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Abstract

We prove a version of Lagrange multipliers theorem for nonsmooth functionals defined on normed
spaces. Applying these results, we extend some results about saddle point optimality criteria in mathe-
matical programming.
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1. Introduction

Let U be an open neighborhood of a vector x in a normed space E,g1, . . . , gN and f be real
functions on U . We consider the following optimization problem with inequality constraints:

(PI)
minf (y)

s.t. gi(y) � 0 ∀i = 1, . . . ,N.

If E is a Banach space, x is a solution of (PI), g1, . . . , gN and f are Fréchet differentiable
at x and D((g1, . . . , gN))(x)(E) = RN , Ioffe and Tihomirov in [7] proved that there are a real
number a0 and nonpositive real numbers a1, . . . , aN such that (a0, . . . , aN) �= 0 ∈ RN+1 and

a0Df (x) = a1Dg1(x) + · · · + aNDgN(x).
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In [4], Halkin extended this result to the following optimization problem:

(PIE)

minf (y)

s.t. gi(y) � 0 ∀i = 1, . . . , n,

gn+j (y) = 0 ∀j = 1, . . . ,N − n.

Halkin also proved that a1, . . . , an are nonpositive. Furthermore, if g1, . . . , gN are not only
Fréchet differentiable but also C1 at x, that is the Fréchet derivatives of g1, . . . , gN exist on a
neighborhood of x and are continuous at x, Ioffe and Tihomirov in [7, p. 73] proved that a0 in
their cited result is not equal to 0.

Using the notation of generalized gradients, Clarke, Ioffe, Michel and Penot, Mordukhovich,
Rockafellar and Treiman have extended the above results for Lipschitz constraint functions in
[3,5,6,10,11,17,19,20]. In [21,22], Ye considered the problem (PIE) with mixed assumptions of
Gâteaux, Fréchet differentiability and Lipschitz continuity of constraint functions. In [8,9,12–
16], using the extremal principle, Kruger, Mordukhovich and Wang consider the problem (PIE)

for locally Lipschitzian constraint functions on subsets in Asplund spaces.
If N = 1, we reduced the Lagrange multipliers rule to a two-dimensional problem in [1] and

obtained a version of Lagrange multipliers theorem, in which we only required the smoothness of
the restrictions of f and g on F ∩U , where F is any two-dimensional vector subspace containing
x of E. This smoothness is very weak and may not imply the continuity of the functions.

In the next section of the present paper, we prove a discrete implicit mapping theorem (see
Lemma 2.1) and apply it to extend the results in [1] to the case N > 1 for f and g, whose
restrictions on F ∩ U are smooth for any (N + 1)-dimensional vector subspace F containing x

of E. We note that our results can be applied to functions which are not C1-Fréchet differentiable
neither Lipschitz continuous, even they are not continuous at x (see Remark 2.3). Applying these
results, we extend some results of Bector et al. [2] in the last section.

2. Lagrange multipliers rule

Let U be a nonempty open subset of a normed space (E,‖ · ‖E), X be a linear subspace of
E, Z be a finite-dimensional linear subspace of X and J be a mapping from U into a normed
space Y . We consider Z as a normed subspace of X. Let v be a vector in X and x be in U . Denote
by Z(v) and Z(x, v) the vector subspaces of E generated by Z ∪{v} and Z ∪{x, v}, respectively.
We put

Ux,Z = {y ∈ Z: x + y ∈ U},
Jx,Z(y) = J (x + y) ∀y ∈ Ux,Z.

Then Ux,Z is an open subset of Z. We say

(i) J is (X,Z)-continuous at x on U if and only if for every v in X, there is a positive real
number ηv such that Ju,Z is continuous at 0 for any u in Z(x, v) ∩ BE(x,ηv);

(ii) J is X-differentiable at x if and only if there exists a linear mapping DJ(x) from X into Y

such that

lim
t→0

J (x + th) − J (x)

t
= DJ(x)(h) ∀h ∈ X;
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(iii) J is (X,Z)-differentiable at x if and only if J is X-differentiable at x and for any v in X, if
the sequence {(hm, tm)}m∈N ⊂ Z(v) × R converges to (h,0) in Z(v) × R then

lim
m→∞

J (x + tmhm) − J (x)

tm
= DJ(x)(h).

Remark 2.1. Let J be a linear mapping from E into Rn, X be a linear subspace of E and Z be
a finite-dimensional vector subspace of X. It is clear that J is (X,Z)-continuous at any x in E

and (X,Z)-differentiable at any x in E although it may not be continuous on E.

Remark 2.2. If J is (X,F )-differentiable at x then there are a positive real number εv and a
mapping φv from BE(0, εv) ∩ Z(v) into Y such that BE(x, εv) ⊂ U , limz→0 φv(z) = 0 and

J (x + z) = J (x) + DJ(x)(z) + ‖z‖Eφv(z) ∀z ∈ BE(0, εv) ∩ Z(v).

