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This paper studies the problem of 𝐻∞ state estimation for a class of delayed static neural networks. The purpose of the problem
is to design a delay-dependent state estimator such that the dynamics of the error system is globally exponentially stable and a
prescribed𝐻∞ performance is guaranteed. Some improved delay-dependent conditions are established by constructing augmented
Lyapunov-Krasovskii functionals (LKFs). The desired estimator gain matrix can be characterized in terms of the solution to LMIs
(linear matrix inequalities). Numerical examples are provided to illustrate the effectiveness of the proposedmethod compared with
some existing results.

1. Introduction

Neural networks (NNs) have drawn a great deal of attention
due to their extensive applications in various fields such as
associative memory, pattern recognition, signal processing,
combinatorial optimization, and adaptive control [1–3]. In
the real world, time delays are unavoidably encountered in
electronic implementations of neural networks because of the
finite switching speed of the amplifiers. The presence of time
delay may cause instability or deteriorate the performance
of neural networks. Thus many recent literatures [1–9] have
been working on the stability problem of delayed NNs.

We mainly focus on static neural networks (SNNs) in
this paper, which is one type of recurrent neural networks
(RNNs). Another type is local field neural networks, which
has been fully studied while relatively less effort has been paid
to the delayed SNNs.Themain difference between SNNs and
local field neural networks is whether the neuron states or the
local field states of neurons are taken as basic variables. As
mentioned in [10, 11], local field neural networks models and
SNNs models are not always equivalent. Thus, it is necessary
to study SNNs separately. Recently, many interesting results

on the stability analysis of SNNs have been addressed in the
literature [2, 12–16].

Meanwhile, the state estimation of neural networks is
an important issue. Generally, a neural network is a highly
interconnected network with a great number of neurons.
As a result, it would be very difficult to completely acquire
the state information of all neurons. On the other hand,
one needs to know the information of the neuron states
and then make use of the neural networks in practice.
Some results on the state estimation problem for the neural
networks have been investigated in [17–30]. Among them𝐻∞ state estimation of static neural networks with time
delay was studied in [17–19, 28, 30, 31]. In [28], a delay
partition approach was proposed to deal with the state
estimation problem for a class of static neural networks with
time-varying delay. In [30], the state estimation problem of
the guaranteed 𝐻∞ and 𝐻2 performance of static neural
networks was considered. Further improved results were
obtained in [17, 18, 31] by using the convex combination
approach. The exponential state estimation of time-varying
delayed neural networks was studied in [19]. However, the
information of neuron activation functions has not been
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adequately taken into account. Moreover, the inequalities
used may lead to conservatism to some extent.Therefore, the
guaranteed performance state estimation problem has not yet
been fully studied and remains a space for improvement.

This paper investigates the problem of 𝐻∞ state esti-
mation for a class of delayed static neural networks. The
delay-dependent criteria are proposed such that the resulting
filtering error system is globally exponentially stable with a
guaranteed 𝐻∞ performance. Different from time-varying
delays considered in many papers such as [17, 19, 28], we
consider the range of delay varies in an interval for which
the lower bound is nonzero and fully take into account the
information of lower boundof the delay. By using delay equal-
partitioning method, augmented Lyapunov-Krasovskii func-
tionals (LKFs) are properly constructed which is different
from the existing relevant results. Then the free-weighting
matrix technique is used to get a tighter upper bound on
the derivatives of the LKFs. As mentioned in Remark 10,
we also reduce conservatism by taking advantage of the
information on activation function.Therefore, slack variables
were introduced in our results, and it will increase the
computational burden. To reduce decision variables so as to
reduce computational burden, integral inequalities together
with reciprocally convex approach are considered. Compared
with existing results in [17–19], the criteria in this paper
not only lead to less conservatism, but also have a balance
between computational burden and conservatism.

The main contributions of this paper are as follows:

(1) Augmented LKFs are properly constructed based on
equal-partitioning method.

(2) We also make use of integral inequalities to reduce
computational burden.

(3) Time delay is discussed under two different condi-
tions: time-invariant delay and time-varying delay.
In time-varying delay case, we consider the range of
delay varies in an interval for which the lower bound
is nonzero. Information of the lower bound is fully
taken into account in LKFs.

(4) We reduce conservatism by taking advantage of the
information on activation function.

The remainder of this paper is organized as follows.
The state estimation problem is formulated in Section 2.
Section 3 is dedicated to deal with the designs of the state
estimators for delayed static neural networks under two
different conditions. In Section 4, two numerical examples
with simulation results are provided to show the effectiveness
of the results. Finally, some conclusions aremade in Section 5.

Notations.The notations used throughout the paper are fairly
standard. R𝑛 denotes the 𝑛-dimensional Euclidean space;
R𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices; the notation 𝐴 >0 (< 0) means 𝐴 is a symmetric positive (negative) definite
matrix; 𝐴−1 and 𝐴𝑇 denote the inverse of matrix 𝐴 and
the transpose of matrix 𝐴; 𝐼 represents the identity matrix
with proper dimensions, respectively; a symmetric term in
a symmetric matrix is denoted by (∗); sym(𝐴) represents(𝐴+𝐴𝑇); diag{⋅} stands for a block-diagonalmatrix.Matrices,

if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem Formulation

Consider the delayed static neural network subject to noise
disturbances described by

𝑥̇ (𝑡) = −𝐴𝑥 (𝑡) + 𝑓 (𝑊𝑥 (𝑡 − ℎ (𝑡)) + 𝐽) + 𝐵1𝑤 (𝑡) ,𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑥 (𝑡 − ℎ (𝑡)) + 𝐵2𝑤 (𝑡) ,𝑧 (𝑡) = 𝐻𝑥 (𝑡) ,𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,
(1)

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]𝑇 ∈ R𝑛 is the state vector
of the neural network, 𝑦(𝑡) ∈ R𝑚 is the neural network
output measurement, 𝑧(𝑡) ∈ R𝑟 to be estimated is a linear
combination of the state, 𝑤(𝑡) ∈ R𝑞 is the noise input
belonging to 𝐿2[0,∞), 𝑓(⋅) denotes the neuron activation
function, 𝐴 = diag {𝑎1, 𝑎2, . . . , 𝑎𝑛} with 𝑎𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛
is the positive diagonal matrix, 𝐵1, 𝐵2, 𝐶, 𝐷, and 𝐻 are
real known matrices with appropriate dimensions, 𝑊 ∈
R𝑛×𝑛 denote the connection weights, ℎ(𝑡) represent the time-
varying delays, 𝐽 represents the exogenous input vector, the
function 𝜙(𝑡) is the initial condition, and 𝜏 = sup𝑡≥0{ℎ(𝑡)}.

In this paper, time delay is discussed under two different
conditions described as follows:

(c1) time-invariant delay: 0 ⩽ ℎ(𝑡) ≡ 𝑑,
(c2) time-varying delay: 0 ⩽ 𝑑1 ⩽ ℎ(𝑡) ⩽ 𝑑2, ℎ̇(𝑡) ⩽ 𝜇,

where 𝑑1, 𝑑2, and 𝜇 are constants.
In order to conduct the analysis, the following assump-

tions are necessary.

Assumption 1. For any 𝑥, 𝑦 ∈ 𝑅, (𝑥 ̸= 𝑦), 𝑖 ∈ {1, 2, . . . , 𝑛}, the
activation function satisfies

𝑘−𝑖 ≤ 𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦)𝑥 − 𝑦 ≤ 𝑘+𝑖 , (2)

where 𝑘−𝑖 , 𝑘+𝑖 are constants and we define 𝐾− =
diag {𝑘−1 , 𝑘−2 , . . . , 𝑘−𝑛 }, 𝐾+ = diag {𝑘+1 , 𝑘+2 , . . . , 𝑘+𝑛 }.

