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Abstract. The main purposes of this paper are to establish and exploit the result that, over a
complete (Noetherian) local ring R of prime characteristic for which the Frobenius homomorphism

f is finite, the appropriate restrictions of the Matlis-duality functor provide an equivalence between
the category of left modules over the Frobenius skew polynomial ring R[x, f ] that are Artinian as
R-modules and the category of right R[x, f ]-modules that are Noetherian as R-modules.

0. Introduction

Throughout the paper, R will denote a commutative Noetherian ring of prime characteristic p. We
shall only assume that R is local when this is explicitly stated; then, the notation ‘(R,m)’ will denote
that m is the maximal ideal of R. We shall always denote by f : R −→ R the Frobenius homomorphism,
for which f(r) = rp for all r ∈ R. We shall work with the skew polynomial ring R[x, f ] associated to
R and f in the indeterminate x over R. Recall that R[x, f ] is, as a left R-module, freely generated by
(xi)i∈N0 (we use N and N0 to denote the set of positive integers and the set of non-negative integers,
respectively), and so consists of all polynomials

∑n
i=0 rix

i, where n ∈ N0 and r0, . . . , rn ∈ R; however,
its multiplication is subject to the rule

xr = f(r)x = rpx for all r ∈ R.

Note that R[x, f ] can be considered as a positively-graded ring R[x, f ] =
⊕∞

n=0R[x, f ]n, with R[x, f ]n =
Rxn for all n ∈ N0. The ring R[x, f ] will be referred to as the Frobenius skew polynomial ring over R.

In the case when (R,m) is local, several authors have used, often as an aid to the study of tight
closure, the natural Frobenius action on the top local cohomology module HdimR

m (R) of R: see, for
example, R. Fedder [5], Fedder and K.-i. Watanabe [6], K. E. Smith [23], N. Hara and Watanabe [8]
and F. Enescu [2], [3]. The natural Frobenius action provides the top local cohomology module of
R with a natural structure as a left module over R[x, f ]. The top local cohomology module of R is
Artinian as R-module, and so the papers cited above studied one example of a left R[x, f ]-module that
is Artinian as R-module. In recent years there have been studies of more general left R[x, f ]-modules
that are Artinian as R-modules: see, for example, M. Katzman [12] and the first author’s [18], [20] and
[21] (the authors are listed alphabetically).

On the other hand, the second author showed in [24, Proposition 3.5] that, if R is F -finite, that is, the
Frobenius map f : R −→ R is a finite homomorphism, then each non-zero injective R-module I has a
non-trivial structure as a right R[x, f ]-module. The main purpose of this paper is to build on that work
to show that, when R is F -finite, whenever M is a left R[x, f ]-module, then HomR(M, I) can be given
a structure as right R[x, f ]-module that extends its R-module structure, and, furthermore, whenever N
is a right R[x, f ]-module, then HomR(N, I) can be given a structure as left R[x, f ]-module that extends
its R-module structure. Special attention is given to the case where (R,m) is local, complete and F -
finite, and I is taken to be E := ER(R/m), the injective envelope of the simple R-module. Classical
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Matlis duality yields that whenever G is an R-module that is Artinian (respectively Noetherian), then
the natural ‘evaluation’ R-homomorphism G −→ HomR(HomR(G,E), E) is an isomorphism, and the
‘Matlis dual’ HomR(G,E) of G is Noetherian (respectively Artinian). Our results, when combined
with Matlis duality, lead to the conclusion that the appropriate restrictions of the functor HomR(−, E)
provide an equivalence between the category of left R[x, f ]-modules that are Artinian as R-modules
(and all R[x, f ]-homomorphisms between them) and the category of right R[x, f ]-modules that are
Noetherian as R-modules (and all R[x, f ]-homomorphisms between them).

We can then use this equivalence to translate (in this complete, local, F -finite case) known results
about left R[x, f ]-modules that are Artinian as R-modules into results about right R[x, f ]-modules
that are Noetherian as R-modules. One example of this concerns the Hartshorne–Speiser–Lyubeznik
Theorem, which we now recall.

0.1. Theorem (G. Lyubeznik [14, Proposition 4.4]). (Compare Hartshorne–Speiser [9, Proposition
1.11].) Suppose that (R,m) is local, and let G be a left R[x, f ]-module that is Artinian as R-module.
Then there exists e ∈ N0 with the following property: whenever g ∈ G is such that xng = 0 for some
n ∈ N, then xeg = 0.

Hartshorne and Speiser first proved this result in the case where R is local and contains its residue
field which is perfect. Lyubeznik applied his theory of F -modules to obtain the result without restriction
on the local ring R of characteristic p. There is a short proof of the Hartshorne–Speiser–Lyubeznik
Theorem in [19]. It was shown in [17, Corollary 1.8] that the result is still valid if the hypothesis that
R be local is dropped.

The Hartshorne–Speiser–Lyubeznik Theorem has been used to establish the existence of uniform test
exponents for Frobenius closures of parameter ideals in local rings in certain circumstances. Let a be
an ideal of R; let n ∈ N0. Recall that the n-th Frobenius power a[p

n] of a is the ideal of R generated by
all pn-th powers of elements of a. The Frobenius closure aF of a is defined by

aF :=
{
r ∈ R | there exists n ∈ N0 such that rp

n

∈ a[p
n]
}
.

This is an ideal of R, and so is finitely generated; therefore there exists a power Q0 of p such that
(aF )[Q0] = a[Q0], and we define Q(a) to be the smallest power of p with this property. In [13, Theorem
2.5], M. Katzman and Sharp used the Hartshorne–Speiser–Lyubeznik Theorem to show that, when
(R,m) is local and Cohen–Macaulay, the set

{Q(a) : a is an ideal generated by part of a system of parameters of R}
is bounded; in [11], C. Huneke, Katzman, Sharp and Y. Yao again used the Hartshorne–Speiser–
Lyubeznik Theorem (and quite a few other techniques) to establish the same conclusion in a generalized
Cohen–Macaulay local ring.

We are able to use our above-mentioned equivalence of categories to prove the following result (as
Theorem 3.1), in the case where R is F -finite, local and complete.

Theorem. Assume that (R,m) is F -finite, local and complete. Let N be a right R[x, f ]-module that is
Noetherian as R-module. Then there exists e ∈ N0 such that Nxe = Nxe+1.

This result can be viewed as a dual of the Hartshorne–Speiser–Lyubeznik Theorem. A natural
question is whether this ‘dual Hartshorne–Speiser–Lyubeznik Theorem’ is still valid if all the hypotheses
about R, except the one that it (is a commutative Noetherian ring and) has characteristic p, are dropped:
we shall show, in the final section of the paper, that this question has an affirmative answer.

Another useful result about left R[x, f ]-modules that are Artinian as R-modules concerns graded
annihilators: the graded annihilator of a (left or right) R[x, f ]-module T is the largest graded two-sided
ideal of R[x, f ] that annihilates T .

0.2. Theorem (R. Y. Sharp [18, Corollary 3.11]). Let G be a left R[x, f ]-module that is Artinian as
R-module. Suppose that G is x-torsion-free, that is, xg = 0 for g ∈ G implies that g = 0. Then there
are only finitely many graded annihilators of R[x, f ]-submodules of G.

The first author has been able to use this result to prove existence theorems about tight closure test
elements: see [21, Theorem 4.16].
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We are able to use our above-mentioned equivalence of categories to prove the following result (as
Theorem 3.5), in the case where R is F -finite, local and complete.

Theorem. Assume that (R,m) is F -finite, local and complete. Let M be a right R[x, f ]-module that is
Noetherian as R-module. Suppose that M is x-divisible, that is M = Mx. Then there are only finitely
many graded annihilators of R[x, f ]-homomorphic images of M .

Again, it is natural to ask whether this result is still valid if all the hypotheses about R, except the
one that it (is a commutative Noetherian ring and) has characteristic p, are dropped. At the time of
writing, we have not been able to answer to this question.

