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Abstract

This paper develops a Markov-switching asset pricing economy with Epstein-
Zin consumers and regime shifts in the mean and standard deviation of
dividend growth. We show how to filter beliefs and solve for equilibrium asset
prices under different learning environments even when the state space is
very large. In an empirical application, we specialize to a volatility feedback
setting where the mean of dividend news growth is constant, but volatility is
stochastic and subject to shocks of heterogeneous durations. This provides
a parsimonious structural econometric model for the time-series of asset
returns, where skewness and excess kurtosis are endogenous. The likelihood
has closed form under two learning environments of special interest. We find
that relatively large numbers of volatility components give the best fit to the
data, and in a comparison with the classic Campbell and Hentschel (1992)
specification, the new model dominates. The unconditional feedback effect
is up to ten times larger than in previous literature, and ex post conditional
feedback can be much more concentrated in time. We also explore the
learning implications of the model and identify a tradeoff between skewness
and kurtosis as the volatility information available to investors increases.
Economies with intermediate levels of information best match the data.

JEL Classification: G12, C22.

Keywords: volatility feedback, asset pricing, Markov regime-switching, Epstein-
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1. Introduction

Over the past fifteen years, the asset pricing literature has embraced a new and useful
tool in Markov regime-switching. Researchers have used these discrete dynamics to help
explain a number of phenomena including stock market volatility, return predictability,
the relation between conditional risk and return, the shape of the yield curve, and the
recent growth of the stock market.1

Pricing models with stochastic regime-shifts typically assume a small number of
states, usually two or four. This partly stems from the view that switching transitions
affect only low-frequency variations. Correspondingly, when researchers bring regime-
shifts into an asset pricing framework, they relate their models to return data at monthly,
quarterly or yearly intervals, and often confine the analysis to a comparison of stylized
facts. At higher frequencies such as daily, the existing formulations offer limited real-
ism and empirical usefulness.2 Thus, while contributions related to this new tool are
impressive, the full potential of regime-switching in asset pricing settings has likely not
yet been realized.

Our paper develops a theoretically tractable and empirically useful asset pricing
framework for Markov-switching processes with a large number of discrete latent states.
The setup can be applied to either high or low frequency data, and adapts easily to
different information structures or learning environments. Convenient exact solutions
are available for equilibrium prices, return dynamics, and filtered ex ante and ex post
beliefs. These methods remain computationally practical with several hundred states.
We also develop a closed form loglinearized solution that provides economic intuition
and a simple empirical alternative to exact computations.

To achieve these objectives, we must address manifestations of the “curse of dimen-
sionality” associated with large state spaces. General regime-switching formulations
require the number of parameters to grow quadratically with the cardinality of the
state space. This poses obvious difficulties in working with more than a few regimes.
We adopt a solution that has recently been developed in the econometrics literature
(Calvet and Fisher, 2001, 2002, 2004). Markov-switching Multifractal (MSM) processes

1Applications of regime-switching to asset pricing include Abel (1994, 1999), Cagetti, Hansen, Sar-
gent and Williams (2002), Cecchetti, Lam and Mark (1990), David (1997), Kandel and Stambaugh
(1990, 1991), Lettau, Ludvigson and Wachter (2003), Turner, Startz and Nelson (1989), Veronesi (1999,
2000, 2002), Wachter (2002), and Whitelaw (2000). Applications that focus primarily on the term-
structure of interest rates include Bansal, Tauchen and Zhou (2003), Bansal and Zhou (2002), Dai,
Singleton, and Yang (2003), and Naik and Lee (1997).

2Econometricians have developed hybrid specifications such as Markov-switching GARCH (Cai, 1994;
Hamilton and Susmel, 1994; Gray, 1996) and Markov-switching stochastic volatility (So, Lam, and Li,
1998; Smith, 2002) that combine regime-switching at low frequencies with alternative dynamics at higher
frequencies. These can achieve reasonable fit to daily data, but their goal is generally statistical moreso
than developing asset pricing implications.
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are characterized by arbitrarily large state spaces and a small number of parameters.
Exogenous shocks have heterogeneous durations ranging from one day to more than
a decade. The model remains parsimonious because the shocks have identical mar-
ginals and the frequencies are tightly parameterized by an exponential progression. The
assumed heterogeneity in news duration is consistent with economic intuition about
multiple sources of fundamental news including liquidity changes, earnings cycles, busi-
ness cycles, technology innovations, and demographics. MSM aggregates conveniently,
allowing researchers to estimate a model on daily data and still analyze a problem at a
longer horizon. The process provides a realistic description of financial data. It capture
the outliers, volatility persistence and scaling of financial series, and substantially out-
performs specifications such as GARCH(1, 1) and Markov-switching GARCH that are
known for their excellent performance in volatility forecasting (Calvet and Fisher, 2004).
Finally, the model permits maximum likelihood estimation and analytical forecasting at
multi-step horizons. MSM thus provides many of the econometric conveniences of stan-
dard GARCH formulations, but in a parsimonious, multifrequency, stochastic volatility
setting that matches the data. It is thus natural to now embed MSM in an asset-pricing
framework.

We begin with a standard Markov-switching economy. An isoelastic Epstein-Zin
consumer receives an exogenous consumption stream, and prices the dividend flow pro-
vided by a stock. Dividend news growth follows a conditional lognormal path with
Markov regime-shifts in drift and volatility. The imperfect correlation between con-
sumption and dividends, which has been widely noted in the literature (e.g. Campbell
and Cochrane, 1999), permits us to avoid another instance of the curse of dimensional-
ity that is normally present in Epstein-Zin economies with learning. If consumption is
identical to dividends, the stock return impacts the stochastic discount factor, and in
an Epstein-Zin economy with learning the price:dividend ratio is a non-linear function
over the entire simplex of beliefs. Our setup however implies that the Euler equation
is linear in returns, and as a result, the price:dividend ratio is linear in investor beliefs.

We develop an empirical application of our model to volatility feedback. Exoge-
nous changes in the volatility of dividend news have long been proposed as possible
explanation for the large movements exhibited by equity returns (e.g. Pindyck, 1984;
Poterba and Summers, 1985; Barsky, 1989; Abel, 1988; Campbell and Hentschel, 1992).
We specialize our framework by assuming that dividend news has a constant mean and
a volatility that is hit by shocks of heterogeneous frequencies. The model generates
skewness and predictive asymmetry in returns, which are purely endogenous since the
dividend news is conditionally Gaussian. To develop intuition, we loglinearize the Euler
equation and compute an approximation to the price:dividend ratio and returns, as in
Campbell and Shiller (1988) and Campbell and Viceira (2002). We can then charac-
terize the magnitude of the volatility feedback and the sensitivity of the price:dividend
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ratio to shock persistence.
In a Lucas (1978) tree economy with isoelastic expected utility, increased volatility

reduces the price of the consumption stream only when the relative risk aversion is
less than one (e.g. Abel, 1989; Whitelaw, 2000). This again relates to the fact that
volatility affects not only the distribution of dividends, but also the pricing kernel and in
particular the risk-free rate through the precautionary savings motive. In Epstein-Zin
tree economies, feedback of the expected sign requires that the elasticity of intertemporal
substitution be larger than unity (Lettau, Ludvigson, and Wachter, 2003). The inverse
relation between volatility and price thus critically depends on preference restrictions
that are empirically questionable. In our model, dividend news volatility does not affect
consumption growth and thus has no impact on the pricing kernel. We therefore obtain
a constant risk-free rate and the desired volatility feedback for all preference parameters.

We estimate by maximum likelihood the full information economy, in which investors
directly observe the volatility state vector. The data consist of daily excess returns on
the value-weighted CRSP index over the period 1962-2003. We estimate models with 1
to 8 components and a corresponding number of states ranging from 21 to 28. Specifi-
cations with between 6 and 8 frequencies provide statistically significant improvements
in likelihood relative to models with smaller state spaces. Moreover, all models with
three or more components dominate the classic Campbell and Hentschel (1992, hereafter
“CH”) specification based on a QGARCH(1,2) dividend news process, even though the
multifrequency specification has fewer parameters. These results support the validity
of our multifrequency approach.

The estimated full information process generates substantially larger feedback than
previous research. Using their estimated daily process, CH report unconditional return
variance that is approximately 2% larger than dividend news variance. In our specifica-
tions, feedback increases almost monotonically with the number of components and the
likelihood function. Unconditional feedback is around 2% for specifications with a small
number of volatility frequencies, increasing to between 10% and 20% for the preferred
specifications with six to eight components. We thus obtain unconditional feedback
effects that are 5 to 10 times larger than in previous literature.3

We analyze the unconditional moments of the full information regime-switching
model and compare it with the CH specification. Using simulation methods, we find that
although both models generate some degree of endogenous skewness, neither is likely
to produce data that captures the first or third moments of actual returns.4 While the

3Wu (2001) claims large volatility feedback effects based on a graphical depiction. Careful analysis
of his results however shows that unconditional volatility feedback is 3.5% for his model estimated on
monthly data, and is actually negative for his model estimated on weekly data. He does not estimate
a model on daily data.

4Bias in the first moment is related to bias in the third moment, as discussed in the empirical section.
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regime-switching model fits both the second and fourth moments well, the CH specifi-
cation does not match the fourth moment. These misspecifications are not surprising,
since both models attempt to generate skewness and kurtosis through endogenous eco-
nomic mechanisms rather than a purely statistical approach. Both approaches should be
viewed as structural econometric efforts to fit return data. This is challenging because
higher moments are not specifically controlled by individual parameters.

In our setup, these difficulties can be partially resolved by introducing incomplete
investor information and learning. We first consider an extreme case of limited informa-
tion, in which the investor observes only the dividend itself and then makes inferences
about the volatility state. This specification is conveniently estimated by maximum
likelihood. Holding parameter values constant, daily learning generates weaker kurto-
sis and stronger negative skewness than the full information economy. Reduced kurtosis
stems from information about state changes filtering to the investor slowly through the
learning process. Skewness becomes more negative because only a single signal is avail-
able (the return). Inference about the volatility state thereby becomes correlated with
inference about the return innovation. This intuition is similar to Veronesi (1999) and
Lettau, Ludvigson and Wachter (2003), but in our case arises with uncertainty about the
conditional distribution restricted to the second moment. In this case, when dividend
growth is extremely low, the bad news about dividends is amplified by the additional
bad news that volatility has probably increased. Conversely, when dividend growth is
very high, good news about dividends is mitigated by the bad news that volatility may
have increased. Thus, volatility feedback amplifies exceptionally bad news and dampens
exceptionally good news about dividends. While this setup is interesting from a theo-
retical point of view, our empirical analysis of the model shows that the effects are too
extreme. Excessive strengthening of endogenous skewness and weakening of endogenous
kurtosis causes fit to deteriorate relative to the full information economy.

These results suggest that intermediate information environments may achieve a
better compromise between skewness and kurtosis. We thus assume that the agent
receives dividend news at a higher frequency than the stock returns observed by the
econometrician. The investor uses the intradaily dividend news to form a “realized
volatility” statistic as in Schwert (1989) and Andersen and Bollerslev (1998). More
frequent observation yields more precise inference, and a range of intermediate infor-
mation levels can be achieved by altering the observation frequency of dividend news.
In this setup the investor filtering problem and return simulation are straightforward,
but likelihood calculation would require integrating over unobserved intradaily dividend
news. We therefore estimate the model using simulated method of moments, and find
that approximately ten intradaily observations produce levels of endogenous skewness
and endogenous kurtosis that are empirically reasonable.

