact form

A
r

tθ ≥ yt −∆ηt; Artθ ≤ yt +∆ηt. (24)

Therefore, when constraints A(q−1, zt − εt)[yt − ηt] =
B(q−1, zt−εt)ut and |ηr| ≤ ∆ηr (with t = na+1, . . . , N
and r = 1, . . . , N) defining D are satisfied, also
the constraints describing Dr are satisfied for all
t = 1, . . . , N − na. Thus, Dr is an outer-approximation
of D. �

Example 4
With reference to the identification problem of Example
1, let us rewrite the constraint in (14) corresponding to
t = 2 as follows:

− y1a1,0 − a1,1y1(z2 − ε2) + b1,1u2 − y2 =

− η1a1,0 − η1a1,1(z2 − ε2)− η2
(25)

By taking the absolute value of both sides of eq. (25),
from the triangle inequality and the condition |ηt| ≤ ∆ηt
one gets

| − y1a1,0 − a1,1y1(z2 − ε2) + b1,1u2 − y2|
≤ |η1||a1,0|+ |η1||a1,1||(z2 − ε2)|+ |η2|
≤ |η1|sgn(a1,0)a1,0+
+ |η1|sgn(a1,1)a1,1sgn(z2 − ε2)(z2 − ε2) + |η2|
≤ ∆η1sgn(a1,0)a1,0
+∆η1sgn(a1,1)a1,1sgn(z2 − ε2)(z2 − ε2) + ∆η2.

(26)
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Condition (26) is equivalent to the following pair of in-
equalities:

A
r

2θ ≥ y2 −∆η2, Ar2θ ≤ y2 +∆η2 (27)

where

A
r

2 = [−y1 +∆η1sgn(a1,1) u2]

Ar2 = [−y1 −∆η1sgn(a1,1) u2] .
(28)

�

In order to construct the outer-approximation Dc of D
we first provide the following definitions:

ϕt
i,k

= min
|εt|≤∆εt

ϕti,k(zt− εt), ϕ
t

i,k = max
|εt|≤∆εt

ϕti,k(zt− εt),

(29)
γt
j,h

= min
|εt|≤∆εt

γtj,h, γtj,h = max
|εt|≤∆εt

γtj,h, (30)

and

c(ϕti,k) =
ϕ
t

i,k + ϕt
i,k

2
, ∆ϕti,k =

ϕ
t

i,k − ϕt
i,k

2
, (31)

c(γtj,h) =
γtj,h + γt

j,h

2
, ∆γtj,h =

γtj,h − γt
j,h

2
. (32)

Remark 1 Since ϕti,k(·) and ψtj,h(·) are continuous
functions, the Weierstrass theorem guarantees that
ϕti,k(·) and γtj,h(·) achieve their global minimum and

maximum on the closed interval |εt| ≤ ∆εt. As is well
known, such a global minimum and maximum must ei-
ther be stationary points or lie on the boundary of the
interval |εt| ≤ ∆εt and their computation is straightfor-
ward as ϕti,k(·) and ψtj,h(·) are polynomial functions. �

Result 2 Construction of the set Dc

Let us define the set Dc as

Dc =
{
(θ, η, ε) ∈ Rnθ+2N−na :

(Act +∆Act)θ ≥ yt − ηt, (Act −∆Act)θ ≤ yt − ηt,

|ηt| ≤ ∆ηt, t = na+ 1, . . . , N
}
,

(33)

where row vectors Act and ∆Act are defined as

Act =
[
−(yt−1 − ηt−1)c(ϕ

t
1,0), . . . ,

−(yt−na − ηt−na)c(ϕ
t
na,nna

), c(γt0,0), . . . , c(γ
t
nb,mnb

)
]
,

(34)

∆Act =
[
(yt−1 − ηt−1)∆ϕ

t
1,0sgn(yt−1 − ηt−1)sgn(a1,0), . . .

(yt−na − ηt−na)∆ϕ
t
na,nna

sgn(yt−na − ηt−na)sgn(ana,nna),

∆γt0,0sgn(b0,0), . . . ,∆γ
t
nb,mnb

sgn(bnb,mnb
)
]
.

(35)

Then, the set Dc is an outer-approximation of the FPS
D, i.e. Dc ⊇ D.

