
Runtime Adaptation: A Case for Reactive Code Alignment

Michelle McDaniel
University of Virginia

Kim Hazelwood
Google and University of Virginia

ABSTRACT
Static alignment techniques are well studied and have been
incorporated into compilers in order to optimize code lo-
cality for the instruction fetch unit in modern processors.
However, current static alignment techniques have several
limitations that cannot be overcome. In the exascale era,
it becomes even more important to break from static tech-
niques and develop adaptive algorithms in order to maximize
the utilization of every processor cycle. In this paper, we ex-
plore those limitations and show that reactive realignment, a
method where we dynamically monitor running applications,
react to symptoms of poor alignment, and adapt alignment
to the current execution environment and program input,
is more scalable than static alignment. We present fetches-
per-instruction as a runtime indicator of poor alignment.
Additionally, we discuss three main opportunities that static
alignment techniques cannot leverage, but which are increas-
ingly important in large scale computing systems: microar-
chitectural differences of cores, dynamic program inputs that
exercise different and sometimes alternating code paths, and
dynamic branch behavior, including indirect branch behav-
ior and phase changes. Finally, we will present several in-
stances where our trigger for reactive realignment may be
incorporated in practice, and discuss the limitations of dy-
namic alignment.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Performance, Measurement

1. INTRODUCTION
In the exascale era, where millions of cores enable ex-

aflop performance, it becomes increasingly important to op-
timally utilize every processor cycle with the minimum cost.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EXADAPT ’12 March 3, 2012, London, UK.
Copyright 2012 ACM 978-1-4503-1147-2 ...$10.00.

As the number of microarchitectural, application, compiler
and run-time system choices increase, static optimization
approaches no longer suffice. In particular, static approaches
to code alignment are severely limited. How sequences of
instructions are aligned in the instruction cache have been
shown to affect the overall runtime of applications by up
to 2x [12]. Poor code alignment can increase the number
of branch mispredictions, cache misses, memory stalls, and
instruction fetches, all of which will degrade performance.
In large scale computing systems, we cannot rely on the
static alignment determined by the compiler, in particular
when the microarchitecture of the cores is not uniform and
the inputs to the applications vary. We must dynamically
adapt the alignment of these instruction sequences in or-
der to greatly improve the utilization of the ever-increasing
number of cores used in large scale computing systems.

Many researchers have specifically worked to improve code
alignment to reduce the number of cache misses [9, 14, 16],
to reduce the memory footprint of applications [4], or to de-
crease the number of memory stalls caused by poor code lo-
cality [9]. However, by focusing on just one of these issues, it
is easy to introduce other issues that did not originally exist
in the program. For example, for maximum fetch through-
put, code should be aligned at 16-byte boundaries as often as
possible, as shown in Figure 1a. However, if we align only for
maximum fetch throughput, we may introduce branch col-
lisions that result in branch mispredictions. On Intel Core
based processors, if two branches exist in the same fetch line,
they will collide in the branch predictor. To avoid branch
collisions, the code should be aligned as shown in Figure 1b.
In order to correctly align programs, we must consider all
alignment issues and how they may affect one another. In
our original example, if we only align for maximum fetch
throughput, we may inadvertently push two branches onto
the same fetch line, leading to poor branch behavior.

Large scale computing systems often may be made up of
many non-uniform cores where each core has its own mi-
croarchitectural features that must be either exploited in
order to improve performance or avoided in order to not de-
grade performance. These features include instruction fetch
length, which determines the boundaries at which we must
align, hardware optimizations like the Loop Stream Detec-
tor, which significantly improves the performance of loops by
bypassing the instruction fetch and branch prediction units,
and the branch prediction unit, which is designed differently
in many different microarchitectures. Additionally, reason-
ably complex applications that are executed in these large
scale computing systems can have a wide variety of inputs

Addr 0 1 2 3 4 5 6 7 8 9 a b c d e f
400570 mov cmp jne add cmp je
400580

(a) Aligning for maximum fetch throughput

Addr 0 1 2 3 4 5 6 7 8 9 a b c d e f
400570 mov cmp jne add cmp
400580 je

(b) Aligning to avoid branch collisions

Figure 1: The 16-byte layout of a code snippet aligned for 1a) maximum fetch throughput and 1b) the branch predictor. Note
that each block in the diagram is one byte, so a three byte cmp takes up three blocks in the diagram.

which exercise many different code paths in the application.
In these environments, we cannot assume that static tech-
niques will scale. Because static techniques choose one fixed
alignment for a program, in order to align code for each the
exponential combinations of microarchitectural features and
program inputs, we would have to create a new binary for
each possible pair, wasting both computing resources and
space.

Because static approaches no longer suffice in the exas-
cale era, we must look to dynamic approaches to solve the
issues that arise. While creating binaries for each possi-
ble pair of microarchitectural feature and program input is
unreasonable, applying a dynamic approach can overcome
the limitations of a single static alignment, and account for
many alignment issues that may arise during execution. In a
dynamic approach, we would adapt the alignment of the pro-
gram based on an alignment trigger that informs the system
that there are alignment issues. An adaptive code alignment
system could uniquely align the program during execution,
accounting for both microarchitectural features and program
inputs.

Additionally, an adaptive approach would be self-tuning.
It would monitor a running program, detect poor behavior,
and change the alignment of the program. If the application
continues to exhibit poor behavior, dynamic techniques can
attempt to realign the code again. In this way, dynamic
techniques overcome the main issue that static alignment
faces:the inability to adapt to changes in the execution of
the program.