Indeed, it is sufficient to prove that

lim
z∈Z(v), z→0

J (x + z) − J (x) − DJ(x)(z)

‖z‖E

= 0.

We assume by contradiction that there exist a sequence {zm}m∈N in Z(v) and a positive real
number ε such that 0 < ‖zm‖E < m−1 and∥∥∥∥J (x + zm) − J (x) − DJ(x)(zm)

|zm|E
∥∥∥∥

Y

> ε ∀n ∈ N. (∗)

We put sm = ‖zm‖−1
E zm ∈ Z(v). Because Z(v) is a finite-dimensional subspace of X, there

exists a subsequence {smk
}k∈N of {sm}m∈N such that limk→∞ smk

= s in Z(v). Because J is
(X,F )-differentiable at x then

lim
k→∞

J (x + zmk
) − J (x)

‖zmk
‖E

= lim
k→∞

J (x + ‖zmk
‖Esmk

) − J (x)

‖zmk
‖E

= DJ(x)(s).

Since Z(v) is finite-dimensional, Df (x) is continuous on Z(v) and

lim
k→∞DJ(x)

(
zmk

‖zmk
‖E

)
= lim

k→∞DJ(x)(smk
) = DJ(x)(s).

Then we have

lim
k→∞

J (x + zmk
) − J (x) − DJ(x)(zmk

)

‖zmk
‖E

= 0,

we get the contradiction with (∗) and we get the result.
We have the following result:

Lemma 2.1 (Discrete Implicit Mapping Theorem). Let U be an open neighborhood of a vector
x in a normed linear space E, X be a vector subspace of E, F be a n-dimensional vector
subspace of X and g be a mapping from U into Rn with g = (g1, . . . , gn). Assume that g is
(X,F )-continuous and (X,F )-differentiable at x.

Put M = {y ∈ U : g(y) = g(x)} and ei = (δ1
i , . . . , δ

n
i ) for any i in {1, . . . , n}, where δ

j
i is the

Kronecker number.
Let v be in X and h1, . . . , hn be n vectors in F such that Dg(x)(v) = 0 and Dg(x)(hi) = ei

for any i in {1, . . . , n}.
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Then there exist a sequence {sm = (s1
m, . . . , sn

m)}m∈N converging to 0 in Rn and a sequence of
positive real numbers {αm}m∈N converging to 0 in R such that

um ≡ αm

(
s1
mh1 + · · · + sn

mhn

) + αmv + x ∈ M ∀m ∈ N.

Proof. We can assume without loss of generality that x = 0 and g(x) = 0. Fix a vector v in X

such that Dg(0)(v) = 0. By Remark 2.1 about the (X,F )-continuity and (X,F )-differentiability
of g at 0, there is a positive real number εv and a mapping φv from BF(v)(0, εv) ≡ F(v) ∩
BE(0, εv) to Rn such that: BE(x, εv) ⊂ U , gy,F is continuous at 0 for every y ∈ BF(v)(0, εv),
limy→0 φv(y) = 0 and

g(z) = Dg(0)(z) + ‖z‖Eφv(z) ∀z ∈ BF(v)(0, εv).

There is a real positive number r such that α(s1h1 + · · · + snhn + v) belongs to BF(v)(0, εv)

for any (α, s1, . . . , sn) ∈ (0, r) × Bn(0, r), where Bk(0,p) = {t = (t1, . . . , tk) ∈ Rk: ‖t‖Rk ≡√
(t1)2 + · · · + (tk)2 < p}.
We put

η(s) = s1h1 + · · · + snhn ∀s = (
s1, . . . , sn

) ∈ Bn(0, r),

Gα(s) = α−1g
(
α
(
η(s) + v

)) ∀(α, s) ∈ (0, r) × Bn(0, r).

Because gy,F is continuous at 0 for every y in BF(v)(0, εv), we see that Gα is continuous on
Bn(0, r) for any fixed α in (0, r) and

Gα(s) = α−1g
(
α
(
s1h1 + · · · + snhn + v

)) = α−1g
(
α
(
η(s) + v

))
= α−1Dg(0)

(
α
(
η(s) + v

)) + α−1
∥∥α

(
η(s) + v

)∥∥
E
φv

(
α
(
η(s) + v

))
= Dg(0)

(
η(s)

) + ∥∥η(s) + v
∥∥

E
φv

(
α
(
η(s) + v

))
= (

s1, . . . , sn
) + ∥∥η(s) + v

∥∥
E
φv

(
α
(
η(s) + v

)) ∀s = (
s1, . . . , sn

) ∈ Bn(0, r).