Section 2 presents the asset pricing model and the equilibrium solution for a general
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Markov structure. Section 3 specializes to a volatility feedback setup and develops
intuition on a loglinearized version of the model. In Section 4, empirical results are
provided for economies with full information. Learning economies are investigated in
Section 5. Unless stated otherwise, all proofs are in the Appendix.

1.1. Literature Review

The paper contributes to two related strands of the asset pricing literature. First, we
propose an operational model of learning when the state space is very large. Our work
is thus related to the asset pricing literature on incomplete symmetric information.
While early work on learning delivers only transitory effects (e.g. Detemple, 1986;
Dothan and Feldman, 1986; Gennotte, 1986; Timmermann, 1993),5 researchers have
recently explored the possibility of regime-switching in latent states, which leads agents
to constantly revise their conditional beliefs. For instance, David (1997), Veronesi (1999,
2000, 2002), and Lettau, Ludvigson and Wachter (2003) consider economies in which the
growth rate and standard deviation of dividend growth switches through time. These
papers emphasize low-frequency effects.

Second, the paper contributes to theoretical research on volatility feedback. Tempo-
ral fluctuations in volatility have long been proposed as a possible explanation for the
large movements exhibited by equity returns. Pindyck (1984) and Poterba and Sum-
mers (1985) explore these issues in a decision-theoretic framework. Investigation in a
general equilibrium framework was pioneered by Barsky (1989) in a two-period setting
and Abel (1988) in the dynamic case. The equilibrium implications of regime-switching
in the consumption process were considered by Cecchetti, Lam and Mark (1990), Kandel
and Stambaugh (1990) and Whitelaw (2000). A standing problem is that an increase in
volatility reduces prices and returns only for special choices of the preference parameters.
We solve this difficulty by separating the consumption and dividend processes.

Our work is also closely related to empirical research on volatility feedback. Pindyck
(1984) attributes the decline of the US stock market in the seventies to the increased eco-
nomic uncertainty associated with high inflation and oil shocks. Poterba and Summers
(1985) emphasize the importance of volatility persistence for such dynamics. Using
GARCH-type processes, French, Schwert and Stambaugh (1987) and Campbell and
Hentschel (1992) show that ex-post returns are negatively affected by positive innova-
tions in volatility. Kandel and Stambaugh (1990) and Bekaert and Wu (2000) provide
further support of this hypothesis.6

Volatility feedback has been found to contribute little to the unconditional variance
of returns. For instance, Campbell and Hentschel (1992) show that feedback amplifies

5An early solution to this problem is proposed by Detemple (1991), who considers uninformed agents
with non-Gaussian priors in an economy in which the fundamentals are conditionally Gaussian.

6See also Schwert (1989).
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by 2% the volatility of dividend news. They attribute this results to a property of
GARCH processes, in which the volatility of volatility increases as the fourth power of
the volatility level. Because of this, the model delivers a limited feedback effect when
estimated on excess return series with large outliers such as in 1929 or 1987. CH empha-
size this limitations of GARCH processes. We use a multifrequency stochastic volatility
model to revisit the question and find evidence of substantially stronger feedback.

A common thread between the learning and volatility feedback literature is that
shocks tend to have a single, or at most two frequencies. This necessitates that each
model be specialized to the frequency of the empirical phenomena that it investigates.
The volatility feedback literature thus considers daily, weekly, or monthly returns. By
contrast, Veronesi (2002) calibrates to yearly returns and considers horizons ranging
from twenty to two hundred years. Lettau, Ludvigson and Wachter (2003) similarly
consider highly persistent shocks with durations of about a decade. In our paper,
we argue that the disconnect in the literature between these various effects is due to
limitations of current models, but does not originate in economic theory. We propose
a unified framework in which high frequency phenomena (volatility feedback) and low
frequency switches (business cycle or peso effects) can be jointly modeled.

2. An Asset Pricing Model with Regime-Switching Dividends

This section develops a discrete-time stock market economy with regime-shifts in the
mean and volatility of dividend growth.

2.1. An Epstein-Zin Markov-Switching Economy

We consider an exchange economy defined in discrete time on the regular grid t =

0, 1, 2, ...,∞. As in Epstein and Zin (1989) and Weil (1989), the representative agent
has isoelastic recursive utility

Ut =

½
(1− δ)C

1−α
θ

t + δ[Et(U1−αt+1 )]
1
θ

¾ θ
1−α

,

where α is the coefficient of relative risk aversion, ψ is the elasticity of intertemporal
substitution (EIS), and θ = (1 − α)/(1 − ψ−1). The agent receives an exogenous con-
sumption stream {Ct}. The log-consumption ct = lnCt follows a random walk with
constant drift and volatility:

ct − ct−1 = gc + σcεc,t. (2.1)

The shocks {εc,t} are IID N (0, 1). This standard specification is consistent with the
large empirical evidence that consumption growth is approximately IID in postwar US
consumption data (e.g. Campbell, 2003).
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One focus of the paper is to investigate how aggregate stock returns respond to
the volatility of dividend news. The volatility feedback literature suggests that the
price:dividend ratio should fall when dividends become more volatile. When the stock
is a claim on aggregate consumption, the integration of this effect into a general equi-
librium model is plagued by several technical difficulties. Fluctuations in dividend
news imply counterfactually high volatility in interest rates. Perhaps more surprisingly,
the desired volatility feedback only exists for specific values of the preference para-
meters. In the expected utility case (α = 1/ψ), the price:dividend ratio Qt ≡ Pt/Ct

= Et
P+∞

h=1 δ
h (Ct+h/Ct)

1−α declines with volatility only if relative risk aversion is less
than unity: α < 1 (Barsky, 1989; Abel, 1988).7 This restriction is of course inconsistent
with a large body of empirical research, which reports estimates of risk aversion that
are significantly larger than one.

In the Epstein-Zin utility case, an increase in volatility reduces prices only if the
elasticity of intertemporal substitution is strictly larger than 1 and relative risk aversion
differs from unity: ψ > 1 and α 6= 1 (Lettau, Ludvigson and Wachter, 2003).8 The
empirical validity of the EIS restriction is questionable. For instance, Campbell and
Mankiw (1989), Ludvigson (1999) and Campbell (2003) show that the EIS is small
and in many cases statistically indistinguishable from zero, while Attanasio and Weber
(1993) and Vissing-Jørgensen (2002) report estimates of ψ larger than 1. We find it
unsatisfactory that volatility feedback should crucially depend on a preference parameter
unrelated to risk aversion.

We solve this difficulty by assuming that the stock is not a simple claim on aggregate
consumption. We consider instead a dividend process dt = lnDt following a random
walk with Markov-switching drift and volatility:

dt − dt−1 = µd(Mt)− σ2d(Mt)

2
+ σd(Mt)εd,t.

The shocks εd,t are IID N (0, 1). The drift µd(Mt) and the volatility σd(Mt) are deter-

7When future consumption becomes riskier, two opposite effects influence the price:dividend ratio

Qt =
+∞X
i=1

δi
(
Et

"µ
Ct+i

Ct

¶−α#
+Covt

"µ
Ct+i

Ct

¶−α
;
Ct+i

Ct

#)
.

First, the covariances Covt

·³
Ct+i
Ct

´−α
;
Ct+i
Ct

¸
become more negative and push down the price:dividend

ratio Qt, as desired. Second, the precautionary motive increases the expected marginal utility of future

consumption Et
·³

Ct+i
Ct

´−α¸
and the interest rate goes down, which tends to reduceQt.We can eliminate

the second effect by disentangling consumption and the stock market.
8The Euler equation is then Qθ

t = δθEt
h
(Ct+1/Ct)

1−α (1 +Qt+1)
θ
i
. When consumption growth is

IID, the price dividend ratio is constant and satisfies Q/(1+Q) = δ
©
E
£
(Ct+1/Ct)

1−α¤ª1/θ . It decreases
with volatility if (1− α)/θ > 0 or equivalently ψ > 1 and α 6= 1.
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mined by a state variableMt, which is first-order Markov. The Itô term σ2d(Mt)/2 guar-
antees that conditional on Mt, the expected dividend growth Et(Dt/Dt−1) = eµd(Mt) is
only controlled by the drift term µd(Mt). The Gaussian noises εc,t and εd,t are assumed
to be positively correlated and IID.

The approach separates the stock from the definition of the stochastic discount
factor. While falling short of a full general equilibrium model, it uses aggregate con-
sumption in the pricing kernel and then prices other securities. It is thus a special case
of the Lucas asset pricing methodology. The separation of consumption and dividends,
which is common in finance, is consistent with a variety of empirical facts.9 First, the
correlation between consumption and the stock market is generally small. In US data,
the correlation between real consumption growth and real dividend growth is 0.05 at a
quarterly frequency, and 0.25 at a 4-year horizon (Campbell, 2003). Second, aggregate
consumption is smooth and not noticeably heteroskedastic. In contrast, the volatil-
ity of stock market returns is high and exhibits substantial fluctuations through time,
and earlier research seems to confirms that dividend news share the same features (e.g.
Campbell and Hentschel, 1992). Third, the disconnect between dt and ct is possible
because corporate profits only account for only a small proportion of national income.
For instance in US data, corporate profits and personal consumption respectively ac-
count for approximately 10% and 70% of national income over the period 1929-2002.
Furthermore, the stock market accounts for only a small fraction of national wealth and
thus has only limited effects on the volatility of aggregate consumption.

In applications, it will be convenient to assume that the Markov stateMt takes only
a finite number of values {m1, ...,md}. The process Mt is then a Markov-chain specified
by a transition matrix A = (aij)1≤i,j≤d, where aij = P(Mt+1 = mj |Mt = mi) for all i, j.
The exact specification of the drift, volatility and transition matrix remains fully general
in the rest of the section. We will introduce in Section 3 a special, high-dimensional
specification that will be useful for empirical applications.

2.2. Asset Pricing under Complete Information

We easily check in the Appendix that the stochastic discount factor can be written as

SDFt+1 = δ{E[(Ct+1/Ct)
1−α]} 1θ−1

µ
Ct+1

Ct

¶−α
. (2.2)

This expression is proportional to the stochastic discount factor obtained under ex-
pected utility (θ = 1). This suggests that the elasticity of intertemporal substitution
affects the interest rate but has no impact on the price of risk. The simple interest
rate 1 + Rft = 1/Et(SDFt+1) is constant through time, and the logarithmic trans-

form rf = ln(1 + Rft) satisfies the familiar relationship: rf = − ln δ + αgc − (ασc)2

2 +

9See for instance Campbell and Cochrane (1999).
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(1− θ−1)
h
(1− α)gc +

(1−α)2σ2c
2

i
. The interest rate is high when agents are impatient or

expect a high consumption growth.
The information available to the investor is one of the major variables of the model.

