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The aim of this study was to compare the total lipid (TL) content, the lipid class (LC) composition and their
associated fatty acids from muscle, liver and ovary of wild and cultured mature females of greater amberjack
(Seriola dumerili), in order to obtain information to formulate a more suitable diet for this species broodstock.
TL content in muscle and liver was higher in cultured fish than in wild fish, mainly due to TG accumulation,
while the ovary TL content was higher in wild fish. Regarding to fatty acids profile, the percentage of 18:1n-9
in TL and TG was lower in ovaries and muscle of cultured fish than in wild ones. Cultured fish displayed lower
proportion of arachidonic acid (20:4n-6, ARA) and higher proportions of 18:2n-6 and eicosapentaenoic acid
(20:5n-3, EPA) than wild specimens for all tissues in TL and LC. In contrast, differences in the proportion of
docosahexaenoic acid (22:6n-3, DHA) between both groups were found only in some tissues and in some
LC, being in those cases higher in wild fish. In consequence, cultured fish presented a lower DHA/EPA ratio
and a higher EPA/ARA ratio with respect to wild fish. These results suggest that 18:1n-9, 18:2n-6 and essen-
tial fatty acids (EFA), especially EPA and ARA, are not supplied in the appropriate proportions in the diet of
cultured fish and could negatively affect their reproductive performance.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The culture of new high-value and fast growing species could be
one of the keys to the future development of the aquaculture sector,
and in this regard, the greater amberjack (Seriola dumerili, Risso
1810) is a leading candidate for marine aquaculture. This carangid
fish, distributed worldwide in temperate and tropical waters, offers
excellent flesh quality, high market price and high growth rates in
the wild and in captivity (García and Díaz, 1995; Harris et al., 2007;
Jerez et al., 2006; Mazzola et al., 2000; Nakada, 2002; Vidal et al.,
2008; Yilmaz and Sereflisan, 2011). Regardless of its great potential
for the aquaculture industry, the culture of this species is currently
limited to the growth of fish captured from the wild (Hamasaki
et al., 2009), mainly due to the difficulties for its reproduction. Most
of the studies about reproduction in captivity for this species have fo-
cused on hormonal induction treatment of wild mature fish (García et
al., 2001; Kozul et al., 2001; Lazzari et al., 2000; Papandroulakis et al.,
2005; Pastor et al., 2000). Hormone induced spawn has been obtained
from cultured fish according to Mylonas et al. (2004), and natural
spawning has also been achieved in wild fish kept in captivity and
fed raw mackerel (Jerez et al., 2006), however no spawns have been
obtained from cultured fish born in captivity and fed by commercial
+34 922 318311.
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diets (Jerez, unpublished data). The reproduction problems found in
this species could be related to several factors, including the use of in-
adequate broodstock diets which do not fulfil the nutritional require-
ments of this species.

Regarding nutrients, lipids, fatty acids, and specifically highly
unsaturated fatty acids (HUFA) play an important role in the repro-
ductive processes, embryo ontogeny and the early stages of larval
development in marine fish (Sargent et al., 2002). Eicosapentaenoic
acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are
the major HUFA in cell membranes, involved in maintaining their
structure and function, although EPA is selectively catabolised with
respect to DHA to provide energy during ovary maturation prior to
spawning (Tocher, 2003). EPA and arachidonic acid (ARA, 20:4n-6)
are precursors of a group of highly biologically active compounds
known as eicosanoids. ARA eicosanoids derivatives have a wide range
of functions in fish reproduction, including pheromonal attraction
(Stacey and Sorensen, 2005), steroidogenesis (Henrotte et al., 2011;
Mercure and Van der Kraak, 1996; Van der Kraak and Chang, 1990), ste-
roid transport (Hwang et al., 2008), or ovulation and oocyte maturation
(Lister andVan der Kraak, 2008; Patiño et al., 2003; Sorbera et al., 2001).
Since EPA and ARA compete for the same enzymatic complex to gen-
erate different series of prostanoids with different biological activities,
the relative proportions of these two fatty acids are even more impor-
tant than the level of each fatty acid in broodstock diet, as imbalances
in the EPA/ARA ratio could lead to deregulated production of different
mediators involved in reproduction.
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It is widely accepted that marine fish species have limited ability
to synthesize HUFA from their 18C precursors, due a deficient activity
of the Δ5 and Δ6 desaturases, enzymes involved in the conversion
pathway from 18C to HUFA (Castro et al., 2012; Sargent et al.,
2002). Thus, DHA, EPA and ARA are essential fatty acids (EFA) that
must be obtained from the diet. It has been shown that the fatty
acid composition of fish tissues is directly influenced by dietary pro-
file of fatty acids (Almansa et al., 1999; Cejas et al., 2003; Regost et
al., 2003; Torstensen et al., 2000), and comparisons of lipid composi-
tion between wild fish and their cultured counterparts have provided
a good estimation of the suitability of the diet for lipid nutrition
(Alasavar et al., 2002; Cejas et al., 2003, 2004; Oku et al., 2009;
Rodríguez et al., 2004). Although total lipid (TL) content and fatty
acid composition have been studied in muscle of S. dumerili juveniles
(Haouas et al., 2010; Thakur et al., 2009), there are no studies on
broodstock of this species.

The aim of this study was to compare the TL content, the lipid class
(LC) composition and their associated fatty acid from muscle, liver
and ovary of wild and cultured mature females of S. dumerili, in
order to identify possible nutritional deficiencies in cultured fish
and to obtain information to formulate a more suitable diet for this
species broodstock.

2. Material and methods

2.1. Animal and experimental conditions

From a broodstock group born in captivity in the experimental
culture facilities of the Spanish Institute of Oceanography (Tenerife,
Canary Islands, Spain), a total of nine mature females of S. dumerili
(average weight 6.75±1.97 kg, 6 years old) were randomly selected
during the second half of the spawning period. During the previous
years, fish were kept in an outdoor 500 m3 raceway tank with con-
tinuous water supply (6 renewals tank day−1), oxygen level close to
saturation, temperature ranged between 19.8 °C and 23.8 °C, and natu-
ral photoperiod with sunlight intensity attenuated by tank covers. Fish
were fed a turbot commercial diet (R22, Skretting, Spain; proximate
composition: crude protein 52%, crude fat 20%, crude ash 11.4%, crude
cellulose 0.3%, carbohydrates 6%, total phosphorus 1.8%) supplied once
a day and three days a week (1% of biomass day−1). On the other
hand, nine mature females (average weight 14.45±5.12 kg) were
captured from the wild during the same spawning period.