We construct a state estimator for estimation of 𝑧(𝑡):̇̂𝑥 (𝑡) = −𝐴𝑥̂ (𝑡) + 𝑓 (𝑊𝑥̂ (𝑡 − ℎ (𝑡)) + 𝐽)
+ 𝐾 (𝑦 (𝑡) − 𝑦̂ (𝑡)) ,𝑦̂ (𝑡) = 𝐶𝑥̂ (𝑡) + 𝐷𝑥̂ (𝑡 − ℎ (𝑡)) ,𝑧̂ (𝑡) = 𝐻𝑥̂ (𝑡) ,𝑥̂ (𝑡) = 0, 𝑡 ∈ [−𝜏, 0] ,

(3)

where 𝑥̂(𝑡) ∈ R𝑛 is the estimated state vector of the neural
network, 𝑧̂(𝑡) and 𝑦̂(𝑡) denote the estimated measurements
of 𝑧(𝑡) and 𝑦(𝑡), and 𝐾 is the gain matrix to be determined.
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Define the error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡), 𝑧(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡); we can
easily obtain the error system:

̇𝑒 (𝑡) = − (𝐴 + 𝐾𝐶) 𝑒 (𝑡) − 𝐾𝐷𝑒 (𝑡 − ℎ (𝑡))
+ 𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡))) + (𝐵1 − 𝐾𝐵2) 𝑤 (𝑡) ,𝑧 (𝑡) = 𝐻𝑒 (𝑡) , (4)

where 𝑔(𝑊𝑒(𝑡)) = 𝑓(𝑊𝑥(𝑡) + 𝐽) − 𝑓(𝑊𝑥̂(𝑡) + 𝐽).
Definition 2 (see [18]). For any finite initial condition 𝜙(𝑡) ∈
C1([−𝜏, 0];R𝑛), the error system (4) with 𝑤(𝑡) = 0 is said to
be globally exponentially stable with a decay rate 𝛽, if there
exist constants 𝜆 > 0 and 𝛽 > 0 such that

‖𝑒 (𝑡)‖2 ≤ 𝜆𝑒−𝛽𝑡 sup
−𝜏<𝑠<0

{󵄩󵄩󵄩󵄩𝜙 (𝑠)󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩󵄩𝜙̇ (𝑠)󵄩󵄩󵄩󵄩󵄩2} . (5)

Given a prescribed level of disturbance attenuation level 𝛾 >0, the error system is said to be globally exponentially stable
with 𝐻∞ performance, when the error system is globally
exponentially stable and the response 𝑧(𝑡) under zero initial
condition satisfies

‖𝑧‖22 ≤ 𝛾2 ‖𝑤‖22 , (6)

for every nonzero 𝑤(𝑡) ∈ 𝐿2[0,∞), where ‖𝜙‖2 =√∫∞
0
𝜙𝑇(𝑡)𝜙(𝑡)𝑑𝑡.

Lemma 3 (see [32]). For any constant matrix 𝑍 ∈ 𝑅𝑛×𝑛, 𝑍 =𝑍𝑇 > 0, scalars ℎ2 > ℎ1 > 0, and vector function 𝑥 : [ℎ1, ℎ2] →𝑅𝑛 such that the following integrations are well defined, then
− (ℎ2 − ℎ1) ∫𝑡−ℎ1

𝑡−ℎ2

𝑥𝑇 (𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠
⩽ −∫𝑡−ℎ1
𝑡−ℎ2

𝑥𝑇 (𝑠) 𝑑𝑠𝑍∫𝑡−ℎ1
𝑡−ℎ2

𝑥 (𝑠) 𝑑𝑠. (7)

Lemma 4 (Schur complement). Given constant symmetric
matrices 𝑆1, 𝑆2, and 𝑆3, where 𝑆1 = 𝑆𝑇1 and 𝑆2 = 𝑆𝑇2 > 0, then𝑆1 + 𝑆𝑇3 𝑆−12 𝑆3 < 0 if and only if

[𝑆1 𝑆𝑇3𝑆3 −𝑆2] < 0
or [−𝑆2 𝑆3𝑆𝑇3 𝑆1] < 0. (8)

Lemma 5 (see [33]). For 𝑘𝑖(𝑡) ∈ [0, 1], ∑𝑁𝑖=1 𝑘𝑖(𝑡) = 1 and
vector 𝜂𝑖 which satisfy 𝜂𝑖 = 0 with 𝑘𝑖(𝑡) = 0, and matrices 𝑅𝑖 >0, there exists matrix 𝑆𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑁 − 1; 𝑗 = 𝑖 + 1, . . . , 𝑁),
which satisfies

[𝑅𝑖 𝑆𝑖𝑗⋆ 𝑅𝑗] ≥ 0 (9)

such that the following inequality holds:

𝑁∑
𝑖=1

1𝑘𝑖 (𝑡)𝜂𝑖⊤𝑅𝑖𝜂𝑖 ≥
[[[[[
𝜂1...𝜂𝑛
]]]]]
⊤ [[[[[

𝑅1 ⋅ ⋅ ⋅ 𝑆1,𝑁
⋆ d

...⋆ ⋆ 𝑅𝑁
]]]]]
[[[[[
𝜂1...𝜂𝑛
]]]]]
. (10)

3. State Estimator Design

In this section, the state estimation problem will be discussed
under two different conditions: time-invariant delay and
time-varying delay. We consider the constant time delay case
first. For convenience of presentation, we denote

𝜂1 (𝑡) =
[[[[[[[[[[[[[[

𝑒 (𝑡)
𝑒 (𝑡 − 1𝑚𝑑)
𝑒 (𝑡 − 2𝑚𝑑)...

𝑒 (𝑡 − 𝑚 − 1𝑚 𝑑)

]]]]]]]]]]]]]]
,

𝜂2 (𝑡) =
[[[[[[[[[[[[[[

𝑔 (𝑊𝑒 (𝑡))
𝑔 (𝑊𝑒(𝑡 − 1𝑚𝑑))
𝑔(𝑊𝑒(𝑡 − 2𝑚𝑑))...

𝑔 (𝑊𝑒(𝑡 − 𝑚 − 1𝑚 𝑑))

]]]]]]]]]]]]]]
,

𝜃𝑇1 (𝑡) = [𝜂𝑇1 (𝑡) , 𝑒𝑇 (𝑡 − 𝑑)] ,𝜃𝑇2 (𝑡) = [𝜂𝑇2 (𝑡) , 𝑔𝑇 (𝑊𝑒 (𝑡 − 𝑑))] ,
𝜂̂1 (𝑡) = 𝜂1 (𝑡)󵄨󵄨󵄨󵄨𝑑=𝑑1 ,𝜂̂2 (𝑡) = 𝜂2 (𝑡)󵄨󵄨󵄨󵄨𝑑=𝑑1 ,𝜃̂1 (𝑡) = 𝜃1 (𝑡)󵄨󵄨󵄨󵄨𝑑=𝑑1 ,𝜃̂2 (𝑡) = 𝜃2 (𝑡)󵄨󵄨󵄨󵄨𝑑=𝑑1 ;