To develop intuition, we begin the analysis by considering that the agent directly observe
the true state of the economy Mt. This will be the case if agents observe the macro-
economic quantities determining the state or obtain Mt by engaging into fundamental
research. The economy with information set It = {Ms; s ≤ t} is a useful benchmark,
which will be called full information case. The econometrician has a smaller information
set I0t ⊂ It, which will be typically limited to stock returns.10

In equilibrium, the stock price is proportional to the current dividend: Pt = Q(Mt)Dt,

and the price:dividend ratio Q(Mt) is determined by the volatility state Mt. The gross
return on the stock is given by

1 +Rt+1 ≡ Dt+1 + Pt+1
Pt

=
Dt+1

Dt

1 +Q(Mt+1)

Q(Mt)
. (2.3)

It satisfies the pricing condition Et [SDFt+1(1 +Rt+1)] = 1, or equivalently

kE

"µ
Ct+1

Ct

¶−α Dt+1

Dt

1 +Q(Mt+1)

Q(Mt)

¯̄̄̄
¯ It
#
= 1,

where k = δ{E[(Ct+1/Ct)
1−α]} 1θ−1. As shown in the Appendix, the price:dividend ratio

therefore solves the fixed-point equation

Q(Mt) = Et
n
eµd(Mt+1)−rf−αρc,dσcσd(Mt+1)[1 +Q(Mt+1)]

o
, (2.4)

where ρc,d = Cov(εc,t, εd,t) > 0 is the correlation between the Gaussian noises in
consumption and dividends. When the process {σd(Mt)} is persistent, a large stan-
dard deviation of dividend growth at a given date t implies a low contemporaneous
price:dividend ratio Q(Mt) = Et

P+∞
n=1

³
Πnh=1e

µd(Mt+h)−rf−αρc,dσcσd(Mt+h)
´
. We thus

obtain the desired volatility feedback for any choices of the relative risk aversion α and
the EIS ψ.

When the state space is finite, the equilibrium price:dividend ratio can be easily
computed numerically. Consider the row vector ι = (1, ..., 1) ∈ Rd, the equilibrium
column vector

q = [Q(m1), ..., Q(md)]0,

and the matrix B = (bij)1≤i,j≤d with components

bij = eµd(m
j)−rf−αρc,dσcσd(mj)P(Mt+1 = mj |Mt = mi).

10The assumption that investors are more informed than the econometrician is a reasonable assump-
tion, as for instance discussed in Cochrane (2001).
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The pricing condition (2.4) can be rewritten as q = B(ι+ q), or equivalently

q = (I −B)−1Bι0. (2.5)

This expression fully characterizes the equilibrium prices corresponding to a given set
of parameters.

We consider the log-return rt+1 ≡ ln(1 + Rt+1). It is easy to show that the excess
return between date t and date t+ 1 satisfies

rt+1 − rf = ln
1 +Q(Mt+1)

Q(Mt)
+ µd(Mt+1)− rf − σ2d(Mt+1)

2
+ σd(Mt+1)εd,t+1. (2.6)

The excess return is thus determined by the price:dividend ratio and the realization
of the dividend growth. Movements in the price:dividend ratio are manifestations of
volatility feedback, and are partly predictable. If the multipliers Mt is high, we expect
that Mt+1 will be smaller and thus expect a high return.

2.3. Economies with Incomplete Information and Learning

The results easily extend to incomplete information structures. We now assume that the
investor observes in each period a signal δt ∈ RN . The information set It = {δt0 ; t0 ≤ t}
generates a conditional belief Πt over the state space {m1, ...,md}. The price:dividend
ratio is now a function of the investor probability: Pt = Q(Πt)Dt. The gross return on
the stock satisfies the pricing condition E [SDFt+1(1 +Rt+1)|It] = 1, or equivalently

kE

"µ
Ct+1

Ct

¶−α Dt+1

Dt

1 +Q(Πt+1)

Q(Πt)

¯̄̄̄
¯ It
#
= 1.

The price:dividend ratio

Q(Πt) = E

" ∞X
i=1

ki
µ
Ct+i

Ct

¶−α Dt+i

Dt

¯̄̄̄
¯ It
#

is the conditional expectation of exogenous variables. It is therefore linear in the current
belief Πt :

Q(Πt) =
dX

j=1

Q(mj)Πjt ,

where Q(mj) is the price:dividend ratio computed under full information. This property
considerably simplifies the learning problem, and is especially important for the analysis
of economies with high dimensional state spaces.

The excess return is determined by the volatility state and investor belief:

rt+1 − rf = ln
1 +Q(Πt+1)

Q(Πt)
+ µd(Mt+1)− rf − σ2d(Mt+1)

2
+ σd(Mt+1)εd,t+1. (2.7)
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When a new state occurs, it takes time for investors to learn. The market thus adjusts
slowly to shocks and generates less extreme returns than in the full information economy.

2.4. Inference and Estimation

The econometrician observes excess returns but not the volatility state. Let I0t ≡
{rs − rf}ts=1 denote the set of excess returns up to date t, and Π̂jt = P

¡
Mt = mj

¯̄
I0t
¢
,

j ∈ {1, ..., d}, the implied conditional probabilities over the state space.
We assume until Section 5 that the investor observes the true volatility stateMt. For

any return r, consider the matrix F (r) with elements f ij (r) ≡ frt+1
¡
r|Mt = mi,Mt+1 = mj

¢
.

The econometrician’s conditional probabilities are computed recursively using Bayes’
rule:

Π̂t+1 =
Π̂t [A ∗ F (rt+1)]
Π̂t [A ∗ F (rt+1)] ι0

(2.8)

As shown in the Appendix, the log-likelihood of the return process is then:

lnL (r1, ..., rT ) =
TX
t=1

ln
n
Π̂t−1 [A ∗ F (rt)] ι0

o
. (2.9)

The model thus generates a return process with stochastic volatility and closed-form
likelihood. This permits asymptotically efficient estimation in empirical applications.

3. Volatility Feedback with High-Dimensional Regime-Switching

In this section, we develop a parsimonious high-dimensional version of our setup, which
can be used to investigate volatility feedback under multifrequency shocks.

3.1. A Multifrequency Specification for Dividend News

While the standard literature (e.g. Campbell and Hentschel, 1992) assumes that volatil-
ity shocks decline at a single frequency, economic intuition and a large body of research
suggests that corporate profits and dividends are hit by shocks that have heterogeneous
degree of persistence. For instance, earnings may be affected by short-run effects such
as weather shocks. In the medium run, the business cycle creates uncertainty that is re-
flected in the volatility of dividends. In the long run, trends in demography, globalization
or technology probably have quite persistent effects on dividends. The heterogeneous
duration of volatility shocks has for instance been recognized in the option literature
(Heston, 1993). Earlier theoretical research (e.g. Veronesi, 2000), suggests that the
impact on the volatility of stock returns is likely to be substantial.

The specification of multifrequency volatility shocks might seem cumbersome and
lead to a model with a large number of parameters. Fortunately, a solution to these
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issues is provided by a recent advance in time series econometrics, the Markov-Switching
Multifractal (MSM) process of Calvet and Fisher (2001, 2002, 2004). We assume a
constant drift

µd(Mt) ≡ gd,

and consider k volatility components M1,t,M2,t, ...,Mk,t, decaying at heterogeneous fre-
quencies γ1, .., γk. We specify stochastic volatility as

σd(Mt) ≡ σ̄d (M1,tM2,t...Mk,t)
1/2,

where each random multiplier Mk,t satisfies E(Mk,t) = 1, and σ̄d is a positive constant.
We conveniently stack the multipliers into a vector

Mt = (M1,t,M2,t, ...,Mk,t).

Given m = (m1, ..,mk̄) ∈ Rk̄, denote by g(m) the product
Qk̄

i=1mi. We can now
write the time t volatility as σ̄d[g (Mt)]

1/2. The process has a finite number k of latent
volatility state variables, each of which corresponds to a different frequency.

Consistent with the previous section, we assume thatMt follows a first-order Markov
process. This design facilitates the iterative construction of the process through time,
and permits maximum likelihood estimation of the parameters.11 We callMt the volatil-
ity state vector.

Each componentMk,t follows a first-order Markov process that is identical except for
time scale. Assume that the volatility state vector has been constructed up to date t−1.
For each k ∈ {1, .., k̄}, the next period multiplierMk,t is drawn from a fixed distribution
M with probability γk, and is otherwise equal to its current value: Mk,t =Mk,t−1. The
dynamics of Mk,t can be summarized as:

Mk,t drawn from distribution M with probability γk
Mk,t =Mk,t−1 with probability 1− γk.

The switching events and new draws from M are assumed to be independent across
k and t. The volatility components Mk,t thus differ in their transition probabilities
γk but not in their marginal distribution M . These features greatly contribute to the
parsimony of the model.

Following our earlier work, we close the model by using a tight parameterization of
the transition probabilities γk. The probabilities γ ≡

¡
γ1, γ2, ..., γk

¢
satisfy

γk = 1− (1− γ1)
(bk−1) . (3.1)

Since 1−γk = (1− γ1)
(bk−1), we observe that the probability of a multiplier not changing

is decreasing exponentially in base b powers as k increases. We complete the specification
of dynamics by assigning γk = γ∗.
11This innovation, introduced in Calvet and Fisher (2001), distinguishes our construction from pre-

vious multifractal processes that are generated by recursive operations on the entire sample path.
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3.2. Loglinearized Return Dynamics under Full Information

To develop intuition, we consider a full information economy and derive a loglinear
approximation to the pricing equation. Specifically, assume that the logarithm of the
price-dividend ratio q(Mt) = lnQ(Mt) satisfies

q(Mt) ≈ q̄ −
k̄X

k=1

qk(Mk,t − 1). (3.2)

Following Campbell-Shiller, let ρ = eq̄/(1 + eq̄) denote the average ratio of the stock
price to the sum of the stock price and the dividend. We know that ρ is empirically
close to 1. As shown in the Appendix, fixed-point condition (2.4) implies that

qk = ασc,dq
∗
k, (3.3)

for each k ∈ {1, .., k̄}, where σc,d = σcσ̄dρc,d and each coefficient q
∗
k satisfies

q∗k =
(1− γk)/2

1− (1− γk)ρ
.

The approximate solution holds for all choices of γ1, ..., γk̄, and thus does not require
that scaling rule (3.1) be imposed. High frequency components have a negligible effect
on the price:dividend ratio: q∗k → 0 when γk → 1. On the other hand for very persistent
components (γk → 0), the coefficient q∗k is approximately 1/[2(1−ρ)], which is typically
large since ρ is close to unity.

The unconditional expected return µ = Ert satisfies µ − rf = ασc,d, as is familiar
in Consumption CAPM. Volatility innovations thus have no impact the unconditional
equity premium or the interest rate. Realized returns are of course affected and satisfy

rt+1 − rf ≈ (µ− rf )

1 +
k̄X

k=1

q∗k[(Mk,t − 1)− ρ(Mk,t+1 − 1)]
+ σd(Mt+1)εd,t+1.

The regimes generate large clustered outliers, as in our earlier work. We now show that
they also have two important effects. First, the regimes introduce predictability and
mean reversion in returns, as in Cecchetti, Lam, and Mark (1990). Second, unexpected
volatility increases are accompanied by negative returns (volatility feedback).12

Given the agent’s information, the predictable component of the return between t

and t+ 1 is

Etrt+1 − rf ≈ (µ− rf )

1 + k̄X
k=1

(1− γk)(Mk,t − 1)/2
 . (3.4)

12For instance the return innovation defined in (3.5) satisfies Covt(rt+1;Mk,t+1) = qkρV ar(M) < 0.

13



The conditional return is thus the persistence-weighted sum of volatility components.
Multipliers with higher durations command a higher expected return than more tran-
sitory components. We note that the formula contrasts with the relationships obtained
in traditional volatility models, where the conditional return is typically a function of
volatility itself (e.g. Merton, 1980; CH, 1992). Another feature of our model is that
returns exhibit mean reversion: Etrt+n−rf ≈ (µ−rf )[1+

Pk̄
k=1(1−γk)n(Mk,t−1)/2]→

µ− rf as n → ∞. Note, however, that the convergence of Etrt+n to the mean may be
non-monotonic. For instance if M1,t > 1 and Mk̄,t < 1, volatility is expected to increase
in the short run and decrease in the long run, implying similar movements in conditional
returns.