Note. Most of the research reported in this paper was carried out during a visit by Sharp to the
University of Okayama in March 2008. After the paper had been accepted, it was pointed out to us
that some of its results have been independently obtained by M. Blickle and G. Boeckle in their paper
[1]. In detail, Theorem 1.20 below appears in [1, Section 5.1], and the result of Theorem 3.4 below
follows from [1, Proposition 2.14] (which Blickle and Boeckle prove via an argument of O. Gabber from
[7, Section 13]).

1. Right and left modules over the Frobenius skew polynomial ring

The notation and terminology used in the Introduction will be used throughout the paper.
First of all, let us recall some of the basic facts about bimodules, which we shall use in the rest of

the paper. See, for example, Rotman [16, Lemma 8.80, Theorem 8.99].

1.1. Remark. Let A, B, C and D be commutative rings.

(i) An Abelian group M is an (A,B)-bimodule if M is a left A-module, a right B-module and the
two actions of the rings are related by the following rule:

(am)b = a(mb) for all a ∈ A, b ∈ B and m ∈M.

(ii) If M is an (A,B)-bimodule and N is a (B,C)-bimodule, then M ⊗B N is naturally an (A,C)-
bimodule, where the bimodule structure is given by

a(m⊗ n)c = (am)⊗ (nc) for all a ∈ A, c ∈ C, m ∈M and n ∈ N.

(iii) IfM is an (A,B)-bimodule and N is an (A,C)-bimodule, then the set of all left A-homomorphi-
sms from M to N , denoted by HomlA(M,N), is naturally a (B,C)-bimodule, where

(bφc)(m) = (φ(mb))c for all b ∈ B, c ∈ C, m ∈M and φ ∈ HomlA(M,N).

Similarly if M is an (A,B)-bimodule and N is a (C,B)-bimodule, then the set of all right
B-homomorphisms from M to N , denoted by HomrB(M,N), is naturally a (C,A)-bimodule,
where

(cψa)(m) = c(ψ(am)) for all c ∈ C, a ∈ A, m ∈M and ψ ∈ HomrB(M,N).

(iv) If M is an (A,B)-bimodule, N is a (B,C)-bimodule, and L is an (A,D)-bimodule, then there
exists a (C,D)-bimodule isomorphism, the so-called adjoint isomorphism,

Ξ : HomlA(M ⊗B N,L)
∼=−→ HomlB(N,HomlA(M,L))

which is such that

((Ξ(ϕ))(n))(m) = ϕ(m⊗ n) for all n ∈ N, m ∈M and ϕ ∈ HomlA(M ⊗B N,L).

(v) Similarly, if M is an (A,B)-bimodule, N is a (B,C)-bimodule, and L is a (D,C)-bimodule,
then there exists an ‘adjoint’ (D,A)-bimodule isomorphism

Θ : HomrC(M ⊗B N,L)
∼=−→ HomrB(M,HomrC(N,L))

which is such that

((Θ(φ))(m))(n) = φ(m⊗ n) for all m ∈M, n ∈ N and φ ∈ HomrC(M ⊗B N,L).
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(vi) If M is an (A,B)-bimodule, N is a (C,D)-bimodule, and L is an (A,D)-bimodule, then there
exists a (B,C)-bimodule isomorphism

Ω : HomlA(M,HomrD(N,L)) ∼= HomrD(N,HomlA(M,L))

for which

((Ω(ψ))(n))(m) = (ψ(m))(n) for all m ∈M, n ∈ N and ψ ∈ HomlA(M,HomrD(N,L)).

Recall that R denotes a commutative Noetherian ring of prime characteristic p and that f : R −→ R
denotes the Frobenius homomorphism. We shall only assume that R is F -finite when this is explicitly
stated.

Let M be an R-module. We always regard M as an (R,R)-bimodule by r ·m · s = rsm for r, s ∈ R
and m ∈ M . On the other hand, we define the (R,R)-bimodule Mf to be Mf = M as Abelian group
with (R,R)-bimodule structure defined by

r ·m · s = rspm for all r, s ∈ R and m ∈M.

Note that the Frobenius map f : R→ Rf is a right R-module homomorphism.
Similarly, we define the (R,R)-bimodule fM to be fM =M as Abelian group with (R,R)-bimodule

structure defined by
r ·m · s = rpsm for all r, s ∈ R and m ∈M.

1.2. Remark. Let M be an R-module.

(i) By 1.1(ii), M ⊗RRf has naturally a structure of (R,R)-bimodule. The action of R is given by

s · (m⊗ r) · s′ = srs′pm⊗ 1 for all r, s, s′ ∈ R and m ∈M.

Thus there is an isomorphism Mf
∼=M ⊗R Rf as (R,R)-bimodules.

(ii) Similarly, fR⊗R M is an (R,R)-bimodule with action given by

s · (r ⊗m) · s′ = 1⊗ sprs′m for all r, s, s′ ∈ R and m ∈M.

There is an isomorphism fM ∼= fR⊗R M of (R,R)-bimodules.
(iii) By 1.1(iii), the Abelian group HomlR(Rf ,M) consisting of all left R-homomorphisms from Rf

to M is an (R,R)-bimodule with action of R given by

(sφs′)(r) = (φ(r · s))s′ = rsps′φ(1) for all r, s, s′ ∈ R and φ ∈ HomlR(Rf ,M).

It is easy to see that HomlR(Rf ,M) ∼= fM as (R,R)-bimodules.
(iv) Similarly, the set HomrR(Rf ,M) of all right R-homomorphisms from Rf to M is an (R,R)-

bimodule with

(sψs′)(r) = sψ(s′r) for all r, s, s′ ∈ R and ψ ∈ HomrR(Rf ,M).

We shall use a refinement of the following result.

1.3. Lemma (Y. Yoshino [24, Lemma 3.6]). Suppose that (R,m) is local and F -finite. Denote by E
the injective envelope ER(R/m) of the simple R-module, which we regard as a right R-module. Then

there is a right R-module isomorphism E
∼=−→ HomrR(Rf , E), where HomrR(Rf , E) carries the right

R-module structure described in Remark 1.2(iv).

We shall use the following refinement, in which it is not assumed that R is local.

1.4. Lemma. Suppose that R is F -finite, and let I be an injective R-module. Then there is an (R,R)-
bimodule isomorphism

HomlR(Rf , I)
∼=−→ HomrR(Rf , I).

Proof. It is a consequence of the adjoint isomorphism of Remark 1.1(v) that HomrR(Rf , I) is injec-
tive as right R-module. On the other hand, by 1.2(iii), we have an isomorphism of (R,R)-bimodules
HomlR(Rf , I) ∼= fI.

We can use the well-known decomposition theory for injective R-modules due to E. Matlis (reviewed
in, for example, [15, §18]) to see that it is enough for us to prove the result when I = ER(R/p) for a
prime ideal p of R, and so we assume that this is so in the rest of the proof.
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Since, for a prime ideal q of R, each element of ER(R/q) is annihilated by some power of q,
and multiplication by an element r ∈ R \ q provides an automorphism of ER(R/q), it follows that
HomrR(Rf , ER(R/p)) (with the right R-module structure described in Remark 1.2(iv)) is isomorphic
to a direct sum of µ copies of ER(R/p). First we prove that the cardinal µ is exactly 1. Thus

HomrR(Rf , ER(R/p)) ∼=
⊕

µ (ER(R/p)) ,

as right R-modules. We consider (Rf )p as the localization of the right R-module Rf at p and write the
resulting action of Rp on the right. (Thus (r/s) · (a/t) = rap/st for r ∈ Rf , a ∈ R and s, t ∈ R \ p.)
We can also endow this (Rf )p with a left Rp-module structure under which(a

t

)
·
(r
s

)
=
tp−1ar

st
for all r ∈ Rf , a ∈ R and s, t ∈ R \ p.

