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Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of evolutionary events acting
at the population level, such as recombination between genes, hybridization between lineages, and horizontal gene transfer. The
researchers have designed several measures for computing the dissimilarity between two phylogenetic networks, and each measure
has been proven to be a metric on a special kind of phylogenetic networks. However, none of the existing measures is a metric on
the space of partly reduced phylogenetic networks. In this paper, we provide a metric, 𝑑

𝑒
-distance, on the space of partly reduced

phylogenetic networks, which is polynomial-time computable.

1. Introduction

Phylogenies reveal the history of evolutionary events of a
group of species, and they are central to comparative analysis
methods for testing hypotheses in evolutionary biology [1].
Computing the distance between a pair of phylogenies is
very important for understanding the evolutionary history of
species.

A metric 𝑑 on a space 𝑆 satisfies four properties for all
𝑎, 𝑏, 𝑐 ∈ 𝑆:

(I) 𝑑(𝑎, 𝑏) ≥ 0 (nonnegative property);
(II) 𝑑(𝑎, 𝑏) = 0 if and only if 𝑎 = 𝑏 (separation property);
(III) 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎) (symmetry property);
(IV) 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐) ≥ 𝑑(𝑎, 𝑐) (triangle inequality).

Phylogenetic network can represent reticulate evolution-
ary events, such as recombinations between genes, hybridiza-
tion between lineages, and horizontal gene transfer [2–5]. For
the comparison of phylogenetic networks, there are many
metrics on the restricted subclasses of networks including
the tripartitionmetric on the space of tree-child phylogenetic
networks [6–9], the 𝜇-distance on the space of tree-sibling
phylogenetic networks [10], and the𝑚-distance on the space
of reduced phylogenetic networks [11]. Later the 𝑚-distance
was also proved to be a metric on the space of tree-child phy-
logenetic networks, semibinary tree-sibling time consistent

phylogenetic networks, and multilabeled phylogenetic trees
[12–15].

For any rooted phylogenetic network 𝑁, we can obtain
its reduced version by removing all nodes in maximal
convergent sets (will be discussed in the following) and all
the nodes, with indegree 1 and outdegree 1, from 𝑁. The
reduced versions of all rooted phylogenetic networks form
the space of reduced phylogenetic networks (𝑚-distance,
defined by Nakhleh, is on this space). In this paper, we will
discuss the partly reduced version of a phylogenetic network
by removing the nodes in a part of the convergent sets
and all the nodes, with indegree 1 and outdegree 1, from
the phylogenetic network. The partly reduced versions of
all rooted phylogenetic networks form the space of partly
reduced phylogenetic networks. Then we will introduce a
novel metric on the space of partly reduced phylogenetic
networks. The space is not the space of rooted phylogenetic
networks, but it is the largest space on which a polynomial-
time computable metric has been defined so for. The papers
[16, 17] have proved that the isomorphism for rooted phylo-
genetic networks is graph isomorphism-complete. Unless the
graph isomorphism problem belongs to 𝑃, there is no hope of
defining a polynomial-time computable metric on the space
of all rooted phylogenetic networks.However, our paper’s aim
is mainly to find a larger space on which a polynomial-time
computablemetric can be defined such that the space is closer
to the space of rooted phylogenetic networks.
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2. Preliminaries

Let 𝑁 = (𝑉, 𝐸) be a directed acyclic graph, or DAG for
short. We denote the indegree of a node 𝑢 as indeg(𝑢) and
the outdegree of 𝑢 as outdeg(𝑢). We will say that a node 𝑢 is
a tree node if indeg(𝑢) ≤ 1. Particularly, 𝑢 is a root of 𝑁 if
indeg(𝑢) = 0 of𝑁. If a single root exists, we will say that the
DAG is rooted. We will say that a node 𝑢 is a reticulate node
if indeg(𝑢) ≥ 2. A tree node 𝑢 is a leaf if outdeg(𝑢) = 0. A
node is called an internal node if its outdeg ≥ 1. For a DAG
𝑁 = (𝑉, 𝐸), we will say that V is a child of 𝑢 if (𝑢, V) ∈ 𝐸; in
this case, we will also say that 𝑢 is a parent of V. Note that any
tree node has a single parent, except for the root of the graph.
Whenever there is a directed path from a node 𝑢 to V, we will
say that V is a descendant of 𝑢 or 𝑢 is an ancestor of V.

The height of a node is the length of a longest path starting
at the node and ending in a leaf.The absence of cycles implies
that the nodes of a DAG𝑁 can be stratified by means of their
heights: the nodes of height 0 are the leaves; if a node has
height 𝑎 > 0, then all its children have heights that are smaller
than 𝑎 and at least one of them has height exactly 𝑎 − 1.

The depth of a node is the length of a longest path starting
at the root and ending in the node. Similarly, the absence of
cycles implies that the nodes of aDAG𝑁 can also be stratified
according to their depths: the node of depth 0 is the root; if
a node has depth 𝑏 > 0, then all its parents have depths that
are smaller than 𝑏 and at least one of them has depth exactly
𝑏 − 1.

LetX be a set of taxa. A rooted phylogenetic network𝑁
onX is a rooted DAG such that

(i) no tree node has outdeg 1;
(ii) its leaves are labeled byX by a bijective mapping 𝑓.

We use the notation 𝑁 = ((𝑉, 𝐸), 𝑓) (or 𝑁 = (𝑉, 𝐸)) for
the rooted phylogenetic network 𝑁 and the notation 𝑉

𝑁
for

its leaf set.