Our main contributions in this paper are:

• The Basic Block Code Alignment score: a novel met-
ric for quantifying the alignment quality of entire pro-
grams,

• The identification of effective dynamic indicators of
poor alignment, and

• The identification of alignment opportunities that can
only be leveraged at runtime.

The rest of this paper is structured as follows: in Section 2,
we discuss static alignment techniques and their limitations.
Section 3 describes the Basic Block Code Alignment score
(BBCA score), a novel mechanism for scoring the alignment
of programs given various inputs. Then in Section 4, we
present reactive code alignment and discuss potential trig-
gers. In Section 5, we describe opportunities where reactive
realignment can improve upon static alignment. Next, Sec-
tion 6 discusses how reactive realignment can be used in
practice and its practical limitations. Finally, we present
related work in Section 7 and conclude in Section 8.

2. STATIC ALIGNMENT TECHNIQUES
AND LIMITATIONS

Static alignment techniques are very well studied and have
been incorporated into modern compilers. Many compiler
alignment techniques sweep through the assembly level source
code and align code at the function, loop, and instruction
level. For example, the four GCC alignment directives are
-falign-functions, -falign-loops, -falign-branches,
and -falign-labels. All of these directives seek to align
either functions, loops, branch targets, or labels at power-
of-two byte boundaries. For each of these cases, they calcu-
late how many nops need to be inserted in order to allow
that section of code be well aligned. For most compilers, if
too much padding would need to be inserted, the compiler
will simply give up. For example, the Intel C compiler will
insert at most 8 nops for any particular piece of code. Ad-
ditionally, code will be aligned to a specified byte boundary,
rather than inserting additional padding that may allow fu-
ture code to be aligned as well. Because static alignment
techniques must rely on heuristics about the code, impor-
tant runtime paths may not be aligned appropriately.

Another static alignment decision is whether to swap the
then and else case of an if loop, based on some path fre-
quency heuristic. then and else scheduling is also difficult
for static compilers because it requires profile information
about the program in order to accurately schedule the two
cases. Often, this profile information is not available, so the
compiler must rely on path frequency heuristics which are
rarely perfect. Finally, where the compiler places a branch
target will modify the alignment of the code due to both the
size of jump, and the amount of code that is displaced by
the content of the branch target.

Prior work focuses on inserting nops in order to improve
the compiler-decided alignment of code [3] [10] [11]. In
MAO [10], there are three alignment passes: short loop
alignment, loop stream detector, and branch alignment.
These three alignment passes are done sequentially, and for
each, the placement of the code is changed by inserting nops

in the appropriate places in order to improve the perfor-
mance of the code. Boehm et al. [3] study alignment issues
on the Power 6, and deal with the effects of pipeline dispatch.
Since a fetch buffer contains 8 instructions, the alignment
can change what instructions are fetched together. In order
to change the alignment, they insert gaps between chains of
instructions to place frequent branch targets on the buffer
boundary. Jiménez focuses on branch alignment [11]: after
determining code regions where adding nops will not nega-
tively affect performance, the system determines the effects
of each possible number of one-byte nops from 0 to some

Addr 0 1 2 3 4 5 6 7 8 9 a b c d e f
400560 mov
400570 cmp jne

Figure 2: The 16-byte layout of a basic block that could span only one fetch line, but actually spans two. The gray cells
represent instructions that are not executed.

maximum number. It then choses the number of nops to
insert that maximizes the number of branches assigned to
their correct pattern history table partition. While all of
these works determine the number of nops in different ways
and to affect different alignment issues, they are all similar in
that their technique to perform realignment is nop insertion.

3. BASIC BLOCK CODE ALIGNEMENT
SCORE

In order to understand how much room there is for dy-
namic realignment, we must first understand how well or
poorly applications are aligned by the compiler. To do so,
we developed a novel scoring mechanism which calculates
an alignment score for an application, given various inputs.
In the rest of this section, we will describe the Basic Block
Code Alignment Score (BBCA score), which we use to score
programs based on particular inputs to show that alignment
is input-dependent.

Intuitively, the BBCA score calculates an individual align-
ment score for each basic block, based on the minimum cache
lines for that basic block and the actual number of cache
lines it fits on. It then takes the average of those scores
where each basic block is weighted by their execution count.
We must first score the individual basic blocks of the pro-
gram. The score S of a basic block B is determined by
calculating:

SB =
cachelinesminimum

cachelinesactual
,

where cachelinesminimum is determined by calculating the
minimum number of cache lines for a basic block of this
size, assuming that it is aligned at the alignment boundary
determined by the alignment factor:

linesminimum =

&
size

alignment factor

’
,

and linesactual is determined by mathematically counting
the actual number of lines the basic block spans:

linesactual =

&
address + size

alignment factor

’
−

$
address

alignment factor

%
.

For example, in Figure 2, the basic block has a score of
0.5 because it could fit on one fetch line, but based on
compilation alignment, actually spans two. In these equa-
tions, alignment factor refers to the alignment boundary
at which we wish to align the program. For example, if
the instruction fetch unit fetches 16 bytes at a time, the
alignment factor would be 16.

