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Abstract

We prove a version of Lagrange multipliers theorem for nonsmooth functionals defined on normed
spaces. Applying these results, we extend some results about saddle point optimality criteria in mathe-
matical programming.
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1. Introduction

Let U be an open neighborhood of a vector x in a normed space E, g1, ..., gy and f be real
functions on U. We consider the following optimization problem with inequality constraints:

min
PI) F) .
st. g(y)<0 Vi=1,...,N.
If E is a Banach space, x is a solution of (PI), g1,..., gy and f are Fréchet differentiable
at x and D((g1, ..., gn))(x)(E) = R", Ioffe and Tihomirov in [7] proved that there are a real
number a( and nonpositive real numbers ay, ..., ay such that (ag, ...,ay) #0 € RN+ and

aoDf (x) =a1Dgi(x) + -+ +anDgn(x).
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In [4], Halkin extended this result to the following optimization problem:

min f(y)
(PIE) st g()<0 Vi=1,...,n,
gn+j()=0 Vj=1,...,N —n.

Halkin also proved that ay, ..., a, are nonpositive. Furthermore, if g1, ..., gny are not only
Fréchet differentiable but also C! at x, that is the Fréchet derivatives of g1,..., 8N €xist on a
neighborhood of x and are continuous at x, Ioffe and Tihomirov in [7, p. 73] proved that ag in
their cited result is not equal to 0.

Using the notation of generalized gradients, Clarke, Ioffe, Michel and Penot, Mordukhovich,
Rockafellar and Treiman have extended the above results for Lipschitz constraint functions in
[3,5,6,10,11,17,19,20]. In [21,22], Ye considered the problem (PIE) with mixed assumptions of
Gateaux, Fréchet differentiability and Lipschitz continuity of constraint functions. In [8,9,12—
16], using the extremal principle, Kruger, Mordukhovich and Wang consider the problem (PIE)
for locally Lipschitzian constraint functions on subsets in Asplund spaces.

If N =1, we reduced the Lagrange multipliers rule to a two-dimensional problem in [1] and
obtained a version of Lagrange multipliers theorem, in which we only required the smoothness of
the restrictions of f and g on F'NU, where F is any two-dimensional vector subspace containing
x of E. This smoothness is very weak and may not imply the continuity of the functions.

In the next section of the present paper, we prove a discrete implicit mapping theorem (see
Lemma 2.1) and apply it to extend the results in [1] to the case N > 1 for f and g, whose
restrictions on F N U are smooth for any (N 4 1)-dimensional vector subspace F containing x
of E. We note that our results can be applied to functions which are not C'-Fréchet differentiable
neither Lipschitz continuous, even they are not continuous at x (see Remark 2.3). Applying these
results, we extend some results of Bector et al. [2] in the last section.

2. Lagrange multipliers rule

Let U be a nonempty open subset of a normed space (E, || - ||g), X be a linear subspace of
E, Z be a finite-dimensional linear subspace of X and J be a mapping from U into a normed
space Y. We consider Z as a normed subspace of X. Let v be a vector in X and x be in U. Denote
by Z(v) and Z (x, v) the vector subspaces of E generated by Z U {v} and Z U {x, v}, respectively.
We put

Ucrz={yeZ: x+yeU},
Jx,Z(y) =Jx+y) Vye Ux,Z'

Then Uy, 7z is an open subset of Z. We say

(1) J is (X, Z)-continuous at x on U if and only if for every v in X, there is a positive real
number 7, such that J,, 7z is continuous at 0 for any u in Z(x, v) N Bg(x, ny);

(i) J is X-differentiable at x if and only if there exists a linear mapping D J (x) from X into Y
such that

. Jx+th)—J(x)
lim ——M—~=

=DJ(x)(h) VhelX;
t—0 t
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(iii) J is (X, Z)-differentiable at x if and only if J is X-differentiable at x and for any v in X, if
the sequence {(4,,, t)}men C Z(v) X R converges to (h,0) in Z(v) x R then
J tmhm) — J
lim L) = TC) oy,

m—00 tm

Remark 2.1. Let J be a linear mapping from E into R”, X be a linear subspace of E and Z be
a finite-dimensional vector subspace of X. It is clear that J is (X, Z)-continuous at any x in E
and (X, Z)-differentiable at any x in E although it may not be continuous on E.