Definition 1. Two rooted phylogenetic networks 𝑁
1

=

((𝑉
1
, 𝐸
1
), 𝑓
1
) and 𝑁

2
= ((𝑉

2
, 𝐸
2
), 𝑓
2
) are isomorphic if and

only if there is a bijection 𝐺 from 𝑉
1
to 𝑉
2
such that

(i) (𝑢, V) is an edge in 𝐸
1
if and only if (𝐺(𝑢), 𝐺(V)) is an

edge in 𝐸
2
;

(ii) 𝑓
1
(𝑤) = 𝑓

2
(𝐺(𝑤)) for all 𝑤 ∈ 𝑉

𝑁
1

.

Moret et al. (2004) discussed the concept of reduced
phylogenetic networks from a reconstruction standpoint.
Subsequently, we briefly review the concept of reduced phy-
logenetic networks and introduce a new definition of partly
reduced phylogenetic networks. In the following section,
we present a metric on the space of all partly reduced
phylogenetic networks. First we review the concept of a
maximal convergent set that has been given in [7, 11].

Definition 2. Given a network𝑁 = (𝑉, 𝐸), we say that a set𝑈
of internal nodes in 𝑉 is convergent if |𝑈| ≥ 2 and

every leaf reachable from some node in𝑈 is reachable
from all nodes in 𝑈.
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Figure 1: Networks𝑁
1
and𝑁

2
from refinements (1) and (2) in Table

1 in [11].𝐻1 and𝐻2 (resp., ℎ1 and ℎ2) are the reticulate nodes,A∼G
(resp., a∼g);𝐻1 and𝐻2 (resp., ℎ1 and ℎ2) as well as the root𝑅 (resp.,
𝑟) are the internal tree nodes in network𝑁

1
(resp.,𝑁

2
).

If there is no convergent set 𝑈
0
containing 𝑈 except 𝑈 itself,

we say that 𝑈 is a maximal convergent set.

Here the leaf set reachable from the nodes in a convergent
set 𝑈 is called the leaf set of 𝑈.

We will take Figure 1 as an example in the following.
The two networks 𝑁

1
, 𝑁
2
on {1, 2, 3, 4, 𝑥} are adapted from

refinements (1) and (2) in Table 1 in [11].

Example 3. Consider the networks in Figure 1. The set
{𝐻1,𝐻2, 𝐺} is the only maximal convergent set of𝑁

1
and the

set {ℎ1, ℎ2, 𝑔} is the only maximal convergent set of𝑁
2
.

For a phylogenetic network 𝑁 = ((𝑉, 𝐸), 𝑓) on X,
the reduced version of 𝑁 can be obtained by the following
reduction procedures:

(1) For each maximal pendant subtree (i.e., the maximal
clade that includes no reticulate nodes) 𝑡, rooted at
node 𝑟

𝑡
, create a new node ℎ

𝑡
and an edge (𝑝

𝑡
, ℎ
𝑡
),

where 𝑝
𝑡
is the parent of 𝑟

𝑡
, delete the edge (𝑝

𝑡
, 𝑟
𝑡
)

and the subtree 𝑡, and label ℎ
𝑡
as 𝑡. Then we denote

the resulting network as𝑁
0
.

(2) Repeat the following two steps on𝑁
0
until no change

occurs:

(I) For each maximal convergent set𝑈 with leaf set
𝐿
𝑈

⊆ 𝑉
𝑁
0

, remove all nodes and edges on the
paths from a node in 𝑈 to the parent of leaf in
𝐿
𝑈
, including all nodes in 𝑈 and excluding the

parent of leaf in 𝐿
𝑈
. For each edge (𝑝, V), where

𝑝 lies outside the deleted set and V lies inside the
deleted set, replace it with a set of edges {(𝑝, 𝑞): 𝑞
is the parent of leaf in 𝐿

𝑈
}.

(II) For each node 𝑤 in the network, with indeg(𝑤)
= outdeg(𝑤) = 1, remove the edges (𝑢, 𝑤), (𝑤, V)
and the node 𝑤, add an edge (𝑢, V), where 𝑢 is
the parent of 𝑤 and V is the child of 𝑤. Repeat
this step until no such node can be removed.
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Figure 2:The rooted phylogenetic network𝑁 is on {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.𝑁
0
,𝑁
1
, and𝑁

2
are the networks obtained by applying each one

of the three reduction procedures to𝑁, respectively.
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Figure 3: The reduced version of the networks in Figure 1.

(3) Replace each leaf labeled by the subtree 𝑡 by its root
𝑟
𝑡
.

Figure 2 shows the results of applying the reduction pro-
cedures to the network𝑁. For the networks in Figure 1, their
reduced versions are the same (see Figure 3). The reduced
versions of all rooted phylogenetic networks form the space
of reduced phylogenetic networks. Nakhleh has introduced
a polynomial-time computable metric on this space [11].
In order to enlarge the space in which a polynomial-time
computable metric can be defined, we will introduce a new
metric and a new space that contains the space of reduced
phylogenetic networks.

Definition 4. Given a network𝑁 = (𝑉, 𝐸), letP(V) be the set
of parents of a node V in 𝑉. We say that 𝑈 ⊂ 𝑉 is a super
convergent set, if

(i) 𝑈 is a convergent set;

(ii) P(𝑢
1
) = P(𝑢

2
) for any two nodes 𝑢

1
, 𝑢
2
∈ 𝑈;

(iii) P(𝑢) is a convergent set for a node 𝑢 ∈ 𝑈, if |P(𝑢)| ≥

2.