The unpredictable return ut+1 = rt+1 − Etrt+1 satisfies

ut+1 ≈ −ρ
k̄X

k=1

qk(Mk,t+1 − EtMk,t+1) + σd(Mt+1)εd,t+1. (3.5)

An unexpected increase in a volatility component reduces the price: dividend ratio and
the return on the stock. Similarly, the return innovation is positive when the volatility
component is smaller than expected. As previously, the effect of an innovation on a
multiplier depends on its frequency. This mechanism suggest that volatility and returns
are negatively correlated, and generates skewness in the distribution of returns.

The model permits us to revisit the “no news is good news” effect discussed in CH.
Consider component k and assume that no news has arrived between date t and date t+1:
Mk,t+1 =Mk,t. If the component is initially low (Mk,t < 1), volatility remains at a low
level and no news is then good news for the stock market: −ρqk(Mk,t+1 − EtMk,t+1) =

ρqkγk(1 −Mk,t+1) > 0. On the other hand if volatility is initially high (Mk,t > 1), no
arrival is bad news for stock returns: −ρqk(Mk,t+1 − EtMk,t+1) < 0. In contrast to CH,
the model implies that the absence of an arrival can be either bad news or good news
for the stock market depending on the volatility state.

Investor anticipation tends to make returns more volatile than dividend news volatil-
ity. The stock market amplification of exogenous shocks is quantified by the uncondi-
tional volatility feedback

V ar(rt+1 − rf )

σ̄2d
− 1 ≈ (ασcρc,d)2V ar(M)

k̄X
k=1

q∗2k [2ργk + (ρ− 1)2].

Note that this quantity increases with the duration and size of the volatility components.
Volatility feedback may thus help explain the findings of Campbell and Shiller (1988) and
Campbell (1991) that returns are considerably more variable than revisions of dividend
forecasts.

14



The conditional variance of returns is

V art(rt+1) ≈ Etσ2t+1 + ρ2
k̄X

k=1

q2kV art(Mk,t+1),

where σt+1 = σd(Mt+1) and V art(Mk,t+1) = γk[V ar(M) + (1 − γk)(Mk,t+1 − 1)2].
This implies that the conditional expected return Etrt+1 and the conditional variance
V art(rt+1) are positively correlated.

CH attribute their weak estimates of volatility feedback to the fact in GARCH-type
processes, the volatility of volatility increases very rapidly (as a fourth power) of the
volatility level. This precludes the estimation of large effects, and makes it difficult
for the CH model to capture the dynamics around the crashes of 1929 and 1987. Our
volatility specification does not exhibit this undesirable property. For instance when
k̄ = 1, we know that V art(σ2t+1) = σ̄4dV art(M1,t) and thus

V art(σ
2
t+1) = σ̄4dγk[V ar(M) + (1− γk)(M1,t − 1)2]

The volatility of volatility is thus a non-monotonic, U-shaped function of the volatility
level. Since M1,t ∈ (0, 2) in application, the volatility of volatility is symmetric around
M1,t = 1. Since the volatility state is mean-reverting, volatility is more subject to
abrupt adjustments when it is further away from the mean. In the presence of several
frequencies, V art(σ2t+1) is then a sum of U-shaped functions of the multipliers, but
cannot be expressed as a function of σt alone. These properties suggest that our model
does not suffer from the same shortcomings as GARCH, and may yield larger estimates
of the volatility feedback.

4. Empirical Results with Symmetric Dividends and Full Information

This section begins our empirical investigation of volatility feedback in U.S. equity
markets. We specialize to the case of a symmetric dividend process and full information.
This specification contributes significantly to explaining extreme returns and excess
kurtosis in stock market data.

4.1. Excess Return Data

We estimate our model on daily excess returns of the value-weighted CRSP index. As a
proxy for the risk-free rate, we impute daily returns on 30-day T-bills from the monthly
return on the same instrument as reported by CRSP. Our data spans from July 1962
to December 2002, for a total of 10,194 observations. The data are plotted in Figure
1, and show the thick tails, low-frequency volatility cycles, and negative skewness that
characterize aggregate stock market returns.
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Table 1 reports moments of the excess return series, for the entire sample and four
evenly spaced subsamples of the data. We observe that all moments show substantial
variability across subsamples. This contradicts standard formulations based on inno-
vations from simple GARCH or stochastic volatility models. These models have short
memory, and sample moments tend to converge quickly to population moments. Sub-
stantial variability across subsamples is, however, consistent with the multifrequency
regime-switching investigated in this paper.

4.2. Maximum Likelihood Estimates

The full-information model with symmetric dividends is specified by the number k̄ of
frequencies and the six parameters m0, σ̄d, b, γk̄, gd − rf ,and ασc,d = ασcσ̄dρc,d. As is
standard in the literature, (e.g. Campbell and Shiller, 1988), we restrict one parameter
by relating the price:dividend ratio in our estimated model to the price:dividend ratio
in the data. Consider the value ρ defined by

ln ρ = E ln
Q(Mt)

1 +Q(Mt)
(4.1)

= E ln
Pt

Pt +Dt
. (4.2)

Given values for the other five parameters, a unique value of ασc,d ensures that the
average price-dividend ratio Q(Mt) matches the empirical value of ρ defined by (4.2).13

We thus estimate the restricted model with parameters

ψ ≡ (m0, σ̄d, b, γk̄, gd − rf ) ∈ R5+.

Maximization of the likelihood function (2.9) gives the parameter estimates and stan-
dard errors reported in Table 2. The columns of the table correspond to k̄ varying from
1 to 10. The first column corresponds to a standard regime-switching model with only
two possible states for volatility, as has been investigated previously in many settings,
including volatility feedback (Kim, Morley, and Nelson, 2002). As k̄ increases the num-
ber of states increases at the rate 2k̄. For the largest value k̄ = 8, there are over 250
volatility states.

First examining the likelihood function, we observe a dramatic improvement over
the standard two-state Markov specification as k̄ increases. When k̄ is low (k̄ = 1, 2, 3),
the incremental increase in likelihood is over 100 points and thus very substantial.
For moderate values

¡
k̄ = 4, 5

¢
, adding components still increases the fit significantly.

13The expression Q(Mt) = Et
P+∞

n=1 e
n(gd−rf )−ασc,d[

√
g(Mt+1)+...+

√
g(Mt+n)] implies that the

price:dividend ratio Q(Mt) monotonically decreases from +∞ to 0 as ασc,d increases from −∞ to
+∞. Thus for every µ− rf and ρ < 1, equation (4.1) has a unique solution. The loglinearized solution
suggests that ασc,d is of the same order as µ− rf .
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Finally, at k̄ = 6 the likelihood increase becomes more marginal, and between k̄ = 7 and
k̄ = 8 the function exhibits a slight decline. Thus, as with exchange rates (Calvet and
Fisher, 2004), a substantial number of heterogeneous volatility components are useful
in fitting the dynamics of equity returns.

Table 2 also shows that the multiplier value m̂0 decreases as k̄ increases, and is
estimated with good precision. This is a sensible result, since a larger number of
volatility components allows each individual component to do less work in explaining
aggregate volatility variations. The estimates of σ̄d show no apparent pattern across k̄
and some degree of variability. This can be viewed as a strength of our model, as it
is consistent with the idea that the long-run average of volatility is difficult to identify
even in very large samples. This type of result is not possible with standard short-
memory GARCH and stochastic volatility models, but it is in keeping with the results
from Table 1 that sample second moments can vary considerably across subsamples.
The dividend growth rate gd − r is positive and estimated with good precision. This
parameter helps to control mean returns. Finally, the frequency parameters γk̄ and
b are both estimated with reasonable precision and show interesting patterns across
k̄. First, the switching probability γk̄ of the highest frequency volatility component
is fairly stable across specifications, occurring approximately once every 15 to 30 days.
The parameter b, which controls spacing between frequencies, drops initially with k̄ but
then stabilizes at a value of about 2 for specification with k̄ = 6 and larger. Thus, as
frequencies are added to the model, they primarily extend the low frequency range of
the volatility components.

Given a set of parameter estimates, we can calculate unconditional moments of the
model. For expected returns, note that since Mt is stationary, ln ρ ≡ −E ln{[1 +
Q(Mt+1)]/Q(Mt)}, and thus

E(rt − rf ) = gd − rf − ln ρ− σ̄2d/2.

The unconditional volatility feedback is given by

V ar(rt − rf )

σ̄2d
− 1 = 1

σ̄2d
V ar

·
ln
1 +Q(Mt+1)

Q(Mt)
− σ̄2d
2
g(Mt+1)

¸
.

This statistic was first calculated by CH, and is of particular interest because large
values could help to explain thick tails and high volatility in stock market returns.

Table 2 reports the first four unconditional moments of returns under each specifica-
tion. The estimated equity premium is too large relative to the data, and the skewness
is not negative enough. These are related findings. One can interpret the estimated
mean of a conditionally symmetric stochastic volatility model in terms of weighted least
squares. When the inferred volatility at time t is low, the weighting of the time t return
should be increased because the signal to noise ratio is higher. When inferred volatility

17



is high (as will generally be the case when an outlier from the tail of a skew distribution
is drawn) the weighting should be decreased. Thus, if skewness in returns is not ade-
quately modeled, the mean estimate will be biased towards the mode. Now examining
the second moment, it is in most specifications comparable to the data. Finally, the
model captures well excess kurtosis in returns when the value of k̄ is large. The main
problem revealed by this analysis is thus that the model has difficulty capturing large
negative skewness.

Finally, we examine the unconditional volatility feedback of each specification re-
ported in the last row of Table 2. For the best performing models with k̄ ≥ 6, the effect
is between 10 − 20% of total variance, or about 5 to 10 times larger than reported by
CH.

4.3. Volatility Decomposition of CRSP Excess Returns

This section analyzes conditional beliefs about the volatility state of stock market div-
idend news. We use a decomposition of the state space into marginals at different fre-
quencies, which allows us to make inferences about the contribution of each frequency to
overall volatility movements. The previous section shows that the likelihood function
of the full information model tends to increase with the number of components. We
therefore now focus on the specification with k̄ = 8 components.

Recall that in the full information specification, investors have access to the infor-
mation set It ≡ {Ms; s ≤ t} of exact states up to and including time t. As empiricists,
we would like to infer as much as possible about the investor’s information given the
more limited data on stock returns available to us.

We have already defined one information set I0t ≡ {rs − rf ; s ≤ t} available to
the econometrician. This is the set of excess returns up to and including date t,
and using this information to make inferences about states produces the beliefs Π̂jt ≡
P
¡
Mt = mj

¯̄
I0t
¢
, j ∈ {1, ..., d}, where the number of states is given by d = 2k̄. We call

these the predictive or ex ante beliefs, because they do not allow the econometrician
access to forward-looking data from t+ 1 and beyond.