Remark 2.2. If J is (X, F)-differentiable at x then there are a positive real number €, and a
mapping ¢, from Bg (0, €,) N Z(v) into Y such that Bg(x, €,) C U, lim,_,¢ ¢,(z) =0 and
J(x+2)=J(x)+DJx)(2) + llzlledv(@)  Vz € Be(0,€) N Z(v).
Indeed, it is sufficient to prove that

i @D I -DI@E) _
Z€Z(v),z—>0 lzlle B

0.

We assume by contradiction that there exist a sequence {z,,}men in Z(v) and a positive real
number € such that 0 < ||z, ||z <m ™! and

J(x+2zm) =J(x) = DI (x)(zm)

>¢ VneN. (%)
|Zm| E

Y

We put s, = ||zm||glzm € Z(v). Because Z(v) is a finite-dimensional subspace of X, there
exists a subsequence {s;; }keN Of {S;}men such that limg_, o 5, = in Z(v). Because J is
(X, F)-differentiable at x then

o Jx ) —JX) . Jx Nz ESmy) — T (X)
lim = lim
k—>00 |z Il E k=00 |z | E

=DJ(x)(s).

Since Z(v) is finite-dimensional, D f (x) is continuous on Z(v) and

Zmy

lim DJ(x)( ) = lim DJ(x)(sm,) = DJ(x)(s).
k— 00 ”ka”E k—o00

Then we have
lim J(x +zm) — J(x) = DI (X)(Zmy) _

07
k=00 zm Nl £

we get the contradiction with () and we get the result.
We have the following result:

Lemma 2.1 (Discrete Implicit Mapping Theorem). Let U be an open neighborhood of a vector
Xx in a normed linear space E, X be a vector subspace of E, F be a n-dimensional vector
subspace of X and g be a mapping from U into R" with g = (g1, ..., gn). Assume that g is
(X, F)-continuous and (X, F)-differentiable at x.

Put M={yeU: g(y)=gx)}and e; = (81.1, .80 foranyiin {1, ..., n}, where 8{ is the
Kronecker number.

Let v be in X and hy, ..., h, be nvectors in F such that Dg(x)(v) =0 and Dg(x)(h;) = e;
foranyiin{l,...,n}
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Then there exist a sequence {s,, = (s,L, ooy Sh)tmen converging to 0 in R" and a sequence of
positive real numbers {0, }men converging to 0 in R such that

umzam(s,llhl+~~-+s,’}1hn)+amv+xeM Vm e N.

Proof. We can assume without loss of generality that x = 0 and g(x) = 0. Fix a vector v in X
such that Dg(0)(v) = 0. By Remark 2.1 about the (X, F')-continuity and (X, F')-differentiability
of g at 0, there is a positive real number €, and a mapping ¢, from Br)(0,€,) = F(v) N
Bg(0, €y) to R" such that: Bg(x,€,) C U, gy r is continuous at O for every y € Br (0, €y),
1imy~>0 (o ()’) =0and

8(2) = Dg(0)(2) +lIzllEpv(z)  Vz € Br)(0, €).

There is a real positive number r such that asihg +- +5"h, +v) belongs to Br(y)(0, €,)
for any (a,s',...,s") € (0,r) x B,(0,r), where Bi(0,p) = {t = (t',....t*) e R*: ||t||p =
VD2 4+ (192 < p).

We put

n(s)=s'hi+---+s"h, Vs= (sl, . ..,s”) € B,(0,r),
Gy(s) =a_1g(a(n(s) + v)) Y(a,s) € (0,r) x B,(0,r).
Because gy, r is continuous at 0 for every y in Br)(0, €,), we see that G is continuous on
B, (0, r) for any fixed « in (0, r) and

Gy(s) =a_1g(a(s1h1 44+ 5"h, + v)) =oz_1g(a(n(s) + v))
=a 'Dg0)(a(n(s) +v)) +a " |a(nls) +v)| zoo(a(nls) +v))
= Dg(0)(n(s)) + [ n(s) + v zpu (@ (n(s) +v))
= (sl, . ..,s”) + ||17(s) + v||E¢v(a(17(s) + v)) Vs = (sl, s") € B,(0,r).