Example 5. The set {𝐻, 𝐽} is the only superconvergent set for
any one network in Figure 4, while the networks in Figure 1
have no superconvergent set.

1 2
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Figure 4: Networks𝑁
1
and𝑁

2
are not isomorphic.

We will obtain the new reduction procedures, called
partial reduction procedures, from the above reduction pro-
cedures by just processing superconvergent sets rather than
maximal convergent sets in step (I) of step (2). After applying
the partial reduction procedures to a rooted phylogenetic
network𝑁, the partly reduced version of𝑁 is obtained. The
partly reduced versions of all rooted phylogenetic networks
form the space of partly reduced phylogenetic networks.
This space contains the space of reduced phylogenetic net-
works, but they are not identical. Next we will introduce a
polynomial-time computable metric for the partly reduced
phylogenetic networks.

We begin with the notion of node semiequivalence. For
the sake of simplicity, we will hereafter refer to the rooted
phylogenetic networks as the networks.

3. A Metric

Definition 6. Given a network 𝑁 = ((𝑉, 𝐸), 𝑓), we say that
two nodes 𝑢, V ∈ 𝑉 (not necessarily different) are semiequiv-
alent, denoted by 𝑢 ≜ V, if

(i) 𝑢, V ∈ 𝑉
𝑁
and 𝑓(𝑢) = 𝑓(V) or

(ii) node 𝑢 has 𝑘 (≥ 1) children 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
; node V has

𝑘 children V
1
, V
2
, . . . , V

𝑘
, and 𝑢

𝑖
≜ V
𝑖
for 1 ≤ 𝑖 ≤ 𝑘.
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Figure 5: The topology relation of semiequivalent nodes.

By the definition, it follows that the semiequivalence
of nodes is an equivalence relation; that is, it is reflexive,
symmetric, and transitive, and the semiequivalent nodes
must have the same height.

Example 7. Consider the network 𝑁
1
in Figure 1. For any

node 𝑢 ∈ 𝑉
1
\ {𝐻1,𝐻2}, 𝑢 is only semiequivalent to 𝑢 itself,

while the nodes𝐻1 and𝐻2 are semiequivalent.

Property 1. If 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are semiequivalent from the

network 𝑁 = ((𝑉, 𝐸), 𝑓), then 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are the same

nodes or there are the nodes V
1
(𝑢
1
or a descendant of 𝑢

1
), V
2

(𝑢
2
or a descendant of 𝑢

2
), . . . , V

𝑘
(𝑢
𝑘
or a descendant of 𝑢

𝑘
)

such that V
1
, V
2
, . . . , V

𝑘
have the same children. See Figure 5.

Proof. We use induction on the height 𝑎 of 𝑢
1
to prove it.

If 𝑎 = 0, obviously 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are the only leaf. Thus,

in this case, the property holds. We assume that the result
is tenable when 𝑎 ≤ 𝑛, and let 𝑎 = 𝑛 + 1. Then the
children of 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
are semiequivalent, respectively (let

the children of 𝑢
𝑖
be 𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑙
for 1 ≤ 𝑖 ≤ 𝑘; then

𝑎
1𝑗
, 𝑎
2𝑗
, . . . , 𝑎

𝑘𝑗
are semiequivalent for 1 ≤ 𝑗 ≤ 𝑙), and their

height is at most 𝑛 by the property of node height. By the
induction hypothesis, the children of 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
satisfy the

property.The descendants of children of 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are the

descendants of 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
. Thus, the property holds.

Definition 8. Given a network 𝑁 = (𝑉, 𝐸), we say that two
nodes 𝑢, V ∈ 𝑉 (not necessarily different) are equivalent,
denoted by 𝑢 ≡ V, if 𝑢 ≜ V, and

(i) 𝑢, V are the root or
(ii) node 𝑢 has 𝑙 (≥ 1) parents 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑙
; node V has 𝑙

parents V
1
, V
2
, . . . , V

𝑙
, and 𝑢

𝑖
≡ V
𝑖
for 1 ≤ 𝑖 ≤ 𝑙.

For any node 𝑢 in 𝑁, it is equivalent to itself. The
equivalence of nodes is also an equivalence relation. The
equivalent nodes have the same height and depth.

Example 9. Consider the network 𝑁
1
in Figure 1. For any

node 𝑢 ∈ 𝑉
1
, it is equivalent to itself. Consider the network

𝑁
1
in Figure 4. For any node 𝑢 ∈ 𝑉

1
\ {𝐻, 𝐽}, it is equivalent

to itself, while the nodes𝐻 and 𝐽 are equivalent to each other.

Property 2. If 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are equivalent in the network𝑁 =

((𝑉, 𝐸), 𝑓), then 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are the same nodes or there are

the nodes 𝑝
1
(𝑢
1
or an ancestor of 𝑢

1
), 𝑝
2
(𝑢
2
or an ancestor

pkp2p1

· · ·

· · ·

· · ·

uku2u1

Figure 6: The topology relation of equivalent nodes.

of 𝑢
2
), . . . , 𝑝

𝑘
(𝑢
𝑘
or an ancestor of 𝑢

𝑘
) such that 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑘

have the same parents. See Figure 6.