The BBCA score of a program is a weighted average of
the scores of the individual basic blocks. Specifically, the
score, S, of program P is:

SP = 100×

2×

P#bbl
b=0 Sb × Eb

totalexecutions
− 1

!
,

where Sb is the score of basic block b, Eb is the execution
count for basic block b and totalexecutions is the sum of the
execution counts of all the basic blocks. Because factors like
branch collisions are microarchitecture-dependent, we only
consider maximum fetch throughput when calculating the
BBCA score.

The average BBCA scores for the SPEC CPU2006 Inte-
ger benchmarks compiled with the optimization level -O2

are shown in Figure 3. For each benchmark, we show the
results for the test, train, and ref inputs in order to show
the wide range of scores these benchmarks attain. We have
included error bars that represent the highest and lowest
scores that the benchmark achieved. While some bench-
marks have only a 1 − 2% swing in their scores, five of the
benchmarks have a range of over 14%. With a wide range of
inputs, we can conclude that these scores would not remain
constant. We can conclude from Figure 3 that there is no
one static alignment for which a program will have the same
BBCA score for multiple inputs. Therefore, we need to know
the dynamic execution path to find the best alignment for
each input.

4. TRIGGERS FOR REACTIVE CODE
ALIGNMENT

Because static compilers cannot accurately predict the
microarchitecture on which the program will be executed,
inputs to the program, or the program’s dynamic branch
behavior, we must perform many alignment optimizations
dynamically. We refer to this type of alignment as reactive
code realignment. A system performing reactive realignment
would react to certain triggers that suggest poor alignment
and then take steps to improve the alignment of the affected
code. In this way, reactive code alignment is also adaptive:
as the program executes, the system can adapt to changes
in program execution and make different decisions based on
the current execution path.

In order to reactively realign code, we must first recog-
nize when code is poorly aligned. There are several ways
code can be poorly aligned: 1) loops are not aligned at fetch
line boundaries and therefore are not compressed into the
fewest number of fetch lines as is strictly necessary; 2) for
particular microarchitectures, including the Intel Core2 and
the Intel i7, loops are not aligned appropriately for the Loop
Stream Detector (LSD) that eliminates the need to fetch the
instructions for every execution; and 3) branch instructions
are aligned such that multiple branches are on the same fetch
line, resulting in an increased number of branch mispredic-
tions which require significantly more fetches.

There are several triggers that may be used to monitor
alignment quality. For example, we can use the number of
instruction fetches per instruction executed to monitor gen-
eral code alignment, the number of branch mispredictions
per branch to monitor branch alignment, and the number of
uses of the Loop Stream Detector for those microarchitec-
tures that have this technology. When we notice spikes, or

Figure 3: BBCA Scores for the SPEC 2006 Integer benchmarks running the ref inputs. The bars represent the average BBCA
score while the error bars represent the minimum and the maximum score. For benchmarks with multiple ref inputs, this
figure shows that there is a large range of BBCA scores for, showing us that the important code snippets change with the
different inputs.

dips in the case of the LSD, in the behavior of these triggers,
we can adapt to those sudden changes by realigning the code
in the previously executed code region. While not all of the
code in the previous code region will be executed again, it
is likely that the executed code is part of a loop that will be
executed in the future. By realigning code as we notice prob-
lems, we can catch the most serious code alignment issues,
i.e. highly executed code segments that were not aligned
appropriately, while ignoring most of the insignificant code
alignment issues, i.e. code that is only executed a few times
at most.

Figure 4 shows the relationship between branch mispredic-
tions (4a) and instruction fetches (4b) for the train input to
429.mcf on an Intel Core2 processor. As we can see, the pat-
terns for the behavior of these two performance counters are
closely related: when the number of branch mispredictions
increases, the number of instruction fetches per instruction
also increases. This is intuitive because when a branch is
mispredicted, all of the instructions that had been fetched
on the mispredicted path are thrown away and the correct
instructions must be then fetched. While we give 429.mcf

as an example, the other benchmarks exhibit this behavior
as well.

If we were only interested in branch alignment, we could
use only branch mispredictions as a trigger for reactive re-
alignment. However, branch mispredictions do not always
imply poorly aligned code, and may just represent a chang-
ing code pattern. Additionally, branch alignment is not the
only code alignment issue that we must contend with. For
example, all of the branches in a program may be appro-
priately aligned, but the important loops may be aligned
across fetch boundaries, leading to an increased number of
fetches for that section of code. For this situation, we must
refer back to the number fetches per instruction, which can
inform the system when the number of fetches is higher than
what we expect it to be.

Using a performance counter that monitors the Loop
Stream Detector as a trigger is also very limiting in the types

of code alignment issues that we can catch. Additionally,
knowing if the infrequent use of the Loop Stream Detector
is actually an alignment issue requires the overhead cost of
calculating if there are any loops that missed the LSD that
should have been executed by it. A loop will be executed
by the LSD on the Core2 if: 1) it fit into no more than
four 16-byte fetches; 2) it has no more than 18 instructions;
3) it has no more than four taken branches and none of
those branches may be RETs; and 4) it is executed for at
least 64 iterations. Finally, the LSD is only available on the
Intel Core2 and Intel i-series processors, and therefore this
trigger is not generalizable. Even between the Core2 and
the i-series, requirements for the LSD were changed to allow
the LSD to detect more loops that the Core2’s LSD often
missed.

