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Abstract

In this paper, a linear matrix inequality (LMI) to global asymptotic stability of the delayed Cohen–Grossberg neural network is investigated
by means of nonsmooth analysis. Several new sufficient conditions are presented to ascertain the uniqueness of the equilibrium point and the
global asymptotic stability of the neural network. It is noted that the results herein require neither the smoothness of the behaved function, or the
activation function nor the boundedness of the activation function. In addition, from theoretical analysis, it is found that the condition for ensuring
the global asymptotic stability of the neural network also implies the uniqueness of equilibrium. The obtained results improve many earlier ones
and are easy to apply. Some simulation results are shown to substantiate the theoretical results.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent decades, much attention has been devoted to
the studies of artificial neural networks partially due to
the fact that neural networks can be applied to signal
processing, image processing, pattern recognition, control and
optimization problems. In particular, the Cohen–Grossberg
neural network (Cohen & Grossberg, 1983) proposed in 1983,
has been a focal research subject. There are many interesting
phenomena in the dynamical behaviors of Cohen–Grossberg
neural network. The asymptotic stability, exponential stability,
robust stability, periodic bifurcation and chaos of the neural
network have been hot topics since many applications of neural
network require the knowledge of the dynamical behaviors
of neural networks, such as the uniqueness and asymptotic
stability (Arik & Orman, 2005; Cao & Liang, 2004; Cao &
Song, 2006; Cao & Wang, 2003, 2004, 2005; Chen & Rong,
2003; Chen, 2001; Joy, 1999; Liao & Wang, 2000; Liao, Li,
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(W. Yu), jdcao@seu.edu.cn (J. Cao), jwang@mae.cuhk.edu.hk (J. Wang).
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& Wong, 2004; Liao, Wong, Wu & Chen, 2001; Lu, 2000; H.
Qi & L. Qi, 2004; Rong, 2005; Roska & Chua, 1990; Singh,
2004, 2005; Tu & Liao, 2005; Ye & Michel, 1996; Ye, Michel,
& Wang, 1995; Yu, 2007, in press; Yu & Cao, 2006a, 2006b,
2007a, 2007b, in press; Yu, Cao, & Chen, 2007; Yu, Chen, Cao,
Lü, & Parlitz, 2007; Yu & Yao, 2007; Yuan & Cao, 2005; Zeng
& Wang, 2006; Zhang, Suda, & Komine, 2005). For example,
when a neural network is applied as an optimization solver,
the equilibrium points of the network characterize possible
optimal solutions of the optimization problem, and the global
asymptotic stability ensures the convergence to an optimal
solution starting from any initial condition. Therefore, the
stability analysis of neural networks has been an important topic
for researchers.

It is well-known that time delays are ubiquitous in
most physical, chemical, biological, neural, and other natural
systems due to finite propagation speeds of signals, finite
processing and reaction time. It has been observed both
experimentally and numerically that time delay could derail the
stability of the neural network and cause sustained oscillations
such as bifurcation or chaos. Recently, there has been extensive
studies on the effect of time delays on the collective dynamics
of coupled models.
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In this paper, the asymptotic stability of the Cohen–
Grossberg neural network with time delay is studied by means
of nonsmooth analysis and linear matrix inequality (LMI)
technique. It should be pointed out that some functions (e.g., the
piecewise linear approximation of a sigmoid) are nonsmooth.
But they are of special interest since they are widely employed
as activation functions in neural network models. The results
herein require neither the smoothness of the behaved function
or activation function nor the boundedness of the activation
function. Several new sufficient conditions are presented to
ascertain the uniqueness of the equilibrium point and the global
asymptotic stability of the neural network. The obtained results
are easy to apply and improve many earlier works.

The rest of the paper is organized as follows: In Section 2,
some preliminaries are given. In Section 3, many sufficient
conditions are presented for the uniqueness of the equilibrium
point of the delayed Cohen–Grossberg neural network, where
Theorem 1 is the basic theorem for ensuring the uniqueness
of the equilibrium point of Cohen–Grossberg neural networks,
Corollary 1 is a direct derivation without any unknown matrix,
Corollaries 2–4 yield the results in H. Qi and L. Qi (2004).
In Section 4, LMI criteria for ensuring the global asymptotic
stability of the delayed Cohen–Grossberg neural network are
given in Theorem 2. Corollaries 5–8 are given for choosing
specific matrices in Theorem 2. Next, Corollary 9 is presented
to show the condition for global asymptotic stability of
equilibrium, which implies its uniqueness. Corollaries 10–12
are simplifications of Corollary 9. Many corollaries in this
paper are existing theorems in other papers. In Section 5,
simulation results aiming at substantiating the theoretical
analysis are reported. In Section 6, the final conclusions are
drawn.