Proof. We use induction on the depth 𝑏 of 𝑢
1
to prove it. If

𝑏 = 0, then 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are the unique root node. Thus,

in this case, the property holds. We assume that the result
is tenable when 𝑏 ≤ 𝑛, and let 𝑏 = 𝑛 + 1. Then the parents
of 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are equivalent, respectively (let the parents of

𝑢
𝑖
be 𝑎
𝑖1
, 𝑎
𝑖2
, . . . , 𝑎

𝑖𝑙
for 1 ≤ 𝑖 ≤ 𝑘; then 𝑎

1𝑗
, 𝑎
2𝑗
, . . . , 𝑎

𝑘𝑗
are

equivalent for 1 ≤ 𝑗 ≤ 𝑙), and their depth is at most 𝑛 by
the property of node depth. By the induction hypothesis, the
parents of 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
satisfy the property. The ancestors of

the parents of 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
are the ancestors of 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
.

Thus, the property holds.

In this paper, we are mainly concerned with comparing
networks; the notion of node semiequivalence and equiva-
lence will be extended to nodes from two different networks,
as established in the semiequivalence and equivalence map-
ping of Definitions 10 and 13, respectively.

Given a set𝑉, we use 𝑃(𝑉) to denote the set of all subsets
of 𝑉.

Definition 10. Let𝑁
1
= ((𝑉
1
, 𝐸
1
), 𝑓
1
) and𝑁

2
= ((𝑉
2
, 𝐸
2
), 𝑓
2
)

be two networks on X. We define the semiequivalence
mapping between 𝑁

1
and 𝑁

2
, ℎ : 𝑉

1
→ 𝑃(𝑉

2
), such that

V ∈ ℎ(𝑢), for 𝑢 ∈ 𝑉
1
and V ∈ 𝑉

2
, if

(i) 𝑢 ∈ 𝑉
𝑁
1

, V ∈ 𝑉
𝑁
2

, and 𝑓
1
(𝑢) = 𝑓

2
(V) or

(ii) node 𝑢 has 𝑘 (≥ 1) children 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
; node V has

𝑘 children V
1
, V
2
, . . . , V

𝑘
, and V

𝑖
∈ ℎ(𝑢
𝑖
) for 1 ≤ 𝑖 ≤ 𝑘.

Further, while inequation |ℎ(𝑢
1
)| ≤ 1 holds in phyloge-

netic trees, it is not always the case for general phylogenetic
networks.

Example 11. Consider the networks in Figure 1. ℎ is a
semiequivalence mapping between 𝑁

1
and 𝑁

2
. For the

reticulate nodes 𝐻1 and 𝐻2 in 𝑁
1
, ℎ(𝐻1) = {ℎ1, ℎ2} and

ℎ(𝐻2) = {ℎ1, ℎ2}. For the other nodes in 𝑁
1
, ℎ(𝐴) =

{𝑎}, ℎ(𝐵) = {𝑏}, . . . , ℎ(𝐺) = {𝑔}, ℎ(1) = {1}, . . . , ℎ(4) =

{4}, ℎ(𝑥) = {𝑥}, and ℎ(𝑅) = {𝑟}.

Theorem 12. Let 𝑁
1
= ((𝑉
1
, 𝐸
1
), 𝑓
1
) and 𝑁

2
= ((𝑉
2
, 𝐸
2
), 𝑓
2
)

be two networks onX, and let 𝑢
1
, 𝑢
2
be two nodes in 𝑉

1
and ℎ

a semiequivalence mapping between 𝑁
1
and 𝑁

2
. Assume that
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ℎ(𝑢
1
) ̸= 0 and ℎ(𝑢

2
) ̸= 0. Then, 𝑢

1
≜ 𝑢
2
if and only if V

1
≜ V
2
,

for V
1
∈ ℎ(𝑢
1
) and V

2
∈ ℎ(𝑢
2
).

Proof. For the “only if” direction, let V
1
∈ ℎ(𝑢

1
), V
2
∈ ℎ(𝑢

2
),

and 𝑢
1

≜ 𝑢
2
. Obviously, 𝑢

1
, 𝑢
2
, V
1
, and V

2
have the same

height 𝑎. Then, we use induction on such height 𝑎 to prove
V
1
≜ V
2
. In particular, if 𝑎 = 0, that is, 𝑢

1
, 𝑢
2
∈ 𝑉
𝑁
1

, and
𝑓
1
(𝑢
1
) = 𝑓

1
(𝑢
2
), then V

1
, V
2
∈ 𝑉
𝑁
2

and 𝑓
2
(V
1
) = 𝑓

1
(𝑢
1
) =

𝑓
1
(𝑢
2
) = 𝑓
2
(V
2
). Thus, in this case, V

1
≜ V
2
. We assume that

the result is tenable when 𝑎 ≤ 𝑛, and let 𝑎 = 𝑛+ 1. We assume
that node 𝑢

1
has 𝑘 children 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑘
. Due to 𝑢

1
≜ 𝑢
2
, it

follows that node 𝑢
2
has 𝑘 children 𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑘
, and 𝑝

𝑖
≜ 𝑞
𝑖

(1 ≤ 𝑖 ≤ 𝑘). Due to V
1
∈ ℎ(𝑢

1
) and V

2
∈ ℎ(𝑢

2
), it follows that

V
1
has 𝑘 children 𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑘
, and 𝑤

𝑖
∈ ℎ(𝑝

𝑖
) (1 ≤ 𝑖 ≤ 𝑘),

V
2
has 𝑘 children 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
, and 𝑦

𝑖
∈ ℎ(𝑞

𝑖
) (1 ≤ 𝑖 ≤ 𝑘).

The height of 𝑝
𝑖
, 𝑞
𝑖
, 𝑤
𝑖
, and 𝑦

𝑖
is at most 𝑛. By the induction

hypothesis, 𝑤
𝑖
≜ 𝑦
𝑖
. Thus, V

1
≜ V
2
.