Note that there is a positive real number M such that |[n(s) + v||g < M for any s =
(s',...,s™) in B,(0,r). Thus

0%i_r)r})[sup{ ||¢U(ot(n(s) + v)) ||E (sl, e, s") € B, (0, r)}] =0
and

(Gals), 5)={s,9) + () + v gu (e (n(s) +v)). 5)
= m_2{l — mMHq)v(oz(n(s) + v))”E} Vs € 0B, (O, m_l),

where m is an integer greater than r~!.
Thus there is a real number &, in (0, m~!) such that

(Gam (s), s) >0 Vse aBn(O, m_l).
By Lemma 4.1 in [18, p. 14], we have a solution s, in B, (0, m_l) to the equation G, (s) =0

for any integer m greater than r~!, which yields the lemma. O

Remark 2.3. If £ is a Banach space, U is an open subset of E, g is Fréchet differentiable on
U and Dg is continuous at x, then by the Ljusternik theorem (see [7, p. 41]), M is a manifold
and the tangent space T M, = Dg(x)~'({0}). Moreover, M is a C !_manifold if g is C'-Fréchet
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differentiable on U (see [23, Theorem 43.C]). The smoothness of g in Lemma 2.1 is very weak
so that M may not be a smooth manifold and we cannot define the tangent space of M at x.
Note that the sequence {c,, Y(um — x)}men converges to v in E. Therefore, we can admit v as
a “generalized” tangent vector of M at x for any v in Dg(x)~!({0}), if we consider {u,, };en as
a discrete curve passing through x. This idea is illustrated by the following example.

Let E=X=U =R3 and Z =R x {0} x {0}. We define

Pi={(s,0) eR* I, ) eQ x Q, as + pt =0},

Py={(s,1) eR%: Vs2 +12€Q},

P =[P NPIU[(R*\ P)N(R*\ P)],

A={(rs.1) R (s,1) € P},

B:{(r,s,t)eR3: r=0, s >0, t:sz},

grys,t) =r+ (s> + 1) xa(r,s,0) + xp(r,s, ) V(r,s,0) €R?,

where yc is the characteristic function of the set C.

Letv = (0, s, 7) in R? such that st # 0. Put 8, = 1+/s722 4+ s=#*, we have B ((0, 0, 0), §,)N
Z () N B = . Therefore, for any v in {0} x R2, there is a positive real number §, such that
BE((0,0,0),8,) N Z(v) N B =@. Thus we see that g is (X, Z)-continuous at (0, 0,0) and
(X, Z)-differentiable at (0,0,0). But g is not Fréchet differentiable at (0, 0,0) because g is
not continuous at (0, 0, 0). Put M ={(r, s, 1) € R3: g(r,s,t)=g(0,0,0)}, we have

Dg((0,0,0))(Z2) =R,
M={0,5,0: (s,t) ¢ (PUBU{(rs,1): (s,1) €(P\ B), r =—s> —1*}.

Note that (0, s, t) is a “generalized” tangent vector of M at (0, 0, 0) for any (s, ¢) in R2.
The results in [3—7,17,19-22] cannot be applied to this case. It is easy to derive this example
to the case of vector functions.

The idea of “generalized” tangent vectors is essential to get the following generalized La-
grange multipliers theorem.

Theorem 2.1. Let U be an open subset of normed vector space E, X be a vector subspace of
E, F be a n-dimensional vector subspace of X, u be in U, r be in R", f be a mapping from
UintoR, g =(g1,...,8n) be a mapping from U intoR", M ={x e U: g(x)=r}andu € M.
Assume that

(1) f(u) is the minimum (or maximum) of f (M),

(i) f is (X, F)-differentiable at u,
(iii) g is (X, F)-continuous at u and (X, F)-differentiable at u,
(v) Dg(u)(F) =R"

Then there exists a unique mapping A € L(R", R) such that

Df () (k) = A(Dg(u)(k)) Vk € X.
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Proof. Assume f(u) is the minimum of f(M). Choose n vectors Ay, ..., h, in F such that
Dg(u)(h;) =e; = (81-1, e, 8?) forany i in {1, ..., n}. We define a real linear mapping A on R”"
as follows:

A(e;))=Dfwm)(h;) Vi=1,...,n.