These two structures turn (Rf )p into an (Rp, Rp)-bimodule, and then there is an (Rp, Rp)-bimodule

isomorphism β : (Rf )p
∼=−→ (Rp)f for which β(r/s) = r/sp for all r ∈ Rf and s ∈ R \ p. Since Rf is

finitely generated as right R-module, there is a right Rp-module isomorphism

(HomrR(Rf , ER(R/p)))p
∼= HomrRp

((Rf )p, (ER(R/p))p)

when HomrR(Rf , ER(R/p)) (respectively HomrRp
((Rf )p, (ER(R/p))p)) is considered as a right R-

module (respectively a right Rp-module) via Remark 1.1(iii). One can use this isomorphism, and
the isomorphism β above, to see that there is a right Rp-module isomorphism

(HomrR(Rf , ER(R/p)))p
∼= HomrRp

(
(Rp)f , ERp

(Rp/pRp)
)
.

The last module is right Rp-isomorphic to ERp
(Rp/pRp) by Lemma 1.3. Therefore µ = 1.

We have thus shown that there is a right R-module isomorphism φ : I → HomrR(Rf , I). To finish
the proof, we show that this mapping φ, regarded as a mapping fI → HomrR(Rf , I), is actually a left
R-module homomorphism, and therefore an (R,R)-bimodule isomorphism. For z ∈ fI and a ∈ R, we
have, for all r ∈ Rf ,

φ(a · z)(r) = φ(zap)(r) = (φ(z)ap)(r) = φ(z)(apr)

= φ(z)(r · a) = (φ(z)(r))a = a(φ(z)(r)) = (aφ(z))(r),

so that φ(a · z) = aφ(z). Therefore φ is a left R-homomorphism. �

1.5. Remark. If, in Lemma 1.4, we drop the hypothesis that R is F -finite, then the conclusion is no
longer always true. For one example, let K be a countable field of characteristic p with [K : Kp] infinite
but countable, and set R = K. We show now that HomrK(Kf ,K) ̸∼= fK as right K-modules. Assume
that HomrK(Kf ,K) ∼= fK as right K-modules and seek a contradiction.

Let K be an algebraic closure of K, and let K1/p denote the subfield ofK consisting of all pth roots of
elements of K. The assumption implies that HomK(K1/p,K) ∼= K1/p as K1/p-modules. In particular,
HomK(K1/p,K) has countable dimension as a vector space overK. Let (αn)n∈N be aK-basis ofK1/p, so
that K1/p =

⊕
n∈NKαn. Then HomK(K1/p,K) = HomK

(⊕
n∈NKαn,K

) ∼=
∏

n∈N HomK(Kαn,K),
and this has uncountable dimension as a vector space over K, and this is a contradiction.

1.6. Discussion. The Frobenius skew polynomial ring R[x, f ] was defined in the Introduction. It follows
from [13, Lemma 1.3] that extension of the R-module structure on an R-module H to a structure of
left R[x, f ]-module is equivalent to the provision of an Abelian group homomorphism ξ : H −→ H for
which ξ(rh) = rpξ(h) for all r ∈ R and h ∈ H. (In fact, ξ and the action of x are related by the formula
ξ(h) = xh for all h ∈ H.)

There is a bijective correspondence between HomlR(Rf ⊗R H,H) and

{ξ ∈ EndZ(H) | ξ(rh) = rpξ(h) for all r ∈ R and h ∈ H}
under which α ∈ HomlR(Rf ⊗R H,H) corresponds to h 7→ α(1 ⊗ h). In view of this, we are going to
use the notation (H,α) to describe a left R[x, f ]-module H, where H is the underlying R-module and
α ∈ HomlR(Rf ⊗R H,H) is such that xh = α(1⊗ h) for all h ∈ H.

Under the adjoint isomorphism of Remark 1.1(iv), an α ∈ HomlR(Rf ⊗R H,H) corresponds to an
α̃ ∈ HomlR(H,HomlR(Rf ,H)). Note that xh = (α̃(h))(1) for all h ∈ H. We write H = (H,α) = [H, α̃].
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With such notation, a left R[x, f ]-homomorphismH = (H,α) → H′ = (H ′, α′) of left R[x, f ]-modules
is an R-homomorphism φ : H → H ′ for which the diagram

Rf ⊗R H
α−−−−→ H

1⊗φ

y φ

y
Rf ⊗R H

′ α′

−−−−→ H ′

commutes.

1.7. Discussion. Similarly, extension of the R-module structure on an R-module M to a structure of
right R[x, f ]-module is equivalent to the provision of an Abelian group homomorphism ξ : M −→ M
for which ξ(mrp) = ξ(m)r for all r ∈ R and m ∈M . The map ξ and the action of x are related by the
formula ξ(m) = mx for all m ∈M .

There is a bijective correspondence between HomrR(M ⊗R Rf ,M) and

{ξ ∈ EndZ(M) | ξ(mrp) = ξ(m)r for all r ∈ R and m ∈M}

under which β ∈ HomrR(M ⊗R Rf ,M) corresponds to m 7→ β(m ⊗ 1). In view of this, we are going
to use the notation (M,β) to describe a right R[x, f ]-module M, where M is the underlying R-module
and β ∈ HomrR(M ⊗R Rf ,M) is such that mx = β(m⊗ 1) for all m ∈M .

Under the adjoint isomorphism of Remark 1.1(v), a β ∈ HomrR(M ⊗R Rf ,M) corresponds to a

β̃ ∈ HomrR(M,HomrR(Rf ,M)). Note that mx = (β̃(m))(1) for all m ∈ M . We write M = (M,β) =

[M, β̃].

1.8.Notation. We shall use R[x,f ] Mod to denote the category of all left R[x, f ]-modules and left R[x, f ]-
homomorphisms between them, and ModR[x,f ] to denote the category of all right R[x, f ]-modules and
right R[x, f ]-homomorphisms between them.

1.9. Examples. (i) The Frobenius endomorphism f : R → R induces a left R-module homomorphism
α : Rf ⊗R R→ R for which α(a⊗ b) = af(b) = abp for all a ∈ Rf and b ∈ R. This therefore yields the
left R[x, f ]-module (R,α), in which we have xr = rp for all r ∈ R.

Let c ∈ R be any element. Then there is a left R-module homomorphism αc : Rf ⊗ R → R such
that αc(a ⊗ b) = cabp for a ∈ Rf and b ∈ R. Thus we obtain a left R[x, f ]-module (R,αc), in which
xr = crp for all r ∈ R. It is straightforward to check that (R,α) ∼= (R,αc) as left R[x, f ]-modules if
and only if c is a unit in R possessing a (p − 1)th root in R. Thus it is possible for there to be many
left R[x, f ]-modules with the same underlying R-module.

(ii) Suppose that our ring R is reduced and that we are given a non-trivial Rp-homomorphism
π : R → Rp. (In the case where R is F -finite and F -pure, we can find such a π that is a surjective
mapping, because Rp is a direct summand of R as an Rp-module: see [10, Corollary 5.3].) In this
situation, we have a right R-module homomorphism β : R ⊗R Rf → R for which β(a ⊗ b) = π(ab)1/p

for all a ∈ R and b ∈ Rf . This yields a right R[x, f ]-module (R, β), in which we have rx = π(r)1/p for
all r ∈ R.

We have shown in 1.4 that whenever R is F -finite and I is an injective R-module, there is an
(R,R)-bimodule isomorphism Ψ : fI → HomrR(Rf , I); of course, Ψ is, in particular, a right R-module
homomorphism. Therefore we have the following as a corollary to 1.4.

1.10. Corollary. Suppose that R is F -finite, and let I be an injective R-module. Then there is a right
R[x, f ]-module I = [I,Ψ] which has I as underlying R-module, and is such that Ψ : fI → HomrR(Rf , I)
is an (R,R)-bimodule isomorphism. Note that zx = (Ψ(z))(1) for all z ∈ I.