While neither branch mispredictions nor the Loop Stream
Detector can predict all alignment issues, instruction fetches
per instruction can point out all the alignment issues that
those two triggers can, and additionally can indicate other
alignment issues. These issues include when larger loops
or loops with internal control flow are not aligned at fetch
boundaries, when indirect branch targets cross fetch bound-
aries, and when both edges of branches with phase changes
are not aligned optimally. By studying several benchmarks,
we determined that the average number of fetches per in-
struction should be no greater than 1.4 on today’s systems.
In most cases, that is a high estimate, as other factors, in-
cluding using the LSD, can decrease the average number
of fetches per instruction. Figure 6 shows the instruction
fetches per instruction of the example code snippet from
Figure 5 with two different alignments on an Intel Core2 pro-
cessor: in 6a, the branch of the inner loop and the branch of
the outer loop collide, leading to millions of branch mispre-
dictions; in 6b, the two branches do not collide. By assuming
that the expected number of instruction fetches per instruc-
tion should not exceed 1.4, we can easily notice that the code
in 6a is poorly aligned. While we chose a threshold of 1.4, a
reactive realignment system can self-tune: by monitoring a

(a) Branch Mispredictions for 429.mcf (b) Fetches per Instruction for 429.mcf

Figure 4: Comparison of branch misprediction rate for 100,000 instructions and fetches per instructions in 100,000 instruction
chunks.

int a = 0;

int i;

int ii;

for(ii = 0; ii < 500000000; ii++){

for(i = 0; i < 5; i++)

{

a++;

}

}

Figure 5: Code for the doubly nested loop microbenchmark.

program and detecting if the average number of fetches per
instruction is significantly lower than the existing threshold,
it can lower the threshold.

5. EXPERIMENTAL RESULTS
In this section, we describe our experimental results and

demonstrate the opportunities available for reactive code re-
alignment. We first describe the opportunities that static
alignment misses when considering the microarchitectural
differences of different processors. Then, we highlight how
different program inputs affect alignment decisions. Finally,
we discuss the opportunities for reacting to dynamic branch
behavior.

5.1 Experimental Setup
We conducted our experiments on a 1.86GHz Intel Dual

Core2 processor with 4GB of RAM. This processor is based
on the Penryn microarchitecture. The machine ran Ubuntu
11.04 with Linux kernel version 2.6.38. The Intel Core2 pro-
cessor has many unique features that are often affected by
the alignment of programs including the Loop Stream De-
tector and the branch predictor. For our experiments, we
used the SPEC CPU2006 Integer benchmarks running both
the ref and train input sets. We ran both ref and train input
sets to see how different program inputs are affected by the
alignment.

All benchmarks were compiled with GCC version 4.5.2
at optimization level -O2. We collected all basic block and
branch profile information using Pin version 2.10 and a mod-
ified version of the insmix Pintool. We used the gnu utility
objdump to create the object file for each of the benchmarks
with address information for all instructions. Finally, to
collect performance counter data, we used the Linux utility
perf, and the libpfm4 library to obtain performance counter
data at finer granularity.

In order to compare performance on multiple microarchi-
tectures, we used on three additional machines. We con-
ducted our experiments on a 3.4GHz Intel Core i7 2600,
codenamed Sandy Bridge with 16GB of RAM. While the
Intel i7 processor also has the Loop Stream Detector, the re-
quirements for the LSD were improved to allow more loops
to hit the LSD. Also, the branch predictor was updated to
avoid the branch misprediction issues that the Intel Core2
machine faced. Additionally, we conducted experiments on
a 1.60GHz Intel Xeon E5310, codenamed Clovertown, with
8GB of RAM. This processor is based on the Intel Core
microarchitecture. Finally, we conducted experiments on
a 3.2GHz Intel Xeon, codenamed Dempsey, with 8GB of
RAM. This processor is based on the Intel Netburst micro-
architecture. All of these machines ran Ubuntu 11.04 with
Linux Kernel version 2.6.38. All benchmarks were compiled
on the Intel Core2 machine and then run on the other mi-
croarchitectures.

5.2 Reacting to Microarchitectural
Differences

As summarized in Section 1, while modern processors exe-
cute x86 code, there are several microarchitectural difference
between these x86 machines that can either be exploited to
improve performance of executing code, such as the Loop
Stream Detector, or must be accommodated in order to
avoid poor performance, like the branch prediction unit on
the Intel Core2. Many of these microarchitectural differ-
ences are difficult to account for statically if the compiler
does not know a priori the destination microarchitecture.
However, because dynamic approaches actually monitor the

(a) Poorly Aligned Branch Test (b) Correctly Aligned Branch Test

Figure 6: Comparison of fetches per instruction for the code in Figure 5 where the code has been aligned to induce branch
collisions (6a), and where the code has been realigned to avoid branch collisions (6b).

application behavior on the destination microarchitecture,
they can a) recognize what microarchitecture they are exe-
cuting on and adjust alignment of the entire program before
execution begins, and b) adapt to the issues that the cur-
rently executing application is experiencing by modifying
the alignment during execution.

To demonstrate how alignment issues are microarchitecture
dependent, consider the code in Figure 5. As we described in
Section 1, on the Intel Core2, a branch collision occurs when
aligned poorly such that the two branches span the same
fetch line. When a branch collision occurs, the performance
of the microbenchmark is 20% worse than when they do not
span the same fetch, which avoids the collision. Likewise,
on the Intel Core-based microarchitecture, we see the same
phenomenon. However, when we run these two versions on
either the Intel i7 or the Intel Netburst microarchitecture,
we do not experience this difference in performance. In fact,
on the Netburst microarchitecture, the performance of the
version that was poorly aligned actually performed 2% faster
than the version correctly aligned for the Core2. This can be
attributed to the fact that the version correctly aligned for
the Core2 spans one additional fetch line, compared to the
poorly aligned version. This shows us that what is “correct”
for one processor may in fact cause performance issues on
another processor.