Now fix a vector k in X. Put

n
v=k— Y Dgiu)(k)h; € X.
i=1
Then Dg(u)(v) =0. By Lemma 2.1, there are a sequence {o, },en Of positive real numbers
and a sequence {s;, = (s,}w oo Sh)tmen in R” such that {0, }men and {s;, }men converge to 0 in
R and R” respectively, u,, € U, and g(u,,) = g(u), where
Uy =U +am(s,1nh1 + .. —}—sﬁ,hn) +oauv VmeN,

or u, € M for every m € N.
Since f(u) is the minimum of f(M) and f is (X, F)-differentiable at u, we have

Df (u)(k) — A(Dg(u)(k))
= Df (k) — A (Z Dg; (u)(k)ei>

i=1

= Df)(k) — Y Di(w)(k)A(er) = Df (w)(k) — Y _ Dgi(u) (k) Df () (hy)

i=1 i=1

n n
=Dfu)(k) — Df (u) (Z Dgi (u)(k)hz) =Df(u) (k - Z Dygi (u)(k)hz)
i=1 i=1
Lf (et om(sphi+ ot spha +0) = f@
U -

Therefore, Df (u)(k) > A(Dg(u)(k)) for any k in X. Replacing k in the above inequality
by —k, we get the theorem.

Since Dg(u)(F) =R", we can get the uniqueness of A.

The proof for the case f(#) =max f (M) is similar and omitted. O

=Dfu)(v) = lim

Remark 2.4. If E is a Banach space, g is Fréchet differentiable on U and Dg is continuous at u,
then Theorem 2.1 has been proved in [7, p. 73]. Here we only need the differentiability of f and
g atu.If n =1, Theorem 2.1 has been proved in [1].

Theorem 2.2. Let U be an open subset of normed vector space E, X be a vector subspace of E,
F be a (n + m)-dimensional vector subspace of X, u be in U, f be a mapping from U into R,
g=(g1,...,8n1tm) be a mapping from U into R"*™ and

M:{er: 8&i(x) <0, gntj(x)=0Vie{l,...,n}, je{l,...,m}}.

Assume that

(1) u e M and f(u) is the minimum of f (M),



D.M. Duc et al. / J. Math. Anal. Appl. 323 (2006) 441-455 447

(i) f is (X, F)-differentiable at u,
(iii) g is (X, F)-continuous at u and (X, F)-differentiable at u,
(iv) Dg(u)(F)=R""".

Then g(u) = 0 and there exists a unique (ay, ..., dpym) in R"™™ such that ai, . . ., a, are nega-
tive and

n—+m

Df (k)= ) aiDgiw)(k) VkeX.

i=1
Proof. We prove the theorem by the following steps.

Step 1. Put @ = (a1, ..., 0u4m) = g(u) and S ={x € U: g(x) = a} we see that S C M. Since
f (1) =min f(S), by Theorem 2.1, there exists a unique (ay, ..., ay4,) in R"*™ such that

n+m

Dfu)(k) =) aiDgiw)(k) VkeX.

i=1

Step 2. We prove that a; < 0 for every i € {1,...,n}. First, we prove that a; < 0. Since
Dg(u)(F) = R"™™ there is k in F such that Dg(u)(k) = —1 and Dgy(u)(k) = --- =
Dg,(u)(k) = —¢ <0and Dg,y;(u)(k) =0 forany jin {I,...,m}.

Let {hi}i=1,..,n+m be in F such that Dg(u)(h;) = (8}, ...,8"") forany i € {1,...,n +m},
we have

D(gnt1s- s gnam) @) () = (87T, 081T™) VYie{n+1,...,n+m).