Proof Let us write ϕti,k (respectively γtj,h) in terms of

its central value c(ϕti,k) (respectively c(γ
t
j,h)) and its per-

turbation δϕti,k (respectively δγtj,h), that is

ϕti,k = c(ϕti,k) + δϕti,k, γtj,h = c(γtj,h) + δγtj,h. (36)

Indeed,

|δϕti,k| ≤ ∆ϕti,k, |δγtj,h| ≤ ∆γtj,h. (37)

Then, let us rewrite the constraint A(q−1, zt −
εt)[yt − ηt] = B(q−1, zt − εt)ut defining D in (15) as

na∑
i=1

ni∑
k=0

−ai,k(yt−i − ηt−i)c(ϕ
t
i,k)+

nb∑
j=0

mj∑
h=0

bj,hc(γ
t
j,h)− yt + ηt =

=
na∑
i=1

ni∑
k=0

ai,k(yt−i − ηt−i)δϕ
t
i,k −

nb∑
j=0

mj∑
h=0

bj,hδγ
t
j,h.

(38)

Through algebraic manipulations similar to the ones
used in the proof of Result 1 and since |δϕti,k| ≤ ∆ϕti,k
and |δγtj,h| ≤ ∆γtj,h, the following inequalities hold:

∣∣ na∑
i=1

ni∑
k=0

−ai,k(yt−i − ηt−i)c(ϕ
t
i,k)+

nb∑
j=0

mj∑
h=0

bj,hc(γ
t
j,h)− yt + ηt

∣∣ ≤
na∑
i=1

ni∑
k=0

ai,k(yt−i − ηt−i)sgn(ai,k)sgn(yt−i − ηt−i)∆ϕ
t
i,k+

nb∑
j=0

mj∑
h=0

bj,hsgn(bj,h)∆γ
t
j,h.

(39)

Conditions in (39) can be also written in the compact
form

(Act +∆Act)θ ≥ yt− ηt, (Act −∆Act)θ ≤ yt− ηt. (40)

Thus, when the constraints A(q−1, zt − εt)[yt − ηt] =
B(q−1, zt−εt)ut and |εt| ≤ ∆εt (with t = na+1, . . . , N)
defining D are satisfied, also the inequalities in
(40), which in turn describe Dc, are satisfied for all
t = na + 1, . . . , N . Then, the set Dc is an outer-
approximation of the FPS D. �
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An outer-approximation of the FPS D tighter than both
Dr and Dc can be then defined as the intersection of Dr

and Dc, i.e.
Drc = Dr ∩ Dc. (41)

Then, bounds on the parameters θj can be computed by
solving the optimization problems

θpdj = min
(θ,η,ε)∈Drc

θj , θ
pd

j = max
(θ,η,ε)∈Drc

θj , (42)

and the parameter uncertainty interval on θj obtained
through the partial-dynamic LPV relaxation is then de-

fined as PUIpdj =
[
θpdj ; θ

pd

j

]
.

Property 1 Accuracy improvement of PUIpdj over
PUIsj
For all j = 1, . . . , nθ, the parameter uncertainty inter-

val PUIpdj is tighter than the interval PUIsj (obtained

through the static LPV relaxation proposed in [5] and

briefly reviewed in Section 5), i.e. PUIpdj ⊆ PUIsj .

Proof The proof is based on the fact that both Dr and
Dc are, by construction, subsets ofDs, whereDs denotes
the outer-approximation of the feasible parameter set
(12) derived in [5]. The reader is referred to the technical
report [4] for details.

4.3 Computation of parameter bounds θpdj and θ
pd

j

By exploiting the peculiar structure of the set Drc, we

now show that parameter bounds θpdj and θ
pd

j can be
computed through the solution of a set of semialgebraic
optimization problems.

Property 2 Topological features of the feasible
set Drc

If the relative measurement errors on both the output
wt and on the scheduling variable λt is smaller than
100%, i.e. |ηt| ≤ |wt| and |εt| ≤ |λt|, then the set Drc is
the union of at most 2nθ sets Drc

i in Rnθ+2N−na, i.e.

Drc =
2nθ∪
i=1

Drc
i . (43)

The set Drc
i is the intersection of Drc with the i-th or-

thant Oi of the parameter space Rnθ , i.e.

Drc
i = Drc ∩ Oi. (44)

The orthant Oi is formally described as

Oi =
{
θ ∈ Rnθ : αijθj ≥ 0, j = 1, . . . , nθ

}
, (45)

where αi ∈ Γ, being Γ the set of all nθ-dimensional vec-
tors with components equal to either +1 or −1 and αij

denotes the j-th component of αi.