In certain situations, the empiricist may also want to make inferences about the
dividend news state using the larger information set of all returns I0T . For instance, if
we want the best estimate of the portion of returns on any date t that are attributable
to feedback effects, it is generally useful to condition on all returns. We thus define
the smoothed or ex post probabilities Ψ̂j

t ≡ P
¡
Mt = mj

¯̄
I0t
¢
. Kim (1994) develops

a smoother for standard Hamilton-type regime-switching specifications in which the
conditional density of returns depends only on the current state Mt. In our model
the conditional mean also depends on the previous state Mt−1, due to feedback from
volatility changes. We show how to calculate smoothed beliefs under this expanded
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regime-switching environment in the Appendix.
When k̄ = 8, the belief vectors Π̂t and Ψ̂t have dimension 28 = 256. An interesting

decomposition is to examine the marginals Π̂M(1)
t , .., Π̂

M(k̄)
t and Ψ̂M(1)

t , ..., Ψ̂
M(k̄)
t , where

Π̂
M(k)
t ≡ P

¡
Mk,t = m0

¯̄
I0t
¢
and Ψ̂M(k)

t ≡ P
¡
Mk,t = m0

¯̄
I0T
¢
for k = 1, .., k̄ and t =

1, .., T . These quantities are calculated and presented in Figure 2. We first examine
the ex ante beliefs depicted in the eight panels on the left hand side of the figure. Each
panel corresponds to one of the eight volatility components, increasing in frequency
from low to high from top to bottom of the figure. For the lowest frequency k = 1, the
marginal beliefs at first drop from 0.5 to about 0.1 then recover to a value of about 0.4
over the first five years of the sample. The marginal probability is then relatively flat
or drifting downward slightly until the 1987 crash, at which point there is a large jump
in beliefs to a probability of almost 1.0. The probability stays at this elevated level for
the remainder of the sample. The econometrician thus infers under the full information
model that an increase in the lowest frequency volatility component is likely to have
occurred at the time of the crash.

Examining the remaining panels for the ex ante beliefs, we see that the second
lowest frequency k = 2 shows patterns fairly similar to the lowest frequency k = 1. For
the rest of the components, cycles in marginal beliefs become increasingly shorter in
duration as k increases, consistent with intuition. Also, the strength of beliefs show an
interesting pattern across frequencies. For low values of k, the conditional distribution
of the volatility state spends considerable time at the extreme values of zero and one.
By contrast, at high frequencies beliefs move up and down rapidly, but rarely reach
their boundaries.

We now inspect the smoothed beliefs depicted on the right-hand side of Figure 2.
Conditioning on all returns causes beliefs to move more sharply, and the empiricist
now makes a strong distinction between the lowest (k = 1) and second lowest (k = 2)
frequency volatility components. The smoothed belief for the first component begins
the sample having an almost zero probability of being in the high state, and moves
discretely to a value of nearly one on the crash date. By contrast, the beliefs for the
second component stay near one for the entire sample. The remaining panels show
similar results. The smoothed beliefs generally follow the same patterns as the ex ante
beliefs, but the smoothed beliefs tend to move less frequently, more sharply, and to
spend more time near the extreme boundaries of zero and one.

We finally note that careful inspection of either set of beliefs shows that on the
date of the crash, all components are believed with near certainty to have reached their
highest state. Here, dividend news volatility takes the value σd,t = σ̄d (m

8
0)
1/2 = 2.48%

per day. In Section 4.5 we determine the inferred realization of dividend news on the
crash date after removing the conditional mean and feedback components of returns.
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4.4. Estimated Conditional Moments and Conditional Feedback

Our full information regime-switching model permits investigation of conditional mo-
ments and feedback using the predictive beliefs Π̂t. For example, we can easily calculate
the conditional mean E

¡
rt+1 − rf |I0t

¢
as a linear function of Π̂t. The Appendix details

these computations for the first four conditional moments and feedback. Our empirical
analysis again focuses on the specification with k̄ = 8 volatility components.

In the first two panels of Figure 3, we plot the conditional mean and volatility of
excess returns. These are positively correlated, both showing small peaks in the early
1970’s with higher levels in 1987 and around 2000. The conditional moments move less
following the crash than is typical with GARCH specifications. For example, the ratio
of the maximum to minimum value is about 2 for the conditional mean, and about
5 for conditional volatility. The inferred moments following the crash are similar to
levels achieved in the last five years of the sample. Thus, conditional mean and variance
respond to the crash as an important but not entirely anomalous event.

We now turn to the conditional feedback decomposition in the last three panels
of Figure 3. One way to measure volatility feedback is the difference V art (rt+1) −
V art (dt+1). We call this quantity the absolute conditional feedback, because it gives
the raw (non-standardized) variance contribution of risk-aversion induced components
of returns. CH instead introduce the now traditional measure

V art (rt+1)− V art (dt+1)

V art (dt+1)
.

We call this proportional conditional feedback because it normalizes by the conditional
dividend variance. This is a natural statistic to use in the CH environment since, as
they discuss at length, the absolute feedback in their model grows as a fourth power
of volatility. Standardizing by conditional variance thus helps to produce a less wildly
varying statistic. Even after this normalization, proportional feedback is an amplified
version of conditional volatility in their model. CH discuss this as a potentially unde-
sirable feature that prevents obtaining higher levels of volatility feedback.

Our regime-switching model delivers a positive but much weaker relation between
absolute feedback and volatility. As surmised by CH this is accompanied by a corre-
spondingly higher contribution to variance from feedback effects. The last three panels
of Figure 3 consecutively show the conditional absolute feedback, dividend news volatil-
ity, and proportional feedback. As in CH, absolute feedback moves with conditional
volatility, and we compute a correlation coefficient of 75.8%. The variations in absolute
feedback nonetheless do not appear extreme. We calculate the ratio between the maxi-
mum and minimum of absolute feedback and find a value less than two. This suggests
that absolute feedback in our model is a dampened rather than magnified version of
conditional variance. To confirm this, we regress the log of absolute feedback on the
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log of dividend volatility σd,t. We find a regression coefficient of 0.223 with a standard
error of 0.001 and an R2 of 73.6%.

Thus, in contrast with CH where absolute feedback grows as a fourth power of
conditional volatility, our absolute feedback is approximately proportional to a fourth
root of volatility. This explains the inverse relationship between conditional variance
and proportional feedback shown in the last two panels of Figure 3. This relationship
is implied when, as suggested by CH, we achieve a considerably reduced amplification
of conditional volatility in absolute feedback.

4.5. CRSP Excess Return Decomposition

We develop a decomposition of excess returns into a conditional expectation, feedback
innovation, and a residual that is equal in conditional expectation to dividend news.
This provides a convenient ex post quantification of the impacts of volatility feedback
in our sample.

We first consider the fully informed investor. It is convenient to omit the Itô term
in returns to obtain the approximation

rt+1 − rf ≈ gd − rf + ln
1 +Q(Mt+1)

Q(Mt)
+ σd(Mt+1)εd,t+1. (4.3)

We note that the first three terms of (4.3) are equal to E (rt+1|Mt,Mt+1). At time t+1
or later, the investor can thus implement the decomposition

rt+1 − rf ≈ E (rt+1 − rf |Mt) + [E (rt+1|Mt,Mt+1)− E (rt+1|Mt)] + σd(Mt+1)εd,t+1.

This separates realized returns into a portion that is anticipated at time t, an innovation
due to feedback effects from volatility changes, and the dividend news arrival.

Even after the entire sample is observed, the empiricist has a smaller information
set I0T ⊂ IT , and thus derives an analogous decomposition with less precision. For any
information sets A and B and random variable X, let (EA − EB) (X) ≡ E (X|A) −
E (X|B). We then obtain

rt+1 − rf ≈ EΨ̂(t)(rt+1 − rf ) +
³
EΨ̂(t+1) − EΨ̂(t)

´
ln[1 +Q(Mt+1)] + êd,t+1, (4.4)

where
êd,t+1 ≡ E[σd(Mt+1)εd,t+1|I0T ] (4.5)

is the econometrician’s ex post estimate of realized dividend news. By the law of
iterated expectations, êd,t+1 has mean zero.

We implement this decomposition on CRSP excess returns in Figure 4, which has
in its first panel the excess return series {rt − rf}. The remaining panels show con-
secutively the three terms of (4.4): the smoothed mean return, the smoothed volatility
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feedback component, and the smoothed dividend news estimate. We first note that the
smoothed mean return does not appear substantially different from the ex ante mean
return shown in Figure 3. Smoothed feedback, however, differs greatly from the ex ante
predictions. Under the predictive beliefs in Figure 3, the variance of absolute feedback
moves positively with conditional volatility, but is fairly stable across time. Condi-
tioning on the larger information set I0T , the empiricist makes very different inferences
about the contribution of feedback at different points in time. To understand this
result, we consider the predictability of volatility innovations. In our regime-switching
formulation, changes in the individual volatility states are unpredictable. Thus, even
given precise information about the volatility state Mt, the econometrician has limited
ability forecast feedback. When an exogenous change in a low-frequency component
does occur, it appears immediately in the t + 1 return because investors have full in-
formation. The return rt+1 is thus very informative to the empiricist about changes in
low-frequency volatility, and smoothed beliefs therefore give considerably greater refine-
ment in the estimation of feedback effects. In particular, our ex post analysis attributes
over half of the 1987 crash to volatility feedback.

We calculate moment statistics of the econometrician’s ex post estimates of dividend
news realizations, and find a variance of 0.693, skewness coefficient −0.121, and kurtosis
8.39. These are not necessarily unbiased signals of the higher moments of the true
dividend news process. For example, applying Jensen’s inequality to (4.5) shows that
the variance of êd,t+1 is a lower bound for the variance of dividend news. Nonetheless,
it is interesting to note that relative to the actual return data, the residual variance is
13% smaller, skewness is 89% smaller, and leptokurtosis is 78% smaller. The feedback
decomposition thus explains a large portion of the higher moments of returns.

4.6. Comparison with Campbell and Hentschel (1992)

This section compares our full-information regime-switching model with the classic CH
volatility feedback model. The CH specification is obtained by assuming a QGARCH(1,2)
process for dividend news, and then loglinearlizing the identity relating returns to capital
gains and dividends. Under these assumptions, returns have dynamics:

ht+1 = µ+ γσ2t + κηd,t+1 − λ
¡
η2d,t+1 − σ2t

¢
,

σ2t = + α1
¡
ηd,t − b

¢2
+ α2

¡
ηd,t−1 − b

¢2
+ βσ2t−1

λ =
γρ (α1 + ρα2)

1− ρ (α1 + ρα2 + β)

ηd,t−1 ∼ N
¡
0, σ2t

¢
,

where ht+1 is the time t+ 1 stock return, κ = 1 + 2λb, the value ρ is obtained by cali-
bration to the empirical price:dividend ratio, and the seven parameters to be estimated
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are µ, γ, , α1, α2, b, β.
The model contains sensible economic intuition. Expected returns µ+ γσ2t increase

in conditional volatility, and the parameter γ can be interpreted as risk aversion under
particular assumptions. Part of the volatility feedback effect appears in the linear third
term as κηd,t+1−ηd,t+1, and the other portion of feedback is due to the quadratic fourth
term. When returns are either very high or very low, the investor knows that volatility
in the following period will be higher, hence there is an immediate drop in current
returns.

The conditional variance σ2t follows the QGARCH(1, 2) process of Engle (1990) and
Sentana (1995). As in a standard GARCH(1,2), volatility is determined by lagged
volatility and two lags of squared returns. QGARCH is distinct because it permits
b 6= 0, and through this channel we obtain predictive asymmetry. If b > 0, then a
positive dividend innovation will have greater impact on t+1 volatility than a negative
innovation of the same size.

We estimate this model on the excess returns to the value weighted CRSP index,
and report in Table 3A the parameter estimates. Both α1 and α2 are statistically
significant, and α2 has negative sign. This is because index data, even though value
weighted, contains non-trading effects from less liquid stocks. The sum α1 + α2 + β is
close to one, as is typical of GARCH models estimated on daily data. The parameter γ is
low relative to its possible interpretation as risk-aversion. Finally, the negative estimate
of would be problematic in a standard GARCH model, but under QGARCH is not
anomalous. Overall, the parameter estimates are consistent with those reported by CH.