2. Preliminaries

In this paper, a general delayed Cohen–Grossberg neural
network model is considered as follows:
dx(t)

dt
= −a(x(t))[b(x(t)) − A f (x(t))

− B f (x(t − τ)) + u], (1)

or

dxi (t)
dt

= −ai (xi (t))[bi (xi (t)) −

n∑
j=1

ai j f j (x j (t))

−

n∑
j=1

bi j f j (x j (t − τi j )) + ui ], i = 1, 2, . . . , n, (2)

where n denotes the number of neurons, x(t) = (x1(t), x2(t),
. . . , xn(t))T

∈ Rn is the state vector associated with the neu-
rons, u = (u1, u2, . . . , un)T

∈ Rn is the external input vector,
f (x(t)) = ( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T

∈ Rn is the
activation functions of neurons, τ = τi j (i, j = 1, 2, . . . , n) are
the time delays. a(x(t)) = diag(a1(x1(t)), a2(x2(t)), . . . , an
(xn(t))) ∈ Rn×n and ai (xi (t)) represents a vector amplification
function. b(x(t)) = (b1(x1(t)), b2(x2(t)), . . . , bn(xn(t)))T

∈

Rn and bi (xi (t)) is a value behaved function. A = (ai j )n×n
and B = (bi j )n×n are the connection weight matrix and the
delayed connection weight matrix, respectively. The initial con-
ditions of (1) are given by xi (t) = φi (t) ∈ C([−r, 0], R) with
r = max1≤i, j≤n{τi j }, where C([−r, 0], R) denotes the set of all
continuous functions from [−r, 0] to R.

To establish our main results, it is necessary to make the
following assumptions:
A1: Each amplification function ai (·) is positive, continuous,

and bounded.
A2: Each behaved function bi : R → R is locally Lipschitz

and there exists li > 0 such that b′

i (x) ≥ li for all x ∈ R at
which bi (·) is differentiable.

A3: Each activation function fi : R → R is nondecreasing and
globally Lipschitz with a constant ki > 0, i.e.

| fi (u) − fi (v)| ≤ ki |u − v|

∀u, v ∈ R, i = 1, 2, . . . , n. (3)

Next, some notations to be used later are introduced for
convenience.

For any vector v = (v1, v2, . . . , vn)T
∈ Rn , |v| =

(|v1|, |v2|, . . . , |vn|), ‖v‖
2

= vTv. Similarly, for any matrix
W = (wi j )n×n , |W | = (|wi j |)n×n . For a symmetric matrix
W , denote λmax(W ) and λmin(W ) as its largest and smallest
eigenvalue, respectively. Then its norm is defined by: ‖W‖

.
=

sup{‖W x‖ : ‖x‖ = 1} =

√
λmax(W TW ). Let ρ(W ) denote

the spectral radius of W . It is known that ρ(W ) ≤ ρ(|W |).
Moreover, ρ(W ) ≥ ρ(W̃ ) if W ≥ W̃ ≥ 0 where W ≥ W̃
means wi j ≥ w̃i j for all i, j = 1, 2, . . . , n. W is called
a P matrix (P0 matrix) if and only if all principal minors
of W are positive (nonnegative) and is denoted by W ∈ P
(W ∈ P0). µ2(W ) = λmax(W + W T)/2, i.e., µ2(W ) is the
largest eigenvalue of the symmetric part of W . The notation
W > 0 (W < 0) means that W is positive definite (negative
definite). L = diag(l1, l2, . . . , ln), K = diag(k1, k2, . . . , kn),
l = min1≤i≤n{li } and k = max1≤i≤n{ki }.