(11)

here we use “|” to give the condition.
Theorem 6. Under Assumption 1, for given scalars 𝑑 ≥ 0,𝛾 > 0, and 𝛼 ≥ 0 and an integer 𝑚 ≥ 1, system (4) is
globally exponentially stable with 𝐻∞ performance 𝛾 if there
exist positive diagonal matrices Γ = diag {𝛾1, 𝛾2, . . . , 𝛾𝑛}, Λ =
diag {𝜆1, 𝜆2, . . . , 𝜆𝑛}, matrices 𝑃 > 0, 𝑅𝑖 > 0 (𝑖 = 1, 2, . . . , 𝑚+1), [ 𝑄1 𝑉∗ 𝑄1 ] > 0, and any matrix with appropriate dimensions𝑀, such that the following LMI holds:

[Ξ 𝐻̂𝑇∗ −𝐼] < 0, (12)
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where Ξ = (Ξ𝑖,𝑗)4 × 4 is symmetric with

Ξ1,1 = 𝛼𝐸𝑇1𝑃𝐸1 +𝑊𝑇1 𝑄1𝑊1 − 𝑒−𝛼𝑑/𝑚𝑊𝑇2 𝑄1𝑊2
− 𝑚∑
𝑖=1

𝑒−𝛼𝑑𝑖/𝑚 [𝐸𝑇𝑖 − 𝐸𝑇𝑖+1] 𝑅𝑖 [𝐸𝑖 − 𝐸𝑖+1]
− 𝐸𝑇1 (𝑀𝐴 + 𝐴𝑇𝑀𝑇) 𝐸1
− 𝐸𝑇1 (𝐺𝐶 + 𝐶𝑇𝐺𝑇) 𝐸1 − 𝐸𝑇1𝐺𝐷𝐸𝑚+1
− 𝐸𝑇𝑚+1𝐷𝑇𝐺𝑇𝐸1 − 2𝐸𝑇1𝑊𝑇𝐾−Γ𝐾+𝑊𝐸1
− 2𝐸T
𝑚+1𝑊𝑇𝐾−Λ𝐾+𝑊𝐸𝑚+1,

Ξ1,2 = 𝑊𝑇1 𝑉𝑊1 − 𝑒−𝛼𝑑/𝑚𝑊𝑇2 𝑉𝑊2 + 𝐸𝑇1𝑀𝐸𝑚+1
+ 𝐸𝑇1𝑊𝑇 (𝐾− + 𝐾+) Γ𝐸1
+ 𝐸𝑇𝑚+1𝑊𝑇 (𝐾− + 𝐾+) Λ𝐸𝑚+1,

Ξ1,3 = 𝐸𝑇1𝑀𝐵1 − 𝐸𝑇1𝐺𝐵2,
Ξ1,4 = 𝐸𝑇1𝑃 − 𝐸𝑇1𝑀− 𝐸𝑇1𝐴𝑇𝑀𝑇 − 𝐸𝑇1𝐶𝑇𝐺𝑇

− 𝐸𝑇𝑚+1 (𝐺𝐷)𝑇 ,Ξ2,2 = 𝑊𝑇1 𝑄2𝑊1 − 𝑒−𝛼𝑑/𝑚𝑊𝑇2 𝑄2𝑊2 − 2𝐸𝑇1 Γ𝐸1− 2𝐸𝑇𝑚+1Λ𝐸𝑚+1,Ξ2,4 = 𝐸𝑇𝑚+1𝑀𝑇,Ξ3,3 = −𝛾2𝐼,
Ξ3,4 = 𝐵𝑇1𝑀𝑇 − (𝐺𝐵2)𝑇 ,
Ξ4,4 = ( 𝑑𝑚)2( 𝑚∑

𝑖=1

𝑅𝑖) −𝑀 −𝑀𝑇,

(13)

and other entries of Ξ are zeros:

𝑊1 = [𝐼𝑚𝑛, 0𝑚𝑛×𝑛] ,𝑊2 = [0𝑚𝑛×𝑛, 𝐼𝑚𝑛] ,𝐸𝑖 = [0𝑛×(𝑖−1)𝑛, 𝐼𝑛, 0𝑛×(𝑚+1−𝑖)𝑛] , 𝑖 = 1, 2, . . . , 𝑚 + 1,
𝐻̂ = [𝐻 × 𝐸1, 0, 0, 0] .

(14)

The estimator gain matrix is given by 𝐾 = 𝑀−1𝐺.
Proof. Construct a Lyapunov-Krasovskii functional candi-
date as follows:

𝑉 (𝑡, 𝑒𝑡) = 3∑
𝑖=1

𝑉𝑖 (𝑡, 𝑒𝑡) , (15)

where

𝑉1 (𝑡, 𝑒𝑡) = 𝑒𝑇 (𝑡) 𝑃𝑒 (𝑡) ,
𝑉2 (𝑡, 𝑒𝑡)

= ∫𝑡
𝑡−𝑑/𝑚

𝑒−𝛼(𝑡−𝑠) [𝜂1 (𝑠)𝜂2 (𝑠)]
𝑇 [𝑄1 𝑉∗ 𝑄2][ 𝜂1 (𝑠)𝜂2 (𝑠) ] 𝑑𝑠,𝑉3 (𝑡, 𝑒𝑡)

= 𝑑𝑚 𝑚∑
𝑖=1

∫−((𝑖−1)/𝑚)𝑑
−(𝑖/𝑚)𝑑

∫t

𝑡+𝜃
𝑒−𝛼(𝑡−𝑠) ̇𝑒𝑇 (𝑠) 𝑅𝑖 ̇𝑒 (𝑠) 𝑑𝑠𝑑𝜃.

(16)

Calculating the derivative of 𝑉(𝑡, 𝑒𝑡) along the trajectory of
system, we obtain

𝑉̇1 (𝑡, 𝑒𝑡) = 2𝑒𝑇 (𝑡) 𝑃 ̇𝑒 (𝑡) = 2𝜃𝑇1 (𝑡) 𝐸𝑇1𝑃 ̇𝑒 (𝑡) ,
𝑉̇2 (𝑡, 𝑒𝑡) = −𝛼𝑉2 (𝑡, 𝑒𝑡) + [ 𝜂1 (𝑡)𝜂2 (𝑡) ]

𝑇

⋅ [ 𝑄1 𝑉∗ 𝑄2 ][ 𝜂1 (𝑡)𝜂2 (𝑡) ]
− 𝑒−𝛼𝑑/𝑚 [[[[

𝜂1 (𝑡 − 𝑑𝑚)
𝜂2 (𝑡 − 𝑑𝑚)

]]]]
𝑇

⋅ [𝑄1 𝑉∗ 𝑄2][[[[
𝜂1 (𝑡 − 𝑑𝑚)
𝜂2 (𝑡 − 𝑑𝑚)

]]]]
= −𝛼𝑉2 (𝑡, 𝑒𝑡)

+ [ 𝑊1𝜃1 (𝑡)𝑊1𝜃2 (𝑡) ]
𝑇 [ 𝑄1 𝑉∗ 𝑄2 ][𝑊1𝜃1 (𝑡)𝑊1𝜃2 (𝑡)]