2.2. Sampling and assay methods

For both groups of females (cultured and wild), after the sacrifice
by an anaesthetic overdose (2-phenoxiethanol, 600 ppm), gonadal
maturity was confirmed by visual examination (Holden and Raitt,
1974), biometric parameters of length, and body, gonad and liver
weight were measured. Samples of ovary, liver and muscle tissue
were collected and stored at−80 °C for lipid analysis. A visual assess-
ment of the organs external appearance and the degree of fat deposit
in the peritoneal cavity was carried out.

Moisture content was determined in 300–500 mg samples by
thermal drying of samples in an oven at 110 °C until constant weight,
according to the Official Method of Analysis of the Association of
Official Analytical Chemists (AOAC, 1990).

Total lipid (TL) was extracted from the tissues and diet by homog-
enization in chloroform/methanol (2:1, v/v) according to the method
of Folch et al.(1957). The organic solvent was evaporated under
a stream of nitrogen and the lipid content was determined gravimet-
rically (Christie, 1982) and stored in chloroform/methanol (2: 1),
containing 0.01% butylated hydroxytoluene (BHT). Analysis of lipid
class (LC) composition was performed by one-dimensional double
development high-performance thin layer chromatography (HPTLC)
using methyl acetate/isopropanol/chloroform/methanol/0.25% (w/v)
KCl (5:5:5:2:1.8, by volume) as developing solvent system for the polar
lipid classes and isohexane/diethyl ether/acetic acid (22.5:2.5:0.25, by
volume), for the neutral lipid separation. Lipid classes were visualized
by charring with 3% (w/v) aqueous cupric acetate containing 8% (v/v)
phosphoric acid, and quantified by scanning densitometry using a
dual-wavelength flying spot scanner Shimadzu CS-9001PC (Shimadzu,
Duisburg, Germany) (Olsen and Henderson, 1989). Phosphatidylcholine
(PC), phosphatidylethanolamine (PE), and triacylglycerides (TG) were
purified by thin layer chromatography (TLC) using the polar solvent
system described before for PC and PE purification, and the neutral
solvent system for TG. The separated classes were sprayed with 0.1%
2′, 7′-diclorofluorescein in methanol (98%) (w/v), containing BHT, and
visualized under ultraviolet light. Bands were scraped off the plates
into tubes for the subsequent analysis of fatty acids.

To determine the fatty acid profiles, TL extracts and PC, PE, and TG
fractions were subjected to acid-catalyzed transmethylation with
1% sulphuric acid (v/v) in methanol. The resultant fatty acid methyl
esters (FAME) were purified by thin layer chromatography (TLC)
(Christie, 1982). During acid-catalyzed transmethylation, FAME are
formed simultaneously with dimethyl acetals (DMA) which origi-
nate from the 1-alkenyl chain of plasmalogens. FAME and DMA
were separated and quantified using a Shimadzu GC-14A gas chro-
matograph (Shimadzu, Duisburg, Germany) equipped with a flame
ionization detector and a fused silica capillary column, Supelcowax
TM 10 (Sigma–Aldrich, Madrid, Spain). Individual FAME and DMA
were identified by reference to authentic standards. Prior to trans-
methylation, nonadecanoic acid (19:0) was added to the total lipid
extract as an internal standard.

Results are reported as means±SD (n=9). Non-detected fatty
acids were considered as 0 value for statistical analysis. Normal distri-
bution was checked for all data with the one-sample Kolmogorov–
Smirnoff test and homogeneity of the variances with the Levene test.
When necessary, arcsin transformation was performed. Differences
between pairs of means were tested using Student's t-test. In all
statistical tests used, pb0.05 was considered significantly different.
Statistical analysis was carried out using the SPSS package (version
15.0 for Windows).

3. Results

The fatty acid profile of the commercial diet used to feed cultured
S. dumerili broodstock is shown in Table 1. TL content and LC compo-
sition of muscle, liver and ovary of wild and cultured greater amber-
jack are shown in Table 2. TL from muscle and liver in wild fish was
significantly lower than in cultured fish. Conversely, TL from ovary
was lower in cultured fish. No significant differences between the
two groups were found in total polar lipid (TPL) content for muscle
and liver, although some particular phospholipids displayed minor
differences. Nevertheless, in these organs, the total neutral lipid
(TNL) content was much higher in cultured specimens than in wild
ones. The compound mainly responsible for the differences between
the two groups was TG accumulation in cultured fish, since this
lipid class was around 7 fold higher in cultured fish muscle and
almost 10 fold higher in cultured fish liver. For both tissues, the
total amount of cholesterol (CHO) was lower in wild fish. In contrast,
when considering ovaries, TPL content was higher in wild fish than in
cultured fish, due to the lower content of sphingomyelin (SM), phos-
phatidylcholine (PC) and phosphatidylinositol (PI) in cultured fish,
while there were no differences in TNL content between groups,
and CHO was slightly lower in cultured animals than in wild animals.

The relative fatty acid composition of TL from muscle, liver and
ovary is shown in Table 3. In these organs, total level of saturated
fatty acids was higher in wild fish compared to cultured ones due to
the higher proportions of 16:0 and 17:0, although 14:0 percentages
were higher in cultured fish. Among monounsaturated, a higher level
of 18:1n-9 was found in wild fishmuscle and ovary, while liver showed



Table 1
Moisture (%), total lipid (% dry weight) and fatty acid compo-
sition (% total fatty acids) of commercial diet.