Turning to Panel B of Table 3, we compare the in-sample fit of the CH specification
to our multifrequency specification with k̄ = 8 volatility components. Although the
multifrequency specification has two fewer parameters, it has a likelihood value over
one hundred points larger. We calculate the BIC criterion to adjust for the number of
parameters in each specification, and calculate a test statistic using the methodology
of Vuong (1989). We also calculate a HAC adjusted version of the Vuong test using
the methodology described in Calvet and Fisher (2004). These results show that the
difference in likelihood is highly significant. In fact, for all multifrequency specifications
with three or more volatility components, the likelihood dominates QGARCH dividend
news. Thus, the multifrequency specification provides a better description of the data.

We next examine the volatility feedback effect of the estimated CH model. Condi-
tional feedback is quantified by κ2 + 2λ2σ2t . As in CH, the volatility feedback effect is
in the range of 1-2%, and thus quite small relative to the multifrequency model.

Table 4 examines how well each of the models matches the first four moments of the
data. This is a challenging test, since these are not simply statistical models with free
parameters to directly adjust characteristics of returns. Instead, both rely on endoge-
nous economic mechanisms to fit higher moments of the data. We simulate 1, 000 paths
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of the same length as the data from each process and calculate the first four moments of
each path. We compute the mean and standard deviation across paths of each moment.
and the percentage of times that the simulated moment exceeds the corresponding em-
pirical moment. From this analysis, we see that both models overestimate the mean
and underestimate negative skewness. These effects are related, as pointed out by CH
and French, Schwert, and Stambaugh (1987), since failing to account for skewness in
a conditionally heteroskedastic sample will likely bias the estimate of the mean toward
the mode. Both models produce accurate estimates of the second moment, whereas in
the fourth moment the multifrequency model does well while the CH model does not.

We thus identify difficulty matching the first and third moments of the data as
common problems in feedback models.14 The CH model does somewhat better on this
point, because it adopts the QGARCH formulation with predictive asymmetry. In
Section 5, we explore an alternative, more powerful, and perhaps economically more
appealing method of generating endogenous skewness through learning.

5. Learning and Endogenous Skewness

The previous section made the extreme assumption that investors are always perfectly
informed. If fundamental research is costly, we should instead expect some degree of im-
perfect information. We now develop a framework that permits a range of assumptions
about the learning environment when the investor is less than perfectly informed.

5.1. Investor Information and Bayesian Updating

The other extreme from perfect information is to assume that the investor observes
dividends at the same frequency the econometrician observes returns. We will see that
under certain assumptions, the econometrician can then fully back out the dividend
information used by the investor. This suggests that in this environment, investors have
no information advantage relative to the empiricist. This is economically unappealing
in the sense that it corresponds to a world where fundamental research has unbounded
cost. Nonetheless it is a useful special case to begin with. When the investor receives
only the daily dividend information

dt+1 − dt = gd + σt+1εd,t+1 − σ2t+1/2

we call the environment a daily learning economy.
An economically more appealing setting allows the modelling of a range of inter-

mediate information between full information and daily learning. Since the amount of
information will be specified exogenously, this falls short of a more elaborate model in

14Wu (2001) comments on the difficulty of matching the third moment as well.
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which investors endogenously choose when to incur costs to refine their information.
Nonetheless, permitting a range of intermediate information structures captures in a
reduced form way the intuition that when learning is costly, investors will undertake a
positive but finite level of fundamental research. To achieve this, we assume for sim-
plicity that volatility σt+1 is constant over a day and that the agent observes N ≥ 1
intraday pieces of dividend news:

δn,t+1 =
gd
N
+

σt+1√
N

zn,t+1 −
σ2t+1
2N

, (n = 1, .., N).

The shocks {zn,t+1} are IID Gaussian N (0,1), and the daily dividend news is the sum of
intraday innovations: dt+1 − dt =

PN
i=1 δn,t+1. We call this setup the intraday learning

economy, and note that it nests daily learning.
Belief updating is straightforward for the investor under intraday learning. The

investor receives the signal vector δt+1 ≡ (δ1,t+1; ...; δN,t+1) and has information set
It = {δt0 ; t0 ≤ t}. Let Πt denote her conditional belief over the state space at the end of
period t. She updates her belief at the end of day t + 1 contingent on the signal δt+1.
Bayes’ rule implies

Πjt+1 ∝ f(δt+1|Mt+1 = mj)P(Mt+1 = mj |It).

Conditional on Mt+1 = mj , the signal δt+1 = (δ1,t+1; ...; δN,t+1) is Gaussian:

f(δt+1|Mt+1 = mj) =

·
2πσ2d(m

j)

N

¸−N/2YN

n=1
exp

−
³
δn,t+1 − gd

N +
σ2d(m

j)
2N

´2
2σ2d(m

j)/N

 .
(5.1)

These expressions define the investor updating rule Πt+1 = Π∗(Πt; δt+1). We can easily
simulate the intraday learning return process, as discussed in the Appendix.

When the number of intraday signals N is very large, the conditional density (5.1)

trivially simplifies to a function of
PN

n=1

h
(δn,t+1)

2
i
. The sum of squared innovations,

or “realized volatility of dividend news,” is then a sufficient statistic for all intraday
observations. In the limit as N →∞, the volatility level σd(Mt+1) is directly observable
but the true volatility stateMt+1 remains latent. The investor is thus less knowledgeable
with N =∞ intraday samples of dividend news than in the full information case. The
investor trivially receives the least information in the daily news economy where N = 1.

The state of a learning economy consists of the volatility vectorMt+1 and the investor
belief Πt+1. The econometrician observes excess returns: I0t = {rs − rf ; s ≤ t}, and
can only compute the conditional distribution of the state (Πt,Mt) given I0t . The full
inference problem is therefore computationally expensive with large state spaces. Several
solutions to this problem are now proposed.
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5.2. Estimation of Daily Learning Model and Empirical Results

A simple solution is available in daily dividend news economies (N = 1). The investor
then observes the one-dimensional signal dt+1−dt, and the econometrician may be able
to extract it from the observed return rt+1. The investor and the econometrician then
have the same information sets, which considerably simplifies econometric inference and
estimation.

Given her belief Πt and the signal dt+1 − dt, the investor has new belief Πt+1 =
Π∗(Πt; dt+1 − dt), which determines the capital gain or loss Φ(Πt; dt+1 − dt) ≡ ln{1 +
Q[Π∗(Πt; dt+1− dt)]}− lnQ(Πt). The return between date t and date t+1 can then be
written as

rt+1 = dt+1 − dt +Φ(Πt; dt+1 − dt). (5.2)

If Πt is known to the econometrician (i.e., Π̂t = Πt), equation (5.2) implicitly defines
the signal dt+1 − dt as a function of rt+1 and Πt. In practice, the econometrician can
guess a value ϕ, and successively compute the corresponding dividend growth rt+1 − ϕ

and capital gain/loss Φ(Πt; rt+1 − ϕ). The true value of ϕ thus solves the fixed point

ϕ = Φ(Πt; rt+1 − ϕ).

This method thus permits maximum likelihood estimation, as discussed in the Appendix.
Maximum likelihood estimates of the daily learning economy are reported in Table

5. The parameter estimates are relatively similar to the full information parameter es-
timates, with the notable exception that the mean dividend growth rate is substantially
lower (and often negative). This matches our intuition. In the full information model
we hypothesized that the model resulted in an excessive mean return because it failed
to adequately capture skewness. Now with a model that we expect to generate more
skewness, we can calculate the mean return as between ±0.001 per day across models,
which is excessively low. The actual skewness generated by these parameter estimates
is not substantially negative, however. To understand this counterintuitive result, we
calculate the skewness coefficient of full information and daily learning models across a
variety of parameter estimates and compare skewness holding the parameters constant.
In unreported results, we find that for moderate levels of the equity premium the degree
of skewness under daily learning is in fact excessive. This likely relates to the fact that
the likelihood values achieved under daily learning are substantially lower than with full
information. We speculate that the intraday learning model will best be able to capture
moments of the data.

5.3. Estimation of Intraday Learning Model and Empirical Results

When N > 1, the investor receives a multidimensional signal δt ∈ RN and maximum
likelihood estimation would then require the econometrician to integrate over the dis-
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tribution of the unobservables. We instead estimate the intraday learning model by
Simulated Method of Moments (SMM). Consider the true parameter vector ψ0 that
generates the excess return data Re = {rt − rf}Tt=1. Following Ingram and Lee (1991)
and Duffie and Singleton (1993), it is common to simulate a single path of considerable
length for a given parameter vector. One then computes the sample moments of the
simulated series and a HAC weighting matrix to adjust for possible autocorrelation in
the time-series of moment conditions. We slightly depart from this methodology because
the moment conditions may exhibit low-frequency variations, which can be difficult to
correct with a HAC weighting matrix. We instead draw multiple independent paths of
identical length to the data, as discussed in the Appendix.

We use seven moment conditions motivated by the results obtained with full informa-
tion economies. We consider: (a) the first four moments of excess returns: E[(rt−rf )p],
p ∈ {1, .., 4}, (b) the average size of excess returns E|rt−rf |, and (c) two autocovariances:
E|(rt − rf )(rt+h − rf )|, h ∈ {1, 2}, which quantify short-run volatility persistence.

The SMM estimation results are reported in Table 6. For a number of components
k̄ ∈ {5, 6, 8}, the preferred specification includes nine intraday observations. The ex-
ception is k̄ = 7, whose preferred specification has fifteen observations. This finding
validates the idea that intermediate information structures best match the moments of
equity returns.

All models generate substantial levels of skewness and kurtosis. These values are
larger and thus closer to the data than the statistics provided by the estimated CH
specification. The criterion function suggests that the model with 5 frequencies provides
the worst overall fit. The criterion has an asymptotic χ2(1) distribution, and the value
5.004 reported for k̄ = 5 is rejected at the 5% level. For larger values of k̄, the reported
criteria are smaller and well within the bound of the 95% confidence region. The model
with 8 frequencies produces the most accurate mean and the most substantial skewness
coefficient, consistent with the intuition that adding frequencies increases realism. The
first moment is 0.0158% compared to CRSP sample average return of 0.0163%. A related
finding is that the model endogenously generates a substantial level of skewness, which
is equal to −0.43. The average absolute value and square of returns are remarkably close
to the data. The model also captures well the short-run autocovariances in the size of
returns, and thus short-run autocorrelation in volatility. Finally, the level of kurtosis is
substantial at 8.9.

When we compare our model across frequencies, we observe that improvements in
the skewness coefficient are monotonic with k̄. The level of kurtosis is relatively stable
between 8.15 and 10.15 with no particular trend. This is related to the fact that as
we add more frequencies, the coefficient m0 and the frequencies are varying. We also
observe in Table 1 that kurtosis exhibits low frequency variations, and is thus measured
with considerable uncertainty.
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The intraday learning model eliminates the main biases of the full information and
daily learning versions of our model. As compared to CH, the intraday learning economy
provides a much better fit of mean return, skewness and kurtosis. The first moment
is now essentially unbiased, and skewness is almost twice as large as in CH. Moreover,
endogenous skewness is generated by an economically appealing learning mechanism,
as opposed to asserting predictive asymmetry exogenously in the dividend process, as
with QGARCH. As anticipated, the intraday learning model achieves the best balance
between endogenous skewness and kurtosis.