For the “if” direction, let V
1
∈ ℎ(𝑢
1
), V
2
∈ ℎ(𝑢
2
), and V

1
≜

V
2
. Similarly, we also use induction on the same height 𝑎 of 𝑢

1
,

𝑢
2
, V
1
, and V

2
to prove 𝑢

1
≜ 𝑢
2
. If 𝑎 = 0, that is, V

1
, V
2
∈ 𝑉
𝑁
2

,
and 𝑓

2
(V
1
) = 𝑓
2
(V
2
), then 𝑢

1
, 𝑢
2
∈ 𝑉
𝑁
1

and 𝑓
1
(𝑢
1
) = 𝑓
2
(V
1
) =

𝑓
2
(V
2
) = 𝑓
1
(𝑢
2
). Thus, in this case, 𝑢

1
≜ 𝑢
2
. We assume that

the result is tenable when 𝑎 ≤ 𝑛, and let 𝑎 = 𝑛+ 1. We assume
that node V

1
has 𝑘 children𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑘
. Since V

1
≜ V
2
, node

V
2
has 𝑘 children 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑘
, and 𝑤

𝑖
≜ 𝑦
𝑖
(1 ≤ 𝑖 ≤ 𝑘). Since

V
1
∈ ℎ(𝑢

1
) and V

2
∈ ℎ(𝑢

2
), 𝑢
1
has 𝑘 children 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑘
,

and 𝑤
𝑖
∈ ℎ(𝑝

𝑖
) (1 ≤ 𝑖 ≤ 𝑘), 𝑢

2
has 𝑘 children 𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑘
,

and 𝑦
𝑖
∈ ℎ(𝑞

𝑖
) (1 ≤ 𝑖 ≤ 𝑘). The height of 𝑝

𝑖
, 𝑞
𝑖
, 𝑤
𝑖
, and 𝑦

𝑖

is at most 𝑛 by the property of node height. By the induction
hypothesis, 𝑝

𝑖
≜ 𝑞
𝑖
. Thus, 𝑢

1
≜ 𝑢
2
.

Theorem 12 tells us that the semiequivalence mapping
keeps the semiequivalence of nodes. Thus, all nodes in ℎ(𝑢)

are semiequivalent. Sometimes we use ℎ(𝑢) to denote an
arbitrary node in the set. We say that the nodes in ℎ(𝑢) are
semiequivalent with 𝑢.

Definition 13. Let𝑁
1
= ((𝑉
1
, 𝐸
1
), 𝑓
1
) and𝑁

2
= ((𝑉
2
, 𝐸
2
), 𝑓
2
)

be two networks on X. We define the equivalence mapping
between 𝑁

1
and𝑁

2
, 𝑔 : 𝑉

1
→ 𝑃(𝑉

2
), such that V ∈ 𝑔(𝑢), for

𝑢 ∈ 𝑉
1
and V ∈ 𝑉

2
, if V ∈ ℎ(𝑢), and

(i) 𝑢, V are the roots or
(ii) node 𝑢 has 𝑙 (≥ 1) parents 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑙
; node V has 𝑙

parents V
1
, V
2
, . . . , V

𝑙
, and V

𝑖
∈ 𝑔(𝑢

𝑖
), for 1 ≤ 𝑖 ≤ 𝑙,

where ℎ is a semiequivalence mapping between𝑁
1
and𝑁

2
.

Example 14. Consider the networks in Figure 1. ℎ is the
semiequivalence mapping between 𝑁

1
and 𝑁

2
discussed

in Example 11. 𝑔 is an equivalence mapping between 𝑁
1

and 𝑁
2
defined in Definition 13. For any node 𝑢 ∈ 𝑉

1
\

{𝐻1,𝐻2, 𝐺 and 𝑥}, 𝑔(𝑢) = ℎ(𝑢), while 𝑔(V) = 0 when V ∈

{𝐻1,𝐻2, 𝐺 and 𝑥}.

Theorem 15. Let 𝑁
1
= ((𝑉
1
, 𝐸
1
), 𝑓
1
) and 𝑁

2
= ((𝑉
2
, 𝐸
2
), 𝑓
2
)

be two networks on X, and let 𝑢
1
, 𝑢
2
be two nodes in 𝑉

1
. 𝑔

is an equivalence mapping between 𝑁
1
and 𝑁

2
. Assume that

𝑔(𝑢
1
) ̸= 0 and 𝑔(𝑢

2
) ̸= 0. Then, 𝑢

1
≡ 𝑢
2
if and only if V

1
≡ V
2
,

for V
1
∈ 𝑔(𝑢

1
) and V

2
∈ 𝑔(𝑢

2
).

Proof. Let V
1
∈ 𝑔(𝑢

1
), V
2
∈ 𝑔(𝑢

2
). Then V

1
∈ ℎ(𝑢
1
), V
2
∈ ℎ(𝑢
2
)

based on Definition 13. For the “only if” direction, let 𝑢
1
≡

𝑢
2
. We can deduce that V

1
≜ V
2
according to Theorem 12,

and 𝑢
1
, 𝑢
2
and V

1
and V

2
have the same depth 𝑏. Then, we

use induction on 𝑏 to prove that V
1
≡ V
2
. If 𝑏 = 0, that is, 𝑢

1
,

𝑢
2
are the unique root node of𝑁

1
, then V

1
, V
2
are the unique

root node of 𝑁
2
. Thus, in this case, V

1
≡ V
2
. We assume that

the result is tenable when 𝑏 ≤ 𝑛, and let 𝑏 = 𝑛 + 1. We assume
that node 𝑢

1
has 𝑙 parents 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑙
. Due to 𝑢