Figure 7 shows the comparison of several microarchitec-
tures based on instruction fetches and branch mispredic-
tions. We ran the SPEC CPU2006 Integer benchmarks ex-
ecuting the train inputs on the Intel Core i7, Intel Core2,
Intel Core, and Intel Netburst microarchitectures. We can
see from these results that for both instruction fetches and
branch mispredictions, the behavior on all of these microar-
chitectures is very different. In particular, the Core2 and the
Core microarchitecture have a similar branch misprediction
issue that is not evident on the i7 or Netburst microarchi-
tectures, which do not suffer from branch collisions. If we
were to compile only considering the behavior of one of these
microarchitectures, we may dramatically affect the perfor-
mance of the application on other microarchitectures. In
a large scale computing system made up of cores that are

not uniform, adapting to the current microarchitecture can
improve the overall throughput of the entire system.

5.3 Reacting to Program Inputs
At compile time, there is little that we can assume about

the inputs to a program. Compiler heuristics do their best
to align as much of the code as possible, but are restricted
to minimize code bloat. Therefore, many code segments are
not aligned appropriately due to incorrect assumptions by
the compiler as to how often they will be executed versus
the cost of aligning. Additionally, many compilers restrict
how much padding can be used to align a particular code
segment. Rather than spreading out that alignment cost
over all of the code before a particular point (by using more
padding than is strictly necessary at several different points),
the compiler simply gives up on aligning that block of code.
This can lead to poorly aligned, frequently executed code.

Additionally, since the compiler must rely on heuristics to
perform alignment, it will not align for all possible inputs.
Where one input may take one code path, a different in-
put, not predicted by the compiler, may take a completely
different code path. This can lead to the program being ap-
propriately aligned in many cases, but poorly aligned in a
very important case, depending on how the compiler chose
to align the program. Dynamically, we can track how the
program is executing, and how well or poorly the code is
aligned for a given input. We can use that information to
then adapt the alignment of the code so that it is more ap-
propriate for the given input. In a large scale computing
system where each core may be executing the same program
with different inputs, adapting to those inputs becomes ex-
tremely important in order to maximize total throughput of
the system, in particular when those inputs exercise different
code paths.

Figure 8 shows the fetches-per-instruction for 100K chunks
of the execution of 401.bzip2 for each of its three train in-
puts. As we can see, none of these inputs have the same
fetches-per-instruction behavior. Whereas input 1, shown in
Figure 8a, has very regular behavior, generally staying un-
der 2 fetches-per-instruction over the execution of the bench-

(a) Comparison of Instruction Fetches (b) Comparison of Branch Mispredictions

Figure 7: Comparison of instruction fetches and branch mispredictions for several different microarchitectures running the
SPEC CPU2006 Integer benchmarks with the reference input. Note, Figure 7a does not include data for the Netburst
microarchitecture because perf cannot interpret raw performance counter codes on Netburst.

mark, the behavior of input 2, Figure 8b, is spiked: there
are periods where the number of fetches-per-instruction is
low, but there are spikes of poor fetch-per-instruction per-
formance. The behavior of Input 3, Figure 8c, is between
inputs 1 and 2: Its behavior gradually improves and declines
over the course of execution with a few peaks of bad behav-
ior. For all of the benchmarks with multiple train inputs,
we can see these marked differences between the fetch-per-
instruction behavior for all of the inputs. Additionally, we
can also see these differences when comparing train inputs
for the benchmarks to the ref inputs. These differences show
us that, while a benchmark may be aligned well for a partic-
ular input or code path, it is not well aligned for all inputs.
Since we cannot know all of the possible code paths for all
inputs for a reasonably complex application, we must adapt
to the runtime behavior in order to align the program well
for all inputs, rather than attempting to predict runtime
behavior at compile time.

5.4 Reacting to Runtime Branch Behavior
One specific instance of input dependent program behav-

ior is branch behavior. Based solely on the input to the
program, branches may be taken or not taken, loop iter-
ation counts may change, and indirect branch targets may
change. Statically, we cannot know what the specific branch
behavior will be, so decisions are made based on heuristics.
However, these heuristics can be misguided for many execu-
tions, leading to runtime slowdowns for important inputs.

Additionally, branches may exhibit phase changes. A phase
change occurs when a branch consistently is either taken or
not taken, and then switches to the opposite behavior for
a significant amount of time. It may then exhibit another
phase change and switch back, or it may finish execution in
the second phase. Figure 9 demonstrates a phase change.
For half the execution, a is increased by one. For the sec-
ond half of the execution, a increases by 2. When a phase
change occurs, we want both edges of the if statement to be
aligned appropriately. While this is a simple operation, cur-

int a = 0;

int i;

for(i = 0; i < 50000; i++){

if(a < 25000)

a++;

else

a+=2;

}

Figure 9: Code snippet demonstrating a phase change.

rent compiler alignment directives will only align the branch
target, and not the fall through edge.