Note that there is a positive real number M such that ‖η(s) + v‖E � M for any s =
(s1, . . . , sn) in Bn(0, r). Thus

lim
α→0

[
sup

{∥∥φv

(
α
(
η(s) + v

))∥∥
E

:
(
s1, . . . , sn

) ∈ Bn(0, r)
}] = 0

and 〈
Gα(s), s

〉 = 〈s, s〉 + ∥∥η(s) + v
∥∥

E

〈
φv

(
α
(
η(s) + v

))
, s

〉
� m−2{1 − mM

∥∥φv

(
α
(
η(s) + v

))∥∥
E

} ∀s ∈ ∂Bn

(
0,m−1),

where m is an integer greater than r−1.
Thus there is a real number αm in (0,m−1) such that〈

Gαm(s), s
〉
> 0 ∀s ∈ ∂Bn

(
0,m−1).

By Lemma 4.1 in [18, p. 14], we have a solution sm in Bn(0,m−1) to the equation Gαm(s) = 0
for any integer m greater than r−1, which yields the lemma. �
Remark 2.3. If E is a Banach space, U is an open subset of E, g is Fréchet differentiable on
U and Dg is continuous at x, then by the Ljusternik theorem (see [7, p. 41]), M is a manifold
and the tangent space T Mx = Dg(x)−1({0}). Moreover, M is a C1-manifold if g is C1-Fréchet
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differentiable on U (see [23, Theorem 43.C]). The smoothness of g in Lemma 2.1 is very weak
so that M may not be a smooth manifold and we cannot define the tangent space of M at x.
Note that the sequence {α−1

m (um − x)}m∈N converges to v in E. Therefore, we can admit v as
a “generalized” tangent vector of M at x for any v in Dg(x)−1({0}), if we consider {um}m∈N as
a discrete curve passing through x. This idea is illustrated by the following example.

Let E = X = U = R3 and Z = R × {0} × {0}. We define

P1 = {
(s, t) ∈ R2: ∃(α,β) ∈ Q × Q, αs + βt = 0

}
,

P2 = {
(s, t) ∈ R2:

√
s2 + t2 ∈ Q

}
,

P = [P1 ∩ P2] ∪ [(
R2 \ P1

) ∩ (
R2 \ P2

)]
,

A = {
(r, s, t) ∈ R3: (s, t) ∈ P

}
,

B = {
(r, s, t) ∈ R3: r = 0, s > 0, t = s2},

g(r, s, t) = r + (
s2 + t2)χA(r, s, t) + χB(r, s, t) ∀(r, s, t) ∈ R3,

where χC is the characteristic function of the set C.
Let v = (0, s, t) in R3 such that st �= 0. Put δv = 1

2

√
s−2t2 + s−4t4, we have BE((0,0,0), δv)∩

Z(v) ∩ B = ∅. Therefore, for any v in {0} × R2, there is a positive real number δv such that
BE((0,0,0), δv) ∩ Z(v) ∩ B = ∅. Thus we see that g is (X,Z)-continuous at (0,0,0) and
(X,Z)-differentiable at (0,0,0). But g is not Fréchet differentiable at (0,0,0) because g is
not continuous at (0,0,0). Put M = {(r, s, t) ∈ R3: g(r, s, t) = g(0,0,0)}, we have

Dg
(
(0,0,0)

)
(Z) = R,

M = {
(0, s, t): (s, t) /∈ (P ∪ B)

} ∪ {
(r, s, t): (s, t) ∈ (P \ B), r = −s2 − t2}.

Note that (0, s, t) is a “generalized” tangent vector of M at (0,0,0) for any (s, t) in R2.
The results in [3–7,17,19–22] cannot be applied to this case. It is easy to derive this example

to the case of vector functions.

The idea of “generalized” tangent vectors is essential to get the following generalized La-
grange multipliers theorem.

Theorem 2.1. Let U be an open subset of normed vector space E, X be a vector subspace of
E, F be a n-dimensional vector subspace of X, u be in U , r be in Rn, f be a mapping from
U into R, g = (g1, . . . , gn) be a mapping from U into Rn, M = {x ∈ U : g(x) = r} and u ∈ M .
Assume that

(i) f (u) is the minimum (or maximum) of f (M),
(ii) f is (X,F )-differentiable at u,

(iii) g is (X,F )-continuous at u and (X,F )-differentiable at u,
(iv) Dg(u)(F ) = Rn.

Then there exists a unique mapping Λ ∈ L(Rn,R) such that

Df (u)(k) = Λ
(
Dg(u)(k)

) ∀k ∈ X.
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Proof. Assume f (u) is the minimum of f (M). Choose n vectors h1, . . . , hn in F such that
Dg(u)(hi) = ei ≡ (δ1

i , . . . , δ
n
i ) for any i in {1, . . . , n}. We define a real linear mapping Λ on Rn

as follows:

Λ(ei) = Df (u)(hi) ∀i = 1, . . . , n.

Now fix a vector k in X. Put

v = k −
n∑

i=1

Dgi(u)(k)hi ∈ X.