Commercial diet

Moisture 12.49±0.12
Total lipid 19.67±0.74

Fatty acids
14: 0 6.42±0.02
14: 1 0.21±0.00
15: 0 0.51±0.01
16: 0 19.71±0.11
16: 1a 8.23±0.07
16: 2 n-4 0.92±0.01
16: 2 n-3 0.24±0.00
17: 0 0.51±0.01
16: 3 n-4 1.17±0.02
16 :3 n-3 0.24±0.00
16: 4 n-1 1.77±0.05
18: 0 3.90±0.01
18: 1 n-9 10.58±0.04
18: 1 n-7 2.92±0.01
18: 2 n-6 5.91±0.37
18: 2 n-4 0.33±0.00
18: 3 n-6 tr
18: 3 n-3 0.89±0.02
18: 4 n-3 2.14±0.03
20: 0 tr
20: 1b 0.86±0.01
20: 4 n-6 1.00±0.00
20: 4 n-3 0.63±0.01
20: 5 n-3 14.60±0.20
22: 0 tr
22:1b 0.54±0.05
21: 5 n-3 0.62±0.07
22: 4 n-6 tr
22: 5 n-6 0.32±0.02
22: 5 n-3 1.80±0.01
22: 6 n-3 11.37±0.07
24: 1 n-9 0.41±0.03
Unknown 0.55±0.14

Totals
Saturates 31.44±0.06
Monoenes 24.00±0.07
PUFA 44.01±0.12
HUFA 30.45±0.39
n-3 32.29±0.23
n-6 7.53±0.20
n-9 12.40±0.01
n-3 HUFA 29.02±0.22
n-6HUFA 1.43±0.17
DHA/EPA 0.78±0.02
EPA/ARA 14.57±0.18

Results are expressed as means±SD (2 replicates).
a Includes n‐9 and n‐7 isomers.
b Includes n‐11, n‐9 and n‐7 isomers. tr, values≤0.20%.
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similar percentages of this fatty acid in both groups. Regarding the n-6
fatty acids, 18:2n-6 exhibited a higher percentage in cultured fish
than in wild fish, while the opposite was observed for ARA, 22: 4n-6
and 22:5n-6 in all organs studied. It is worth noting the high level of
ARA in liver and ovary of wild fish compared to cultured ones. With
respect to n-3 fatty acids, the high percentage of EPA in all organs of
cultured fish compared to wild ones was remarkable. No differences
in DHA level were found in muscle and ovary, while in liver it was
significantly higher in wild fish. The differences observed in the rela-
tive proportions of ARA and EPA led to totally different EPA/ARA and
DHA/EPA ratios between the groups considered, with cultured fish
showing a much higher EPA/ARA ratio and lower DHA/EPA ratio than
wild specimens.

The fatty acid profile of each lipid class is shown in Tables 4, 5, 6. In
general terms, the most prominent differences observed in LC fatty
acid profile between wild and cultured fish were similar to those
found in TL. Thus, in PC, PE and TG, the most striking differences in
all organs were the lower proportion of ARA and the higher propor-
tion of EPA in cultured fish compared to wild ones. The high level of
18:2n-6 in these lipid classes in cultured fish is also remarkable. In
liver PC, in ovary PE, and in TG for all tissues, the level of n-3 HUFA
was significantly higher in cultured fish than in wild specimens.
These differences were primarily a consequence of the higher propor-
tion of EPA in the cultured group. On the other hand, DHA percentage
was higher in muscle, liver and ovary PC, and in ovary PE from wild
fish compared to cultured fish. In TG, proportions of this fatty acid
did not differ in muscle and liver between the groups, but DHA
percentage in ovary TG was higher in cultured fish. In ovary PE, total
DMA level was higher in cultured fish. The differences detected in
the ARA, EPA and DHA proportions between cultured and wild fish
resulted in higher EPA/ARA, and lower DHA/EPA ratios in all cultured
fish tissues for all lipid classes analysed, as observed in TL.

4. Discussion

Throughout their life, fish undergo changes in body composition
in response to diet and environmental conditions, and also according
to the stage of development and season (Copeland et al., 2010;
Grigorakis, 2007; Shearer, 1994). Thus, in this study, the differences
found in lipid composition between cultured and wild fish could be
attributed not only to a different dietary regime, but also to differ-
ences between conditions in captivity and in the wild. The higher
TL content and TG accumulation detected in muscle and liver from
cultured fish, and the greater fat deposit in their peritoneal cavity,
could be related both to the supply of high energy commercial pellets
and to reduced locomotor activity, as described for several species as
Dicentrarchus labrax (Alasavar et al., 2002), Sparus aurata (Grigorakis,
2007), Diplodus sargus (Cejas et al., 2004), Pagellus bogaraveo (Alvarez
et al., 2009) and Anguilla japonica (Oku et al., 2009). In addition,
the liver from cultured fish showed the usual features of a fatty liver
such as paleness and swelling. Fatty liver degeneration (steatosis)
has been related to excessive dietary intake of lipids (Caballero et al.,
1999), the use of artificial diets (Spisni, et al., 1998), vegetable oil
substitution in diets (Benedito-Palos et al., 2008; Wang et al., 2011)
and an unbalanced fatty acid profile due to EFA deficiency (Babalola
et al., 2011; Tocher, 2010).

In general terms, body lipid reserves, particularly neutral lipid in
adult female muscle and liver of marine fish, are an important energy
store which is used during the reproductive process (Sargent et al.,
2002) and are also transferred to the ovaries during vitellogenesis to
contribute to egg reserves (Almansa et al., 2001; Henderson et al.,
1984; Tocher, 2003). A decrease in the lipid content of muscle and
liver and an increase in ovary during the spawning season have been
described for several freshwater and marine species (Almansa et al.,
2001; Henderson et al., 1984; Pérez et al., 2007). Taking into account
the importance of the accumulation of lipid reserves in the gonad
during the spawning season, it is remarkable that although cultured
fish had a higher content of TL in muscle and liver than wild fish, they
showed a lower content in gonads. On the other hand, it is also
noteworthy the lower level of CHO in ovaries from cultured fish
considering the role of this lipid class as precursor of sex hormones.
Further studies should be done to evaluate the mobilization of body
lipid reserves to the ovaries during gonadal maturation in cultured fish.

The relative fatty acid composition of TL and LC (PC, PE and TG)
from the tissues analysed (muscle, liver and ovaries) showed some
general similarities with those described for different organs and ma-
rine fish species (Sargent et al., 2002). However, there were marked
differences between wild and cultured fish in the total level of
18:2n-6, 18:1n-9, ARA, and EPA in TL and TG, as well as in PC and
PE of muscle, liver and ovaries. This difference in the fatty acid profile
betweenwild and cultured fish, which has also been reported in other
species as Dicentrarchus labrax (Alasavar et al., 2002), Diplodus sargus



Table 2
Moisture (%), total lipid (% dry weight) and lipid class composition (mg/g) of muscle, liver and ovary from wild and cultured Seriola dumerili.