Next, we give the definition of the generalized Jacobian
which is essential for conducting nonsmooth analysis on
Lipschitz continuous functions. Let the function F : Rn

→ Rn

be locally Lipschitz continuous. According to Rademacher’s
theorem (Rockafellar & Wets, 1998, Theorem 9, p. 60), F is
differentiable almost everywhere. Let DF denote the set of
those points where F is differentiable and F ′(x) denote the
Jacobian of F at x ∈ DF . Then, the set DF is dense in Rn .
For any given x ∈ Rn define

Lipx F := lim
y→x

sup
x 6=y∈Rn

‖F(y) − F(x)‖

‖y − x‖
. (4)

Since F is locally Lipschitz continuous, the constant Lipx is
finite and we have ‖F ′(x)‖ ≤ Lipx F for any x ∈ DF . Now
we are ready to define the generalized Jacobian in the sense of
Clarke (Clarke, 1983):

Definition 1. For any x ∈ Rn , let ∂ F(x) be the set of the
following collection of matrices

∂ F(x) = co{W | there exists a sequence of {xk
} ⊂ DF

converging to x with lim
k→∞

F ′(xk) = W },
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where co Ω denotes the convex hull of the set Ω . We term
∂ F(x) as the generalized Jacobian.

It is easy to see that the above definition is well defined and
‖W‖ ≤ Lipx F for any W ∈ ∂ F(x). We say that ∂ F(x) is
invertible if every element W in ∂ F(x) is nonsingular. Though
the generalized Jacobian ∂ F(x) has many nice properties, only
a few of them need to be singled out for our purpose. For
one thing, the collection ∂ F(x) reduces to a singleton {F ′(x)}

whenever F is continuously differentiable at x . We stress that
∂ F(x) may contain other elements if F is not differentiable
at x .

Lemma 1 (Lebourg Theorem (Clarke, 1983, p. 41)). For any
given x, y ∈ Rn , there exists an element W in the union⋃

z∈[x,y]
∂ F(z) such that

F(y) − F(x) = W (y − x), (5)

where [x, y] denotes the segment connecting x and y.

For more discussions on the generalized Jacobian and its
various applications, please refer to books Clarke (1983),
Rockafellar and Wets (1998). Now, we analyze (1) from the
viewpoint of nonsmooth analysis. It is first recalled that a state
x∗

∈ Rn is called an equilibrium point of (1) if it satisfies

−a(x∗)[b(x∗) − (A + B) f (x∗) + u] = 0. (6)

Notice that ai (xi (t)) is positive, (6) is equivalent to

b(x∗) − (A + B) f (x∗) + u = 0. (7)

We assume that model (1) has an equilibrium x∗
=

(x∗

1 , x∗

2 , . . . , x∗
n ) for any given u. To simplify the proofs, we

will shift the equilibrium point x∗ of (1) to the origin by using
the following common transformation

y(t) = x(t) − x∗, y(t − τ) = x(t − τ) − x∗. (8)

Therefore, model (1) can be transformed into the following
form:

dy(t)
dt

= −a(y(t))[b(y(t)) − Ag(y(t)) − Bg(y(t − τ))], (9)

or

dyi (t)
dt

= −ai (yi (t))[bi (yi (t)) −

n∑
j=1

ai j g j (y j (t))

−

n∑
j=1

bi j g j (y j (t − τi j ))], i = 1, 2, . . . , n, (10)

where y(t) = (y1(t), y2(t), . . . , yn(t))T
∈ Rn, a(y(t)) =

diag(a1(y1(t)), a2(y2(t)), . . . , an(yn(t)))T
∈ Rn×n, b(y(t)) =

(b1(y1(t)), b2(y2(t)), . . . , bn(yn(t)))T
∈ Rn, g(y(t)) =

(g1(y1(t)), g2(y2(t)), . . . , gn(yn(t)))T
∈ Rn, ai (yi (t)) =

ai (yi (t)+ x∗

i ), bi (yi (t)) = bi (yi (t)+ x∗

i )−bi (x∗

i ), gi (yi (t)) =

fi (yi (t) + x∗

i ) − fi (x∗

i ).

It is easy to see that bi (0) = 0, gi (0) = 0, ∀i = 1, 2, . . . , n.
Moreover, from (3), we know that

|gi (yi )| ≤ ki |yi | ∀yi ∈ R, i = 1, 2, . . . , n, (11)
and

‖g(y(t))‖2
≤ yT(t)K g(y(t)). (12)

To obtain the main results, the following three lemmas are
needed:

Lemma 2 (Schur complement, Boyd, Ghaoui, Feron, and
Balakrishnan (1994)). The following linear matrix inequality
(LMI)(
Q(x) S(x)

S(x)T R(x)

)
> 0,

where Q(x) = Q(x)T,R(x) = R(x)T, is equivalent to one of
the following conditions:

(i) Q(x) > 0,R(x) − S(x)TQ(x)−1S(x) > 0,

(ii) R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0.

Lemma 3. For any vectors x, y ∈ Rn and positive definite
matrix G ∈ Rn×n , the following matrix inequality holds:

2xT y ≤ xTGx + yTG−1 y.