,,,,,

By Lemma 2.1, there are a sequence {s; = (sl"+1, el sl”+'")}leN converging to 0 in R™ and a

sequence of positive real numbers {o;};cn converging to 0 in R such that

u = q (sl"Hh,H_l o S R + k4 u,
(gl’l-l—lv B gn+m)(ul) = (gn-i-l» ceey gn+m)(u) =0 VvieN.
Note that

lim giuy) —gi(u) lim i (@ (] hyt A S B + ark + ) — gi ()

=00 o =00 o

= Dgi(u)(k) <0 Vie{l,...,n}.

Thus there exists Iy € N such that
gilu) <giw) Viell,...,n}, Vi=l,

which implies that u; is in M for any / > [y and

—m—s}:m:vaxm:1m1£@2:12220 Ve > 0.
i [—o00 o

Let ¢ tend to 0, we have —aj > 0 or a; < 0. Since Dg(u)(F) = R""", we have a; < 0.
Similarly, we have

a <0 Vi=1,...,n.
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Step 3. We shall prove g(u) = 0. Put
1= {i e{l,...,n}: gi(u) <0} and J = {j el{l,...,n} gj(u)=0}.
We assume by contradiction that / is not empty. In this case, we see that
Zai <0. (D
iel

On the other hand, there is k in F such that

Dgi(u)(k)=1 Viel,
Dgjwyk)=—¢ Vjel,
Dgnti(u)(k)y=0 VvVi=1,...,m.

By Lemma 2.1, there are a sequence {s; = (sl"+], el sl”J“")}lEN converging to 0 in R™ and
a sequence of positive real numbers {o;};cn converging to 0 in R such that
U =o (sl"+1h,,+1 +. 4+ s1"+mhn+m) +ajk+u and
0=(gn+1s--+s &utm) W) = (gut1s---» &u+m)w) VI€N.
We have

lim giu) —gi(u) lim i (i (s gt A A ST ) F ok ) — gi ()

=00 o] =00 o)

—Dgiw)k)=1 Viel.

Thus lim;_,  gi (#;) = gi (u) < 0. Then there exists an integer /1 such that
giu) <0 Viel, VI>1.
We have

o 850 8@ gy @ g ST ) ek w) — gy @)

[—o0 o =00 o

=Dgiu)k)=—e<0 Vjel.

Thus there exists /5 € N such that
giu) <gjw)y=0 Vjel, Vi=1.
Therefore u; is in M for any [ > max{l;, [} and

Zai—SZaszf(u)(k)zlglgoM>O Ve > 0.

(09
icl jeJ !

It implies that ) *;_; a; > 0, which contradicts to (1) and / should be empty and we get the
result. O
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3. Applications in programming problems

Let X = R" denote the n-dimensional Euclidean space and let R’ be its nonnegative or-
thant. Let f, hy,..., h,, be real functions on an open subset S of R”. We consider the following
nonlinear programming problem

min f(x)
subjectto  hj(x) <0 Vje{l,2,...,m}.
Put J ={1,...,r} and K ={r +1,....,m}, hy(x) = (h1(x),...,h-(x)) and hg(x) =

(hy41(x), ..., hy(x)) for any x in S. Let h(x) denote the column vector (h(x), ho(x),...,
hm(x))T and be partitioned as h(x) = (hy(x), hg (x))T. We denote

(P)

Shz{xeS: hj(x) <0, je{l,...,m}},
Sk ={xeS8: h(x) <0, keK}.
Leta=(ay,...,ay) € RN with N € N. We say a > 0 (or < 0) if and only if @; > 0 (or < 0)
foreveryi e {l,..., N}

Definition 3.1. Let S be an open subset of R”, u be in S, g be a real function on S and Géateaux
differentiable at u, and 7 is a function from S x S to R”. We say

(i) the function g is said to be invex at u with respect to the function 7, if for every x € S, we
have

g(x) — g(w) =n(x,u)" Vgu);

(ii) the function g is said to be pseudo-invex at u with respect to the function 7, if for every
x € S, we have

N, ) Vew) >0 = gx) = gu);

(iii) the function g is said to be quasi-invex at # with respect to the function 7, if for every x € S,
we have

gx)<gw) = nlx.uw) Vg <O0.
Applying results in the first section, we study the following programming problems.
Problem 1: Nonlinear programming problem

Let f, g, h1, ..., hy be real functions on an open subset S of R”. Let J, K, h; and hg be as
in the beginning of this section.