− 𝑒−𝛼𝑑/𝑚 [ 𝑊2𝜃1 (𝑡)𝑊2𝜃2 (𝑡) ]
𝑇 [ 𝑄1 𝑉∗ 𝑄2 ][ 𝑊2𝜃1 (𝑡)𝑊2𝜃2 (𝑡) ] ,

𝑉̇3 (𝑡, 𝑒𝑡) ≤ −𝛼𝑉3 (𝑡, 𝑒𝑡) + ( 𝑑𝑚)2 ̇𝑒𝑇 (𝑡) ( 𝑚∑
𝑖=1

𝑅𝑖) ̇𝑒 (𝑡)
− ( 𝑑𝑚) 𝑚∑

𝑖=1

∫𝑡−((𝑖−1)/𝑚)𝑑
𝑡−(𝑖/𝑚)𝑑

𝑒−𝛼𝑑𝑖/𝑚 ̇𝑒𝑇 (𝑠) 𝑅𝑖 ̇𝑒 (𝑠) 𝑑𝑠,

(17)

and using Lemma 3, we can obtain

𝑉̇3 (𝑡, 𝑒𝑡) ≤ −𝛼𝑉3 (𝑡, 𝑒𝑡) + ( 𝑑𝑚)2 ̇𝑒𝑇 (𝑡) ( 𝑚∑
𝑖=1

𝑅𝑖) ̇𝑒 (𝑡)
− 𝑚∑
𝑖=1

𝑒−𝛼𝑑𝑖/𝑚 [𝑒𝑇 (𝑡 − 𝑖 − 1𝑚 𝑑) − 𝑒𝑇 (𝑡 − 𝑖𝑚𝑑)]
⋅ 𝑅𝑖 [𝑒 (𝑡 − 𝑖 − 1𝑚 𝑑) − 𝑒 (𝑡 − 𝑖𝑚𝑑)] = −𝛼𝑉3 (𝑡, 𝑒𝑡)
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+ ( 𝑑𝑚)2 ̇𝑒𝑇 (𝑡) ( 𝑚∑
𝑖=1

𝑅𝑖) ̇𝑒 (𝑡)
− 𝑚∑
𝑖=1

𝑒−𝛼𝑑𝑖/𝑚 [𝜃𝑇1 (𝑡) 𝐸𝑇𝑖 − 𝜃𝑇1 (𝑡) 𝐸𝑇𝑖+1]
⋅ 𝑅𝑖 [𝐸𝑖𝜃1 (𝑡) − 𝐸𝑖+1𝜃1 (𝑡)] .

(18)

According to Assumption 1, we have

2 𝑛∑
𝑖=1

𝛾𝑖 (𝑔𝑖 (𝑊𝑖𝑒 (𝑡)) − 𝑘−𝑖𝑊𝑖𝑒 (𝑡))
⋅ (𝑔𝑖 (𝑊𝑖𝑒 (𝑡)) − 𝑘+𝑖𝑊𝑖𝑒 (𝑡)) ⩽ 0, 𝑖 = 1, 2, . . . , 𝑛, (19)

which is equivalent to

2 (𝑔 (𝑊𝑒 (𝑡)) − 𝐾−𝑊𝑒 (𝑡)) Γ (𝑔 (𝑊𝑒 (𝑡)) − 𝐾+𝑊𝑒 (𝑡))⩽ 0, (20)

where Γ = diag {𝛾1, 𝛾2, . . . , 𝛾𝑛}.
Similarly, we obtain

2 (𝑔 (𝑊𝑒 (𝑡 − 𝑑)) − 𝐾−𝑊𝑒 (𝑡 − 𝑑))
⋅ Λ (𝑔 (𝑊𝑒 (𝑡 − 𝑑)) − 𝐾+𝑊𝑒 (𝑡 − 𝑑)) ⩽ 0, (21)

where Λ = diag {𝜆1, 𝜆2, . . . , 𝜆𝑛}.
According to the system equation, the following equality

holds:2 (𝑒𝑇 (𝑡) + ̇𝑒𝑇 (𝑡))𝑀 {− (𝐴 + 𝐾𝐶) 𝑒 (𝑡) − 𝐾𝐷𝑒 (𝑡 − 𝑑)
+ 𝑔 (𝑊𝑒 (𝑡 − 𝑑)) + (𝐵1 − 𝐾𝐵2) 𝑤 (𝑡) − ̇𝑒 (𝑡)} = 0. (22)

Combining the qualities and inequalities from (17), (18), (20),
(21), and (22), we can obtain

𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑥𝑡) + 𝛼𝑉 (𝑡, 𝑥𝑡)≤ 𝜁𝑇𝑡 (Ξ) 𝜁𝑡 + 𝜃𝑇1 (𝑡) 𝐸𝑇1𝐻𝑇𝐻𝐸1𝜃1 (𝑡) , (23)

where 𝜁𝑡 is defined as

𝜁𝑇𝑡 = [𝜃𝑇1 (𝑡) , 𝜃𝑇2 (𝑡) , 𝑤𝑇 (𝑡) , ̇𝑒𝑇 (𝑡)] . (24)

Based on Lemma 4, one can deduce that

𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑥𝑡) + 𝛼𝑉 (𝑡, 𝑥𝑡)
≤ 𝜁𝑇𝑡 [Ξ 𝐻̂𝑇∗ −𝐼] 𝜁𝑡,

(25)

where 𝐻̂ = [𝐻 × 𝐸1, 0, 0, 0].
If LMI (12) holds, then

𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑥𝑡) + 𝛼𝑉 (𝑡, 𝑥𝑡)≤ 0; (26)

𝛼𝑉(𝑡, 𝑥𝑡) ≥ 0, so we can obtain

∫∞
0

[𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑒 (𝑡))] 𝑑𝑡 ≤ 0, (27)

and since 𝑉(𝑡, 𝑒(𝑡)) ≥ 0, under the zero initial condition, we
have

∫∞
0

𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 ≤ 𝛾2 ∫∞
0

𝑤𝑇 (𝑡) 𝑤 (𝑡) 𝑑𝑡, (28)

which is equal to

‖𝑧‖22 ≤ 𝛾2 ‖𝑤‖22 ; (29)

therefore, the error system (4) guaranteed 𝐻∞ performance
according to Definition 2. In sequel, we show the globally
exponential stability of the estimation error system with𝑤(𝑡) = 0. When 𝑤(𝑡) = 0, the error system (4) becomes

̇𝑒 (𝑡) = − (𝐴 + 𝐾𝐶) 𝑒 (𝑡) − 𝐾𝐷𝑒 (𝑡 − ℎ (𝑡))+ 𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡))) ,𝑧 (𝑡) = 𝐻𝑒 (𝑡) . (30)

Equation (22) becomes

2 (𝑒𝑇 (𝑡) + ̇𝑒𝑇 (𝑡))𝑀 {− (𝐴 + 𝐾𝐶) 𝑒 (𝑡) − 𝐾𝐷𝑒 (𝑡 − 𝑑)
+ 𝑔 (𝑊𝑒 (𝑡 − 𝑑)) − ̇𝑒 (𝑡)} = 0; (31)

considering the same Lyapunov-Krasovskii functional candi-
date and calculating its time-derivative along the solution of
(30), we can derive

𝑉̇ (𝑡, 𝑒𝑡) + 𝛼𝑉 (𝑡, 𝑒𝑡) ≤ 𝜁𝑇𝑡 (Ω) 𝜁𝑡, (32)