1
≡ 𝑢
2
, node

𝑢
2
has 𝑙 parents 𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑙
, and 𝑝

𝑖
≡ 𝑞
𝑖
(1 ≤ 𝑖 ≤ 𝑙). Due

to V
1
∈ 𝑔(𝑢

1
) and V

2
∈ 𝑔(𝑢

2
), V
1
has 𝑙 parents 𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑙
,

and 𝑤
𝑖
∈ 𝑔(𝑝

𝑖
) (1 ≤ 𝑖 ≤ 𝑙), V

2
has 𝑙 parents 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑙
, and

𝑦
𝑖
∈ 𝑔(𝑞
𝑖
) (1 ≤ 𝑖 ≤ 𝑙). The depth of 𝑝

𝑖
, 𝑞
𝑖
, 𝑤
𝑖
, and 𝑦

𝑖
is at most

𝑛 by the property of node depth. By the induction hypothesis,
𝑤
𝑖
≡ 𝑦
𝑖
. Thus, V

1
≡ V
2
.

For the “if” direction, let V
1
∈ 𝑔(𝑢

1
), V
2
∈ 𝑔(𝑢

2
), and V

1
≡

V
2
. We can deduce first that 𝑢

1
≜ 𝑢
2
according toTheorem 12.

Similarly, we also use induction on the same depth 𝑏 of 𝑢
1
, 𝑢
2

and V
1
, V
2
to prove that 𝑢

1
≡ 𝑢
2
. If 𝑏 = 0, that is, V

1
, V
2
are

the unique root node of 𝑁
2
, then 𝑢

1
, 𝑢
2
are the unique root

node of 𝑁
1
. Thus, in this case, 𝑢

1
≡ 𝑢
2
. We assume that the

result is tenable when 𝑏 ≤ 𝑛, and let 𝑏 = 𝑛+1. We assume that
node V

1
has 𝑙 parents 𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑙
. Due to V

1
≡ V
2
, node V

2

has 𝑙 parents 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑙
, and 𝑤

𝑖
≡ 𝑦
𝑖
(1 ≤ 𝑖 ≤ 𝑙). Due to

V
1
∈ 𝑔(𝑢

1
) and V

2
∈ 𝑔(𝑢

2
), 𝑢
1
has 𝑙 parents 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑙
, and

𝑤
𝑖
∈ 𝑔(𝑝

𝑖
) (1 ≤ 𝑖 ≤ 𝑙), 𝑢

2
has 𝑙 parents 𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑙
, and

𝑦
𝑖
∈ 𝑔(𝑞
𝑖
) (1 ≤ 𝑖 ≤ 𝑙). The depth of 𝑝

𝑖
, 𝑞
𝑖
, 𝑤
𝑖
, and 𝑦

𝑖
is at most

𝑛. So, by the induction hypothesis, 𝑝
𝑖
≡ 𝑞
𝑖
.Thus, 𝑢

1
≡ 𝑢
2
.

Theorem 15 tells us that the equivalence mapping keeps
the equivalence of nodes. Thus, all nodes in 𝑔(𝑢) are equiv-
alent. Sometimes we use 𝑔(𝑢) to denote an arbitrary node
in the set. We say that the nodes in 𝑔(𝑢) are equivalent
to 𝑢.

Lemma 16. Let𝑁 = ((𝑉, 𝐸), 𝑓) be a network and 𝑢, V ∈ 𝑉 two
equivalent nodes. Then 𝑢, V belong to a superconvergent set.

Proof. This lemma is obtained easily from Properties 1 and
2.

Lemma 17. Let 𝑁 = ((𝑉, 𝐸), 𝑓) be a partly reduced phyloge-
netic network. Then 𝑢

1
̸≡ 𝑢
2
for any two nodes 𝑢

1
, 𝑢
2
∈ 𝑉.

Proof. From the partial reduction procedures of the network,
we have that all superconvergent sets in a partly reduced
network have been deleted.

Given two networks 𝑁
1
= (𝑉
1
, 𝐸
1
) and 𝑁

2
= (𝑉
2
, 𝐸
2
),

assume that 𝑉
1
= {V
1
, V
2
, . . . , V

𝑝
}. The unique nodes of 𝑁

1
,

denoted by 𝐿(𝑁
1
), is defined by the following processes. First

let𝐿(𝑁
1
) = 0.Then for each one node𝑢 ∈ 𝑉

1
, if there exists no

node 𝑢 ∈ 𝐿(𝑁
1
) such that 𝑢 ≡ 𝑢, add 𝑢 to 𝐿(𝑁

1
). We define

𝐿(𝑁
2
) in a similar way. Further for each node V

𝑖
∈ 𝐿(𝑁

1
), we

define 𝑒
𝑁
1

(V
𝑖
) = |{V ∈ 𝑉

1
: V ≡ V

𝑖
}| and 𝑒

𝑁
2

(𝑢
𝑖
) similarly

for each node 𝑢
𝑖
∈ 𝑉
2
. We define 𝑒(0) = 0 for any network

𝑁. When the context is clear, we drop the subscript of 𝑒. We
are now in a position to define the measure on pairs of partly
reduced phylogenetic networks.
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(1) input: nodes 𝑢 and V
(2) if the outdeg of 𝑢 and the outdeg of V are not equal then
(3) return
(4) end if
(5) if 𝑢 and V are leaves and 𝑓

1
(𝑢) = 𝑓

1
(V) (or 𝑓

1
(𝑢) = 𝑓

2
(V) i.e., 𝑢 and V are from two networks) then

(6) add V to the ISE of 𝑢
(7) add 𝑢 to the ISE of V
(8) else
(9) flagfl false
(10) for each child 𝑎 of 𝑢 do
(11) for each child 𝑏 of V do
(12) if b.label = true then
(13) continue
(14) end if
(15) if the ISE of 𝑎 has 𝑏 then
(16) flag = true
(17) b.label = true
(18) end if
(19) end for
(20) if flag = false then
(21) return
(22) else
(23) flag = false
(24) end if
(25) end for
(26) add V to the ISE of 𝑢
(27) add 𝑢 to the ISE of V
(28) end if

Algorithm 1: Deciding semiequivalence for two nodes 𝑢 and V.