Then Dg(u)(v) = 0. By Lemma 2.1, there are a sequence {αm}m∈N of positive real numbers
and a sequence {sm = (s1

m, . . . , sn
m)}m∈N in Rn such that {αm}m∈N and {sm}m∈N converge to 0 in

R and Rn respectively, um ∈ U , and g(um) = g(u), where

um = u + αm

(
s1
mh1 + · · · + sn

mhn

) + αmv ∀m ∈ N,

or um ∈ M for every m ∈ N.
Since f (u) is the minimum of f (M) and f is (X,F )-differentiable at u, we have

Df (u)(k) − Λ
(
Dg(u)(k)

)
= Df (u)(k) − Λ

(
n∑

i=1

Dgi(u)(k)ei

)

= Df (u)(k) −
n∑

i=1

Di(u)(k)Λ(ei) = Df (u)(k) −
n∑

i=1

Dgi(u)(k)Df (u)(hi)

= Df (u)(k) − Df (u)

(
n∑

i=1

Dgi(u)(k)hi

)
= Df (u)

(
k −

n∑
i=1

Dgi(u)(k)hi

)

= Df (u)(v) = lim
m→∞

[f (u + αm(s1
mh1 + · · · + sn

mhn + v)) − f (u)]
αm

� 0.

Therefore, Df (u)(k) � Λ(Dg(u)(k)) for any k in X. Replacing k in the above inequality
by −k, we get the theorem.

Since Dg(u)(F ) = Rn, we can get the uniqueness of Λ.
The proof for the case f (u) = maxf (M) is similar and omitted. �

Remark 2.4. If E is a Banach space, g is Fréchet differentiable on U and Dg is continuous at u,
then Theorem 2.1 has been proved in [7, p. 73]. Here we only need the differentiability of f and
g at u. If n = 1, Theorem 2.1 has been proved in [1].

Theorem 2.2. Let U be an open subset of normed vector space E, X be a vector subspace of E,
F be a (n + m)-dimensional vector subspace of X, u be in U , f be a mapping from U into R,
g = (g1, . . . , gn+m) be a mapping from U into Rn+m and

M = {
x ∈ U : gi(x) � 0, gn+j (x) = 0 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

Assume that

(i) u ∈ M and f (u) is the minimum of f (M),
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(ii) f is (X,F )-differentiable at u,
(iii) g is (X,F )-continuous at u and (X,F )-differentiable at u,
(iv) Dg(u)(F ) = Rn+m.

Then g(u) = 0 and there exists a unique (a1, . . . , an+m) in Rn+m such that a1, . . . , an are nega-
tive and

Df (u)(k) =
n+m∑
i=1

aiDgi(u)(k) ∀k ∈ X.

Proof. We prove the theorem by the following steps.

Step 1. Put α = (α1, . . . , αn+m) = g(u) and S = {x ∈ U : g(x) = α} we see that S ⊂ M . Since
f (u) = minf (S), by Theorem 2.1, there exists a unique (a1, . . . , an+m) in Rn+m such that

Df (u)(k) =
n+m∑
i=1

aiDgi(u)(k) ∀k ∈ X.

Step 2. We prove that ai < 0 for every i ∈ {1, . . . , n}. First, we prove that a1 < 0. Since
Dg(u)(F ) = Rn+m, there is k in F such that Dg1(u)(k) = −1 and Dg2(u)(k) = · · · =
Dgn(u)(k) = −ε < 0 and Dgn+j (u)(k) = 0 for any j in {1, . . . ,m}.

Let {hi}i=1,...,n+m be in F such that Dg(u)(hi) = (δ1
i , . . . , δ

n+m
i ) for any i ∈ {1, . . . , n + m},

we have

D(gn+1, . . . , gn+m)(u)(hi) = (
δn+1
i , . . . , δn+m

i

) ∀i ∈ {n + 1, . . . , n + m}.
By Lemma 2.1, there are a sequence {sl = (sn+1

l , . . . , sn+m
l )}l∈N converging to 0 in Rm and a

sequence of positive real numbers {αl}l∈N converging to 0 in R such that

ul ≡ αl

(
sn+1
l hn+1 + · · · + sn+m

l hn+m

) + αlk + u,

(gn+1, . . . , gn+m)(ul) = (gn+1, . . . , gn+m)(u) = 0 ∀l ∈ N.

Note that

lim
l→∞

gi(ul) − gi(u)

αl

= lim
l→∞

gi(αl(s
n+1
l hn+1 + · · · + sn+m

l hn+m) + αlk + u) − gi(u)

αl

= Dgi(u)(k) < 0 ∀i ∈ {1, . . . , n}.
Thus there exists l0 ∈ N such that

gi(ul) < gi(u) ∀i ∈ {1, . . . , n}, ∀l � l0,

which implies that ul is in M for any l � l0 and

−a1 − ε

n∑
i=2

ai = Df (u)(k) = lim
l→∞

f (ul) − f (u)

αl

� 0 ∀ε > 0.

Let ε tend to 0, we have −a1 � 0 or a1 � 0. Since Dg(u)(F ) = Rn+m, we have a1 < 0.
Similarly, we have

ai < 0 ∀i = 1, . . . , n.
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Step 3. We shall prove g(u) = 0. Put

I = {
i ∈ {1, . . . , n}: gi(u) < 0

}
and J = {

j ∈ {1, . . . , n}: gj (u) = 0
}
.