Lemma 4. For any matrix A ∈ Rn×n and positive definite
matrix G ∈ Rn×n , the following matrix inequality holds:

G + AG−1 AT
− A − AT

≥ 0.

Proof. For any vector x ∈ Rn , from Lemma 3 we know that

xT Ax + xT ATx = 2xT ATx ≤ xTGx + xT AG−1 ATx,

and we obtain

xT(G + AG−1 AT
− A − AT)x ≥ 0,

for any vector x ∈ Rn . This completes the proof. �

3. Uniqueness of the equilibrium point

In this section, we present several new sufficient conditions
to ascertain the uniqueness of the equilibrium point of (9) by
means of a new method based on the nonsmooth analysis and
matrix inequality.

Theorem 1. Under assumptions A1–A3, the origin is the
unique equilibrium of model (9) if there is a positive definite
diagonal matrix D = diag(d1, d2, . . . , dn) > 0 such that

2DL K −1
− (D A + AT D) − (DB + BT D) > 0. (13)

Proof. We will prove the uniqueness of the equilibrium point
using the method of contradiction. Consider the equilibrium
equation of (9)

−a(y∗)[b(y∗) − (A + B)g(y∗)] = 0. (14)

Notice that ai (yi (t)) is positive, (14) is equivalent to

b(y∗) − (A + B)g(y∗) = 0. (15)
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It is evident that if b(y∗) = 0 and g(y∗) = 0, then y∗
= 0. Now

let g(y∗) 6= 0. Multiplying both sides of (15) by 2gT(y∗)D
yields

2gT(y∗)Db(y∗) − 2gT(y∗)D Ag(y∗)

− 2gT(y∗)DBg(y∗) = 0, (16)

and then (16) can be written as

2gT(y∗)Db(y∗) − gT(y∗)D Ag(y∗) − gT(y∗)AT Dg(y∗)

− gT(y∗)DBg(y∗) − gT(y∗)BT Dg(y∗) = 0. (17)

From Lemma 1, we have

b(y∗) = b(y∗
+ x∗) − b(x∗) = My∗,

M ∈

⋃
y∈[x∗,y∗+x∗]

∂b(y). (18)

From the definition of b, matrix M is diagonal, and we denote
M = diag(m1, m2, . . . , mn). It is obvious that mi ≥ li for
i = 1, 2, . . . , n.

From assumption A3, we get

yi gi (yi ) ≥ 0 ∀yi ∈ R, i = 1, 2, . . . , n, (19)

and

g2
i (yi ) ≤ ki yi gi (yi ) ∀yi ∈ R, i = 1, 2, . . . , n. (20)

According to (18) and (20), we can obtain the following
inequality

gT(y∗)Db(y∗) =

n∑
i=1

gi (y∗

i )di mi y∗

i

≥

n∑
i=1

di li
ki

g2
i (y∗

i )

= gT(y∗)DL K −1g(y∗). (21)

Substituting (21) into (17), we obtain

gT(y∗)[2DL K −1
− D A − AT D − DB − BT D]g(y∗) ≤ 0.

(22)

Obviously, (22) contradicts with the condition (13) which in
turn implies that at the equilibrium point g(y∗) = 0, as well as
y∗

= 0. Thus, we proved that the origin of model (9) is a unique
equilibrium point. �

Corollary 1. Under assumptions A1–A3, the origin is the
unique equilibrium of model (9) if

2L K −1
− (A + AT) − (B + BT) > 0. (23)

Proof. Let D = I . We can have Corollary 1 easily from
Theorem 1, where I is the identity matrix. �

Corollary 2. Under assumptions A1–A3, the origin is the
unique equilibrium of model (9) if

ρ((|A + B|)K L−1) < 1. (24)
Proof. We will prove that if the condition (24) of Corollary 2
holds, the condition (23) of Corollary 1 can also hold.

From (24), it is easy to see that

2I ≥ 2ρ((|A + B|)K L−1)I ≥ [A + AT
+ B + BT

]K L−1.

(25)

Since K and L are both positive definite diagonal matrices,
multiplying L K −1 on both sides of (25), we have condition
(23). This completes the proof. �

Corollary 3. Under assumptions A1–A3, the origin is the
unique equilibrium of model (9) if

−(A + B) ∈ P0. (26)

Proof. From (26), we know that

−(A + B) ≥ 0,

we can easily obtain that the condition (23) is satisfied. This
completes the proof. �

Corollary 4. Under assumptions A1–A3, the origin is the
unique equilibrium of model (9) if

µ2(A + B) < l/k. (27)

Proof. It is known to us that

2µ2(A + B)I ≥ (A + AT) + (B + BT),

and

2L K −1
≥ 2l/k I.