where

Ω = [[[
Ω1,1 Ω1,2 Ω1,3∗ Ω2,2 Ω2,3∗ ∗ Ω3,3

]]] ,
Ω1,1 = 𝛼𝐸𝑇1𝑃𝐸1 +𝑊𝑇1 𝑄1𝑊1 − 𝑒−𝛼𝑑/𝑚𝑊𝑇2 𝑄1𝑊2

− 𝑚∑
𝑖=1

𝑒−𝛼𝑑𝑖/𝑚 [𝐸𝑇𝑖 − 𝐸𝑇𝑖+1] 𝑅𝑖 [𝐸𝑖 − 𝐸𝑖+1]
− 𝐸𝑇1 (𝑀𝐴 + 𝐴𝑇𝑀𝑇) 𝐸1
− 𝐸𝑇1 (𝐺𝐶 + 𝐶𝑇𝐺𝑇) 𝐸1 − 𝐸𝑇1𝐺𝐷𝐸𝑚+1
− 𝐸𝑇𝑚+1𝐷𝑇𝐺𝑇𝐸1 − 2𝐸𝑇1𝑊𝑇𝐾−Γ𝐾+𝑊𝐸1− 2𝐸𝑇𝑚+1𝑊𝑇𝐾−Λ𝐾+𝑊𝐸𝑚+1,Ω1,2 = 𝑊𝑇1 𝑉𝑊1 − 𝑒−𝛼𝑑/𝑚𝑊𝑇2 𝑉𝑊2 + 𝐸𝑇1𝑀𝐸𝑚+1+ 𝐸𝑇1𝑊𝑇 (𝐾− + 𝐾+) Γ𝐸1+ 𝐸𝑇𝑚+1𝑊𝑇 (𝐾− + 𝐾+) Λ𝐸𝑚+1,
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Ω1,3 = 𝐸𝑇1𝑃 − 𝐸𝑇1𝑀− 𝐸𝑇1𝐴𝑇𝑀𝑇 − 𝐸𝑇1𝐶𝑇𝐺𝑇− 𝐸𝑇𝑚+1 (𝐺𝐷)𝑇 ,Ω2,2 = 𝑊𝑇1 𝑄2𝑊1 − 𝑒−𝛼𝑑/𝑚𝑊𝑇2 𝑄2𝑊2 − 2𝐸𝑇1 Γ𝐸1− 2𝐸𝑇𝑚+1Λ𝐸𝑚+1,Ω2,3 = 𝐸𝑇𝑚+1𝑀𝑇,
Ω3,3 = ( 𝑑𝑚)2( 𝑚∑

𝑖=1

𝑅𝑖) −𝑀 −𝑀𝑇,
𝜁𝑇𝑡 = [𝜃𝑇1 (𝑡) , 𝜃𝑇2 (𝑡) , ̇𝑒𝑇 (𝑡)] .

(33)

Let 𝐺 = 𝑀𝐾, and it is obvious that if Ξ < 0, then Ω < 0, so
we get

𝑉̇ (𝑡, 𝑒𝑡) + 𝛼𝑉 (𝑡, 𝑒𝑡) ≤ 0. (34)

Integrating inequality (34), so we obtain

𝑉 (𝑡, 𝑒𝑡) ≤ 𝑒−𝛼𝑡𝑉 (0, 𝑒0) . (35)

From (15), we have

𝑉 (𝑡, 𝑒𝑡) ≥ 𝜆min (𝑃) ‖𝑒 (𝑡)‖2 ,
𝑉 (0, 𝑒0) ≤ 𝑏 sup

−𝜏<𝑠<0

{󵄩󵄩󵄩󵄩𝜙 (𝑠)󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩󵄩𝜙̇ (𝑠)󵄩󵄩󵄩󵄩󵄩2} , (36)

where

𝑏 = 𝜆max (𝑃) + (1 + 𝜌2) 𝑑𝜆max ([𝑄1 𝑉∗ 𝑄2])
+ 𝑑𝑚 𝑚∑
𝑖=1

((𝑖/𝑚) 𝑑)2 − (((𝑖 − 1) /𝑚) 𝑑)22 𝜆max (𝑅𝑖) ,
𝜌 = max
1≤𝑖≤0

(󵄨󵄨󵄨󵄨𝑘−𝑖 󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑘+𝑖 󵄨󵄨󵄨󵄨) .
(37)

Combining (35) and (36) it yields

‖𝑒 (𝑡)‖2 ≤ 1𝜆min (𝑃)𝑉 (𝑡, 𝑒𝑡)
≤ 𝑏𝜆min (𝑃)𝑒−𝛼𝑡 sup−𝜏<𝑠<0 {󵄩󵄩󵄩󵄩𝜙 (𝑠)󵄩󵄩󵄩󵄩2 , 󵄩󵄩󵄩󵄩󵄩𝜙̇ (𝑠)󵄩󵄩󵄩󵄩󵄩2} ,

(38)

and hence the error system (4) is globally exponentially
stable. Above all, if Ξ < 0, then the state estimator for the
static neural network has the prescribed 𝐻∞ performance
and guarantees the globally exponential stability of the error
system. This completes the proof.

Remark 7. Based on the method of delay partitioning
together with the free-weighting matrix approach, a new
delay-dependent condition is proposed in Theorem 6 for
the 𝐻∞ state estimation of static neural networks (1) with

time-invariant delay. Delay partitioning method reduces the
conservatism by employing more detailed information of
time delay. The simulation results in Numerical Examples
reveal the effectiveness of the delay partitioning approach to
the design of the state estimator for static neural networks.

In the following, we will study the time-varying delay
case; the result is as follows.

Theorem 8. Under Assumption 1, for given scalars 𝜇, 0 ⩽𝑑1 ⩽ 𝑑2, 𝛾 > 0, 𝛼 ≥ 0 and an integer 𝑚 ≥ 1, system (4) is
globally exponentially stable with 𝐻∞ performance 𝛾 if there
exist matrices 𝑃 > 0, 𝑅𝑖 > 0 (𝑖 = 1, 2, . . . , 𝑚 + 1), [ 𝑄1 𝑉1∗ 𝑄2 ] > 0,[ 𝑄3 𝑉2∗ 𝑄4 ] > 0, [ 𝑄5 𝑉3∗ 𝑄6 ] > 0, positive diagonal matrices Γ, Λ 1,Λ 2,Λ 3, and any matrices with appropriate dimensions𝑀,𝑈1,
such that the following LMIs hold:

[Ξ̂ 𝐻𝑇∗ −𝐼] < 0 (39)

[𝑅𝑚+1 𝑈1∗ 𝑅𝑚+1] ≥ 0, (40)

where Ξ̂ = (Ξ𝑖,𝑗)8×8 is symmetric with

Ξ̂1,1 = 𝛼𝐸𝑇1𝑃𝐸1 +𝑊𝑇1 𝑄1𝑊1 − 𝑒−𝛼𝑑1/𝑚𝑊𝑇2 𝑄1𝑊2
− 𝑚∑
𝑖=1

𝑒−𝛼𝑑1𝑖/𝑚 [𝐸𝑇𝑖 − 𝐸T
𝑖+1] 𝑅𝑖 [𝐸𝑖 − 𝐸𝑖+1]

+ 𝐸𝑇1𝑄3𝐸1 + 𝐸𝑇1𝑄5𝐸1
− 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝐸𝑇𝑚+1𝑅𝑚+1𝐸𝑚+1− 𝐸𝑇1 (𝑀𝐴 + 𝐴𝑇𝑀𝑇) 𝐸1
− 𝐸𝑇1 (𝐺𝐶 + 𝐶𝑇𝐺𝑇) 𝐸1
− 2𝐸𝑇𝑚+1𝑊𝑇𝐾−Λ 1𝐾+𝑊𝐸𝑚+1− 2𝐸𝑇1𝑊𝑇𝐾−Γ𝐾+𝑊𝐸1,Ξ̂1,2 = 𝑊𝑇1 𝑉1𝑊1 − 𝑒−𝛼𝑑1/𝑚𝑊𝑇2 𝑉1𝑊2 + 𝐸𝑇1𝑉2𝐸1+ 𝐸𝑇1𝑉3𝐸1 + 𝐸𝑇𝑚+1𝑊𝑇 (𝐾− + 𝐾+) Λ 1𝐸𝑚+1+ 𝐸𝑇1𝑊𝑇 (𝐾− + 𝐾+) Γ𝐸1,

Ξ̂1,3 = 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝐸𝑇𝑚+1𝑅𝑚+1 − 𝐸𝑇1𝐺𝐷
− 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝐸𝑇𝑚+1𝑈1,