We assume by contradiction that I is not empty. In this case, we see that∑
i∈I

ai < 0. (1)

On the other hand, there is k in F such that

Dgi(u)(k) = 1 ∀i ∈ I,

Dgj (u)(k) = −ε ∀j ∈ J,

Dgn+l(u)(k) = 0 ∀l = 1, . . . ,m.

By Lemma 2.1, there are a sequence {sl = (sn+1
l , . . . , sn+m

l )}l∈N converging to 0 in Rm and
a sequence of positive real numbers {αl}l∈N converging to 0 in R such that

ul ≡ αl

(
sn+1
l hn+1 + · · · + sn+m

l hn+m

) + αlk + u and

0 = (gn+1, . . . , gn+m)(ul) = (gn+1, . . . , gn+m)(u) ∀l ∈ N.

We have

lim
l→∞

gi(ul) − gi(u)

αl

= lim
l→∞

gi(αl(s
n+1
l hn+1 + · · · + sn+m

l hn+m) + αlk + u) − gi(u)

αl

= Dgi(u)(k) = 1 ∀i ∈ I.

Thus liml→∞ gi(ul) = gi(u) < 0. Then there exists an integer l1 such that

gi(ul) < 0 ∀i ∈ I, ∀l � l1.

We have

lim
l→∞

gj (ul) − gj (u)

αl

= lim
l→∞

gj (αl(s
n+1
l hn+1 + · · · + sn+m

l hn+m) + αlk + u) − gj (u)

αl

= Dgj (u)(k) = −ε < 0 ∀j ∈ J.

Thus there exists l2 ∈ N such that

gj (ul) < gj (u) = 0 ∀j ∈ J, ∀l � l2.

Therefore ul is in M for any l � max{l1, l2} and

∑
i∈I

ai − ε
∑
j∈J

aj = Df (u)(k) = lim
l→∞

f (ul) − f (u)

αl

� 0 ∀ε > 0.

It implies that
∑

i∈I ai � 0, which contradicts to (1) and I should be empty and we get the
result. �
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3. Applications in programming problems

Let X ≡ Rn denote the n-dimensional Euclidean space and let Rn+ be its nonnegative or-
thant. Let f,h1, . . . , hm be real functions on an open subset S of Rn. We consider the following
nonlinear programming problem

(P )
minf (x)

subject to hj (x) � 0 ∀j ∈ {1,2, . . . ,m}.
Put J = {1, . . . , r} and K = {r + 1, . . . ,m}, hJ (x) = (h1(x), . . . , hr (x)) and hK(x) =

(hr+1(x), . . . , hm(x)) for any x in S. Let h(x) denote the column vector (h1(x), h2(x), . . . ,

hm(x))T and be partitioned as h(x) = (hJ (x),hK(x))T . We denote

Sh = {
x ∈ S: hj (x) � 0, j ∈ {1, . . . ,m}},

SK = {
x ∈ S: hk(x) � 0, k ∈ K

}
.

Let a = (a1, . . . , aN) ∈ RN with N ∈ N. We say a � 0 (or � 0) if and only if ai � 0 (or � 0)
for every i ∈ {1, . . . ,N}.

Definition 3.1. Let S be an open subset of Rn, u be in S, g be a real function on S and Gâteaux
differentiable at u, and η is a function from S × S to Rn. We say

(i) the function g is said to be invex at u with respect to the function η, if for every x ∈ S, we
have

g(x) − g(u) � η(x,u)T ∇g(u);
(ii) the function g is said to be pseudo-invex at u with respect to the function η, if for every

x ∈ S, we have

η(x,u)T ∇g(u) � 0 ⇒ g(x) � g(u);
(iii) the function g is said to be quasi-invex at u with respect to the function η, if for every x ∈ S,

we have

g(x) � g(u) ⇒ η(x,u)T ∇g(u) � 0.

Applying results in the first section, we study the following programming problems.

Problem 1: Nonlinear programming problem

Let f , g, h1, . . . , hm be real functions on an open subset S of Rn. Let J , K , hJ and hK be as
in the beginning of this section.

Put L(x,λJ ) = f (x) + (λJ )T hJ (x) for any (x,λJ ) in SK × R
|J |
+ . The map L is called the

incomplete Lagrange function of the problem (P ).

Definition 3.2. A point (x̄, λ̄J ) ∈ SK × R
|J |
+ is called a saddle point of the incomplete Lagrange

function L if

L(x̄, λJ ) � L(x̄, λ̄J ) � L(x, λ̄J ) ∀(x,λJ ) ∈ SK × R
|J |
+ .
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Theorem 3.1. Let S be an open subset of X ≡ Rn, f and h1, . . . , hm be real functions on S and
Gâteaux differentiable at x̄ with x̄ ∈ S. F be a m-dimensional vector subspace of X and x̄ be
optimal for (P ). Assume that

(i) L(·, λJ ) is pseudo invex and (λK)T hK(·) is quasi invex at x̄ with respect to a function η for
any (λJ ,λK) in Rm+;

(ii) f is (X,F )- differentiable at x̄;
(iii) h is (X,F )-differentiable at x̄ and (X,F )-continuous at x̄;
(iv) Dh(x̄)(F ) = Rm.