1.11. Lemma. Let the situation and notation be as in Corollary 1.10, and consider the right R[x, f ]-
module I = [I,Ψ]. Then I has the following property: if z ∈ I is such that, for a fixed n ∈ N0, we have
zrxn = 0 for all r ∈ R, then z = 0.

Proof. The claim is clear when n = 0, and we deal now with the case where n = 1. We have

0 = (zr)x = (Ψ(zr)) (1) = ((Ψ(z))r) (1) = (Ψ(z))(r) for all r ∈ R.
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Therefore Ψ(z) = 0, so that z = 0 because Ψ is an isomorphism.
Now suppose, inductively, that n ∈ N with n > 1, and that the claim has been proved for all smaller

values of n. Suppose that zrxn = 0 for all r ∈ R. Then (zrxn−1)sx = zrsp
n−1

xn = 0 for all r, s ∈ R.
It follows from the case where n = 1 that zrxn−1 = 0 for all r ∈ R; it then follows from the inductive
hypothesis that z = 0. �

1.12. Discussion. Throughout the rest of this section, assume that our ring R is F -finite, and let I
be an injective R-module. We fix a right R[x, f ]-module structure on I as in Corollary 1.10, so that
I = [I,Ψ] is a right R[x, f ]-module with Ψ : fI → HomrR(Rf , I) an (R,R)-bimodule isomorphism. We
denote by (−)∨ the duality functor determined by I, so that X∨ = HomR(X, I) for each R-module X.

Now suppose we are given a left R[x, f ]-module H = (H,α) with α ∈ HomlR(Rf ⊗R H,H).

(i) Here we produce a right R[x, f ]-module structure on H∨.
First apply the functor (−)∨ to the left R-homomorphism α : Rf ⊗R H → H: the result

is a right R-homomorphism α∨ : H∨ → HomlR(Rf ⊗R H, I). But there is an (R,R)-bimodule

isomorphism HomlR(Rf ⊗R H, I)
∼=−→ HomlR(H,HomlR(Rf , I)) given by Remark 1.1(iv), and

use of the (R,R)-bimodule isomorphism Ψ produces a further (R,R)-bimodule isomorphism

HomlR(H,HomlR(Rf , I))
∼=−→ HomlR(H,HomrR(Rf , I)).

In addition, Remark 1.1(vi) provides an (R,R)-bimodule isomorphism

HomlR(H,HomrR(Rf , I))
∼=−→ HomrR(Rf ,HomlR(H, I)).

Composition of these therefore yields a right R-homomorphism γ : H∨ −→ HomrR(Rf ,H
∨),

and we shall denote by D(α) the right R-homomorphism H∨ ⊗R Rf → H∨ that corresponds
to γ under the adjoint isomorphism of Remark 1.1(v). (Note that H∨ = HomlR(H, I) =
HomrR(H, I).)

Thus D(α) makes H∨ into a right R[x, f ]-module. We define

D(H) = D(H,α) := (H∨, D(α)) = [H∨, γ].

It is straightforward to use the above definition of γ to check that

(1) (D(α)(m⊗ r))(h) = (Ψ(m(α(1⊗ h)))) (r) for all m ∈ H∨, r ∈ Rf and h ∈ H.

(ii) Now let H′ = (H ′, α′) be a second left R[x, f ]-module and let φ : H → H′ be a left R[x, f ]-
homomorphism. Thus φ is an R-homomorphism H → H ′ which makes the diagram

Rf ⊗R H
α−−−−→ H

Id⊗φ

y yφ

Rf ⊗R H
′ α′

−−−−→ H ′

commute. It is straightforward to check that the diagram

H∨ α∨

−−−−→ HomlR(Rf ⊗R H, I)
∼=−−−−→ HomrR(Rf ,HomlR(H, I))

φ∨
x x(Id⊗φ)∨ Hom(Rf ,φ

∨)

x
H ′∨ α′∨

−−−−→ HomlR(Rf ⊗R H
′, I)

∼=−−−−→ HomrR(Rf ,HomlR(H
′, I)) ,

in which the upper horizontal isomorphism is the one used in the construction in part (i)
and the lower horizontal isomorphism is the corresponding one for H′, commutes. Therefore
φ∨ : H ′∨ → H∨ defines a right R[x, f ]-homomorphism D(H′) → D(H), which we denote by
D(φ).

1.13. Proposition. Let the situation and notation be as in Discussion 1.12. There is a contravariant
functor D : R[x,f ]Mod → ModR[x,f ] which maps a left R[x, f ]-module (H,α) to (H∨, D(α)) where D(α)
is given by (1) in Discussion 1.12(i).
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1.14. Proposition. Let the situation and notation be as in Discussion 1.12 and let H = (H,α) be a left
R[x, f ]-module. The right R[x, f ]-module structures on I and D(H) = (HomlR(H, I), D(α)) are such
that

(2) (mx)(h) = (m(xh))x for all m ∈ H∨ = HomlR(H, I) and h ∈ H.

Proof. Recall that the right R[x, f ]-module structure on I is given by Ψ : fI → HomrR(Rf , I), so that
zx = (Ψ(z))(1) for all z ∈ I.

Let m ∈ H∨ = HomlR(H, I) and h ∈ H. By (1) in Discussion 1.12(i), we have

(mx)(h) = (D(α)(m⊗ 1))(h) = Ψ(m(α(1⊗ h)))(1) = (m(α(1⊗ h)))x = (m(xh))x.

�
We now provide the right R[x, f ]-module analogue of Discussion 1.12.

1.15. Discussion. The hypotheses and notation are as in Discussion 1.12. Let M = (M,β) be a right
R[x, f ]-module, where β ∈ HomrR(M ⊗R Rf ,M).

(i) Here we produce a left R[x, f ]-module structure on M∨.
First apply the functor (−)∨ to the right R-homomorphism β : M ⊗R Rf → M : the result

is a left R-homomorphism β∨ : M∨ → HomrR(M ⊗R Rf , I). But there is an (R,R)-bimodule

isomorphism HomrR(M⊗RRf , I))
∼=−→ HomrR(M,HomrR(Rf , I)) given by Remark 1.1(v), and

use of the (R,R)-bimodule isomorphism Ψ−1 produces a further (R,R)-bimodule isomorphism

HomrR(M,HomrR(Rf , I))
∼=−→ HomrR(M,HomlR(Rf , I)).

In addition, Remark 1.1(vi) provides an (R,R)-bimodule isomorphism

HomrR(M,HomlR(Rf , I))
∼=−→ HomlR(Rf ,HomrR(M, I)).

Composition of these therefore yields a left R-homomorphism δ : M∨ −→ HomlR(Rf ,M
∨),

and we shall denote by D′(β) the left R-homomorphism Rf ⊗R M
∨ → M∨ that corresponds

to δ under the adjoint isomorphism of Remark 1.1(iv). (Note that M∨ = HomlR(M, I) =
HomrR(M, I).) Thus D′(β) makes M∨ into a left R[x, f ]-module. We define

D′(M) = D(M,β) := (M∨, D′(β)) = [M∨, δ].

It is straightforward to use the above definition of δ to check that

(3) (D′(β)(r ⊗ h))(m) =
(
Ψ−1(r′ 7→ h(β(m⊗ r′)))

)
r for all h ∈M∨, r ∈ Rf and m ∈M.

(ii) Now let M′ = (M ′, β′) be a second right R[x, f ]-module and let ψ : M → M′ be a right R[x, f ]-
homomorphism. An argument similar to that in Discussion 1.12(ii) shows that ψ∨ :M ′∨ →M∨

defines a left R[x, f ]-homomorphism D′(M′) → D′(M), which we denote by D′(ψ).

1.16. Proposition. Let the situation and notation be as in Discussion 1.15. There is a contravariant
functor D′ : ModR[x,f ] → R[x,f ]Mod which maps a right R[x, f ]-module (M,β) to (M∨, D′(β)) where
D′(β) is given by (3) in Discussion 1.15(i).