Ξ̂1,4 = 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝐸𝑇𝑚+1𝑈1,Ξ̂1,5 = 𝐸𝑇1𝑀,
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Ξ̂1,7 = 𝐸𝑇1𝑀𝐵1 − 𝐸𝑇1𝐺𝐵2,Ξ̂1,8 = 𝐸𝑇1𝑃 − 𝐸𝑇1𝑀− 𝐸𝑇1𝐴𝑇𝑀𝑇 − 𝐸𝑇1𝐶𝑇𝐺𝑇,Ξ̂2,2 = 𝑊𝑇1 𝑄2𝑊1 − 𝑒−𝛼𝑑1/𝑚𝑊𝑇2 𝑄2𝑊2 + 𝐸𝑇1𝑄4𝐸1+ 𝐸𝑇1𝑄6𝐸1 − 2𝐸𝑇𝑚+1Λ 1𝐸𝑚+1 − 2𝐸𝑇1 Γ𝐸1,
Ξ̂3,3 = − (1 − 𝜇) 𝑒−𝛼𝑑2𝑄3 − 2𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝑅𝑚+1−𝑊𝑇𝐾−Λ 3𝐾+𝑊

+ 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2 (𝑈1 + 𝑈𝑇1 ) ,
Ξ̂3,4 = 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝑅𝑚+1 − 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝑈1,Ξ̂3,5 = − (1 − 𝜇) 𝑒−𝛼𝑑2𝑉2 +𝑊𝑇𝐾−Λ 3 +𝑊𝑇𝐾+Λ 3,Ξ̂3,8 = − (𝐺𝐷)𝑇 ,
Ξ̂4,4 = −𝑒−𝛼𝑑2𝑄5 − 1𝑑2 − 𝑑1 𝑒−𝛼𝑑2𝑅𝑚+1−𝑊𝑇𝐾−Λ 2𝐾+𝑊,
Ξ̂4,6 = −𝑒−𝛼𝑑2𝑉3 +𝑊𝑇𝐾−Λ 2 +𝑊𝑇𝐾+Λ 2,Ξ̂5,5 = − (1 − 𝜇) 𝑒−𝛼𝑑2𝑄4 − 2Λ 3,Ξ̂5,8 = −𝑀𝑇,
Ξ̂6,6 = −𝑒−𝛼𝑑2𝑄6 − 2Λ 2,Ξ̂7,7 = −𝛾2𝐼,
Ξ̂7,8 = 𝐵𝑇1𝑀𝑇 − (𝐺𝐵2)𝑇 ,
Ξ̂8,8 = (𝑑1𝑚)2( 𝑚∑

𝑖=1

𝑅𝑖) + (𝑑2 − 𝑑1) 𝑅𝑚+1 −𝑀 −𝑀𝑇,
(41)

and other entries of Ξ are zeros:

𝑊1 = [𝐼𝑚𝑛, 0𝑚𝑛×𝑛] ,𝑊2 = [0𝑚𝑛×𝑛, 𝐼𝑚𝑛] ,𝐸𝑖 = [0𝑛×(𝑖−1)𝑛, 𝐼𝑛, 0𝑛×(𝑚+1−𝑖)𝑛] , 𝑖 = 1, 2, . . . , 𝑚 + 1,
𝐻 = [𝐻 × 𝐸1, 0, 0, 0, 0, 0, 0, 0] .

(42)

The estimator gain matrix is given by 𝐾 = 𝑀−1𝐺.
Proof. Construct a Lyapunov-Krasovskii functional candi-
date as follows:

𝑉 (𝑡, 𝑒𝑡) = 5∑
𝑖=1

𝑉𝑖 (𝑡, 𝑒𝑡) , (43)

where

𝑉1 (𝑡, 𝑒𝑡) = 𝑒𝑇 (𝑡) 𝑃𝑒 (𝑡) ,
𝑉2 (𝑡, 𝑒𝑡) = ∫𝑡

𝑡−(𝑑1/𝑚)
𝑒−𝛼(𝑡−𝑠) [ 𝜂̂1 (𝑠)𝜂̂2 (𝑠) ]

𝑇

⋅ [𝑄1 𝑉1∗ 𝑄2][ 𝜂̂1 (𝑠)𝜂̂2 (𝑠) ] 𝑑𝑠
𝑉3 (𝑡, 𝑒𝑡) = ∫𝑡

𝑡−ℎ(𝑡)
𝑒−𝛼(𝑡−𝑠) [ 𝑒 (𝑠)𝑔 (𝑊𝑒 (𝑠)) ]

𝑇

⋅ [ 𝑄3 𝑉2∗ 𝑄4 ][ 𝑒 (𝑠)𝑔 (𝑊𝑒 (𝑠))] 𝑑𝑠
𝑉4 (𝑡, 𝑒𝑡) = ∫𝑡

𝑡−𝑑2

𝑒−𝛼(𝑡−𝑠) [ 𝑒 (𝑠)𝑔 (𝑊𝑒 (𝑠))]
𝑇

⋅ [𝑄5 𝑉3∗ 𝑄6][ 𝑒 (𝑠)𝑔 (𝑊𝑒 (𝑠)) ] 𝑑𝑠,
𝑉5 (𝑡, 𝑒𝑡) = 𝑑1𝑚

⋅ 𝑚∑
𝑖=1

∫−((𝑖−1)/𝑚)𝑑1
−(𝑖/𝑚)𝑑1

∫𝑡
𝑡+𝜃

𝑒−𝛼(𝑡−𝑠) ̇𝑒𝑇 (𝑠) 𝑅𝑖 ̇𝑒 (𝑠) 𝑑𝑠𝑑𝜃
+ ∫−𝑑1
−𝑑2

∫𝑡
𝑡+𝜃

𝑒−𝛼(𝑡−𝑠) ̇𝑒𝑇 (𝑠) 𝑅𝑚+1 ̇𝑒 (𝑠) 𝑑𝑠𝑑𝜃,

(44)

and calculating the derivative of 𝑉(𝑡, 𝑒𝑡) along the trajectory
of system, we obtain

𝑉̇1 (𝑡, 𝑒𝑡) = 2𝑒𝑇 (𝑡) 𝑃 ̇𝑒 (𝑡) = 2𝜃̂𝑇1 (𝑡) 𝐸𝑇1𝑃 ̇𝑒 (𝑡) ,
𝑉̇2 (𝑡, 𝑒𝑡) = −𝛼𝑉2 (𝑡, 𝑒𝑡) + [𝜂̂1 (𝑡)𝜂̂2 (𝑡)]

𝑇

⋅ [𝑄1 𝑉1∗ 𝑄2][ 𝜂̂1 (𝑡)𝜂̂2 (𝑡) ] − 𝑒−𝛼𝑑1/𝑚 [[[[
𝜂̂1 (𝑡 − 𝑑1𝑚)
𝜂̂2 (𝑡 − 𝑑1𝑚)

]]]]
𝑇

⋅ [ 𝑄1 𝑉1∗ 𝑄2 ][[[[
𝜂̂1 (𝑡 − 𝑑1𝑚)
𝜂̂2 (𝑡 − 𝑑1𝑚)

]]]]
= −𝛼𝑉2 (𝑡, 𝑒𝑡)

+ [𝑊1𝜃̂1 (𝑡)𝑊1𝜃̂2 (𝑡)]
𝑇 [ 𝑄1 𝑉1∗ 𝑄2 ][ 𝑊1𝜃̂1 (𝑡)𝑊1𝜃̂2 (𝑡) ]