Then there exists λ̄J ∈ R
|J |
+ such that (x̄, λ̄J ) is a saddle point of the incomplete Lagrange func-

tion L.

Proof. Applying Theorem 2.2 in case E = X = Rn, U = S for f and {hj }j=1,m, there exists

λ̄ = (λ̄J , λ̄K) ∈ Rm, λ̄J ∈ R
|J |
+ , λ̄K ∈ R

|K|
+ , such that

∇[
f (x̄) + (λJ )T hJ (x̄) + (λK)T hK(x̄)

] = 0,

(λJ )T hJ (x̄) = 0, (λK)T hK(x̄) = 0,

λ̄ = (λ̄J , λ̄K) � 0.

Now arguing as in the proof of Theorem 2.1 in [2], we get the theorem. �
We consider the following propositions.

(A1) x̄ be optimal for (P ).
(A2) There are positive real numbers λ1, . . . , λm such that hi(x̄) = 0 for any i in {1, . . . ,m} and

Df (x̄) + λ1Dh1(x̄) + · · · + λmDhm(x̄) = 0.

We have the following result.

Theorem 3.2. Let S be an open subset of X ≡ Rn, f and h1, . . . , hm be real functions on S. Let
x̄ be in S. Then

(i) if f , h1, . . . , hm satisfy the conditions (ii), (iii) and (iv) of Theorem 3.1, then (A1) implies
(A2);

(ii) if f (·)+ ∑m
i=1 λihi(·) is Gâteaux differentiable at x̄ and invex with respect to the function η

at x̄ then (A2) implies (A1).

Proof. Applying Theorem 2.2 in case E = X = Rn, U = S for f and {hj }j=1,m, we get (i).
Consider (ii). By the invexity property of f (·) + ∑m

i=1 λihi(·) with respect to the function η

at x̄, we have

f (x) +
m∑

i=1

λihi(x) −
[
f (x̄) +

m∑
i=1

λihi(x̄)

]

� η(x, x̄)T ∇
[
f +

m∑
λihi

]
(x̄) = 0 ∀x ∈ Sh.
i=1
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It follows that

f (x) � f (x) +
m∑

i=1

λihi(x) � f (x̄) +
m∑

i=1

λihi(x̄) = f (x̄) ∀x ∈ Sh,

and we get (ii). �
Problem 2: Fractional programming problem

Let f , g,h1, . . . , hm be real functions on an open subset S of Rn. Let J , K , hJ and hK be as
in the beginning of this section. Put

Sh = {
x ∈ S: hj (x) � 0, j ∈ {1, . . . ,m}},

SK = {
x ∈ S: hk(x) � 0, k ∈ K

}
.

Assume that g(x) �= 0 for any x in S and g(x) > 0 for any x in SK . We now consider the
fractional programming problem

(FP)
min

f (x)

g(x)

subject to hj (x) � 0 ∀j ∈ {1,2, . . . ,m}.
We note that if x̄ is optimal for the problem (FP) then x̄ is also optimal for the following

problem

(FP1)

min
f (x)

g(x)

subject to
hj (x)

g(x)
� 0 ∀j ∈ J and hk(x) � 0 ∀k ∈ K.

This form of (FP1) suggests the choice of the incomplete Lagrange function LF :SK ×
R

|J |
+ → R as follows:

LF (x,λJ ) = f (x) + (λJ )T hJ (x)

g(x)
.

Definition 3.3. A point (x̄, λ̄J ) ∈ SK × R
|J |
+ is called a saddle point of the incomplete Lagrange

function LF if

LF (x̄, λJ ) � LF (x̄, λ̄J ) � LF (x, λ̄J ) ∀(x,λJ ) ∈ SK × R
|J |
+ .

Theorem 3.3. Let S be an open subset of X ≡ Rn, f and h1, . . . , hm be real functions on S and
Gâteaux differentiable at x̄ with x̄ ∈ S. F be a m-dimensional vector subspace of X and x̄ be
optimal for (FP). Assume that

(i) LF (·, λJ ) is pseudo invex and (λK)T hK(·) is quasi invex at x̄ with respect to a function η

for any (λJ ,λK) in Rm+;

(ii) f
g

is (X,F )-differentiable at x̄;

(iii) h1
g

, . . . , hr

g
, hr+1, . . . , hm are (X,F )-differentiable at x̄ and (X,F )-continuous at x̄;

(iv) D((h1 , . . . , hr , hr+1, . . . , hm))(x̄)(F ) = Rm.

g g
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Then there exists λ̄J ∈ R
|J |
+ such that (x̄, λ̄J ) is a saddle point of the incomplete Lagrange func-

tion LF .