Put L(x, A7) = f(x) + (Ay)Thy(x) for any (x,Ay) in Sg X ]RLZ'. The map L is called the
incomplete Lagrange function of the problem (P).

Definition 3.2. A point (¥, 1;) € Sk x Rlﬂ is called a saddle point of the incomplete Lagrange
function L if

L& 2) <L@E &) <L(x.2y) Y(x.ip)eSg xR
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Theorem 3.1. Let S be an open subset of X =R", f and hy, ..., hy be real functions on S and
Gateaux differentiable at x with x € S. F be a m-dimensional vector subspace of X and x be
optimal for (P). Assume that

() L(-, Ay) is pseudo invex and (Ax )T hi () is quasi invex at X with respect to a function n for
any (A, Ag) in RY;
(i) f is (X, F)- differentiable at x;
(iii) h is (X, F)-differentiable at x and (X, F)-continuous at X,
(iv) Dh(x)(F)=R"

Then there exists A € le‘ such that (¥, A7) is a saddle point of the incomplete Lagrange func-
tion L.

Proof. Applying Theorem 2.2 in case E = X =R", U = § for f and {h;} there exists

A=y, k) R X, € R‘Jfl, Ak € R‘fl, such that
V@ + 0D hy @ + x) hg (@] =0,
ONThy®) =0,  (x)Thg(x) =0,
A=Ay, Ag) = 0.

j=Lm

Now arguing as in the proof of Theorem 2.1 in [2], we get the theorem. O
We consider the following propositions.

(A1) x be optimal for (P).
(A2) There are positive real numbers A, ..., A, such that #;(x) =0 forany i in {1, ..., m} and
Df(x) + A1 Dhi(X) + -+ Ay Dhy (x) = 0.

We have the following result.

Theorem 3.2. Let S be an open subset of X =R", f and hy, ..., hy, be real functions on S. Let
X bein S. Then

G) if f, h, ..., hy satisfy the conditions (ii), (iii) and (iv) of Theorem 3.1, then (A1) implies
(A2);
(i) if f(-)+ D7 Aihi(+) is Gateaux differentiable at X and invex with respect to the function
at x then (A2) implies (A1).
Proof. Applying Theorem 2.2 incase E =X =R", U = S for f and {hj}j:m, we get (i).
Consider (ii). By the invexity property of f(-) + Zl’-"zl Aih;(-) with respect to the function n
at x, we have

FO)+ Y hihix) — [.f(i) + inhim}

i=1 i=1

> n(x,i)TV|:f + Z/\ihi:|(i) =0 Vxes,.

i=1
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It follows that

FO = f)+ Y hihi) > FE) + Y Aihi(F) = f(E) VxS,

i=1 i=1

and we get (ii)). O
Problem 2: Fractional programming problem

Let f, g, hy, ..., h, be real functions on an open subset S of R”. Let J, K, h; and hg be as
in the beginning of this section. Put
Sp={xeS: hjx)<0, je{l,....m}},
Sk ={x€S8: hi(x) <0, ke K}.

Assume that g(x) # 0 for any x in S and g(x) > O for any x in Sx. We now consider the
fractional programming problem

f)
min

(FP) g(x)
subjectto h;(x) <0 Vje{l,2,...,m}.