Then we obtain

2L K −1
− (A + AT) − (B + BT)

≥ 2[l/k − µ2(A + B)]I > 0.

The condition of Corollary 1 is satisfied. The proof is
completed. �

Remark 1. Corollaries 2–4 are the same as Theorem 2 (H. Qi
& L. Qi, 2004), which is a special case in Theorem 1 herein.

Remark 2. In Lu (2000, Theorem 1), the condition

ρ((|A| + |B|)K L−1) < 1

was shown to be sufficient to ensure the global asymptotic
stability under existence assumption of the equilibrium point.
This condition was later shown in Chen (2001) to be also
sufficient to ensure the existence of an equilibrium point under
the assumption that all bi ’s are continuously differentiable. We
observe that

ρ((|A + B|)K L−1) < ρ((|A| + |B|)K L−1).

Hence, Corollary 2 in this paper can also guarantee the
uniqueness of the equilibrium point under the assumption of
the existence of equilibrium point, where the differentiability
of bi is not required.
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Remark 3. In Arik and Orman (2005), the following cri-
terion for the uniqueness of the equilibrium point of the
Cohen–Grossberg neural network is given by

‖A‖ + ‖B‖ < l/k.

Since

2(‖A‖ + ‖B‖) ≥ (A + AT) + (B + BT),

and

2L K −1
≥ 2l/k I,

we obtain

2L K −1
− (A + AT) − (B + BT)

≥ 2[l/k − (‖A‖ + ‖B‖)]I > 0.

Hence the result in Arik and Orman (2005) can be easily
deduced.

4. Global asymptotic stability

In this section, new LMI conditions are presented for the
global asymptotic stability of equilibrium point of model (9)
via nonsmooth analysis. The new results improve and extend
many earlier works.

Theorem 2. Under assumptions A1–A3, the delayed Cohen–
Grossberg neural network model (9) is globally asymptotically
stable at the origin if there are positive definite diagonal
matrices P = diag(p1, p2, . . . , pn) > 0 and Q =

diag(q1, q2, . . . , qn) > 0, positive definite matrix H =

(hi j )n×n > 0, positive real value α > 0, β > 0, such that

M

=

 2P L −P A −P B
−AT P 2αQL K −1

− αQ A − αAT Q − β H −αQ B
−BT P −αBT Q β H

 > 0.

(28)

Proof. We now prove that the condition given in (28) implies
the global stability of the origin of (9). Consider the following
Lyapunov functional candidate

V (y(t)) =

n∑
i=1

pi

∫ yi (t)

0

2s
ai (s)

ds + 2α

n∑
i=1

qi

∫ yi (t)

0

gi (s)
ai (s)

ds

+ β

∫ t

t−τ

gT(y(s))Hg(y(s))ds. (29)

Taking the derivative of V (y) along the trajectories of (9), we
obtain

V̇ (y(t))|(9)

=

n∑
i=1

pi
2yi (t)

ai (yi (t))
ẏi (t) + 2α

n∑
i=1

qi
gi (yi (t))
ai (yi (t))

ẏi (t)

+ βgT(y(t))Hg(y(t)) − βgT(y(t − τ))Hg(y(t − τ))

= −2yT(t)Pb(y(t)) + 2yT(t)P Ag(y(t))

+ 2yT(t)P Bg(y(t − τ)) − 2αgT(y(t))Qb(y(t))
+ 2αgT(y(t))Q Ag(y(t)) + 2αgT(y(t))Q Bg(y(t − τ))

+ βgT(y(t))Hg(y(t)) − βgT(y(t − τ))Hg(y(t − τ)).