Proof. Since x̄ is optimal for (FP) (and hence for (FP1)), applying Theorem 2.2 in case E =
X = Rn, U = S for f

g
and h1

g
, . . . , hr

g
, hr+1, . . . , hm, we can find λ̄ = (λ̄J , λ̄K) in R

|J |
+ × R

|K|
+ ,

such that

∇
[
f (x̄)

g(x̄)
+ (λ̄J )T

hJ (x̄)

g(x̄)
+ (λ̄K)T hK(x̄)

]
= 0,

(λJ )T hJ (x̄) = 0 and (λK)T hK(x̄) = 0.

Fix x in SK , we have (λ̄K)T hK(x) � 0 = (λ̄K)T hK(x̄). By the quasi-invexity of (λ̄K)T hK(·)
with respect to the function η at x̄, we obtain

η(x, x̄)T ∇[
(λ̄K)T hK(x̄)

]
� 0.

Thus

η(x, x̄)T ∇
[
f (x̄)

g(x̄)
+ (λ̄J )T

hJ (x̄)

g(x̄)

]
� 0.

By the pseudo-invexity of f (·)+(λ̄J )T hJ (·)
g(·) with respect to the function η at x̄, we see that

f (x)

g(x)
+ (λ̄J )T

hJ (x)

g(x)
� f (x̄)

g(x̄)
+ (λ̄J )T

hJ (x̄)

g(x̄)
.

And we get

LF (x, λ̄J ) � LF (x̄, λ̄J ).

If λJ is in R
|J |
+ , we have

LF (x̄, λ̄J ) = f (x̄)

g(x̄)
+ (λ̄J )T

hJ (x̄)

g(x̄)
= f (x̄)

g(x̄)
� f (x̄)

g(x̄)
+ (λJ )T

hJ (x̄)

g(x̄)
= LF (x̄, λJ ).

Thus we get the theorem. �
Problem 3: Generalized fractional programming problem

Let f1, . . . , fp, g1, . . . , gp,h1, . . . , hm be real functions on an open subset S of Rn. Put

Sh = {
x ∈ S: hj (x) � 0, j ∈ {1, . . . ,m}},

SK = {
x ∈ S: hk(x) � 0, k ∈ K

}
.

Assume that g1(x), . . . , gp(x) �= 0 for any x in S and g1(x), . . . , gp(x) are positive for every
x in Sh. We consider the generalized fractional programming problem

(GFP)
min
x∈S

max
1�i�p

fi(x)

gi(x)

subject to hj (x) � 0 ∀j ∈ {1,2, . . . ,m}.
Put Y = {y ∈ R

p
+,

∑p

i=1 yi = 1}. The incomplete Lagrange function LG :SK ×Y × R
|J |
+ → R

for the problem (GFP) can be chosen as

LG(x, y,λJ ) = yT f (x) + (λJ )T hJ (x)

yT g(x)
.
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Definition 3.4. A point (x̄, ȳ, λ̄J ) ∈ SK × Y × R
|J |
+ is called a saddle point of the incomplete

Lagrange function LG if

LG(x̄, y,λJ ) � LG(x̄, ȳ, λ̄J ) � LG(x, ȳ, λ̄J ) ∀(x, y,λJ ) ∈ SK × Y × R
|J |
+ .

We consider the problem

(EGFP)v

minq

subject to fi(x) − vgi(x) � q and

hj (x) � 0 ∀(i, j) ∈ {1, . . . , p} × {1, . . . ,m}.
We have the following lemma (see [2, Lemma 2.3, p. 9]).

Lemma 3.1. The point x∗ is (GFP) optimal with corresponding optimal value of the (GFP)

objective equal to v∗ if and only if (x∗, q∗) is (EGFP)v∗ optimal with corresponding optimal
value of the (EGFP)v∗ objective equal to 0, i.e., q∗ = 0.

Now we define

Hv∗
(x, q) = q ∀(x, q) ∈ S × R,

Gv∗
1i (x, q) = fi(x) − v∗gi(x) − q ∀(x, q, i) ∈ S × R × {1, . . . , p},

Gv∗
2j (x, q) = hj (x) ∀(x, q, j) ∈ S × R × {1, . . . ,m}.

Theorem 3.4. Let S be an open subset of X ≡ Rn, f1, . . . , fp, g1, . . . , gp,h1, . . . , hm be real
functions on S and Gâteaux differentiable at x̄ with x̄ ∈ S. F be a (p + m)-dimensional vector
subspace of X × R ≡ Rn × R and x̄ be optimal for (GFP) with corresponding optimal value of
the (GFP) objective equal to v∗. Assume that

(i) LG(·, y, λJ ) is pseudo invex and (λK)T hK(·) is quasi invex at x̄ with respect to a function
η for any (y,λJ ,λK) in Y × Rm+;

(ii) Gv∗
11, . . . ,G

v∗
1p , Gv∗

21, . . . ,G
v∗
2m are (Rn × R,F )-differentiable at (x̄,0) and (Rn × R,F )-

continuous at (x̄,0);
(iii) D((Gv∗

11, . . . ,G
v∗
1p , Gv∗

21, . . . ,G
v∗
2m))(x̄,0)(F ) = Rp+m.