Muscle Liver Ovary

Wild Cultured Wild Cultured Wild Cultured

Moisture 76.73±0.94 72.72±1.70* 72.76±1.86 56.51±10.54* 75.26±0.71 77.5±3.02
Total lipid 3.64±1.31 12.88±5.21* 25.17±6.38 53.89±8.93* 16.62±1.15 12.30±3.02*
Sphingomyelin 0.05±0.02 0.06±0.02 0.29±0.16 0.13±0.11 0.26±0.04 0.12±0.04*
Phosphatidylcholine 0.98±0.26 1.08±0.47 3.63±0.42 3.51±0.40 2.85±0.69 1.49±0.49*
Phosphatidylserine 0.07±0.03 0.11±0.05 0.37±0.12 0.25±0.08 0.24±0.06 0.24±0.08
Phosphatidylinositol 0.18±0.07 0.25±0.10 0.85±0.22 0.53±0.25* 0.51±0.07 0.29±0.09*
Phosphatidylglycerola 0.01±0.01 0.10±0.05* 0.31±0.10 0.17±0.16 0.26±0.26 0.14±0.04
Phosphatidylethanolamine 0.29±0.12 0.56±0.24* 1.48±0.28 1.14±0.46 1.24±0.14 0.67±0.20
Total polar lipid 1.58±0.46 2.16±0.92 6.92±0.90 5.74±1.10 5.36±1.04 2.94±0.84*
Diacylgycerides 0.03±0.02 nd 0.14±0.31 nd nd nd
Cholesterol 0.44±0.08 0.84±0.31* 2.40±0.31 3.41±0.32* 2.53±0.29 1.57±0.47*
Free fatty acids 0.13±0.01 0.07±0.06 4.35±1.09 1.36±0.51* 0.44±0.35 0.45±0.33
Triacylglycerol 1.23±0.65 9.49±4.94* 4.11±2.18 40.45±8.80* 3.21±0.32 2.91±0.89
Sterol ester 0.16±0.15 0.24±0.09 6.01±4.20 2.29±0.33 4.93±0.60 4.31±1.43
Total neutral lipid 1.99±0.83 10.64±5.13* 17.01±5.53 47.52±8.74* 11.12±1.17 9.24±2.96

Results are expressed as means±SD (n=9). Values marked with an asterisk (*) show significant differences (pb0.05) between pairs of means corresponding to wild and cultured
fish in each tissue, compared by Student's t-test. nd, not detected.

a Could contain phosphatidic acid, phosphatidylglycerol and cardiolipin.

Table 3
Fatty acid composition (% total fatty acids) of total lipid of muscle, liver and ovary from wild and cultured Seriola dumerili.

Fatty acids Muscle Liver Ovary

Wild Cultured Wild Cultured Wild Cultured

14: 0 1.86±0.61 4.16±0.69* 1.08±0.31 2.01±0.61* 1.02±0.44 1.61±0.30*
15: 0 0.42±0.05 0.38±0.03 0.61±0.15 0.25±0.10* 0.43±0.14 0.24±0.04*
16: 0 21.17±0.91 18.75±0.65* 30.51±6.49 20.15±1.41* 17.97±1.24 17.44±0.48
16: 1a 4.07±1.00 7.21±0.67* 3.31±0.57 4.84±0.78* 4.18±0.70 4.39±1.20
16: 2 n-4 nd 0.71±0.13* nd 0.30±0.10* nd 0.29±0.06*
16: 2 n-3 0.70±0.08 0.24±0.01* 1.00±0.23 0.37±0.06* 1.08±0.26 0.41±0.03*
17: 0 0.81±0.15 0.45±0.10* 1.21±0.20 0.71±0.11* 0.74±0.17 0.54±0.04*
16: 3 n-4 nd 0.78±0.16* nd 0.27±0.09 nd 0.22±0.04*
16: 3 n-3 0.47±0.01 0.32±0.01* 0.57±0.17 0.40±0.06 0.77±0.08 0.29±0.02*
18: 0 8.67±0.76 5.39±0.56* 8.57±3.22 8.50±1.51 4.50±0.98 4.99±0.37
18: 1 n-9 24.51±6.37 15.72±2.41* 20.77±4.75 25.56±5.82 24.79±4.73 14.85±1.20*
18: 1 n-7 2.94±0.45 3.18±0.08 3.37±0.34 4.58±0.60* 3.85±0.47 3.63±0.19
18: 2 n-6 0.91±0.04 5.32±0.11* 0.99±0.11 4.25±1.45* 1.40±0.13 4.58±0.86*
18: 2 n-4 nd 0.35±0.02* tr 0.44±0.11* tr 0.36±0.06*
18: 3 n-3 0.21±0.01 0.74±0.09* 0.21±0.09 0.50±0.16* 0.34±0.13 0.44±0.10
18: 4 n-3 tr 1.43±0.33* tr 0.61±0.19* tr 0.64±0.10*
20: 0 0.34±0.08 tr tr nd* tr nd
20: 1b 1.91±0.67 1.33±0.25 0.76±0.22 2.05±0.26* 0.78±0.30 1.19±0.05*
20: 2 n-6 tr tr 0.21±0.06 0.23±0.06 tr tr
20: 4 n-6 2.07±0.22 0.91±0.17* 3.68±0.71 0.79±0.22* 4.09±0.40 2.52±0.21*
20: 3 n-3 nd nd tr nd tr nd*
20: 4 n-3 0.32±0.03 0.77±0.04* 0.33±0.11 0.94±0.21* 0.42±0.13 0.56±0.08
20: 5 n-3 1.93±0.43 11.35±0.81* 2.22±0.72 7.66±1.69* 3.00±0.79 9.30±0.60*
22: 1b 0.96±0.59 0.55±0.08 tr 0.32±0.12* tr 0.24±0.09*
21: 5 n-3 tr 0.59±0.04* tr 0.45±0.11* tr 0.37±0.03*
22: 4 n-6 0.58±0.07 tr* 0.37±0.13 tr* 0.52±0.16 tr*
22: 5 n-6 1.22±0.29 0.34±0.07* 0.83±0.16 0.23±0.03* 1.39±0.18 0.55±0.08*
22: 5 n-3 2.83±0.23 3.26±0.37 1.74±0.26 3.87±0.52* 2.85±0.26 3.23±0.21
22: 6 n-3 18.77±7.65 13.49±2.86 15.88±3.00 7.98±0.70* 23.34±4.08 24.60±1.25