1.17. Proposition. Let the situation and notation be as in Discussion 1.15. Let M = (M,β) be a right
R[x, f ]-module, so that D′(M) = (M∨, D′(β)) is a left R[x, f ]-module by Proposition 1.16. The left
action of x on M∨ can be described as follows: for h ∈ M∨, the result xh of multiplying h on the left
by x is the unique h′ ∈M∨ for which

(4) (h′(m))rx = h(mrx) for all m ∈M and r ∈ R.

Proof. First of all,

((xh)(m))rx = ((D′(β)(1⊗ h))(m)) rx =
(
Ψ−1(r′ 7→ h(β(m⊗ r′)))

)
rx

=
(
Ψ
((
Ψ−1(r′ 7→ h(β(m⊗ r′)))

)
r
))

(1) = ((r′ 7→ h(β(m⊗ r′)))r) (1) = h(β(m⊗ r))

= h(β(mr ⊗ 1)) = h(mrx).

It therefore remains for us to show that if h′ ∈M∨ is such that (h′(m))rx = h(mrx) for all m ∈M and
r ∈ R, then h′ = xh. It is therefore enough for us to show that if h′′ ∈M∨ is such that (h′′(m))rx = 0
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for allm ∈M and r ∈ R, then h′′ = 0. However, this is easy, because Lemma 1.11 shows that h′′(m) = 0
for all m ∈M . �

Propositions 1.13 and 1.16 prepare the ground for several subsequent results in this paper.

1.18. Proposition. Let the situation and notation be as in Propositions 1.13 and 1.16, so that R is
F -finite and I is an injective R-module with fixed (R,R)-bimodule isomorphism Ψ : fI → HomrR(Rf , I).

For each R-module G, we write G∨ = HomR(G, I) as before. Let ωG : G −→ (G∨)∨ be the natural
‘evaluation’ R-homomorphism for which ωG(g)(h) = h(g) for all h ∈ G∨ and g ∈ G. Recall that, as G
varies through the category R Mod of all R-modules and R-homomorphisms, the ωG constitute a natural
transformation from the identity functor on R Mod to the functor ((−)∨)∨.

(i) If H = (H,α) is a left R[x, f ]-module, then ωH is a left R[x, f ]-module homomorphism from
H to D′(D(H)). As H varies through R[x,f ] Mod, the ωH constitute a natural transformation
from the identity functor on that category to the functor D′ ◦D.

(ii) If M = (M,β) is a right R[x, f ]-module, then ωM is a right R[x, f ]-module homomorphism from
M to D(D′(M)). As M varies through ModR[x,f ], the ωM constitute a natural transformation
from the identity functor on that category to the functor D ◦D′.

Proof. (i) In view of Propositions 1.13 and 1.16, it only remains for us to show that, for a left R[x, f ]-
module H = (H,α), the R-homomorphism ωH : H → (H∨)∨ is actually a left R[x, f ]-module homo-
morphism. To this end, we compare, for an h ∈ H, the elements ωH(xh) and x(ωH(h)). Now, xωH(h)
is, by (4) in Proposition 1.17, the unique element h′ ∈ (H∨)∨ that satisfies

(h′(m)) rx = ωH(h)(mrx) for all m ∈ H∨ and r ∈ R.

It is enough to show that h′ = ωH(xh) satisfies this. But

(ωH(xh)(m))rx = (m(xh))rx = (r(m(xh)))x = (m(rxh))x = ((mr)(xh))x = (mrx)(h),

where we have used (2) in 1.14 for the last equality. Since (mrx)(h) = ωH(h)(mrx), the proof of part
(i) is complete.

(ii) In view of Propositions 1.13 and 1.16, it only remains for us to show that, for a right R[x, f ]-
module M = (M,β), the R-homomorphism ωM : M → (M∨)∨ is actually an R[x, f ]-homomorphism.
To this end, we compare, for an m ∈M , the elements ωM (mx) and (ωM (m))x.

Now, for all h ∈M∨, we have

((ωM (m))x) (h) = (ωM (m)(xh))x (by (2) in 1.14)

= ((xh)(m)))x

= h(mx) (by (4) in 1.17)

= (ωM (mx)) (h).

Hence ωM (mx) = (ωM (m))x. �

1.19. Remark. Let R′ be a general commutative Noetherian ring and let I be an injective R′-module.
For each R′-moduleM we writeM∨ := HomR′(M, I) and denote by ωM the natural evaluation mapping
M → (M∨)∨ defined by ωM (m)(h) = h(m) for all h ∈ M∨ and m ∈ M . We say that M is I-reflexive
if ωM is an isomorphism. It is routine to check that, for an R′-module M , the composition

(ωM )∨ ◦ ωM∨ :M∨ −→M∨

is the identity map. Therefore, if M is I-reflexive, then so too is M∨. It is easily verified that the
full subcategory of R′ Mod consisting of all I-reflexive modules is closed under finite direct sums, direct
summands and extensions. But in general it is not a Serre subcategory of R′ Mod, as can be seen by
consideration of the case where R′ is a Noetherian integral domain that is not a field and I is taken to
be the quotient field of R′.

Suppose, in addition, that (R′,m) is (Noetherian) local and complete. Choose I = E := ER′(R′/m),
so that (−)∨ becomes the Matlis-duality functor HomR′(−, E). In this case, E-reflexive modules are
called Matlis-reflexive. It is well known that all Noetherian R′-modules and all Artinian R′-modules are
Matlis-reflexive, and that (−)∨ provides a duality between the category of all Noetherian R′-modules
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(and all R′-homomorphisms between them) and the category of all Artinian R′-modules (and all R′-
homomorphisms between them). Furthermore it was proved by E. Enochs [4, Proposition 1.3] that an
R′-module M is Matlis-reflexive if and only if it can be embedded into a short exact sequence

0 −−−−→ N −−−−→ M −−−−→ A −−−−→ 0,

in which A is an Artinian R′-module and N is a Noetherian R′-module. Therefore, the full subcategory
of R′ Mod consisting of all Matlis-reflexive modules is an Abelian category itself, and is actually the
smallest Serre subcategory of R′ Mod that contains all Noetherian modules and all Artinian modules.

Let the situation and notation be as in Proposition 1.18, so that R is F -finite and I is an injective
R-module with a fixed (R,R)-bimodule isomorphism Ψ : fI → HomrR(Rf , I). Let LI be the category of
all left R[x, f ]-modules which are I-reflexive as R-modules, and all left R[x, f ]-homomorphisms between
them. Similarly let RI be the category of right R[x, f ]-modules which are I-reflexive as R-modules,
and all right R[x, f ]-homomorphisms between them.

In general, LI ⊆ R[x,f ] Mod and RI ⊆ ModR[x,f ] are full subcategories, which are closed under
finite direct sums, direct summands and extensions. If, in addition, (R,m) is local and complete and
I = ER(R/m), then LI and RI are Abelian categories by Remark 1.19.

From the definitions of the functors D and D′, it is easy to use Remark 1.19 to see that they induce
functors D : LI → (RI)

op and D′ : RI → (LI)
op.

The following theorem is the main result of this paper.

1.20. Theorem. Let the situation and notation be as in 1.18, so that R is F -finite and I is an injective
R-module with a fixed (R,R)-bimodule isomorphism Ψ : fI → HomrR(Rf , I). Then the functors D :
LI → (RI)

op and D′ : RI → (LI)
op are inverse equivalences of categories.

Proof. For any H = (H,α) ∈ LI , the evaluation mapping ωH : H → (H∨)∨ is an R[x, f ]-isomorphism,
by Proposition 1.18(i). Therefore the natural transformation ω : Id → D′ ◦ D of 1.18(i) is a natural
equivalence of functors on LI . Similarly, ω : Id → D◦D′ is a natural equivalence of functors on RI . �

From this theorem we have the following corollary in the complete local case.

1.21. Corollary. Assume that (R,m) is F -finite, complete and local, and let I = E := ER(R/m). We
fix an (R,R)-bimodule isomorphism Ψ : fE → HomrR(Rf , E).