Then there exists (ȳ, λ̄J ) ∈ Y × R
|J |
+ such that (x̄, ȳ, λ̄J ) is a saddle point of the incomplete

Lagrange function LG.

Proof. Because x̄ is an optimal value of (GFP) with corresponding optimal value of the (GFP)

objective equal to v∗, by Lemma 3.1, (x∗, q∗) is (EGFP)v∗ optimal with corresponding optimal
value of the (EGFP)v∗ objective equal to 0. Then the problem

(L)
minHv∗

(x, q)

subject to Gv∗
1i (x, q) � 0 and Gv∗

2j (x, q) � 0 ∀(i, j) ∈ {1, . . . , p} × {1, . . . ,m}
has an optimal solution (x∗, q∗) with q∗ = 0.
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Applying Theorem 2.2 in case E = X = Rn ×R, U = S ×R for Hv∗
and Gv∗

11, . . . ,G
v∗
1p,Gv∗

21,

. . . ,Gv∗
2m, there exists (ȳ, λ̄J , λ̄K) ∈ R

p
+ × R

|J |
+ × R

|K|
+ such that

DHv∗
(x̄,0)(k, l) +

p∑
i=1

ȳiDGv∗
1i (x̄,0)(k, l) +

m∑
j=1

λ̄jDGv∗
2j (x̄,0)(k, l) = 0, (∗)

for every (k, l) ∈ Rn × R and

ȳi

[
fi(x̄) − v∗gi(x̄)

] = 0 ∀i ∈ {1, . . . , p},
(λJ )T hJ (x̄) = 0, (λK)T hK(x̄) = 0, λ̄ = (λ̄J , λ̄K) � 0, ȳ � 0.

If l in (∗) is equal to 0, we have

∇[
ȳT f (x̄) − v∗ȳT g(x̄) + (λ̄J )T hJ (x̄) + (λ̄K)T hK(x̄)

] = 0.

If k in (∗) is equal to 0, we have
∑p

i=1 ȳi = 1 or ȳ ∈ Y .
Now arguing as in the proof of Theorem 2.5 in [2], we get the theorem. �
We consider the following propositions:

(A3) x̄ be optimal for (GFP) with corresponding optimal value of the (GFP) objective equal
to v∗.

(A4) x̄ has the following properties:

∇[
ȳT f (x̄) − v∗ȳT g(x̄) + (λ̄J )T hJ (x̄) + (λ̄K)T hK(x̄)

] = 0,

ȳi

[
fi(x̄) − v∗gi(x̄)

] = 0 ∀i ∈ {1, . . . , p},
(λJ )T hJ (x̄) = 0, (λK)T hK(x̄) = 0, λ̄ = (λ̄J , λ̄K) � 0, ȳ � 0,

p∑
i=1

ȳi = 1.

Theorem 3.5. Let S be an open subset of X ≡ Rn, f1, . . . , fp, g1, . . . , gp,h1, . . . , hm be real
functions on S. Let x̄ be in S.

(i) If the conditions (ii), (iii) of Theorem 3.4 are fulfilled then (A3) implies (A4).
(ii) If ȳT f (·) − v∗ȳT g(·) + (λ̄J )T hJ (·) + (λ̄K)T hK(·) is Gâteaux differentiable at x̄ and invex

with respect to the function η at x̄ then (A4) implies (A3).

Proof. Applying Theorem 2.2 in case E = X = Rn ×R, U = S ×R for Hv∗
and Gv∗

11, . . . ,G
v∗
1p,

Gv∗
21, . . . ,G

v∗
2m (we define in p. 453) and with the same proof of Theorem 3.4, we get (i).

Consider (ii). Since the map ȳT f (·) − v∗ȳT g(·) + (λ̄J )T hJ (·) + (λ̄K)T hK(·) is invex with
respect to the function η at x̄, for every x ∈ Sh, we have

ȳT f (x) − v∗ȳT g(x) + (λ̄J )T hJ (x) + (λ̄K)T hK(x)

− [
ȳT f (x̄) − v∗ȳT g(x̄) + (λ̄J )T hJ (x̄) + (λ̄K)T hK(x̄)

]
� η(x, x̄)T ∇[

ȳT f (x̄) − v∗ȳT g(x̄) + (λ̄J )T hJ (x̄) + (λ̄K)T hK(x̄)
] = 0.
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Thus

ȳT f (x) − v∗ȳT g(x) � ȳT f (x) − v∗ȳT g(x) + (λ̄J )T hJ (x) + (λ̄K)T hK(x) � 0.

It implies that Maxi=1,p
fi (x)
gi (x)

� v∗, for every x ∈ Sh and we get (ii). �
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