(30)

Similarly to (18) and from Lemma 1, we have

b(y(t)) = b(y(t) + x∗) − b(x∗) = M̂ y(t),

M̂ ∈

⋃
z∈[x∗,y+x∗]

∂b(z), (31)

where M̂ = diag(m̂1, m̂2, . . . , m̂n). It is obvious that m̂i ≥ li
for i = 1, 2, . . . , n. We obtain

yT(t)Pb(y(t)) =

n∑
i=1

yi (t)pi m̂i yi (t)

≥

n∑
i=1

pi li y2
i (t)

= yT(t)P Ly(t). (32)

Similarly to (21) and from assumption A3, we have

gT(y(t))Qb(y(t)) =

n∑
i=1

gi (yi (t))qi m̂i yi (t)

≥

n∑
i=1

qi li
ki

g2
i (yi (t))

= gT(y(t))QL K −1g(y(t)). (33)

Substituting (32) and (33) into (30), we obtain

V̇ (y(t))|(9) ≤ −2yT(t)P Ly(t) + 2yT(t)P Ag(y(t))

+ 2yT(t)P Bg(y(t − τ)) − 2αgT(y(t))QL K −1g(y(t))

+ 2αgT(y(t))Q Ag(y(t)) + 2αgT(y(t))Q Bg(y(t − τ))

+ βgT(y(t))Hg(y(t)) − βgT(y(t − τ))Hg(y(t − τ))

= −2yT(t)P Ly(t) + yT(t)P Ag(y(t))

+ gT(y(t))AT Py(t) + yT(t)P Bg(y(t − τ))

+ gT(y(t − τ))BT Py(t) − gT(y(t))

× [2αQL K −1
− αQ A − αAT Q − β H ]g(y(t))

+ αgT(y(t))Q Bg(y(t − τ))

+ αgT(y(t − τ))BT QgT(y(t))

− βgT(y(t − τ))Hg(y(t − τ))

= −
(
yT(t) gT(y(t)) gT(y(t − τ))

)
× M

 y(t)
g(y(t))

g(y(t − τ))

 . (34)

Therefore, From (34), we know that under the given condition
(28), V̇ (y(t)) = 0 if and only if y(t) = g(y(t)) = g(y(t −

τ)) = 0, otherwise V̇ (y(t)) ≤ 0. Moreover, on the other
hand, V (y) is radially unbounded since V (y(t)) → ∞ as
‖y(t)‖ → ∞. We have proved that the equilibrium of (9) is
globally asymptotically stable. This completes the proof. �

Corollary 5. Under assumptions A1–A3, the delayed Cohen–
Grossberg neural network model (9) is globally asymptotically
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stable at the origin if there are positive definite diagonal
matrices P = diag(p1, p2, . . . , pn) > 0 and Q =

diag(q1, q2, . . . , qn) > 0, positive definite matrix H =

(hi j )n×n > 0, positive real value α > 0, such that

M1

=

 2P L −P A −P B
−AT P α(2QL K −1

− Q A − AT Q − H) −αQ B
−BT P −αBT Q αH

 > 0.

(35)

Proof. Let β = α in Theorem 2, we can obtain Corollary 5
directly. �

Corollary 6. Under assumptions A1–A3, the delayed Cohen–
Grossberg neural network model (9) is globally asymptotically
stable at the origin if there are positive definite diagonal matrix
Q = diag(q1, q2, . . . , qn) > 0 and positive definite matrix
H = (hi j )n×n > 0, such that

N =

(
2QL K −1

− Q A − AT Q − H Q B
BT Q H

)
> 0. (36)

Proof. We prove that under the condition (36) of Corollary 6,
the condition (35) in Corollary 5 is satisfied.

Let W = [−P A − P B], N =

(
2QL K −1

− Q A − AT Q − H Q B
BT Q H

)
> 0, and (35) is equivalent to

M1 =

(
2P L W
W T αN

)
> 0. (37)

According to Lemma 2, we have

P L > 0, αN −
1
2

W T(P L)−1W > 0.

From the condition (36) given in Corollary 6, we know that
N > 0, we choose a sufficiently large value of α, we can
see that (35) is satisfied. For example, we choose α > γ1/γ2,
where γ1 denotes the maximum eigenvalue of 1

2 W T(P L)−1W
and γ2 denotes the minimum eigenvalue of N . This completes
the proof. �

Corollary 7. Under assumptions A1–A3, the delayed Cohen–
Grossberg neural network model (9) is globally asymptotically
stable at the origin if there are positive definite diagonal matrix
Q = diag(q1, q2, . . . , qn) > 0 and positive definite matrix
H = (hi j )n×n > 0, such that

2QL K −1
− Q A − AT Q − H − Q B H−1 BT Q > 0. (38)

Proof. According Lemma 2, (36) is equivalent to (38), we can
easily have our result based on Corollary 6. �

Corollary 8. Under assumptions A1–A3, the delayed Cohen–
Grossberg neural network model (9) is globally asymptotically
stable at the origin if there is a positive definite matrix H =

(hi j )n×n > 0, such that

2L K −1
− A − AT

− H − B H−1 BT > 0. (39)
Proof. Let Q = I , where I is the identity matrix, we can obtain
Corollary 8 directly from Corollary 7.