(i) It follows from Theorem 1.20 that D and D′ are inverse equivalences between the category of
left R[x, f ]-modules that are Artinian as R-modules and the category of right R[x, f ]-modules
that are Noetherian as R-modules.

(ii) Similarly, D and D′ are inverse equivalences between the category of right R[x, f ]-modules
that are Artinian as R-modules and the category of left R[x, f ]-modules that are Noetherian as
R-modules.

2. Graded annihilators

Let B be a subset of R[x, f ]. It is easy to see that B is a graded two-sided ideal of R[x, f ] if and only
if there is an ascending chain (bn)n∈N0 of ideals of R (which must, of course, be eventually stationary)
such that B =

⊕
n∈N0

bnx
n. In particular, note that R[x, f ]xt =

⊕
i≥tRx

i is a graded two-sided ideal

of R[x, f ], for each t ∈ N0.

2.1. Definitions. Let H = (H,α) denote a left R[x, f ]-module and let M = (M,β) denote a right
R[x, f ]-module; let B be a two-sided ideal of R[x, f ].

The annihilator of M will be denoted by annMR[x,f ]. Thus

annMR[x,f ] = {θ ∈ R[x, f ] | gθ = 0 for all g ∈M},
and this is a two-sided ideal of R[x, f ]. The annihilator annR[x,f ] H of H is defined similarly; it is also
a two-sided ideal of R[x, f ].

We define the graded annihilator gr-annMR[x,f ] of the right R[x, f ]-module M by

gr-annMR[x,f ] =

{
n∑

i=0

rix
i ∈ R[x, f ]

∣∣∣ n ∈ N0 and ri ∈ R, rix
i ∈ annMR[x,f ] for all i = 0, . . . , n

}
.
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Thus gr-annMR[x,f ] is the largest graded two-sided ideal of R[x, f ] contained in annMR[x,f ].
The graded annihilator of H is defined similarly: it is the largest graded two-sided ideal of R[x, f ]

that annihilates H. See [18, 1.5]. Recall also that annH B denotes the R[x, f ]-submodule of H given
by

annH B = {h ∈ H | θh = 0 for all θ ∈ B}.
Observe thatMB is an R[x, f ]-submodule of M. For t ∈ N0, we haveMR[x, f ]xt = {mxt : m ∈M},

and we shall therefore denote this R[x, f ]-submodule of M by Mxt. We shall say that M is x-divisible
precisely when M = Mx.

Recall (from [18, 1.2]) that H = (H,α) is said to be x-torsion-free if xh = 0, for h ∈ H, only when
h = 0. The set Γx(H) :=

{
h ∈ H | xjh = 0 for some j ∈ N

}
is an R[x, f ]-submodule of H, called the

x-torsion submodule of H.

We are now going to compare, in the situation of Theorem 1.20, the graded annihilators of a left
R[x, f ]-module H and the right R[x, f ]-module D(H), and also the graded annihilators of a right
R[x, f ]-module M and the left R[x, f ]-module D′(M).

Recall that an injective cogenerator for R is an injective R-module I such that HomR(G, I) ̸= 0 for
every non-zero R-module G. See [22, p. 46]. It should be remarked that if I is an injective cogenerator,
then the evaluation map ωG : G −→ (G∨)∨ is a monomorphism for all R-modules G.

2.2. Proposition. Let the situation and notation be as in Theorem 1.20. Let H = (H,α) be a left
R[x, f ]-module and M = (M,β) be a right R[x, f ]-module. Then

(i) gr-annR[x,f ] H ⊆ gr-annD(H)R[x,f ];

(ii) gr-annMR[x,f ] ⊆ gr-annR[x,f ] D
′(M);

(iii) if I is an injective cogenerator for R, we have

gr-annR[x,f ] H = gr-annD(H)R[x,f ] and gr-annMR[x,f ] = gr-annR[x,f ] D
′(M);

(iv) in particular, in the special case in which (R,m) is local, and I is taken to be ER(R/m), we
have

gr-annR[x,f ] H = gr-annD(H)R[x,f ] and gr-annMR[x,f ] = gr-annR[x,f ] D
′(M).

Proof. (i) Recall from (2) in 1.14 that the right action of R[x, f ] on D(H) = (H∨, D(α)) is such
that (mx)(h) = (m(xh))x for all m ∈ H∨ and all h ∈ H; an easy inductive argument shows that
(mxn)(h) = (m(xnh))xn for all n ∈ N.

Now let r ∈ R and n ∈ N0 be such that rxnH = 0. We show that rxn annihilates the right
R[x, f ]-module D(H) = (H∨, D(α)). Let m ∈ H∨ and h ∈ H. Then, by the preceding paragraph,

(mrxn)(h) = ((mr)xn)(h) = ((mr)(xnh))xn = (m(rxnh))xn = 0.

It follows that gr-annR[x,f ] H ⊆ gr-annD(H)R[x,f ].

(ii) Let r ∈ R and n ∈ N0 be such that Mrxn = 0. We show that rxn annihilates the left R[x, f ]-
module D′(M) = (M∨, D(β)). This is clear when n = 0, and so we suppose that n > 0. Let h ∈ M∨

and m ∈M . Then recall from (4) in 1.17 that ((xh)(m))r′x = h(mr′x) for all m ∈M and r′ ∈ R. An
easy inductive argument shows that

((xnh)(m))r′xn = h(mr′xn) for all m ∈M and r′ ∈ R.

It follows from this that, for r ∈ R,

((rxnh)(m))r′xn = h(mrr′xn) for all m ∈M and r′ ∈ R.

But, since mrr′xn = mr′rxn = 0, we have rxnh(m) = 0 for all m ∈ M , by Lemma 1.11. Therefore
rxnh = 0 and rxn annihilates the left R[x, f ]-module D′(M). Hence

gr-annMR[x,f ] ⊆ gr-annR[x,f ] D
′(M).

(iii) By parts (i) and (ii), we have gr-annR[x,f ] H ⊆ gr-annD(H)R[x,f ] ⊆ gr-annR[x,f ] D
′ ◦ D(H).

However, since I is an injective cogenerator for R, the homomorphism of left R[x, f ]-modules ωH :
H −→ (H∨)∨ is actually an R[x, f ]-monomorphism, and so it follows that

gr-annR[x,f ] D
′ ◦D(H) ⊆ gr-annR[x,f ] H.
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The first equality is therefore proved. The second is proved similarly.
(iv) This is a special case of part (iii), because, when (R,m) is local, ER(R/m) is an injective

cogenerator for R. �

2.3. Proposition. Let the situation and notation be as in 1.20, and assume in addition that (R,m)
is local and complete and that I is taken to be E := ER(R/m). Let B be a graded two-sided ideal of
R[x, f ].

(i) Let H = (H,α) be a left R[x, f ]-module that is Matlis-reflexive as R-module. Let ι : annH B −→
H denote the inclusion R[x, f ]-monomorphism. Then the induced homomorphism of right
R[x, f ]-modules D(ι) : D(H) −→ D(annH B) has kernel D(H)B.

(ii) Let M = (M,β) be a right R[x, f ]-module that is Noetherian as R-module. Let σ : MB −→
M denote the inclusion R[x, f ]-monomorphism. Then the induced homomorphism of left
R[x, f ]-modules D′(σ) : D′(M) −→ D′(MB) has kernel annD′(M) B, so that annD′(M) B ∼=
D′(M/MB) as left R[x, f ]-modules.