Besides, each set Drc
i , if not empty, is a semialgebraic

region in Rnθ+2N−na defined by polynomial inequali-
ties of maximum degree drcθ = max{1 +max

i,k
{dϕi,k

}, 1 +

max
j,h

{dψj,h
}, 2}.

The reader is referred to the technical report [4] for a
detailed proof of property 2.

Remark 2 The assumption that the relative error on
the measurements of wt and λt is smaller than 100% is
a sufficient condition to state that the sign of yt − ηt
and zt − εt is known. If such an assumption is not satis-
fied, then the set Drc is the union of at most 2nθ+2N−na

semialgebraic sets. �

Thanks to Property 2, identification problems (42) can
be decomposed into a collection of polynomial optimiza-
tion problems. In fact, solving (42) is equivalent to com-
pute

θpdj = min
l=1,...,2nθ

θpdji , θ
pd

j = max
l=1,...,2nθ

θ
pd

ji , (46)

where θpdj and θ
pd

j are solutions to the following semial-
gebraic optimization problems:

θpdji = min
(θ,η,ε)∈Drc

i

θj , θ
pd

ji = max
(θ,η,ε)∈Drc

i

θj . (47)

Analysis of the structure of the constraints defining the
sets Drc

i reveals that they can be separated into a num-
ber of subsets of constraints, each one involving only a
specific subset of the optimization variables (see [4] for
details). Besides, the constraints appearing in (13) can
be shown to satisfy the so-called running intersection
property (see, e.g., [8] for details) and, therefore, ap-
proximate solutions to problems (47) can be computed
through a direct implementation of the sparse LMI re-
laxation proposed in [20,7].

For a given relaxation order δ, let us define the δ-relaxed
uncertainty intervals obtained through the partial-
dynamic-LPV procedure as

PUIpd,δj =
[
θpd,δj ; θ

pd,δ

j

]
, (48)

where

θpd,δj = min
i=1,...,2nθ

θpd,δji , θ
pd,δ

j = max
i=1,...,2nθ

θ
pd,δ

ji . (49)

Property 3 For all j = 1, . . . , nθ, the δ-relaxed param-

eter uncertainty interval PUIpd,δj satisfies the following
properties.
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P 3.1 Guaranteed relaxed uncertainty intervals
For any relaxation order δ ≥ δ, the δ-relaxed parameter

uncertainty interval PUIpd,δj is guaranteed to contain
the true unknown parameter θj to be estimated, i.e. θj ∈
PUIpd,δj .

P 3.2 Monotone convergence to intervals PUIpdj
The δ-relaxed parameter uncertainty interval PUIpd,δj

becomes tighter as the relaxation order δ increases, that
is

PUIpd,δ+1
j ⊆ PUIpd,δj . (50)

Furthermore, as the LMI relaxation order goes to
infinity, the δ-relaxed parameter uncertainty inter-

val PUIpd,δj converges to the interval PUIpdj , that is

lim
δ→∞

θpd,δj = θpdj and lim
δ→∞

θ
pd,δ

j = θ
pd

j . �

Properties P3.1 and P3.2 follow from the fact that the
structures of the constraints of the optimization problem
(47) satisfies the running intersection property (see [4]
for details) and, therefore, results from [7] about the
monotone convergence of the sparse relaxation approach
proposed in [20] apply to the proposed partial-dynamic
method.

5 A simulation example

In this section, the capabilities of the presented LPV
identification scheme are demonstrated by means of a
simulation example, where we propose a comparison
between the proposed partial-dynamic method and the
so-called static approach proposed in [5].
The true data-generating LPV system considered
here is described by (1) with A(q−1, λt) = 1 +
0.5λtq

−1 + (−0.3 + 0.5λ2t )q
−2 and B(q−1, λt) =

0.3q−1+(1.2λt+0.6λ2t )q
−2. Therefore, the true param-

eters vector is θ = [a1,1, a2,0, a2,2, b1,0, b2,1, b2,2]
T
=

[0.5, −0.3, 0.5, 0.3, 1.2, 0.6]
T

and the functions ϕi,k
and ψj,h in (4) and (5), which depend on the schedul-
ing parameter λt, are ϕ1,1 = λt, ϕ2,0 = 1, ϕ2,2 = λ2t ,
ψ1,0 = 1, ψ2,1 = λt and ψ2,2 = λ2t . The input sequence
{ut} is a random uniform distributed signal which takes
values in the interval [−1, 1] and the scheduling param-
eter λt is such that λt = cos(0.3t). The output wt and
the scheduling signal λt are corrupted by random addi-
tive noises ηt and εt, respectively, uniformly distributed
in [−∆ηt, +∆ηt] and [−∆εt, +∆εt]. The chosen error
bounds ∆ηt and ∆εt are such that the signal to noise
ratios on the output SNRw and on the scheduling signal
SNRλ, defined as:

SNRw = 10 log



N∑
t=1

w2
t

N∑
t=1

η2t

 ; SNRλ = 10 log



N∑
t=1

λ2t

N∑
t=1

ε2t

 ,

are 23 db and 24 db, respectively. The number of mea-
surements N used to compute the parameter bounds
is 400. First, bounds on the parameters are evaluated
through the static LPV approach proposed in [5]. The

obtained relaxed bounds θsj , θ
s

j , the central estimate θcsj
and the parameter uncertainty bounds ∆θsj , defined as

θcsj =
θ
s

j + θsj
2

, ∆θsj =
θ
s

j − θsj
2

,

are reported in Table 1. Indeed, the width of the inter-
val PUIsj is 2∆θsj .
The elapsed time to compute a single parameter bound
(θsj or θ

s

j) by using the linprog function in Matlab, is
between 0.71 s and 0.93 s.
Then, parameter bounds are evaluated through the
partial-dynamic LPV relaxation proposed in this pa-

per. The obtained parameter bounds θpd,δj and θ
pd,δ

j ,
computed for a relaxation order δ = 2, are reported in

Table 2 together with the central estimate θcpd,δj and

the parameter uncertainty bounds ∆θpd,δj defined as

θcpd,δj =
θ
pd,δ

j + θpd,δj

2
, ∆θpd,δj =

θ
pd,δ

j − θpd,δj

2
.

The CPU elapsed time taken by the SeDuMi solver to

evaluate a single parameter bound (θpd,δj or θ
pd,δ

j ) is be-
tween 330 s and 361 s. Results in Tables 1 and 2 show that
the true parameters are always included in the parameter
uncertainty intervals, as expected. Furthermore, a com-
parison of such results shows that the partial-dynamic
LPV relaxation provides parameter bounds tighter than
the ones obtained through the method proposed in [5].
As a matter of fact, even if a low value of the relaxation
order δ is used, for each parameter θj , it results that
∆θsj

∆θpd,δ
j

≥ 1.5.

Table 1
Parameter central estimates (θcsj ), parameter bounds (θsj ,

θ
s
j) and parameter uncertainties ∆θsj obtained through the

static LPV relaxation.

Parameter True θsj θcsj θ
s
j ∆θsj

Value

a1,1 0.500 0.366 0.512 0.658 0.146

a2,0 -0.300 -0.348 -0.281 -0.214 0.067

a2,2 0.500 0.382 0.507 0.632 0.125

b1,0 0.300 0.206 0.342 0.478 0.136

b2,1 1.200 0.939 1.391 1.843 0.452

b2,2 0.600 0.298 0.574 0.850 0.276
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Table 2
Parameter central estimates (θcpd,δj ), parameter bounds

(θpd,δj , θ
pd,δ
j ) and parameter uncertainties ∆θpd,δj obtained

through the partial dynamic LPV relaxation for a relaxation
order δ = 2.

Parameter True θpd,δj θcpd,δj θ
pd,δ
j ∆θpd,δj

Value

a1,1 0.500 0.410 0.507 0.604 0.097

a2,0 -0.300 -0.340 -0.295 -0.250 0.045

a2,2 0.500 0.418 0.493 0.568 0.075

b1,0 0.300 0.224 0.311 0.398 0.087

b2,1 1.200 1.026 1.243 1.460 0.217

b2,2 0.600 0.453 0.618 0.783 0.165

6 Conclusions

A new technique to evaluate parameter uncertainty in-
tervals for LPV systems when both the output and the
scheduling signal measurements are affected by bounded
noise is presented in this paper. Parameter bounds eval-
uation is formulated in terms of nonconvex optimiza-
tion problems. In order to reduce the computation com-
plexity of the identification problem, the original feasi-
ble parameter set is approximated by the union of semi-
algebraic regions described by polynomial inequalities
that involve only a small number of decision variables.
Thanks to the structured sparsity of the identification
problem, relaxation techniques based on linear matrix
inequalities are exploited to compute parameter uncer-
tainty intervals, which are guaranteed to contain the true
parameters. The capability of the proposed identifica-
tion technique to provide a less conservative estimate of
parameter bounds with respect to the previously pub-
lished results is shown both theoretically and by means
of a numerical example.
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