Next, a simple corollary is presented to show the condition in
Corollary 7 for global asymptotic stability of equilibrium point
also, which implies its uniqueness in Theorem 1. �

Corollary 9. Under assumptions A1–A3, the origin is the
unique equilibrium of model (9), and it is globally
asymptotically stable, provided that there are positive definite
diagonal matrix Q = diag(q1, q2, . . . , qn) > 0 and positive
definite matrix H = (hi j )n×n > 0, such that

2QL K −1
− Q A − AT Q − H − Q B H−1 BT Q > 0. (40)

Proof. From Lemma 4, we obtain

H + Q B H−1 BT Q ≥ Q B + BT Q,

for a positive definite matrix H . Then

2QL K −1
− (Q A + AT Q) − (Q B + BT Q) ≥ 2QL K −1

− Q A − AT Q − H − Q B H−1 BT Q > 0.

Condition in Theorem 1 is also satisfied. This completes the
proof. �

Corollary 10. Under assumptions A1–A3, the origin is
the unique equilibrium of model (9), and it is globally
asymptotically stable, provided that there is a positive definite
diagonal matrix Q = diag(q1, q2, . . . , qn) > 0, such that

2QL K −1
− Q A − AT Q − I − Q B BT Q > 0. (41)

Proof. Let H = I in Corollary 9, the proof is completed. �

Corollary 11. Under assumptions A1–A3, the origin is
the unique equilibrium of model (9), and it is globally
asymptotically stable, provided that the following condition
holds:

2L K −1
− A − AT

− I − B BT > 0. (42)

Proof. Let H = Q = I in Corollary 9, the proof is
complete. �

Corollary 12. Under assumptions A1–A3, the origin is
the unique equilibrium of model (9), and it is globally
asymptotically stable, provided that the following conditions
hold:

2
l
k

− 2µ2(A + B) − ‖B − I‖2 > 0. (43)

Proof. We will show that under the condition (43) of
Corollary 12, condition (42) in Corollary 11 is also satisfied.

2L K −1
− A − AT

− I − B BT

= 2L K −1
− [(A + B) + (A + B)T

] − (B − I )(B − I )T

≥ 2
l
k

− 2µ2(A + B) − ‖B − I‖2 > 0.

This completes the proof. �
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Remark 4. Corollaries 10 and 12 are the main results in (H. Qi
& L. Qi, 2004; Yuan & Cao, 2005). As the main results in (H.
Qi & L. Qi, 2004; Yuan & Cao, 2005) are the corollaries of this
paper, the new results are more general about uniqueness and
global asymptotic stability of equilibrium point.

Remark 5. In Joy (1999), it is shown that if

2γ QL K −1
− γ (Q A − AT Q) − I − γ 2 Q B(B)T Q > 0, (44)

where γ = maxi {ki/ li }, then the equilibrium point is globally
asymptotically stable. But in Joy (1999), all activation functions
are assumed to be monotone increasing or bounded and b(x)

is a linear function. We note that if we choose H = I/γ in
Corollary 9, we can obtain (44) directly. So it is a special case
in our paper. Also, in this paper we have weaker conditions
that the activation function is nondecreasing and function b is
allowed to be nondifferentiable.

Remark 6. In Chen and Rong (2003), Chen and Rong
have considered delay-independent stability analysis of
Cohen–Grossberg neural networks using Lyapunov functional
method and LMI approach. The main results are the same as
Corollary 6, but H is a positive definite diagonal matrix in Chen
and Rong (2003), it is easy to see that the theorem is more
general.

Remark 7. In Cao and Liang (2004), Liao et al. (2001), Tu
and Liao (2005), Ye et al. (1995), Zhang et al. (2005), the
criteria are explicit and easily verified in practice. But they
neglect the signs of the entries in the connection matrices,
and thus, the difference between the neuronal excitatory
and inhibitory effects might be ignored. In recent years,
some improvements have been obtained to overcome this
disadvantage (Chen & Rong, 2003; Rong, 2005). In this paper,
by combining Lyapunov functional and linear matrix inequality
(LMI) approaches, new criteria on global asymptotic stability
for delayed Cohen–Grossberg neural networks are presented.