Totals
Saturatesc 33.60±1.42 29.24±0.81* 45.75±4.45 31.61±2.35* 28.79±0.90 27.34±0.78*
Monoenesc 34.90±9.12 28.38±3.26 29.03±5.32 37.97±4.17* 34.55±5.23 24.57±1.24*
PUFAc 30.64±8.81 41.87±2.55 24.31±3.69 29.70±5.69 35.70±5.37 46.74±0.74*
HUFA³ 27.76±8.42 30.85±3.22 21.40±3.54 21.93±3.32 31.76±4.93 38.73±1.01*
n-3 24.88±8.10 31.87±2.59 21.49±3.61 22.36±3.47 31.44±5.07 39.56±0.81*
n-6 5.15±0.45 7.00±0.36* 6.25±0.88 5.75±1.79 7.85±0.63 8.16±0.59
n-9 27.67±7.68 17.60±2.71 21.62±4.82 27.94±5.58 25.60±4.72 16.45±1.09*
n-3 HUFA 23.89±7.99 29.46±2.92 20.21±3.52 20.88±3.07 29.85±4.82 38.07±0.91*
n-6 HUFA 4.05±0.42 1.08±0.30* 5.03±0.84 0.96±0.24* 6.18±0.59 2.78±0.27*
DHA/EPAd 8.58±2.51 1.20±0.31* 4.70±1.41 0.59±0.10* 7.87±1.66 2.65±0.26*
EPA/ARAd 0.94±0.10 12.81±2.43* 0.51±0.23 5.15±0.83* 0.79±0.26 3.32±1.07*

Results are expressed as means±SD (n=9). Values marked with an asterisk (*) show significant differences (pb0.05) between pairs of means corresponding to wild and cultured
fish in each tissue, compared by Student's t-test. tr, values≤0.20%. nd, not detected.

a Includes n‐9 and n‐7 isomers.
b Includes n‐11, n‐9 and n‐7 isomers.
c Include some minor components not shown in the table.
d DHA/EPA, 22: 6 n‐3/20: 5 n‐3; EPA/ARA, 20: 5 n‐3/20:4 n‐6.
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Table 4
Fatty acid composition (% total fatty acids) of phosphatidylcholine of muscle, liver and ovary from wild and cultured Seriola dumerili.

Fatty acids Muscle Liver Ovary

Wild Cultured Wild Cultured Wild Cultured

14: 0 0.34±0.10 0.39±0.05 0.43±0.12 0.60±0.11* 0.55±0.19 0.88±0.10*
15: 0 0.31±0.03 0.20±0.04* 0.46±0.17 0.25±0.06* 0.47±0.13 0.30±0.02*
16: 0 DMAd 0.38±0.17 0.27±0.16 nd nd 0.24±0.03 0.40±0.05*
16: 0 33.12±2.02 31.66±1.50 27.89±3.78 23.14±0.72* 28.61±2.36 30.01±2.67
16: 1a 1.30±0.27 1.15±0.26 2.04±0.46 1.55±0.37 2.23±0.35 2.35±0.08
16: 2 n-4 nd tr nd 0.27±0.06* nd tr*
16: 2 n-3 0.82±0.03 0.65±0.16 1.16±0.28 2.17±1.06 0.79±0.15 0.37±0.01*
17: 0 0.50±0.10 0.34±0.01 1.04±0.18 0.63±0.09* 1.27±0.21 0.96±0.12*
16: 3 n-3 0.21±0.05 tr 0.31±0.04 tr* 0.31±0.04 tr
18: 0 4.34±0.60 4.04±0.39 7.67±4.28 12.78±2.54* 4.42±2.08 4.98±1.08
18: 1 n-9 5.44±1.39 4.79±0.56 8.12±1.57 5.65±0.12* 8.35±1.02 8.83±1.91
18: 1 n-7 1.10±0.37 1.36±0.07 1.99±0.43 2.07±0.35 1.70±0.24 2.20±0.14*
18: 2 n-6 0.90±0.15 3.87±0.29* 0.78±0.15 2.04±0.34* 0.70±0.11 2.11±0.14*
18: 2 n-4 nd tr* tr 0.34±0.08* tr tr
18: 3 n-3 tr 0.21±0.02* tr tr tr tr
18: 4 n-3 tr 0.30±0.07* tr 0.39±0.08* tr tr*
20: 0 tr nd tr tr nd tr
20: 1b 0.24±0.11 0.28±0.02 0.23±0.09 0.43±0.09* tr 0.44±0.04*
20: 3 n-6 tr 0.22±0.02 0.20±0.04 tr 0.21±0.04 tr*
20: 4 n-6 3.70±0.52 2.25±0.03* 6.32±1.41 1.57±0.32* 5.88±1.07 2.41±0.14*
20: 4 n-3 tr 0.54±0.05* 0.21±0.09 0.49±0.08* 0.23±0.06 0.30±0.03*
20: 5 n-3 3.05±0.45 13.59±1.03* 4.04±0.71 11.50±0.90* 4.26±0.74 11.52±0.77*
22: 1b nd tr nd nd nd tr*
21: 5 n-3 tr 0.36±0.02* tr tr* tr tr*
22: 4 n-6 0.78±0.22 tr* 0.42±0.13 nd* 0.46±0.13 tr*
22: 5 n-6 2.77±0.11 1.01±0.03* 1.45±0.22 0.34±0.05* 1.72±0.50 0.39±0.03*
22: 5 n-3 3.23±0.46 3.53±0.09 2.26±0.39 2.58±0.48 2.32±0.66 2.61±0.22
22: 6 n-3 36.14±4.65 27.55±1.38* 31.72±1.86 28.31±1.47* 33.82±2.75 26.82±2.70

Totals
Saturatesc 38.71±1.85 36.81±1.03 37.68±3.41 38.11±2.50 35.33±0.49 37.14±1.69
Monoenesc 8.30±2.14 8.15±0.47 12.77±2.32 9.87±0.69* 12.81±1.52 14.27±2.06
PUFAc 48.51±4.43 52.48±0.76 42.58±2.45 49.16±2.24* 44.95±2.47 45.21±3.64
HUFAc 46.23±4.57 46.76±0.96 40.12±2.33 43.37±2.18 42.86±2.52 41.88±3.59
n-3 43.65±4.88 46.73±0.95 39.55±2.36 45.76±2.16* 41.64±2.79 42.09±3.61
n-6 8.56±0.94 7.68±0.33 9.33±1.84 4.31±0.72* 9.15±1.49 5.33±0.21
n-9 5.68±1.49 5.31±0.79 8.37±1.60 6.07±0.18* 8.51±1.04 9.47±1.86
n-3 HUFA 42.68±3.93 45.57±0.99 38.25±2.26 43.02±2.19* 40.68±2.80 41.39±3.50
n-6 HUFA 7.44±0.74 3.66±0.08* 8.39±1.71 2.01±0.42* 7.81±1.33 2.92±0.17*
DHA/EPAe 11.90±0.55 2.04±0.24* 8.02±1.26 2.47±0.19* 8.11±0.69 2.32±0.09*
EPA/ARAe 0.84±0.23 6.04±0.40* 0.68±0.29 7.56±1.49 0.76±0.10 4.79±0.41*