Definition 18. Let 𝑁
1
= (𝑉
1
, 𝐸
1
) and 𝑁

2
= (𝑉
2
, 𝐸
2
) be two

phylogenetic networks onX. Then 𝑑
𝑒
(𝑁
1
, 𝑁
2
) equals

1

2

[

[

∑

V∈𝐿(𝑁
1
)

max {0, 𝑒 (V) − 𝑒 (V)}

+ ∑

𝑢∈𝐿(𝑁
2
)

max {0, 𝑒 (𝑢) − 𝑒 (𝑢


)}]

]

,

(1)

where V(𝑢) is a node in 𝐿(𝑁
2
)(𝐿(𝑁

1
)) that is equivalent to

V(𝑢), and if no such equivalent node exists, then V(𝑢) = 0.

Lemma 19. If 𝑑
𝑒
(𝑁
1
, 𝑁
2
) = 0 for two networks𝑁

1
= (𝑉
1
, 𝐸
1
)

and𝑁
2
= (𝑉
2
, 𝐸
2
), then |𝑉

1
| = |𝑉
2
|.

Proof. Let 𝑔
1
: 𝑉
1
→ 𝑃(𝑉

2
) and 𝑔

2
: 𝑉
2
→ 𝑃(𝑉

1
) be two

equivalencemappings fromDefinition 13. Since 𝑑
𝑒
(𝑁
1
, 𝑁
2
) =

0, it follows that 𝑒(V
1
) = 𝑒(𝑔

1
(V
1
)) (where 𝑔

1
(V
1
) denotes a

node𝑢, which is equivalent to𝑔
1
(V
1
) and in𝐿(𝑁

2
)) alongwith

|𝑔
1
(V
1
)| > 0 for all V

1
∈ 𝐿(𝑁

1
) and 𝑒(V

2
) = 𝑒(𝑔

2
(V
2
)) (where

𝑔
2
(V
2
) denotes a node 𝑢, which is equivalent to 𝑔

2
(V
2
) and

in 𝐿(𝑁
1
)) along with |𝑔

2
(V
2
)| > 0 for all V

2
∈ 𝐿(𝑁

2
). From

this and Theorem 15, we have that |𝑉
1
| = ∑V

1
∈𝐿(𝑁
1
)
𝑒(V
1
) =

∑V
1
∈𝐿(𝑁
1
)
𝑒(𝑔
1
(V
1
)) ≤ |𝑉

2
| (due to 𝑔

1
(V
1
) ∈ 𝑉

2
) and |𝑉

2
| =

∑V
2
∈𝐿(𝑁
2
)
𝑒(V
2
) = ∑V

2
∈𝐿(𝑁
2
)
𝑒(𝑔
2
(V
2
)) ≤ |𝑉

1
| (due to 𝑔

2
(V
2
) ∈

𝑉
1
). Thus |𝑉

1
| = |𝑉
2
|.

Theorem 20. Let 𝑁
1
= (𝑉
1
, 𝐸
1
) and 𝑁

2
= (𝑉
2
, 𝐸
2
) be two

partly reduced networks. Then, 𝑁
1
and 𝑁

2
are isomorphic if

and only if 𝑑
𝑒
(𝑁
1
, 𝑁
2
) = 0.

Proof. Let 𝑔 : 𝑉
1

→ 𝑃(𝑉
2
) be an equivalence mapping,

as given in Definition 13. From Lemma 19, it follows that
|𝑉
1
| = |𝑉
2
| and 𝑒(V) = 𝑒(𝑔(V)) for all V ∈ 𝐿(𝑁

1
). FromLemmas

16 and 17, we have that 𝑔(V
1
) is defined and unique for each

V
1
∈ 𝑉
1
. We now prove that if (𝑢, V) ∈ 𝐸

1
, then (𝑢

0
, V
0
) ∈ 𝐸
2
,

where V
0
= 𝑔(V) and 𝑢

0
= 𝑔(𝑢). Given that V

0
= 𝑔(V), that

is, V and V
0
are equivalent, this implies that V

0
and V have

equivalent parents. Since 𝑢
0
= 𝑔(𝑢) is defined and unique, 𝑢

0

is a parent of V
0
.Thus, (𝑢

0
, V
0
) ∈ 𝐸
2
. It shows that themapping

g is bijective, which also preserves the labels of the leaves and
the edges of networks. Thus,𝑁

1
and𝑁

2
are isomorphic.

The converse implication is obvious.

From the definition of the measure, the symmetry prop-
erty follows immediately.

Lemma 21. For any pair networks 𝑁
1
and 𝑁

2
, one has

𝑑
𝑒
(𝑁
1
, 𝑁
2
) = 𝑑
𝑒
(𝑁
2
, 𝑁
1
).