Remark 8. In Rong (2005), robust and asymptotic stability
of Cohen–Grossberg neural networks is considered. But the
following Lyapunov functional is employed

V (y(t)) =

n∑
i=1

pi

∫ yi (t)

0

2s
ai (s)

ds +

∫ t

t−τ

gT(y(s))Hg(y(s))ds.

When α = β = 1 and qi = εi , it is a special case in this paper.

5. Numerical examples

In this section, two examples are constructed to show the
effectiveness of the obtained results.

Example 1. Consider the following delayed Cohen–Grossberg
neural network for i = 1, 2:

dx1(t)
dt

= −(2 + cos x1(t))

× [b1x1(t) − 0.1x1(t) + 0.1x2(t − 1) + 2],
dx2(t)

dt
= −(2 + sin x2(t))

× [b2x2(t) − 0.4x1(t) − 0.1x2(t) − 0.5x1(t − 1) + 1],

(45)
where

bi (u) =

{
u, if u ≥ 0,

2u, if u < 0.

It is easy to see that assumptions A1–A3 hold. a1(x1(t)) =

2 + cos x1(t) and a2(x2(t)) = 2 + sin x2(t) are bounded, posi-
tive continuous functions, bi (xi (t)) is locally Lipschitz but not
differentiable, fi (xi (t)) = xi (t) is globally Lipschitz and non-
decreasing but not bounded. Obviously, we have K = L = I .

A =

(
0.1 0
0.4 0.1

)
, B =

(
0 −0.1

0.5 0

)
, u =

(
2
1

)
.

From (42) in Corollary 11, we obtain

2L K −1
− A − AT

− I − B BT
=

(
0.79 −0.4
−0.4 0.55

)
> 0.

But

2
l
k

− 2µ2(A + B) − ‖B − I‖2
= −0.244.

Corollary 12 in Yuan and Cao (2005) cannot be applied. Fig. 1
shows the simulation results of Example 1 where some con-
stant initial functions are chosen. We can see that model (45)
is globally asymptotically stable at a unique equilibrium, which
substantiates Corollary 11 herein.

Example 2. Consider the following delayed Cohen–Grossberg
neural network for i = 1, 2:

dx1(t)
dt

= −(2 + cos x1(t))[b1x1(t) − 0.2 tanh(x1(t))

+ 0.2 tanh(x2(t − 1)) + 2],
dx2(t)

dt
= −(2 + sin x2(t))[b2x2(t) − 0.4 tanh(x1(t))

− 0.1 tanh(x2(t)) − 0.4 tanh(x1(t − 1))

+ 0.5 tanh(x2(t − 1)) + 1],

(46)

where

bi (u) =

{
u, if u ≥ 0,

3u, if u < 0.

It is easy to see that the assumptions A1–A3 hold. a1(x1(t)) =

2 + cos x1(t) and a2(x2(t)) = 2 + sin x2(t) are bounded,
positive continuous functions, bi (xi (t)) is locally Lipschitz but
not differentiable, fi (xi (t)) = tanh(xi (t)) is globally Lipschitz
and nondecreasing. Obviously, we have K = L = I , where I
is the identity matrix.

A =

(
0.2 0
0.4 0.1

)
, B =

(
0 −0.2

0.4 −0.5

)
, u =

(
2
1

)
.

From (42) in Corollary 11, we obtain

2L K −1
− A − AT

− I − B BT
=

(
0.56 −0.5
−0.5 0.39

)
,

for simply calculating all the principal minors of the above
matrix, which is not a positive definite matrix. However, if we
choose an appropriate positive definite matrix H =

(
0.6 0
0 0.6

)
in Corollary 9 herein, we obtain
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Fig. 1. Trajectories of state variables x1(t) and x2(t).

Fig. 2. Trajectories of state variables x1(t) and x2(t).
2L K −1
− A − AT

− H − B H−1 BT

=

(
0.9333 −0.5667

−0.5667 0.5167

)
> 0.

So the result in H. Qi and L. Qi (2004) is a special case in this
paper.

In the numerical simulation, we choose some constant initial
functions as shown in Fig. 2. We can see that model (46) is
globally asymptotically stable at a unique equilibrium point,
which substantiates Corollary 9 herein. But the criteria in many
other papers cannot be used since the behaved function b is
nondifferentiable.

6. Conclusions

Several sufficient conditions in LMI are derived to ascertain
the uniqueness of the equilibrium point and the global
asymptotic stability of the delayed Cohen–Grossberg neural
network via nonsmooth analysis. The obtained results improve
and extend many earlier works.
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