5.4.1 Indirect Branches
Indirect branch target alignment is difficult for static com-

pilers because, at compile time, the most frequent target of
an indirect branch is often difficult to predict. At runtime,
the situation is simplified. In particular, reactive realign-
ment can be informed by the triggers that we described in
Section 4, as well as frequency information about the code.
Additionally, compilers may attempt to align all of the pos-
sible branch targets for an indirect branch, introducing a
significant amount of padding in the program. In a dy-
namic system, we could remove this padding, and only align
those targets that are both poorly aligned and frequently
executed.

The static number of indirect branches for the SPEC CPU
2006 Integer benchmarks are shown in Table 1. Addition-
ally, we show the static average number of targets per branch
and the dynamic average of targets per branch. As we
can see, the dynamic count of targets is significantly lower
than the static average. In particular, there are significantly
fewer targets at runtime that require proper alignment for
445.gobmk than at compile time. This is due to the fact that
445.gobmk is made up of several huge switch statements to
make decisions for future moves while playing the game go.
This shows us that at runtime, we can align significantly

(a) Input 1 (b) Input 2

(c) Input 3

Figure 8: Fetches-per-instruction for 100K chunks of the execution of 401.bzip2 for each of its 3 train inputs.

fewer code segments than we may at compile time. Addi-
tionally, at runtime, we can decrease the code bloat by elim-
inating this unnecessary padding required for aligning all of
the indirect branch targets. Finally, several of the bench-
marks show that significantly fewer of the indirect branches
executed at runtime. Therefore, in order to decrease the size
of the benchmarks, alignment of indirect branches should be
left to dynamic systems.

5.4.2 Branch Phase Changes
Phase changes occur in several of the SPEC 2006 Inte-

ger benchmarks. Table 2 displays the number of train in-
puts, and the average, minimum, and maximum number of
branches that have phase changes over all of the inputs for
the specific benchmark. Of the SPEC 2006 Integer bench-
marks, the two benchmarks with the most obvious branches
with phase changes are 429.mcf and 458.sjeng. Figure 10a
is a graphical display of the phase changes for one of the
most important branches in 429.mcf. In this figure, 0 rep-
resents that the branch was not taken, while 1 represents
taken. When we look at this branch in the source code, we
discover that it is a branch nested in a while loop. Similarly,
we discover that the most important branch with distinct
phases in 458.sjeng, shown in Figure 10b is a case within
a switch statement.

When a branch experiences a distinct phase change, we
want each of edges of the branch to be well aligned at the
time that it is being executed. However, due to some lim-
itations of the compiler, we may end up with one or both

of the edges of the branch poorly aligned. For example, the
example branch of 429.mcf shown in Figure 10a jumps to
address 0x401e38 when compiled with the optimization level
-O2. The basic block that the branch jumps to ends with
a callq, and ends on address 0x401e52. Because of limita-
tions of the compiler, the basic block is aligned such that it
spans one more fetch line than is necessary. Dynamically, we
could recognize that the basic block is frequently executed,
and shift it 8 nops so that it spans the minimum number of
fetch lines.

We also need to be aware of phase changes so that we can
guarantee that the super block containing both the branch
and the fall through edge is well aligned. Rather than re-
quiring the fall through edge to be properly aligned, we want
the basic block containing the branch before the fall through
edge, plus the basic block containing the fall through edge to
be properly aligned. If the compiler’s heuristics do not pre-
dict that the fall through edge will be frequently executed,
it may only align the previous block well, which could push
the entire super block onto an extra fetch line. Dynami-
cally, we can recognize when the fall through edge is fre-
quently executed and adapt by appropriately aligning the
entire super block. Because half of the SPEC CPU2006 In-
teger benchmarks have at least one branch that experiences
phase changes, we can conclude that branches with phase
changes are an opportunity for reactive realignment.

Static Dynamic Average Static Indirect Average Dynamic Indirect
Benchmark Branches Branches Targets per Branch Targets per Branch
400.perlbench 78 60.6 19.7 7.8
401.bzip2 2 1 24.0 7.7
403.gcc 412 91 13.3 7.6
429.mcf 0 0 0 0
445.gobmk 13 8 17.9 2.8
456.hmmer 24 1 9.2 1
458.sjeng 15 8 8.7 7.8
462.libquantum 0 0 0 0
464.h264ref 11 3 6.8 4.7
471.omnetpp 12 11 7.9 3.1
473.astar 0 0 0 0
483.xalancbmk 82 40 10.7 1.2

Table 1: Static and dynamic counts of indirect branches and indirect branch targets for each of the SPEC CPU2006 Integer
benchmarks running the train inputs.

Benchmark Input Count Average Minimum Maximum
400.perlbench 5 3.2 0 11
401.bzip2 3 0 0 0
403.gcc 1 2 2 2
429.mcf 1 2 2 2
445.gobmk 8 0.625 0 2
456.hmmer 1 0 0 0
458.sjeng 1 3 3 3
462.libquantum 1 0 0 0
464.h264ref 1 0 0 0
471.omnetpp 1 0 0 0
473.astar 1 1 1 1
483.xalancbmk 1 0 0 0

Table 2: Average, minimum and maximum number of phase changes for the SPEC 2006 Integer benchmarks based on many
different program inputs.