We note that if x is optimal for the problem (FP) then X is also optimal for the following
problem

. f(x)
min
(FP1) 8(x) hG)
subject to % <0 VjeJandhi(x)<OVkeK.
gX

This form of (FP1) suggests the choice of the incomplete Lagrange function Lp:Skx x
R‘Jrjl — R as follows:

F&)+0nNThyx)
g(x) '

Lrp(x,2y)=

Definition 3.3. A point (¥, 1;) € Sg x Rlﬂ is called a saddle point of the incomplete Lagrange
function L g if

Lr(E, ) <SLp(E, A7) <Lp(x,h;) Y(x,As) € Sg xRL

Theorem 3.3. Let S be an open subset of X =R", f and hy, ..., hy, be real functions on S and
Gateaux differentiable at X with x € S. F be a m-dimensional vector subspace of X and x be
optimal for (FP). Assume that

(i) Lr(-, Ay) is pseudo invex and )T hi () is quasi invex at X with respect to a function n
forany (Aj, Ag) in R%;
(ii) g is (X, F)-differentiable at x;
(iii) %1, el };—’, hyst, ..., hy are (X, F)-differentiable at x and (X, F)-continuous at X;
@iv) D((’;—l,...,%,hr+1,...,hm))()z)(F):Rm.
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Then there exists A € RL{‘ such that (x, 1) is a saddle point of the incomplete Lagrange func-
tion L.

Proof. Since x is optimal for (FP) (and hence for (FP1)), applying Theorem 2.2 in case E =

X=R",U=S for g and %,...,};—’,hrﬂ,...,hm,wecanﬁndi:()_\J,XK) inRL{l X ]le‘,
such that
x) - (x)
v[f_ + TS LG hK(x)}
g(x) g(x)

ONThy(®) =0 and (gx) hg(¥)=0.

Fix x in Sk, we have (Ax) T hi (x) < 0= (*x)T hg (X). By the quasi-invexity of (Ax)T hx ()
with respect to the function 5 at x, we obtain

NG, ©)T V[ hg ()] <0

Thus
h
n(x,f)TV[f()f) an’ ’(x)} >0.
8(x) (x)
By the pseudo-invexity of W with respect to the function 7 at x, we see that
SN LA CO R A C)) hy(X)
+G)" +G)’
§(x) g(x) g(x) g(x)
And we get

Lp(x,Ay) = Lp(x, Ay).
If Ay isin Rl_gl, we have

f &) T hy) _ fO _ f&) hy (%)

Lp(@,hp) ="+ @ —+ 0" =Lp(X,2).
g(x) gx)  g(x) g(X) 8(x)
Thus we get the theorem. O
Problem 3: Generalized fractional programming problem
Let f1,..., fp,81s---,&ps M1, ..., hy be real functions on an open subset S of R". Put

Sp={xeS: hjx)<0, je{l,....m}},
Sk ={xe€S: h(x) <0, ke K}.

Assume that g1(x), ..., gp(x) #0 for any x in § and g1 (x), ..., gp(x) are positive for every
x in Sj,. We consider the generalized fractional programming problem

min fi(x)
(GFP) XGSl<l<p gi(x)
subjectto hj(x) <0 Vje{l,2,...,m}.

PutY ={ye R+, Zi:l y; = 1}. The incomplete Lagrange function L : Sk X Y X le‘ —-R
for the problem (GFP) can be chosen as
Y foo)+ (/\J)ThJ(X)
y'g(x)

LG(-xvyﬂ)"J)_
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Definition 3.4. A point (¥, y,A;) € Sk x ¥ X ]Rl_:l is called a saddle point of the incomplete
Lagrange function L¢ if

- - - T - T J
LG (%, y, k1) S LG(%, 3, h7) < Lg(x, 3, 47) V(x,y,h7) €Sk x ¥ x R/I.

We consider the problem
ming
(EGFP), subjectto fi(x)—vgi(x)<g and
hj(x) <0 V@G je{l,...,p}x{1,...,m}.

We have the following lemma (see [2, Lemma 2.3, p. 9]).

Lemma 3.1. The point x* is (GFP) optimal with corresponding optimal value of the (GFP)
objective equal to v* if and only if (x*,q*) is (EGFP)yx optimal with corresponding optimal
value of the (EGFP),+ objective equal to 0, i.e., g* = 0.

Now we define

H”*(x,q)zq V(x,q) €S xR,
Vrg)=fi(x) —v'gi(x) —q V(x.q.i)eSxRx{l,....p}
Gy (x.q)=hj(x) ¥(x.q.j))eSxRx{l,....m}.