Proof. (i) Since B ⊆ gr-annR[x,f ](annH B) ⊆ gr-ann(D(annH B))R[x,f ] (by Proposition 2.2(i)), it fol-

lows from the fact thatD(ι) is an R[x, f ]-homomorphism thatD(H)B ⊆ KerD(ι). There is therefore an
induced R[x, f ]-epimorphism ϕ : D(H)/D(H)B −→ D(annH B) for which ϕ(m+D(H)B) = D(ι)(m)
for all m ∈ D(H). Let λ : D(H) −→ D(H)/D(H)B denote the canonical R[x, f ]-epimorphism, and
note that ϕ ◦ λ = D(ι). We therefore have a commutative diagram

annH B −−−−→
ι

H HyωannH B ∼=
yωH

D′ ◦D(annH B) −−−−→
D′(ϕ)

D′(D(H)/D(H)B) −−−−→
D′(λ)

D′ ◦D(H)

in the category R[x,f ] Mod. By Proposition 2.2(ii), we have ImD′(λ) ⊆ annD′◦D(H) B; since ωH is an
R[x, f ]-isomorphism and D′(λ) and D′(ϕ) are monomorphisms, it follows from the above commutative
diagram that D′(ϕ) is an isomorphism. Since I = ER(R/m) is an injective cogenerator for R, we can
therefore deduce that ϕ is an isomorphism, so that D(H)B = KerD(ι).

(ii) Let j : annD′(M) B −→ D′(M) denote the inclusion map and k : M −→ M/MB denote the
natural epimorphism. Apply part (i) to the left R[x, f ]-module D′(M) to obtain an exact sequence

0 −−−−→ (D ◦D′(M))B −−−−→ D ◦D′(M)
D(j)−−−−→ D(annD′(M) B) −−−−→ 0

in ModR[x,f ]. Since M is Noetherian as R-module, the R[x, f ]-homomorphism ωM : M −→ D′ ◦D(M)
is an isomorphism. There is therefore a commutative diagram

0 −−−−→ MB −−−−→ M
k−−−−→ M/MB −−−−→ 0

∼=
y ∼=

yωM

0 −−−−→ (D ◦D′(M))B −−−−→ D ◦D′(M)
D(j)−−−−→ D(annD′(M) B) −−−−→ 0

with exact rows in the category ModR[x,f ]. This induces an R[x, f ]-isomorphism γ : M/MB
∼=−→

D(annD′(M) B) which, when inserted into the above diagram, is such that the extended diagram is
still commutative. Now apply the functor D′ to the right-most square (involving γ) in that extended
diagram: the result is the right-most square in the commutative diagram

annD′(M) B
ωann

D′(M)
B

−−−−−−−−→∼=
D′ ◦D(annD′(M) B)

D′(γ)−−−−→∼=
D′(M/MB)

⊆
yj

yD′(D(j))

yD′(k)

D′(M)
ωM∨−−−−→∼=

D′ ◦D ◦D′(M)
D′(ωM )−−−−−→∼=

D′(M) .

Note that D′(M) is Artinian as R-module, so that ωM∨ and ωannD′(M)(B) are both isomorphisms. Since

D′(ωM ) ◦ ωM∨ = IdM∨ (as noted in Remark 1.19), it follows from this commutative diagram that the
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kernel of the induced R[x, f ]-homomorphism D′(σ) : D′(M) −→ D′(MB), which is equal to the image
of the R[x, f ]-homomorphism D′(k) : D′(M/MB) −→ D′(M), is precisely annD′(M) B. �

2.4. Corollary. Let the situation and notation be as in 1.20, and assume in addition that (R,m) is
local and complete and that I is taken to be E := ER(R/m). Let M be a right R[x, f ]-module that is
Noetherian as R-module. Then M is x-divisible if and only if D′(M) is x-torsion-free.

Proof. Let j : Mx −→ M be the inclusion R[x, f ]-monomorphism. By Proposition 2.3(ii), the kernel of
D′(j) : D′(M) −→ D′(Mx) is annD′(M)R[x, f ]x.

Now M is x-divisible if and only if j is an isomorphism; since E is an injective cogenerator for R, this
is the case if and only if D′(j) is an isomorphism; and, by the above comment (and the fact that D′(j)
must always be an R[x, f ]-epimorphism), D′(j) is an isomorphism if and only if annD′(M)R[x, f ]x = 0,
that is, if and only if D′(M) is x-torsion-free. �

3. Some applications

As was mentioned in the Introduction, the Hartshorne–Speiser–Lyubeznik Theorem has been applied
to establish the existence of a uniform Frobenius test exponent for Frobenius closures of parameter ideals
in a local ring (R,m) that is Cohen–Macaulay, or just generalized Cohen–Macaulay. The non-local
version of the Hartshorne–Speiser–Lyubeznik Theorem given in [17, Corollary 1.8] can be reformulated
as follows: if (R is not necessarily local and) H is a left R[x, f ]-module that is Artinian as R-module,
then there exists an e ∈ N0 such that annH R[x, f ]xe = annH R[x, f ]xe+1. With this in mind, one
can regard the following result as a ‘dual Hartshorne–Speiser–Lyubeznik Theorem’ for the case where
(R,m) is F -finite, local and complete.

3.1. Theorem. Assume that (R,m) is F -finite, local and complete. Let M = (M,β) be a right R[x, f ]-
module that is Noetherian as R-module. Then there exists e ∈ N0 such that Mxe = Mxe+1, that is,
such that MR[x, f ]xe =MR[x, f ]xe+1.

Proof. Let E := ER(R/m). Select an (R,R)-bimodule isomorphism Ψ : fE
∼=−→ HomrR(Rf , E): recall

that Lemma 1.4 ensures that there is such a Ψ. By Proposition 1.16 and Remark 1.19, we know that
D′(M) = (M∨, D(β)) is a left R[x, f ]-module; by Matlis duality, as R-module, M∨ = HomR(M,E) is
Artinian. Therefore, by the Hartshorne–Speiser–Lyubeznik Theorem, there exists an e ∈ N0 such that
annD′(M)R[x, f ]x

e = annD′(M)R[x, f ]x
e+1.

Let i : Mxe
⊆−→ M, j : Mxe+1 ⊆−→ M and k : Mxe+1 ⊆−→ Mxe be the inclusion R[x, f ]-

homomorphisms, so that i ◦ k = j. In view of Proposition 2.3(ii), there is a commutative diagram

0 −−−−→ annD′(M)R[x, f ]x
e −−−−→

⊆
D′(M) −−−−→

D′(i)
D′(Mxe) −−−−→ 0

⊆
y ∥∥∥ D′(k)

y
0 −−−−→ annD′(M)R[x, f ]x

e+1 −−−−→
⊆

D′(M) −−−−→
D′(j)

D′(Mxe+1) −−−−→ 0

with exact rows in the category R[x,f ] Mod. Since annD′(M)R[x, f ]x
e = annD′(M)R[x, f ]x

e+1, we see
that D′(k) must be an isomorphism; therefore, k must be an isomorphism, because E is an injective
cogenerator for R. Therefore Mxe = Mxe+1. �

It is natural to ask whether the conclusion of Theorem 3.1 is still valid if we drop the assumptions
about R (except the one that R has characteristic p). In Theorem 3.4 below, we shall show that this
is indeed the case. We first present two preparatory lemmas, in which we assume only that R is a
commutative Noetherian ring of characteristic p.

3.2. Lemma. Let M = (M,β) be a right R[x, f ]-module. Suppose that there is an element s ∈ R such
that Ms ⊆Mx. Then, for all k ∈ N, we have Ms2 ⊆Mxk.

Proof. We prove the lemma by induction on k. When k = 1, there is nothing to prove. Assume
that Ms2 ⊆ Mxk for a k ∈ N. Then, since Msp ⊆ Ms2 ⊆ Mxk, we have Mspx ⊆ Mxk+1. Thus
Ms2 = (Ms)s ⊆ (Mx)s =Mspx ⊆Mxk+1. The lemma is therefore proved by induction. �
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3.3. Lemma. Let M = (M,β) be a right R[x, f ]-module and S be a multiplicatively closed subset of R.
Then the module of fractions S−1M has a natural right (S−1R)[x, f ]-module structure in which(m

s

)
x =

msp−1x

s
for all m ∈M and s ∈ S.