6. REACTIVE REALIGNMENT IN PRAC-
TICE

Reactive realignment requires an added abstraction layer
to monitor hardware performance while executing applica-
tions. This layer would sit between the hardware and soft-
ware, like a virtual machine, and modify the software as it
recognizes poor performance. There are several ways this
could be achieved with off the shelf tools currently avail-
able. Reactive realignment techniques require two stages:
1) a method of monitoring hardware performance based on
the triggers we described in Section 4, and 2) a way of mod-
ifying the running application and instructing the hardware
to execute the new, correctly aligned code. In Section 4, we
suggested using low overhead performance counters to mon-
itor the performance of the application. In our experiments,
we used libpfm4 to monitor the behavior of the hardware
at a finer granularity than the entire program execution.
We found that by checking the performance counters ev-
ery 100,000 instructions, we introduced little overhead in
the overall application performance. For example, the over-
head of running at the sampling rate for 429.mcf is about
1%. Additionally, this granularity allowed us to observe the
performance of the benchmarks at fine enough granularity
that we could notice when performance was degrading as the
most important regions of code were executed significantly
more often than 100,000 times.

In addition to monitoring the behavior of the applications,
we need a way to modify the running application. There
are several mechanisms that can achieve this: a system-
level VM like VMware, a dynamic binary translator (DBT)
which could periodically invalidate cached traces that ex-
hibit poor alignment, or a Java Virtual Machine (JVM)
where this approach could be added to its advanced opti-
mization phase. Because of the overhead of constructing a
control flow graph dynamically, using any of these solutions
exclusively for alignment purposes would be unlikely to pro-
vide net gains for anything more than the most basic inser-
tion of padding. However, our alignment technique should
integrate well with existing infrastructures like a JVM with
multiple optimization phases or as a preprocessing phase in
a dynamic binary translator in order to reduce the overhead
of the DBT system.

For example, by integrating this technique into the ad-
vanced optimization phase of a JVM, we could recognize
both when the hardware performance counters suggest there
is an alignment issue and when the JVM recognizes a hot
loop on which it has decided to perform more optimizations.
Since the JVM knows this is a loop, after it performs the
optimizations which change the underlying code, it could
compute the proper alignment for this code as well. Com-
pared to the other optimizations, this computation would
be cheap, and it would help to improve the performance of
the running application. Furthermore, while we can com-

(a) Branch with phase changes for 429.mcf (b) Branch with phase changes for 458.sjeng

Figure 10: Phase changes for one of the most important branches in 429.mcf running the train input and one of the most
important branches in 458.sjeng. There are two phase changes for both of these branches. Ref inputs show phase changes
in both branches.

pute the proper alignment multiple times if necessary, our
approach will generally only be required once for a partic-
ular code region. Therefore, once an appropriate alignment
is found, our dynamic approach will essentially go to sleep
and incur little to no additional overhead.

7. RELATED WORK
There has been significant work on runtime effects due to

cache performance; however, most of this research focuses on
minimizing cache misses [1, 2, 8, 17, 18, 19]. By minimizing
cache misses, energy spent in accessing memory is decreased,
and the overall application runtime is improved. For exam-
ple, Huang et al. show that by using dynamic code reorder-
ing techniques, we can decrease the number of instruction
cache misses and improve performance [8]. Huang et al. also
studied three different code layout algorithms which they
incorporated in a JIT compiler [9]. Their system modified
the call graph of a program, identifying the heaviest edges
in the graphs and merging the nodes connected by those
edges, specifying their code layout. Their work differs from
ours because we propose using performance counter data to
trigger code realignment.

Prior work has also focused on data alignment for better
reuse of data items [13, 16]. For example, Panda et al. use
a data alignment technique that is based on the padding of
arrays in order to stabilize cache performance and maximize
cache utilization, resulting in better performance [16]. In-
struction alignment has also been used to improve branch
prediction [6, 7, 11]. Using profile information, Gloy et
al. find they can minimize any negative runtime effects
of static correlated branch prediction, and that by doing
so, their technique actually performs better than traditional
static branch prediction. Similarly, Jiménez uses pattern
history table partitioning, which uses a feedback directed
code placement technique that place conditional branches
where they will not interfere with other branches, in order to
improve branch prediction accuracy [11]. While all of these
techniques improve runtime, they only address one partic-

ular issue, and none of them consider how different issues
negatively affect one another.

Some research has been done that looks at the effects
of code alignment on performance considering microarchi-
tectural features [3, 5, 15]. Conte et al. [5] show that for
highly-parallel microarchitectures, nop insertion can play a
role in improving performance, but that inserting nops at
basic block boundaries can cause too much code inflation to
be worthwhile. However, their work looks at incorporating
their techniques into hardware by inserting the alignment
stage into the pipeline between the instruction cache and
the instruction decoder. Similarly, Merten et al. [15] look
to both profile and realign code in hardware. We, however,
consider a software approach where we monitor runtime be-
havior and only modify code alignment if the program is ex-
periencing poor fetch-per-instruction behavior. This allows
the program to be modified only when necessary, decreasing
the overhead of the technique.

8. CONCLUSION AND FUTURE WORK
In the exascale era, static techniques are often ineffective

for most decisions. In particular, for large scale computer
systems made up of cores of many different microarchitec-
tures running different program inputs on the same program,
static alignment decisions cannot account for all of the pos-
sible combinations of microarchitecture and program input.
In this paper, we have presented the opportunities for run-
time realignment. We have shown that there are many in-
stances in which static alignment is insufficient, and have
presented three major dynamic opportunities that a reactive
alignment system can leverage. We have shown that mi-
croarchitectural differences, changing program inputs, and
runtime branch behavior can all impact alignment decisions,
none of which may be known at compile time.