Theorem 3.4. Let S be an open subset of X =R", f1,..., fp,81,...,8p,h1,..., i be real
functions on S and Gdteaux differentiable at x with x € S. F be a (p + m)-dimensional vector
subspace of X x R=R" x R and x be optimal for (GFP) with corresponding optimal value of
the (GFP) objective equal to v*. Assume that

() Lg(-,y,Ay) is pseudo invex and (Ag)T hi () is quasi invex at X with respect to a function
n forany (y,Aj,Ag) in Y x R
(ii) G‘f‘[,...,G'f;, GY,...,GY are (R" x R, F)-differentiable at (%,0) and (R" x R, F)-
continuous at (x,0);
(i) D((GY),...,GY,, GY,..., G} N(F, O)(F) =R,

Then there exists (y, rj) el x R‘_:l such that (x,y, Xy) is a saddle point of the incomplete
Lagrange function Lg.

Proof. Because x is an optimal value of (GFP) with corresponding optimal value of the (GFP)
objective equal to v*, by Lemma 3.1, (x*, ¢*) is (EGFP), optimal with corresponding optimal
value of the (EGFP),+ objective equal to 0. Then the problem

min HY (x, q)

(L) * «
subjectto  GY; (x,¢) <0 and ng(x,q)éo VG, j)e{l,...,p} x{1,...,m}

has an optimal solution (x*, ¢*) with ¢* = 0.
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Applying Theorem2.2incase E = X =R" xR, U = S x R for HY" and G‘I’I, e, Gll’;, G;:,
..., GY" | there exists (3, Ay, AK) € Rf_ X RL{' X lel such that

2m>
)4 mo
DH" (x,0)(k,]) + ZjiDG'fi x,0)(k, D)+ ZAjDGEj()E, 0)(k,1) =0, (%)
i=1 j=1
for every (k,1) e R" x R and

Jilfi) —v*g (@] =0 Viefl,...,p},
G)Thy@ =0, Gx)'hg(@®)=0, A=(@yik) >0, 7>0.
If [ in (%) is equal to 0, we have
V[T f &) = v* 5T (@) + G hy () + Gx) T hg (D] =0.
If k in () is equal to O, we have Y/ y;=loryeY.
Now arguing as in the proof of Theorem 2.5 in [2], we get the theorem. O

We consider the following propositions:

(A3) x be optimal for (GFP) with corresponding optimal value of the (GFP) objective equal
to v*.
(A4) x has the following properties:
V3T f @) = v 5T 8@ + G hy () + Gx) hg ()] =0,
Si[fi@ —v'g®]=0 Vie(l,...,p),
ADThy @ =0, Gx)Thg@ =0, A=(y. i) =0, §=0,

p
Z?i =1
i—1

Theorem 3.5. Let S be an open subset of X =R", fi,..., fp,81,...,8p, h1,..., hy be real
functions on S. Let X be in S.

(1) If the conditions (ii), (iii) z_)f Theorem 3.4_are fulfilled then (A3) implies (A4).
Q) IFyT fO) —v5Tg()+ AnNThy )+ k)T hi () is Gateaux differentiable at X and invex
with respect to the function n at x then (A4) implies (A3).

Proof. Applying Theorem 2.2incase E=X =R" xR, U = S x R for H" and G'ﬁ, e G‘l’;,
Gg;, e Gg; (we define in p. 453) and with the same proof of Theorem 3.4, we get (i).

Consider (ii). Since the map ¥7 f(-) — v*3Tg(-) + A)Thy () + (Ag)Thg () is invex with
respect to the function n at x, for every x € Sj,, we have

@) = '3 g() + G hy () + ) hi (x)
—[3" ) = v g@® + AT hy (B) + k) Thi ()]
>0, DTV FE) = v 5 g0 + AT hy () + Gx) hi ()] =0.
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Thus
1) —v*5Tg() = 3T £(0) —v* 5T g(0) + G T hy(x) + Gex) Thig (x) > 0.

fitx) > v*, for every x € S, and we get (ii). O

It implies that Max, _
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