− 𝑒−𝛼𝑑1/𝑚 [ 𝑊2𝜃̂1 (𝑡)𝑊2𝜃̂2 (𝑡) ]
𝑇 [𝑄1 𝑉1∗ 𝑄2][𝑊2𝜃̂1 (𝑡)𝑊2𝜃̂2 (𝑡)] ,
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𝑉̇3 (𝑡, 𝑒𝑡) = −𝛼𝑉3 (𝑡, 𝑒𝑡) + [ 𝑒 (𝑡)𝑔 (𝑊e (𝑡)) ]
𝑇

⋅ [𝑄3 𝑉2∗ 𝑄4][ 𝑒 (𝑡)𝑔 (𝑊𝑒 (𝑡)) ] − (1 − 𝜇)
⋅ 𝑒−𝛼ℎ(𝑡) [ 𝑒 (𝑡 − ℎ (𝑡))𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡)))]

𝑇

⋅ [𝑄3 𝑉2∗ 𝑄4][ 𝑒 (𝑡 − ℎ (𝑡))𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡)))] ≤ −𝛼𝑉3 (𝑡, 𝑒𝑡)
+ [𝐸1𝜃̂1 (𝑡)𝐸1𝜃̂2 (𝑡)]

𝑇 [𝑄3 𝑉2∗ 𝑄4][ 𝐸1𝜃̂1 (𝑡)𝐸1𝜃̂2 (𝑡) ] − (1 − 𝜇)
⋅ 𝑒−𝛼𝑑2 [ 𝑒 (𝑡 − ℎ (𝑡))𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡)))]

𝑇

⋅ [ 𝑄3 𝑉2∗ 𝑄4 ][ 𝑒 (𝑡 − ℎ (𝑡))𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡))) ] ,
𝑉̇4 (𝑡, 𝑒𝑡) = −𝛼𝑉4 (𝑡, 𝑒𝑡) + [ 𝐸1𝜃̂1 (𝑡)𝐸1𝜃̂2 (𝑡) ]

𝑇

⋅ [𝑄5 𝑉3∗ 𝑄6][ 𝐸1𝜃̂1 (𝑡)𝐸1𝜃̂2 (𝑡) ]
− 𝑒−𝛼𝑑2 [ 𝑒 (𝑡 − 𝑑2)𝑔 (𝑊𝑒 (𝑡 − 𝑑2))]

𝑇

⋅ [ 𝑄5 𝑉3∗ 𝑄6 ][ 𝑒 (𝑡 − 𝑑2)𝑔 (𝑊𝑒 (𝑡 − 𝑑2)) ] ,
𝑉̇5 (𝑡, 𝑒𝑡) ≤ −𝛼𝑉5 (𝑡, 𝑒𝑡) + (𝑑1𝑚)2 ̇𝑒𝑇 (𝑡) ( 𝑚∑

𝑖=1

𝑅𝑖) ̇𝑒 (𝑡)
− (𝑑1𝑚) 𝑚∑

𝑖=1

∫𝑡−((𝑖−1)/𝑚)𝑑1
𝑡−(𝑖/𝑚)𝑑1

𝑒−𝛼𝑑1𝑖/𝑚 ̇𝑒𝑇 (𝑠) 𝑅𝑖 ̇𝑒 (𝑠) 𝑑𝑠
+ (𝑑2 − 𝑑1) ̇𝑒𝑇 (𝑡) 𝑅𝑚+1 ̇𝑒 (𝑡)
− ∫𝑡−𝑑1
𝑡−ℎ(𝑡)

𝑒−𝛼𝑑2 ̇𝑒𝑇 (𝑠) 𝑅𝑚+1 ̇𝑒 (𝑠) 𝑑𝑠
− ∫𝑡−ℎ(𝑡)
𝑡−𝑑2

𝑒−𝛼𝑑2 ̇𝑒𝑇 (𝑠) 𝑅𝑚+1 ̇𝑒 (𝑠) 𝑑𝑠,
(45)

and using Lemmas 3 and 5, we can obtain

𝑉̇5 (𝑡, 𝑒𝑡) ≤ −𝛼𝑉5 (𝑡, 𝑒𝑡) + (𝑑1𝑚)2 ̇𝑒𝑇 (𝑡) ( 𝑚∑
𝑖=1

𝑅𝑖) ̇𝑒 (𝑡)
+ (𝑑2 − 𝑑1) ̇𝑒𝑇 (𝑡) 𝑅𝑚+1 ̇𝑒 (𝑡)

− 𝑚∑
𝑖=1

𝑒−𝛼𝑑1𝑖/𝑚 [𝜃𝑇1 (𝑡) 𝐸𝑇𝑖 − 𝜃𝑇1 (𝑡) 𝐸𝑇𝑖+1]
⋅ 𝑅𝑖 [𝐸𝑖𝜃1 (𝑡) − 𝐸𝑖+1𝜃1 (𝑡)] − 1𝑑2 − 𝑑1
⋅ 𝑒−𝛼𝑑2 [𝑒 (𝑡 − 𝑑1) − 𝑒 (𝑡 − ℎ (𝑡))𝑒 (𝑡 − ℎ (𝑡)) − 𝑒 (𝑡 − 𝑑2)]

𝑇

⋅ [𝑅𝑚+1 𝑈1∗ 𝑅𝑚+1][ 𝑒 (𝑡 − 𝑑1) − 𝑒 (𝑡 − ℎ (𝑡))𝑒 (𝑡 − ℎ (𝑡)) − 𝑒 (𝑡 − 𝑑2) ] .
(46)

According to Assumption 1, Similarly to (20), we obtain

2 (𝑔 (𝑊𝑒 (𝑡)) − 𝐾−𝑊𝑒 (𝑡))𝑇 Γ (𝑔 (𝑊𝑒 (𝑡)) − 𝐾+𝑊𝑒 (𝑡))⩽ 0,
2 (𝑔 (𝑊𝑒 (𝑡 − 𝑑1)) − 𝐾−𝑊𝑒 (𝑡 − 𝑑1))𝑇⋅ Λ 1 (𝑔 (𝑊𝑒 (𝑡 − 𝑑1)) − 𝐾+𝑊𝑒 (𝑡 − 𝑑1)) ⩽ 0,
2 (𝑔 (𝑊𝑒 (𝑡 − 𝑑2)) − 𝐾−𝑊𝑒 (𝑡 − 𝑑2))𝑇⋅ Λ 2 (𝑔 (𝑊𝑒 (𝑡 − 𝑑2)) − 𝐾+𝑊𝑒 (𝑡 − 𝑑2)) ⩽ 0,
2 (𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡))) − 𝐾−𝑊𝑒 (𝑡 − ℎ (𝑡)))𝑇

⋅ Λ 3 (𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡))) − 𝐾+𝑊𝑒 (𝑡 − ℎ (𝑡))) ⩽ 0,

(47)

and according to the system equation, the following equality
holds: 2 (𝑒𝑇 (𝑡) + ̇𝑒𝑇 (𝑡))𝑀 {− (𝐴 + 𝐾𝐶) 𝑒 (𝑡)

− 𝐾𝐷𝑒 (𝑡 − ℎ (𝑡)) + 𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡)))
+ (𝐵1 − 𝐾𝐵2) 𝑤 (𝑡) − ̇𝑒 (𝑡)} = 0.