6. Conclusion

This paper develops an asset pricing framework for economies with high dimensional
regime-switching. Previous literature views stochastic regime shifts as an almost ex-
clusively low-frequency phenomenon. We show that a pure Markov-switching economy
can fit daily data well, better than the classic Campbell and Hentschel (1992) volatility
feedback specification with QGARCH dividend news. Pure regime-switching models
provide a viable and often improved alternative to standard approaches based on au-
toregressive dynamics. Using our methods, the role of regime-switching in asset pricing
can, and should, be expanded.

The key to using pure switching models with high frequency data is our multifre-
quency approach. It is natural that different economic fundamentals such as liquidity
imbalances, earnings cycles, business cycles, technological change, and demographics
should all have different durations. Standard GARCH and stochastic volatility models
do not permit this conveniently. We easily estimate models with up to eight different
frequencies and over 250 states, and find that the likelihood function increases almost
monotonically in the number of frequencies.

Our framework also easily accommodates learning. We estimate extreme models
in which the investor has full information, or alternatively information no better than
the econometrician. We then generalize our framework to permit intermediate levels
of learning by giving the investor access to intraday dividend news. The degree of
learning strongly affects endogenous skewness and kurtosis, and intermediate learning
models best fit the data. This notion is economically compelling. Fundamental research
is costly but not impossible. Investors should thus have imperfect information, but an
advantage relative to the empiricist who relies on CRSP. One interesting extension of
our model would be to consider endogenous information acquisition.

One caveat, and another direction for future work, is that like Campbell and Hentschel
(1992), we do not believe that dividend volatility is the only source of variation in the
price:dividend ratio. Ours is, to the best of our knowledge, the first piece of asset
pricing research with high-dimensional regime-switching. It is therefore useful to fully
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explore the framework in a single direction before moving to more empirically accurate
assumptions. We nonetheless find it encouraging that the model generates considerable
realism through volatility feedback alone. The theoretical framework also accommo-
dates changes in the mean of dividend news growth, which can be the basis of future
empirical work. Other extensions are also envisioned and will be the object of future
research.
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7. Appendix A. Pricing and Inference

7.1. First-Order Conditions

As shown by Epstein and Zin (1989), a utility-maximizing agent with budget constraint
Wt+1 = (Wt − Ct)(1 +Rt+1) has stochastic discount factor

SDFt+1 =

"
δ

µ
Ct+1

Ct

¶− 1
ψ

#θ ·
1

1 +Rt+1

¸1−θ
,

where Rt+1 is the simple net return on the optimal portfolio.
In our setup, the representative agent can be viewed as holding a long-lived claim

on the aggregate consumption stream {Ct}∞t=0. The price of the tree is Pc,t = pcCt, and
the return on the tree is 1+Rc,t+1 = (1+1/pc)Ct+1/Ct. The stochastic discount factor
is thus

SDFt+1 = δθ(1 + 1/pc)
θ−1

µ
Ct+1

Ct

¶−θ/ψ−1+θ
= δθ(1 + 1/pc)

θ−1
µ
Ct+1

Ct

¶−α
.

The condition Et[SDFt+1(1+Rc,t+1)] = 1 implies that δθ(1+1/pc)θ E[(Ct+1/Ct)
1−α] = 1

or equivalently
1 + 1/pc = δ−1{E[(Ct+1/Ct)

1−α]} 1θ .
We conclude that equation (2.2) holds.

7.2. Bayesian Updating and Likelihood

We consider the Bayesian updating problem solved by the econometrician in the full
information economy. The conditional probability Π̂jt+1 = P

¡
Mt+1 = mj

¯̄
I0t , rt+1

¢
sat-

isfies
Π̂jt+1 ∝ frt+1

¡
rt+1|Mt+1 = mj , I0t

¢
P
¡
Mt+1 = mj

¯̄
I0t
¢
.

We recognize that frt+1
¡
rt+1|Mt+1 = mj , I0t

¢
can be rewritten as

dX
i=1

frt+1
¡
rt+1|Mt+1 = mj ,Mt = mi

¢
P
¡
Mt = mi

¯̄
Mt+1 = mj , I0t

¢
=

dX
i=1

frt+1
¡
rt+1|Mt+1 = mj ,Mt = mi

¢ P ¡Mt+1 = mj
¯̄
Mt+1 = mi

¢
P
¡
Mt = mi

¯̄
I0t
¢

P
¡
Mt+1 = mj

¯̄
I0t
¢ .

The updated probability can now be written as

Π̂jt+1 ∝
dX

i=1

frt+1
¡
rt+1|Mt+1 = mj ,Mt = mi

¢
Π̂itaij ,
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which implies (2.8).
We now compute the log-likelihood function lnL (r1, ..., rT ) =

PT
t=1 ln f(rt |r1, ..., rt−1 ).

Bayes’ rule implies

f(rt |r1, ..., rt−1 ) =
dX

i=1

dX
j=1

P(Mt−1 = mi,Mt = mj |r1, ..., rt−1)f(rt|Mt−1 = mi,Mt = mj)

=
dX

i=1

dX
j=1

Π̂it−1aijf
ij (rt) ,

and therefore f(rt |r1, ..., rt−1 ) = Π̂t−1[A ∗ F (rt)]ι0.

7.3. Bayesian Smoothing

We derive the econometrician’s smoothed belief Ψ̂i
t ≡ P

¡
Mt = mi

¯̄
I0T
¢
in the full infor-

mation economy. Since Mt is first-order Markov, we know that

Ψ̂i
t =

dX
j=1

P
¡
Mt+1 = mj

¯̄
I0T
¢
P
¡
Mt = mi

¯̄
Mt+1 = mj , I0T

¢
=

dX
j=1

P
¡
Mt+1 = mj

¯̄
I0T
¢
P
¡
Mt = mi

¯̄
Mt+1 = mj , I0t+1

¢
=

dX
j=1

P
¡
Mt+1 = mj

¯̄
I0T
¢

P
¡
Mt+1 = mj

¯̄
I0t+1

¢P ¡Mt = mi,Mt+1 = mj
¯̄
I0t+1

¢
,

and therefore

Ψ̂i
t =

dX
j=1

Ψ̂j
t+1

Π̂jt+1
P
¡
Mt = mi,Mt+1 = mj

¯̄
I0t+1

¢
. (7.1)

The probability P
¡
Mt = mi,Mt+1 = mj

¯̄
I0t+1

¢
= P

¡
Mt = mi,Mt+1 = mj

¯̄
I0t , rt+1

¢
can be rewritten as

frt+1
¡
rt+1|Mt+1 = mj ,Mt = mi

¢
P(Mt = mi,Mt+1 = mj |I0t )

frt+1
¡
rt+1|I0t

¢ =
f ij (rt+1) Π̂

i
taij

frt+1
¡
rt+1|I0t

¢
and thus

P
¡
Mt = mi,Mt+1 = mj

¯̄
I0t+1

¢
=

Π̂itaijf
ij (rt+1)Pd

m=1

Pd
n=1 Π̂

m
t amnfmn (rt+1)

(7.2)

By (7.1) and (7.2), we conclude that the smoothed probability is

Ψ̂i
t = Π̂

i
t

dX
j=1

aij
Ψ̂j
t+1

Π̂jt+1

·
f ij (rt+1)

Lt+1

¸
,
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where Lt+1 = frt+1
¡
rt+1|I0t

¢
.

This smoothing rule slightly differs from the one derived by Kim (1994) for tradi-
tional Hamilton models, in which the signal observed by the econometrician (e.g. the
excess return rt+1 − rf ) depends on the current state Mt+1 but not on the past state
Mt. To illustrate this point, note that our model implies

Π̂jt+1 = P
¡
Mt+1 = mj

¯̄
I0t , rt+1

¢
= P

¡
Mt+1 = mj

¯̄
I0t
¢
frt+1

¡
rt+1|I0t ,Mt+1 = mj

¢
/Lt+1.

The smoothed probability thus satisfies

Ψ̂i
t = Π̂

i
t

dX
j=1

aij
Ψ̂j
t+1

P
¡
Mt+1 = mj

¯̄
I0t
¢ " f ij (rt+1)

frt+1
¡
rt+1|I0t ,Mt+1 = mj

¢#
If the past state Mt has no effect on the density of rt+1, the term in square brackets
equals one and the smoothed belief then reduces to the Hamilton-Kim formulation. The
expressions are otherwise different.

7.4. Moments of Returns in Full Information Economy

Consider the 1× d row vectors Π̂t = (Π̂1t , .., Π̂
d
t ), ι = (1, .., 1), v = [σ

2
d(m

1), ..., σ2d(m
d)],

and the d × d matrix C = (cij) with elements cij = gd − rf − σ2d(m
j)/2 + ln 1+Q(m

j)
Q(mi)

.

With this notation, the excess return can be rewritten as

rt+1 − rf = cij + σd(m
j)εd,t+1

The conditional first moment is thus Et(rt+1−rf ) =
P

i,j Π̂
i
taijcij , or in matrix notation

Et(rt+1 − rf ) = Π̂t(A ∗ C)ι0.
Consider the matrix C̃t+1 with elements c̃ij(t+ 1) = cij − Et(rt+1 − rf ). The unex-

pected return is

rt+1 − rf − Et(rt+1 − rf ) = σd(m
j)εd,t+1 + c̃ij(t+ 1).

The conditional variance is therefore V art(rt+1 − rf ) = Et[σ2d(mj)] + Et[c̃2ij(t+ 1)]. We
easily check that Et[σ2d(Mt+1)] = Π̂tAv

0 and Et[c̃2ij(t+1)] =
X

i,j
Π̂itaij c̃

2
ij(t+1), which

implies
V art(rt+1 − rf ) = Π̂tAv

0 + Π̂t(A ∗ C̃t+1 ∗ C̃t+1)ι
0.

The two addends quantify: (1) the conditional variance of dividend news, and (2) the
variability of the price dividend ratio. If we neglect the Itô term, the conditional variance
of dividends is approximated as

V art(dt+1 − dt) ≈ Et[σ2d(Mt+1)] = Π̂tAv
0,
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and the conditional volatility feedback can be computed as

V art(rt+1 − rf )

V art(dt+1 − dt)
≈ 1 + Π̂t(A ∗ C̃t+1 ∗ C̃t+1)ι

0

Π̂tAv0
.

For any matrix Z, it is henceforth convenient to denote by Z(p) the pth Hadamard power
Z ∗ ... ∗ Z = (zpij).

The conditional third centered moment Et[(rt+1−Etrt+1)3] is Et[3c̃ij(t+1)σ2d(mj)+

c̃3ij(t+ 1)], or equivalently

Et[(rt+1 − Etrt+1)3] = 3Π̂t(A ∗ C̃t+1)v
0 + Π̂t(A ∗ C̃(3)t+1)ι

0.

The fourth conditional centered moment Et[(rt+1 − Etrt+1)4] is Et[σ4d(mj)ε4d,t+1 +

6c̃2ij(t+1)σ
2
d(m

j)+ c̃4ij(t+1)], or equivalently
X

i,j
Π̂itaij [3σ

4
d(m

j)+6c̃2ij(t+1)σ
2
d(m

j)+

c̃4ij(t+ 1)]. In matrix notation,

Et[(rt+1 − Etrt+1)4] = 3Π̂tA(v ∗ v)0 + 6Π̂t(A ∗ C̃(2)t+1)v
0 + Π̂t(A ∗ C̃(4)t+1)ι

0.

7.5. Ex-Post Decomposition

We condition the return equation (4.3) with respect to the economometrician’s infor-
mation set I0T :

rt+1− rf ≈ E[E(rt+1− rf |It)|I0T ] +E{ln[1+Q(Mt+1)]−Et ln[1+Q(Mt+1)]|I0T}+ êd,t+1.