Additionally, we have identified the instruction fetch per-
formance counter as a trigger that monitors executing pro-
grams and identifies when alignment issues are present. By
monitoring the program during execution, the instruction

fetch performance counter can account for many different
alignment issues that may be present in the binary includ-
ing code segments with high execution count that are mis-
aligned, colliding branches which result in increased fetch
counts, and loops that may miss the Loop Stream Detector
or other similar microarchitectural features. Additionally,
by using the instruction fetch performance counter as a trig-
ger, we can adapt to the execution of the program and make
different decisions based on the code that is currently exe-
cuting, overcoming the limitations of static alignment tech-
niques.

Our plans for the future are to incorporate our dynamic
feedback scheme into dynamic optimization schemes, includ-
ing JIT compilers and dynamic binary translators. In order
for reactive realignment to have a positive effect on applica-
tion performance, the feedback mechanism and the realign-
ment scheme must must have low overhead. Therefore, we
also intend to study the overhead of these stages of our sys-
tem in order to maximize the benefit of the system while
minimizing the cost.

9. REFERENCES
[1] E. Athanasaki and N. Koziris. Fast indexing for

blocked array layouts to reduce cache misses.
International Journal on High-Performance Computer
Networks, 3:417–433, March 2005.

[2] K. W. Batcher and R. A. Walker. Dynamic
round-robin task scheduling to reduce cache misses for
embedded systems. In Proceedings of the Conference
on Design, Automation and Test in Europe, pages
260–263. ACM, 2008.

[3] O. Boehm, G. Haber, and H. Kosachevsky. Code
alignment for architectures with pipeline group
dispatching. In Proceedings of the 3rd Annual Haifa
Experimental Systems Conference, SYSTOR ’10,
pages 23:1–23:7. ACM, 2010.

[4] J. B. Chen and B. D. D. Leupen. Improving
instruction locality with just-in-time code layout. In
In Proceedings of the USENIX Windows NT
Workshop, pages 25–32. USENIX, 1997.

[5] T. M. Conte, K. N. Menezes, P. M. Mills, and B. A.
Patel. Optimization of instruction fetch mechanisms
for high issue rates. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
pages 333–344. ACM, 1995.

[6] N. Gloy, M. Smith, and C. Young. Performance issues
in correlated branch prediction schemes. In
Proceedings of the 28th Annual International
Symposium on Microarchitecture, pages 3 –14,
November 1995.

[7] C. Hu, J. McCabe, D. A. Jiménez, and U. Kremer.
The camino compiler infrastructure. SIGARCH
Computer Architecture News, 33:3–8, December 2005.

[8] X. Huang, S. M. Blackburn, D. Grove, and K. S.
McKinley. Fast and efficient partial code reordering:
taking advantage of dynamic recompilation. In

Proceedings of the 5th International Symposium on
Memory Management, ISMM ’06, pages 184–192,
2006.

[9] X. Huang, B. T. Lewis, and K. S. McKinley. Dynamic
code management: improving whole program code
locality in managed runtimes. In Proceedings of the
2nd International Conference on Virtual Execution
Environments, VEE ’06, pages 133–143, 2006.

[10] R. Hundt, E. Raman, M. Thuresson, and
N. Vachharajani. Mao – an extensible
micro-architectural optimizer. In IEEE/ACM
International Symposium on Code Generation and
Optimization, pages 1 –10, april 2011.

[11] D. A. Jiménez. Code placement for improving
dynamic branch prediction accuracy. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 107–116.
ACM, 2005.

[12] D. Kreitzer. Personal communication, 2010.

[13] J. Li, C. Wu, and W.-C. Hsu. An evaluation of
misaligned data access handling mechanisms in
dynamic binary translation systems. In Proceedings of
the 7th annual IEEE/ACM International Symposium
on Code Generation and Optimization, pages 180–189.
IEEE Computer Society, 2009.

[14] A. Mendlson, S. S. Pinter, and R. Shtokhamer.
Compile time instruction cache optimizations.
SIGARCH Computer Architecture News, 22:44–51,
March 1994.

[15] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D.
Barnes, and W.-m. W. Hwu. A hardware mechanism
for dynamic extraction and relayout of program hot
spots. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 59–70.
ACM, 2000.

[16] P. Panda, H. Nakamura, N. Dutt, and A. Nicolau.
Augmenting loop tiling with data alignment for
improved cache performance. IEEE Transactions on
Computers, 48(2):142 –149, Feb. 1999.

[17] K. Rajan, R. Govindarajan, and B. Amrutur.
Dynamic cache placement with two-level mapping to
reduce conflict misses. In Proceedings of the 16th
International Conference on Parallel Architecture and
Compilation Techniques, page 422. IEEE Computer
Society, 2007.

[18] H. Stolberg, M. Ikekawa, and I. Kuroda. Code
positioning to reduce instruction cache misses in signal
processing applications on multimedia risc processors.
In Proceedings of the 1997 IEEE International
Conference on Acoustics, Speech, and Signal
Processing, pages 699–702. IEEE Computer Society,
1997.

[19] C. Zhang. Reducing cache misses through
programmable decoders. ACM Transactions on
Architecture and Code Optimization, 4:5:1–5:31,
January 2008.