Results are expressed as means±SD (n=9). Values marked with an asterisk (*) show significant differences (pb0.05) between pairs of means corresponding to wild and cultured
fish in each tissue, compared by Student's t-test. tr, values≤0.20%. nd, not detected.

a Includes n‐9 and n‐7 isomers.
b Includes n‐11, n‐9 and n‐7 isomers.
c Include some minor components not shown in the table.
d DMA, dimethyl acetal.
e DHA/EPA, 22: 6 n‐3/20: 5 n‐3; EPA/ARA, 20: 5 n‐3/20:4 n‐6.
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(Cejas et al., 2003, 2004), Spondyliosoma cantharus (Rodríguez et al.,
2004), and Anguilla japonica (Ozaki et al., 2008), was probably due
to the different profile of fatty acids present in their diet.

The content of 18:1n-9 in TL was significantly higher in ovaries
and muscle of wild fish than in cultured ones. In both tissues, this
monoene was found accumulated in TG, which is consistent with its
potential role as source of metabolic energy. On the other hand,
18:1n-9 in wild ovaries was accounted for 24.79% of TL fatty acids.
In gonads and eggs from many species this fatty acid has been
found in lower relative proportions, around 15% of total fatty acids
(Cejas et al., 2003; Huang et al., 2010; Mourente et al., 1999; Ortega
and Mourente, 2010), and only a few species show values above
20%, including Anguilla japonica (Ozaki et al., 2008) or Seriola
quinqueradiata (Vassallo-Agius et al., 2001). The diet of S. dumerili
in the wild, which is composed mainly by several finfish including
Trachurus trachurus and Boops boops (Lazzari and Barbera, 1988;
Matallanas et al., 1995) both rich in 18:1n-9 (Karakoltsidis, et al.,
1995), could contribute to the high level of this fatty acid.

Although commercial diets supplied in fish aquaculture use ma-
rine sources, rich in long-chain HUFA, they also use other alternative
vegetable sources, which make them less appropriate in terms of lipid
and fatty acid composition. In particular the content of 18:2n-6 in
a potential alternative lipid source must be considered as one of the
most negative parameters, as this fatty acid is responsible for the
most detrimental modifications to the fatty acid composition of cul-
tured fish (Turchini et al., 2009). In this study, the higher levels of
18:2n-6 levels found in TL and all LC of all tissues analysed of cultured
fish, suggest that this fatty acid is in excess in the diet.

As observed in the present study, the ARA levels usually found in
cultured fish are lower than those detected in their wild counterparts
(Alvarez et al., 2009; Cejas et al., 2003, 2004; Ozaki et al., 2008;
Rodríguez et al., 2004). The influence of ARA levels in broodstock diet
on egg quality has been widely established for different species as
Dicentrarchus labrax (Bell et al., 1997; Navas et al., 1997), Paralichthys
olivaceus (Furuita et al., 2000) and Perca fluviatilis (Henrotte et al.,
2010). Moreover, there is abundant evidence of the importance of
this fatty acid in the reproductive process (Bell and Sargent, 2003).
ARA is the main eicosanoid precursor, with prostaglandins derived
from this fatty acid involved in steroidogenesis and oocyte maturation
(Henrotte et al., 2011; Mercure and Van der Kraak, 1996; Patiño et al.,



Table 5
Fatty acid composition (% total fatty acids) of phosphatidylethanolamine of muscle, liver and ovary from wild and cultured Seriola dumerili.

Fatty acids Muscle Liver Ovary

Wild Cultured Wild Cultured Wild Cultured

14: 0 0.52±0.16 0.64±0.30 0.34±0.13 0.67±0.42 0.40±0.12 0.64±0.22
14: 1 n-5 nd 0.46±0.39 nd 0.71±0.51* tr 0.30±0.12
15: 0 tr tr 0.27±0.11 0.47±0.30 tr tr
16: 0 DMAd 2.23±0.09 3.32±1.39 0.21±0.24 0.48±0.44 5.01±0.80 8.95±1.03*
16: 0 7.75±1.56 9.76±1.01 19.56±4.82 11.88±1.58* 11.31±.1.23 9.52±0.66*
16: 1a 1.70±0.19 1.48±0.23 1.34±0.53 2.90±1.13* 1.77±0.11 1.65±0.88
16: 2 n-4 nd tr 0.22±0.16 nd* nd nd
16: 2 n-3 3.47±1.02 3.80±2.15 1.74±0.80 5.11±1.23* 0.37±0.05 0.54±0.09*
17: 0 0.60±0.05 0.32±0.21 1.36±0.33 0.77±0.17* 1.51±0.60 1.44±0.28
16 :3 n-3 0.40±0.35 tr 0.27±0.09 tr 0.31±0.04 0.37±0.13
18 :0 DMAd 4.79±1.36 2.60±1.22 0.29±0.33 nd 3.93±0.54 4.03±0.88
18: 1 n-9 DMA† 1.79±0.16 1.18±0.31* tr tr 0.91±0.15 1.61±0.53*
18:1 n-7 DMA† 1.02±0.19 0.89±0.25 tr 0.70±0.33* 0.43±0.03 0.77±0.15*
18: 0 12.10±1.75 16.82±1.08* 18.65±4.87 18.45±1.87 8.03±0.85 7.10±0.30
18: 1 n-9 4.99±1.32 3.44±0.48 6.83±1.84 5.59±1.47 6.15±0.90 4.34±0.38*
18: 1 n-7 3.14±0.21 2.43±0.40* 3.13±0.73 2.70±0.42 3.38±0.72 3.08±0.30
18: 2 n-6 1.40±0.35 3.25±0.53* 0.71±0.24 2.75±1.09* 1.00±0.15 1.95±0.39*
18: 2 n-4 tr 0.23±0.26 nd 0.30±0.50 0.04±0.09 0.26±0.05*
18: 3 n-6 nd 0.40±0.31 nd 0.46±0.46 nd nd
18: 3 n-3 tr 0.16±0.19 tr nd tr tr
18: 4 n-3 nd 0.29±0.21 tr 0.91±0.29* tr nd
20: 0 0.40±0.16 0.45±0.20 tr nd 0.26±0.02 tr*
20: 1b 0.52±0.15 0.62±0.09 0.58±0.16 1.29±0.44* 0.46±0.12 0.68±0.03*
20: 2 n-6 tr nd tr nd 0.25±0.05 tr*
20: 3 n-6 0.22±0.20 nd tr nd 0.27±0.06 tr
20: 4 n-6 4.16±1.58 1.75±0.09* 4.74±1.36 1.03±0.27* 7.70±1.67 4.56±0.33*
20: 4 n-3 tr tr 0.24±0.02 0.91±0.06* 0.33±0.06 0.34±0.04
20: 5 n-3 2.11±0.46 5.22±0.21* 2.45±0.46 5.45±1.14* 2.55±0.19 8.53±0.96*
22: 1b tr tr tr 0.68±0.13* nd nd
22: 2 n-6 nd tr nd 0.75±0.38* nd nd
21: 5 n-3 nd nd nd tr tr tr
22: 4 n-6 0.92±0.41 tr* 0.48±0.15 nd* 0.77±0.18 0.22±0.02*
22: 5 n-6 1.87±0.07 0.90±0.07* 1.57±0.27 tr* 1.97±0.21 0.66±0.07*
22: 5 n-3 2.16±0.37 2.03±0.21 1.68±0.28 2.19±0.49* 3.33±0.58 3.50±0.30
22: 6 n-3 36.53±4.88 31.64±3.50 30.06±6.32 24.32±7.52 34.71±1.17 32.44±1.41*
24: 1 n-9 0.36±0.62 nd nd 1.50±1.45 nd nd