The first term can be rewritten as

E[E(rt+1 − rf |It)|I0T ] =
dX

j=1

P(Mt = mj |I0T )E[E(rt+1 − rf |It)|Mt = mj , I0T ].

Since E(rt+1 − rf |It) is a deterministic function of the state Mt, the conditional expec-
tation simplifies to

E[E(rt+1 − rf |It)|I0T ] =
dX

j=1

Ψ̂j
t E(rt+1 − rf |Mt = mj),

or equivalently E[E(rt+1 − rf |It)|I0T ] = EΨ̂(t)(rt+1 − rf )

We similarly infer that

E{ln[1 +Q(Mt+1)]− Et ln[1 +Q(Mt+1)]|I0T}

= E{ln[1 +Q(Mt+1)]|I0T}−
dX

j=1

Ψ̂j
tE{ln[1 +Q(Mt+1)]|Mt = mj}

=
dX

i=1

(Ψ̂i
t+1 −

dX
j=1

Ψ̂j
taij) ln[1 +Q(mi)],

and thus E{ln[1+Q(Mt+1)]−Et ln[1+Q(Mt+1)]|I0T} =
³
EΨ̂(t+1) − EΨ̂(t)

´
ln[1+Q(Mt+1)].
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7.6. Learning Economies

Simulating the Return Process. The return process is simulated recursively by
keeping track of the volatility stateMt and the investor conditional probability Πt at the
end of every period t. Assuming that these quantities are know, we draw N IID standard
normals {zn,t}Nn=1 and sample Mt+1 from Mt using the transition matrix A. We then

compute {δn,t}Nn=1 (n = 1, .., N) and the daily dividend growth dt+1−dt =
XN

n=1
δn,t.

We finally infer the new investor belief Πt+1 = F (Πt; δ1,t+1; ...; δN,t+1) and the excess
stock return (2.7). We are ready to iterate again.

SMM Estimation. For any candidate parameter vector ψ, we simulate J paths of
length T , which are denoted by Yj (ψ) = {Yj,t (ψ)}Tt=1, j ∈ {1, .., J}. For each path, a
vector of sample moments h[Yj (ψ)] is calculated. We arrange the simulated paths in a
J × T matrix Y (ψ) = [Y1 (ψ) , ..., YJ (ψ)]

0, and define

H [Y (ψ) , Re] = h (Re)− 1
J

JX
j=1

h[Yj (ψ)].

The function H quantifies how well the model fits the empirical sample moments. In
particular, we can define an objective function

G [Y (ψ) , Re,W ] = H 0WH

for any positive definite weighting matrixW . Maximizing the objective function G with
respect to the parameter vector ψ provides a simulated method of moments estimatorbψSMM (W ) for the process.

In practice, we start with the parameter estimates obtained under full information,
compute the corresponding weighting matrix

Wbψ =


JX
j=1

H
h
Y (bψ), Yj(bψ)iH hY (bψ), Yj(bψ)i0 /J


−1

,

and obtain a first-stage SMM estimate. This procedure is repeated once to produce
an efficient SMM estimate. It is easy to check that as J and T go to infinity, H 0WH

converges to a χ2 distribution.
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8. Appendix B - Loglinearized Return Dynamics

8.1. Approximate Solution

By (2.4), the price:dividend ratio satisfies

lnQ(Mt) = gd − rf − ασc,d + lnEt
n
[1 +Q(Mt+1)]e

−ασc,d[
√
g(Mt+1)−1]

o
.

We assume that σc,d is close to 0 and that the marginal distribution M is concentrated
around 1, and look for a linear approximate solution to this fixed-point equation. The
conditional expectation

Et
n
[1 + eq̄−

Pk̄
k=1 qk(Mk,t+1−1)]e−ασc,d[

√
g(Mt+1)−1]

o
(8.1)

is approximately Et
©
[1 + eq̄ − eq̄

P
qk(Mk,t+1 − 1)]

£
1− ασc,d

2

P
(Mk,t+1 − 1)

¤ª
, or

(1 + eq̄)Et
·
1−

Xµ
eq̄

1 + eq̄
qk +

ασc,d
2

¶
(Mk,t+1 − 1)

¸
.

Since ρ = eq̄

1+eq̄ and Et(Mk,t+1 − 1) = (1− γk)(Mk,t − 1), we infer that (8.1) is approx-
imately equal to (1 + eq̄)

h
1−Pk̄

k=1(1− γk)
¡
ρqk +

ασc,d
2

¢
(Mk,t − 1)

i
. The linearized

version of the Euler equation is thus

q̄−
k̄X

k=1

qk(Mk,t−1) = gd−rf −ασc,d+ln(1+eq̄)−
k̄X

k=1

(1−γk)
³
ρqk +

ασc,d
2

´
(Mk,t−1),

implying

q̄ = ln(1 + eq̄) + gd − rf − ασc,d,

qk = (1− γk)
³
ρqk +

ασc,d
2

´
.

The first equation can be rewritten as ρ = egd−µ. We infer from the second equation
that qk satisfies (3.3).

We next derive the log-linearized return on the stock. Linearize ln[1 +Q(Mt+1)] ≈
ln[1 + eq̄−

Pk̄
k=1 qk(Mk,t+1−1)] around the unconditional mean (1, 1, ..., 1) :

ln[1 +Q(Mt+1)] ≈ ln(1 + eq̄)− eq̄

1 + eq̄

k̄X
k=1

qk(Mk,t+1 − 1).

Combining this result with (3.2), we infer

ln
1 +Q(Mt+1)

Q(Mt)
≈ − ln ρ−

k̄X
k=1

qk[ρ(Mk,t+1 − 1)− (Mk,t − 1)].
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Since µ = gd − ln ρ, we conclude that

rt+1 ≈ µ+ σ̄d
p
g(Mt+1)εd,t+1 −

k̄X
k=1

qk[ρ(Mk,t+1 − 1)− (Mk,t − 1)].

We note that Etrt+1 = (µ− rf )
Pk̄

k=1(1− γk)(Mk,t − 1)/2.

8.2. Volatility Decomposition

Since εd,t+1 is independent from the multipliers, the unconditional variance of returns
is

V ar(rt+1) ≈ σ̄2d +
k̄X

k=1

q2kV ar[ρ(Mk,t+1 − 1)− (Mk,t − 1)].

We note that E[(Mk,t+1 − 1)(Mk,t − 1)] = (1− γk)V ar(M) and conclude that

V ar(rt+1) ≈ σ̄2d + V ar(M)
k̄X

k=1

q2k[ρ
2 + 1− 2ρ(1− γk)].

8.3. Unconditional Skewness

There are two possible sources of skewness in the model: (1) the negative correlation
between drift and volatility; and (2) the possible negative skewness of the multiplier.
Let

Λt+1 =
k̄X

k=1

qk[(Mk,t − 1)− ρ(Mk,t+1 − 1)].

The return rt+1 has third centered moment

E[(rt+1 − µ)3] = 3Cov(σ2t+1,Λt+1) + E(Λ3t+1).

We easily show that this implies

E[(rt+1 − µ)3] = −3σ2dV ar(M)
k̄X

k=1

qk(γk + ρ− 1) (8.2)

+E[(M − 1)3]
k̄X

k=1

q3k[γk(1− ρ3) + (1− γk)(1− ρ)3].

We begin by considering the component 3σ2dV ar(M)
Pk̄

k=1 qk(γk + ρ− 1). The addend
ρ + γk − 1 is positive for reasonably high frequencies, but can be negative at very low
frequencies. The overall effect is generally ambiguous. The second component on the
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RHS of (8.2) quantifies the effect of the skewness of the multiplier. We observe that a
negatively skewed multiplier leads to a more negatively skewed return process rt.

To clarify the intuition underlying this result, we consider a symmetric binomial
multiplier, which takes the values m0 > 1 and m1 = 2−m0 < 1 with equal probability.
Assume for simplicity that the process has a unique component (k̄ = 1). Volatility is
assumed to be high (M1,t = m0) in periods t ∈ {1, .., t∗}, low (M1,t = m1) in periods
t ∈ {t∗+1, t∗∗}, and high again in period t∗∗+1. The return in the initial periods t ≤ t∗

is
rt = µ+∆+ σd

√
m0εd,t (8.3)

where ∆ = (1− ρ)(m0 − 1)q1 > 0. Volatility falls between dates t∗ and t∗ + 1, and

rt∗+1 = µ+
1 + ρ

1− ρ
∆+ σd

√
m1εd,t∗+1 (8.4)

is typically much larger than previous returns. The multiplier is then constant until
date t∗∗, implying

rt = µ−∆+ σd
√
m1εd,t. (8.5)

Finally, we switch back to m0 at date t∗∗ and obtain the low return

rt∗∗+1 = µ− 1 + ρ

1− ρ
∆+ σd

√
m0εd,t+1. (8.6)

There are thus two countervailing forces affecting the skewness of the return process.
On one hand, transitions generate returns with identical means but different variances.
As seen in (8.6), the transition from low to high volatility is associated with a low mean
and a high variance, and can thus induce very negative excess returns. In contrast, the
transition from high to low variance implies returns with high means but low variance, as
seen in (8.4). In transition periods, very large positive outliers are thus less likely to be
observed than very negative ones, which induces negative skewness in the unconditional
return distribution. On the other hand, periods with constant volatility tend to induce
positive skewness: by (8.5) and (8.3) returns have both a higher mean and a higher
variance in high volatility periods than in low volatility ones. The switching probability
γk. determines the dominant effect. At sufficiently high frequencies (γk > 1 − ρ),
transition periods occur often and returns are negatively skewed, as seen in (8.2).

8.4. State Dependence in Sign of Conditional Skewness

The example also indicates that the conditional skewness of returns depends on the
volatility state. Consider a component with a sufficiently low frequency. When volatility
is high in a given period, the conditional mean is slightly lower than 1+ρ

1−ρ∆. Volatility
either stays high next period and generates a modest negative return; or switches to a
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low level and generates a very positive return. Conditional skewness is then positive.
Conversely in a market with low volatility, returns are either slightly positive (no switch)
or very negative (switch).

We illustrate this intuition by computing the conditional skewness of the return
process. By (3.5), the return innovation is ut+1 = Λ̃t+1 + σt+1εd,t+1, where Λ̃t+1 =

−ρPk̄
k=1 qk(Mk,t+1 − EtMk,t+1). The conditional third moment of the innovation is

therefore
Et(u3t+1) = 3Covt(σ2t+1; Λ̃t+1) + Et(Λ̃3t+1).

First, we know that Covt(σ2t+1; Λ̃t+1) = −ρ(Etσ2t+1)
Pk̄

k=1 qk
V art(Mk,t+1)
EtMk,t+1

< 0. This is

a direct consequence of volatility feedback. Second, we also note that Et(Λ̃3t+1) =
−ρ3Pk̄

k=1 q
3
kEt[(Mk,t+1−EtMk,t+1)

3]. Each addend can be expressed as a cubic function
of the volatility component Mk,t, implying

Et(Λ̃3t+1) = ρ3
k̄X

k=1

q3kγk

(
3(1− γk)V ar(M)(Mk,t − 1)

+(1− γk)(1− 2γk)(Mk,t − 1)3 − E[(M − 1)3]

)
.

If M has a symmetric distribution, we know that Et(Λ̃3t+1) has a zero unconditional
expectation: E[Et(Λ̃3t+1)] = 0. The addends have the same sign as 3V ar(M)(Mk,t−1)+
(1 − 2γk)(Mk,t − 1)3. When γk < 1/2, conditional skewness is thus positive in high
volatility states (Mk,t > 1) and negative otherwise.
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