This structure is such that S−1(Mxk) = (S−1M)xk for all k ∈ N.
Proof. It is straightforward to construct a right (S−1R)[x, f ]-module structure on S−1M with the
specified properties. An easy inductive argument shows that(m

s

)
xk =

msp
k−1xk

s
for all k ∈ N, m ∈M and s ∈ S.

It is clear from this that S−1(Mxk) ⊇ (S−1M)xk for a k ∈ N.
To establish the reverse inclusion, let α ∈ S−1(Mxk), so that α = (mxk)/s for some m ∈ M and

s ∈ S. Then

α =
mxk

s
=
mxksp

k−1

spk =
m(sp

k−1)p
k

xk

spk =
m(sp

k

)p
k−1xk

spk =
( m

spk

)
xk ∈ (S−1M)xk.

�
3.4. Theorem. Assume only that R is a commutative Noetherian ring of characteristic p. Let M =
(M,α) be a right R[x, f ]-module that is Noetherian as R-module. Then there exists k ∈ N0 such that
Mxk = Mxk+1.

Proof. It is straightforward to check that (0 :M Rxk) := {m ∈M | mRxk = 0} is an R[x, f ]-submodule
of M for each k ∈ N. Define (0 :M Rx∞) :=

∪
k∈N(0 :M Rxk); this is also an R[x, f ]-submodule of M ;

therefore Mγ :=M/(0 :M Rx∞) is again a right R[x, f ]-module.
Since M is Noetherian as R-module, the ascending chain

(0 :M Rx) ⊆ (0 :M Rx2) ⊆ · · · ⊆ (0 :M Rxk) ⊆ · · ·
must eventually be stationary, say at (0 :M Rxℓ); then (0 :M Rx∞) = (0 :M Rxℓ). We point out
that if there exists k ∈ N0 such that Mγxk = Mγxk+1, then Mxk ⊆ Mxk+1 + (0 :M Rxℓ), so that
multiplication on the right by xℓ yields thatMxk+ℓ ⊆Mxk+ℓ+1. Thus, if the conclusion of the theorem
is true for Mγ , then it is true for M .

Next, we define M · x∞ :=
∩

k∈NMxk; this is an R[x, f ]-submodule of M , and so Mσ :=M/M · x∞
is again a right R[x, f ]-module. Note also that, if there exists k ∈ N0 such that Mσxk =Mσxk+1, then
Mxk ⊆ Mxk+1 +M · x∞ = Mxk+1. Thus, if the conclusion of the theorem is true for Mσ, then it is
true for M .

Consider the sequence of right R[x, f ]-modules

M →Mσ → (Mσ)γ → ((Mσ)γ)σ → (((Mσ)γ)σ)γ → · · · ,
where, at each stage, the arrow denotes the appropriate natural R[x, f ]-epimorphism. The first three
paragraphs of this proof show that, if the claim in the theorem holds for any moduleM ′ in this sequence,
then it holds for all modules to the left ofM ′, includingM itself. If, for each n ∈ N, we letKn denote the
kernel of the composition of the first n epimorphisms in this sequence, thenK1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ · · · is
an ascending chain of R-submodules of M , and therefore eventually stationary. This means that, in the
above displayed sequence, there is a term to the right of which all the epimorphisms are isomorphisms.
Therefore it is enough for us to prove the theorem under the additional assumptions that

(5) (0 :M Rx∞) = 0 and M · x∞ = 0.

We shall show now that these additional assumptions force M to be zero (in which case Mx =
Mx2). Suppose that M ̸= 0, and seek a contradiction. Denote by MinR(M) the set of minimal prime
ideals in SuppR(M). This is a non-empty set, because M ̸= 0. We set S := R \

∪
p∈MinR(M) p, a

multiplicatively closed subset of R. Then, the S−1R-module S−1M is a non-trivial Artinian module,
since dimS−1R S

−1M = 0. By Lemma 3.3, S−1M has a natural structure as a right (S−1R)[x, f ]-
module. Consider the descending sequence of right (S−1R)[x, f ]-submodules

S−1M ⊇ (S−1M)x ⊇ (S−1M)x2 ⊇ (S−1M)x3 ⊇ (S−1M)x4 ⊇ · · ·
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of S−1M . Since S−1M is Artinian as S−1R-module, we must have (S−1M)xk = (S−1M)xk+1 for some
k ∈ N. Then, S−1(Mxk) = S−1(Mxk+1) by virtue of Lemma 3.3. SinceMxk is finitely generated as R-
module, it follows that there is an element s ∈ S such that (Mxk)s ⊆ Mxk+1. Now, applying Lemma

3.2 to the right R[x, f ]-module Mxk, we have that (Mxk)s2 ⊆ Mxk+k′
for all k′ ∈ N. Therefore

(Mxk)s2 ⊆ M · x∞ = 0 by the assumption (5). Since (Mxk)s2 = Ms2p
k

xk, we have shown that

Ms2p
k

xk = 0; hence Ms2p
k ⊆ (0 :M Rxk) ⊆ (0 :M Rx∞) = 0. Consequently we have Ms2p

k

= 0.

Therefore s belongs to
√
annR(M); therefore s ∈ p for all p ∈ MinR(M). But this contradicts the fact

that s is an element of S. �
One of the main results of [18] is that, if H is an x-torsion-free left R[x, f ]-module that is Artinian

as R-module, then there are only finitely many graded annihilators of R[x, f ]-submodules of H. See
[18, Corollary 3.11]. This result has relevance to the existence of tight closure test elements in certain
circumstances: see [18, Corollary 4.7] and [20, Theorem 3.5]. We can use our work in §1 and §2 to
obtain a dual result in the special case where R is F -finite, local and complete.

3.5. Theorem. Assume that (R,m) is F -finite, local and complete. Let M = (M,β) be an x-divisible
right R[x, f ]-module that is Noetherian as R-module. Then there are only finitely many graded annihi-
lators of R[x, f ]-homomorphic images of M.

Proof. Select an (R,R)-bimodule isomorphism Ψ : fER(R/m)
∼=−→ HomR(Rf , ER(R/m)): recall that

Lemma 1.4 ensures that there is such a Ψ. Use the notation of 1.20, but take I to be E := ER(R/m). By
Proposition 1.16, we know that D′(M) is a left R[x, f ]-module; as such, it is x-torsion-free, by Corollary
2.4. By Matlis duality, as R-module, M∨ = HomR(M,E) is Artinian. By [18, Lemma 1.9, Definition
1.10 and Corollary 3.11], there are only finitely many graded annihilators of R[x, f ]-submodules of
D′(M). It is therefore enough for us to show that, if B is the graded-annihilator of some R[x, f ]-
homomorphic image of M, then B is the graded-annihilator of some R[x, f ]-submodule of D′(M). This
we do.

Thus there is an R[x, f ]-submodule L of M such that B = gr-ann(M/L)R[x,f ]. Therefore MB ⊆ L,
so that there is an R[x, f ]-epimorphism M/MB −→ M/L. Therefore

B ⊆ gr-ann(M/MB)R[x,f ] ⊆ gr-ann(M/L)R[x,f ] = B,

so that B = gr-ann(M/MB)R[x,f ]. It now follows from Proposition 2.2(iv) that

B = gr-annR[x,f ] D
′(M/MB).

However, Proposition 2.3(ii) shows that there is an isomorphism D′(M/MB) ∼= annD′(M) B of left
R[x, f ]-modules; therefore B is the graded annihilator of the R[x, f ]-submodule annD′(M) B of D′(M).
This completes the proof. �

It is natural to ask whether the conclusion of Theorem 3.5 is still valid if we drop the assumptions
about R (except the one that R has characteristic p).

3.6. Question. Assume only that R is (a commutative Noetherian ring) of characteristic p. Let M be
an x-divisible right R[x, f ]-module that is Noetherian as R-module. Is the set of graded annihilators of
R[x, f ]-homomorphic images of M finite?

At the time of writing, we are not able to answer Question 3.6.
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