(48)

Combining the qualities and inequalities from (45) to (48),
we can obtain𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑥𝑡) + 𝛼𝑉 (𝑡, 𝑥𝑡)

≤ 𝜁̂𝑇𝑡 (Ξ̂) 𝜁̂𝑡 + 𝜃̂𝑇1𝐸𝑇1𝐻𝑇𝐻𝐸1𝜃̂1, (49)

where 𝜁̂𝑡 is defined as

𝜁̂𝑇𝑡 = [𝜃̂𝑇1 (𝑡) , 𝜃̂𝑇2 (𝑡) , 𝑒𝑇 (𝑡 − ℎ (𝑡)) , 𝑒𝑇 (𝑡 − 𝑑2) ,
𝑔 (𝑊𝑒 (𝑡 − ℎ (𝑡)))𝑇 , 𝑔 (𝑊𝑒 (𝑡 − 𝑑2))𝑇 , 𝑤𝑇 (𝑡) , ̇𝑒𝑇 (𝑡)] . (50)

Based on Lemma 4, one can deduce that𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑥𝑡) + 𝛼𝑉 (𝑡, 𝑥𝑡)
≤ 𝜁̂𝑇𝑡 [Ξ̂ 𝐻𝑇∗ −𝐼] 𝜁̂𝑡,

(51)

where𝐻 = [𝐻 × 𝐸1, 0, 0, 0, 0, 0, 0, 0].
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If LMI (39) holds, then

𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑥𝑡) + 𝛼𝑉 (𝑡, 𝑥𝑡)< 0; (52)

𝛼𝑉(𝑡, 𝑥𝑡) > 0, so we can obtain

∫∞
0

[𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝑤𝑇 (𝑡) 𝑤 (𝑡) + 𝑉̇ (𝑡, 𝑒 (𝑡))] 𝑑𝑡 < 0, (53)

and since 𝑉(𝑡, 𝑒(𝑡)) > 0, under the zero initial condition, we
have

‖𝑧 (𝑡)‖2 ≤ 𝛾2 ‖𝑤 (𝑡)‖2 . (54)

Therefore, the error system (4) guaranteed𝐻∞ performance𝛾 according to Definition 2.The remainder of proof is similar
to the proof of Theorem 6. This completes the proof.

Remark 9. If we only use the free-weighting matrix method
together with the delay partitioning method to deal with
the 𝐻∞ state estimation problem of static neural networks
(1), a great many free-weighting matrices will be introduced
with the increasing number of partitions. That will lead to
complexity and computational burden. So in this paper we
also make use of integral inequalities to reduce decision
variables so as to reduce computational burden, because only
one matrix is introduced no matter how large the number
of partitions is. Moreover, reciprocally convex approach was
used with integral inequalities to reduce the conservatism.

Remark 10. In some previous literatures [18, 19, 30], 𝑘−𝑖 ≤𝑓𝑖(𝑥)/𝑥 ≤ 𝑘+𝑖 , which is a special case of 𝑘−𝑖 ≤ (𝑓𝑖(𝑥) −𝑓𝑖(𝑦))/(𝑥 − 𝑦) ≤ 𝑘+𝑖 , was used to reduce the conservatism.
In our proof, not only 𝑘−𝑖 ≤ 𝑔𝑖(𝑊𝑖𝑒(𝑡))/𝑊𝑖𝑒(𝑡) ≤ 𝑘+𝑖 , but also𝑘−𝑖 ≤ 𝑔𝑖(𝑊𝑖𝑒(𝑡 − ℎ(𝑡)))/𝑊𝑖𝑒(𝑡 − ℎ(𝑡)) ≤ 𝑘+𝑖 , 𝑘−𝑖 ≤ 𝑔𝑖(𝑊𝑖𝑒(𝑡 −𝑑1))/𝑊𝑖𝑒(𝑡−𝑑1) ≤ 𝑘+𝑖 , and 𝑘−𝑖 ≤ 𝑔𝑖(𝑊𝑖𝑒(𝑡−𝑑2))/𝑊𝑖𝑒(𝑡−𝑑2) ≤𝑘+𝑖 have been used, which play an important role in reducing
the conservatism.

4. Numerical Examples

In this section, numerical examples are provided to illustrate
effectiveness of the developedmethod for the state estimation
of static neural networks.

Example 1. Consider the neural networks (1) with the follow-
ing parameters:

𝐴 = (0.96 0 00 0.8 00 0 1.48) ,

𝑊 = ( 0.5 0.3 −0.360.1 0.12 0.5−0.42 0.78 0.9 ) ,

Table 1: The𝐻∞ performance index 𝛾 with different (𝑑2, 𝜇).
Methods (0.8, 0.4) (0.9, 0.7) (1.1, 0.5) (1, 1) (1.2, 1)
[17] 1.2197 1.2719 1.8944 1.3720 Infeasible
[18] 1.2989 1.3164 1.6441 1.3720 Infeasible
Theorem 6
[19] 1.1391 1.1489 1.1538 1.1626 1.1731

Theorem 8,𝑚 = 5 0.4201 0.4602 0.5144 0.4969 0.5687

Theorem 8,𝑚 = 10 0.2883 0.3220 0.3890 0.3530 0.4422

𝐻 = (1 1 01 0 −10 1 1 ) ,

𝐵1 = (0.10.20.1) ,

𝐽 = (000) ,
𝐶 = (1 0 −2) ,
𝐷 = (0.5 0 −1) ,𝐵2 = −0.1.

(55)

To compare with the existing results, we let 𝛼 = 0, 𝑑1 = 0,𝐾− = 0, and 𝐾+ = 𝐼. And we obtain the optimal 𝐻∞
performance index 𝛾 for different values of delay 𝑑2 and 𝜇.
It is summarized in Table 1.

From Table 1, it is clear that our results achieve better per-
formance. In addition, the optimal 𝐻∞ performance index𝛾 becomes smaller as the partitioning number is increasing.
It shows that delay partitioning method can reduce the
conservatism effectively.

Example 2. Consider the neural networks (1) with the follow-
ing parameters:

𝐴 = (1.56 0 00 2.42 00 0 1.88) ,

𝑊 = (−0.3 0.8 −1.361.1 0.4 −0.50.42 0 −0.95) ,

𝐻 = (1 0 0.51 0 10 −1 1 ) ,
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Figure 1: The state variables and their estimation.

𝐵1 = (0.20.20.2) ,

𝐽 = (000) ,
𝐶 = (1 0 0) ,
𝐷 = (2 0 0) ,𝐵2 = 0.4.

(56)

The activation function is 𝑓(𝑥) = tanh(𝑥), and it is easy to
get that 𝐾− = 0, 𝐾+ = 𝐼. And we set 𝛾 = 1, 𝛼 = 0, andℎ(𝑡) = 0.5 + 0.5 sin(0.8𝑡), so the bound of time delay 𝑑1 = 0,𝑑2 = 1, and 𝜇 = 0.4. The noise disturbance is assumed to
be 𝑤(𝑡) = 1/(0.8 + 1.2𝑡). By solving through the Matlab LMI
toolbox, we obtain the gain matrix of the estimator:

𝐾 = ( 0.10780.0371−0.0655) . (57)

Figure 1 presents the state variables and their estimation of
the neural network (1) from initial values [0.3, −0.5, 0.2]𝑇.
Figure 2 shows the state response of the error system (4)
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Figure 2: The response of the error 𝑒(𝑡).
under the initial condition 𝑒(0) = [0.3, −0.5, 0.2]𝑇. It is clear
that 𝑒(𝑡) converge rapidly to zero. The simulation results
reveal the effectiveness of the proposed approach to the
design of the state estimator for static neural networks.

5. Conclusions

In this paper, we investigated the 𝐻∞ state estimation prob-
lem for a class of delayed static neural networks. By construct-
ing augmented Lyapunov-Krasovskii functionals, new delay-
dependent conditions were established. The designs of the
desired estimator are achieved by solving a set of linearmatrix
inequalities, which can be facilitated efficiently by resorting
to standard numerical algorithms. In the end, numerical
examples were provided to illustrate the effectiveness of the
proposed method compared with some existing results.
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