Totals
Saturatesc 22.09±2.78 29.37±2.78* 40.97±3.92 34.28±3.48* 22.46±2.83 19.22±1.54
Monoenesc 11.28±2.25 9.02±0.75 12.50±3.10 14.56±3.02 12.30±1.32 10.50±1.38
PUFAc 49.41±3.94 48.38±2.33 39.56±6.34 43.40±7.34 45.85±1.20 48.88±1.93*
HUFAc 43.87±4.96 40.00±3.74 36.48±7.03 33.12±9.30 43.76±1.48 45.77±2.02
DMAsd 9.84±1.51 7.99±3.12 0.78±0.79 1.25±0.48 10.28±1.44 15.35±1.08*
n-3 44.75±4.54 43.29±2.10 36.37±6.10 38.95±7.68 41.55±1.22 45.49±2.01*
n-6 8.66±1.53 6.49±0.36* 7.71±1.79 5.18±1.09* 11.96±1.88 7.70±0.59*
n-9 6.05±2.39 4.22±0.63 7.72±1.97 8.04±1.48 6.61±0.97 5.02±0.39*
n-3 HUFA 31.39±19.86 39.04±3.66 34.42±6.71 32.94±9.11 41.03±2.80 44.90±1.97*
n-6 HUFA 5.52±3.69 2.84±0.16 6.91±1.65 1.96±0.53* 9.94±1.78 5.36±0.41*
DHA/EPAe 17.65±2.85 6.08±0.90* 12.35±1.91 4.36±0.62* 13.66±0.69 3.83±0.31*
EPA/ARAe 0.54±0.19 3.00±0.23* 0.55±0.21 5.38±0.78* 0.35±0.10 1.87±0.16*

Results are expressed as means±SD (n=9). Values marked with an asterisk (*) show significant differences (pb0.05) between pairs of means corresponding to wild and cultured
fish in each tissue, compared by Student's t-test. tr, values≤0.20%. nd, not detected.

a Includes n‐9 and n‐7 isomers.
b Includes n‐11, n‐9 and n‐7 isomers.
c Include some minor components not shown in the table.
d DMA, dimethyl acetal.
e DHA/EPA, 22: 6 n‐3/20: 5 n‐3; EPA/ARA, 20: 5 n‐3/20:4 n‐6.
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2003; Sorbera et al., 2001). Although ARA is the chief precursor of
eicosanoids, EPA competitively interferes with ARA in the produc-
tion of these hormone-like compounds, being EPA derivatives less
biologically active than those produced from ARA. Thus, eicosanoid
actions are determined by the EPA/ARA ratio in cellular membranes
which depend on the dietary content of these fatty acids (Tocher,
2003). High levels of EPA produce prostaglandins PGE3 and PGF3,
inhibiting the conversion of ARA to the biologically more potent
PGE2 and PGF2α involved in oocyte maturation and ovulation pro-
cesses (Henrotte et al., 2010, 2011; Sorbera et al., 2001). Therefore,
the much higher EPA level and higher EPA/ARA ratio found in
cultured fish compared to wild ones (for all lipid class and tissues
analysed) could negatively affect the reproductive performance of
S. dumerili.

In addition, the high level of EPA detected in cultured fish also
affects the DHA/EPA ratio, which is lower in cultured fish than in
wild fish. DHA and EPA have an important role in maintaining
cell membrane structure and function, and both fatty acids have
competitive interactions for their incorporation into phospholipids
(Sargent et al., 2002). Thus, the high level of EPA in the tissues of cul-
tured fish could also have a negative effect on certain physiological
functions.

In summary, the results suggest that 18:1n-9, 18:2n-6 and EFA, es-
pecially EPA and ARA, are not supplied in the appropriate proportions



Table 6
Fatty acid composition (% total fatty acids) of triacylglycerol of muscle, liver and ovary from wild and cultured Seriola dumerili.

Fatty acids Muscle Liver Ovary

Wild Cultured Wild Cultured Wild Cultured

14: 0 2.41±0.78 5.20±0.36* 1.42±0.41 2.08±0.78 2.03±0.74 3.20±0.81*
15: 0 0.54±0.06 0.44±0.02* 0.78±0.21 0.23±0.18* 0.83±0.28 0.39±0.08*
16: 0 DMAd nd nd 0.28±0.25 nd* nd nd
16: 0 19.81±0.52 18.84±0.34* 33.04±6.44 20.59±1.88* 26.20±3.15 21.31±0.85*
16: 1a 4.81±0.82 8.17±0.36* 3.96±0.87 5.18±1.14 5.13±0.60 5.30±1.04
16: 2 n-4 0.24±0.42 0.80±0.06 nd 0.31±0.14* nd 0.35±0.07*
16: 2 n-3 0.53±0.04 0.21±0.01* 1.57±0.36 0.45±0.09* 1.70±0.47 0.53±0.07*
17: 0 1.05±0.11 0.44±0.04* 1.30±0.31 0.59±0.13* 1.58±0.30 0.62±0.10*
16 :3 n-4 nd 0.86±0.10* nd 0.27±0.11* nd 0.34±0.06*
16 :3 n-3 0.59±0.09 0.40±0.01* 0.67±0.29 0.40±0.07 0.77±0.09 0.32±0.04*
16: 4 n-1 tr 1.07±0.16* nd nd nd 0.38±0.06*
18: 0 DMAd nd nd tr 0.30±0.11* nd nd
18: 0 9.11±0.63 4.89±0.17* 9.76±3.70 8.28±1.95 6.64±0.92 4.22±0.19*
18: 1 n-9 31.82±2.69 17.33±1.80* 25.39±5.23 27.68±6.57 25.39±3.66 16.34±0.83*
18: 1 n-7 3.77±0.25 3.39±0.13* 4.03±0.30 4.77±0.79 5.57±0.67 5.26±0.38
18: 2 n-6 0.96±0.10 5.57±0.11* 1.17±0.16 4.39±1.85* 1.11±0.15 4.18±0.73*
18: 2 n-4 nd 0.38±0.01* 0.45±0.14* 0.20±0.06 0.44±0.07*
18 3 n-4 nd 0.21±0.01* nd 0.27±0.07* nd tr
18: 3 n-3 0.26±0.07 0.80±0.03* 0.23±0.10 0.51±0.20* 0.25±0.11 0.40±0.07*
18: 4 n-3 tr 1.55±0.14* tr 0.64±0.23* tr 0.70±0.09*
20: 0 0.49±0.06 tr* tr nd tr tr*
20: 1b 2.76±0.44 1.46±0.15* 1.02±0.41 2.00±0.36* 1.37±0.45 1.77±0.16
20: 2 n-6 0.22±0.05 nd* 0.22±0.09 0.21±0.07 tr tr
20: 3 n-6 tr nd tr 0.22±0.05 tr tr
20: 4 n-6 1.38±0.25 0.71±0.06* 2.47±0.77 0.69±0.20* 1.90±0.27 1.33±0.16*
20: 4 n-3 0.37±0.08 0.79±0.04* 0.33±0.13 0.91±0.27* 0.37±0.13 0.53±0.10
20: 5 n-3 1.73±0.55 10.88±0.55* 1.44±0.41 7.25±1.78* 1.51±0.45 5.80±0.68*
22: 0 0.22±0.01 nd* nd nd nd nd
22: 1b 1.42±0.58 0.60±0.06* tr 0.25±0.05 0.48±1.01 0.47±0.04
21: 5 n-3 nd 0.61±0.04* nd 0.44±0.14* tr 0.40±0.04*
22: 4 n-6 0.58±0.12 tr* 0.31±0.15 nd* 0.34±0.11 tr*
22: 5 n-6 0.72±0.13 0.26±0.01* 0.53±0.15 0.20±0.04* 0.89±0.16 0.58±0.21
22: 5 n-3 2.77±0.45 3.02±0.39 1.39±0.29 3.59±0.64* 1.63±0.86 2.93±0.11
22: 6 n-3 9.20±2.84 10.02±1.17 6.93±1.53 6.05±0.51 12.43±3.72 21.15±4.24*
24: 1 n-9 1.10±0.22 0.28±0.19* nd nd tr tr

Totals
Saturatesc 35.41±1.04 30.57±0.61* 46 .48±3.66 31.77±2.91* 39.35±1.94 31.09±1.72*
Monoenesc 46.28±3.74 31.63±1.49* 35.64±5.34 40.42±4.26 38.91±3.95 29.68±1.40*
PUFAc 17.87±4.58 37.29±1.61* 14.40±2.24 26.22±6.13* 20.97±5.16 39.06±2.88*
HUFAc 15.37±4.11 25.71±1.75* 10.97±1.81 18.45±3.25* 17.19±4.71 31.42±4.03*
n-3 15.03±4.10 27.88±1.71* 11.97±2.01 19.85±3.72* 18.07±4.85 32.44±3.62*
n-6 3.92±0.65 6.81±0.19* 4.84±0.98 5.75±2.15 4.59±0.57 6.35±0.59*
n-9 37.10±3.81 19.67±1.78* 26.79±5.06 29.93±6.24 27.33±3.34 18.74±0.79*
n-3 HUFA 12.97±3.87 25.31±1.80* 10.13±1.66 18.25±2.78* 15.96±4.61 30.81±3.83*
n-6 HUFA 2.61±0.53 1.10±0.08* 3.45±0.90 1.11±0..25* 2.93±0.37 1.96±0..27*
DHA/EPAe 5.32±0.10 0.92±0.11* 5.16±1.72 0.87±0.19* 8.44±1.68 3.72±1.02*
EPA/ARAe 1.25±0.31 15.40±0.95* 0.64±0.32 10.70±0.74* 0.80±0.25 4.38±0.35*

Results are expressed as means±SD (n=9). Values marked with an asterisk (*) show significant differences (pb0.05) between pairs of means corresponding to wild and cultured
fish in each tissue, compared by Student's t-test. tr, values≤0.20%. nd, not detected.

a Includes n‐9 and n‐7 isomers.
b Includes n‐11, n‐9 and n‐7 isomers.
c Include some minor components not shown in the table.
d DMA, dimethyl acetal.
e DHA/EPA, 22: 6 n‐3/20: 5 n‐3; EPA/ARA, 20: 5 n‐3/20:4 n‐6.
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in the diet of cultured fish and could negatively affect their reproduc-
tive performance of this species. Based on the fatty acid profile of
wild specimens and the deficiencies observed in cultured fish in this
study, as a first approach to the formulation of a more suitable diet
for S .dumerili broodstock, it is suggested that a dietary fatty acid pro-
file with higher levels of 18:1n-9 and ARA, and lower proportions of
18:2n-6 and EPA.
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