The measure 𝑑
𝑒
(𝑁
1
, 𝑁
2
) can be viewed as half of the

symmetric difference of two multisets on the same set of
elements, where the multiplicity of element 𝑢 in𝑁

1
is 𝑒
𝑁
1

(𝑢)

and similarly for 𝑁
2
. Since the symmetric difference defines

a metric on multisets [12], we have the following triangle
inequality.
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(1) input: nodes 𝑢 and V
(2) if the indeg of 𝑢 and the indeg of V are not equal, or the ISE of 𝑢 doesn’t have V (the ESE of 𝑢

doesn’t have V i.e., 𝑢 and V are from two networks) then
(3) return
(4) end if
(5) if 𝑢 and V are roots then
(6) add V to the IE of 𝑢
(7) add 𝑢 to the IE of V
(8) else
(9) flagfl false
(10) for each parent 𝑎 of 𝑢 do
(11) for each parent 𝑏 of V do
(12) if b.label = true then
(13) continue
(14) end if
(15) if the IE of 𝑎 has 𝑏 then
(16) flag = true
(17) b.label = true
(18) end if
(19) end for
(20) if flag = false then
(21) return
(22) else
(23) flag = false
(24) end if
(25) end for
(26) add V to the IE of 𝑢
(27) add 𝑢 to the IE of V
(28) end if

Algorithm 2: Deciding equivalence for two nodes 𝑢 and V.

Lemma 22. Let 𝑁
1
, 𝑁
2
, and 𝑁

3
be three networks. Then,

𝑑
𝑒
(𝑁
1
, 𝑁
2
) + 𝑑
𝑒
(𝑁
2
, 𝑁
3
) ≥ 𝑑
𝑒
(𝑁
1
, 𝑁
3
).

From Theorem 20 and Lemmas 21 and 22, we have the
following main result.

Theorem 23. Themeasure 𝑑
𝑒
is a metric on the space of partly

reduced phylogenetic networks.

Proof. It follows fromTheorem 20 and Lemmas 21 and 22 and
the fact that max{0, 𝑒(V) − 𝑒(V)} ≥ 0.

Let 𝑁
1

= (𝑉
1
, 𝐸
1
) and 𝑁

2
= (𝑉

2
, 𝐸
2
) be two phy-

logenetic networks. For a node 𝑢 in 𝑁
1
, we refer to its

semiequivalent nodes from 𝑁
1
as internal semiequivalence

(equivalence) nodes and its semiequivalent (equivalence)
nodes from 𝑁

2
as external semiequivalence (equivalence)

nodes. When computing the distance between two networks,
we first compute internal and external equivalence nodes for
every node in the two networks; subsequently by formula (1)
we obtain the distance between the two considered networks.
Themaximumofmeasure𝑑

𝑒
(𝑁
1
, 𝑁
2
) is (|𝑉

1
|+|𝑉
2
|)/2.0, when

any node in𝑁
1
and in𝑁

2
has no external equivalence nodes.

In order to show the results of the distance computed by
formula (1), we give an example as follows.

Example 24. Consider the networks in Figure 1. 𝑁
1
, 𝑁
2
are

two different networks on {1, 2, 3, 4, 𝑥}. However, in [11], they

are indistinguishable and their 𝑚-distance [11] is 0. Now, we
compute the 𝑑

𝑒
-distance between them: 𝑑

𝑒
(𝑁
1
, 𝑁
2
) = 4 (see

Example 14).

4. Computational Aspects

From the definition of semiequivalent nodes, whether in the
same network or in two different networks, we have that
the semiequivalent nodes can be computed by means of a
bottom-up technique. Similarly, the equivalent nodes can be
computed by means of a top-down technique. Let 𝑁

1
=

((𝑉
1
, 𝐸
1
), 𝑓
1
) and 𝑁

2
= ((𝑉

2
, 𝐸
2
), 𝑓
2
) be two phylogenetic

networks. For a pair of nodes 𝑢 and V, whether in the same
network or in different networks, the following shows the
pseudocode (Algorithm 1) that decides whether they are
internal semiequivalent to each other, the pseudocode (Algo-
rithm 2) that decides whether they are internal equivalent to
each other, and the pseudocode (Algorithm 3) that computes
the 𝑑

𝑒
-distance for a pair of networks (where ISE is the

abbreviation for the set of internal semiequivalent nodes,
ESE is the abbreviation for the set of external semiequivalent
nodes, IE is the abbreviation for the set of internal equivalent
nodes, and EE is the abbreviation for the set of external
equivalent nodes). If two nodes 𝑢 and V from the same
network are semiequivalent, then we add 𝑢 to the ISE of V
and add V to the ISE of 𝑢. Obviously, this decision costs at
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(1) input: networks𝑁
1
= (𝑉
1
, 𝐸
1
) and𝑁

2
= (𝑉
2
, 𝐸
2
)

(2) output: 𝑑
𝑒
-distance

(3) for each pair of nodes 𝑢 and V in 𝑉
1
do

(4) decide semi-equivalence and equivalence for them
(5) end for
(6) for each pair of nodes 𝑢 and V in 𝑉

2
do

(7) decide semi-equivalence and equivalence for them
(8) end for
(9) for each pair of nodes 𝑢 in 𝑉

1
and V in 𝑉

2
do

(10) decide semi-equivalence and equivalence for them
(11) end for
(12) 𝐿(𝑁

1
) = 0; 𝐿(𝑁

2
) = 0

(13) flag1 = false; flag2 = false
(14) for each node 𝑢 in 𝑉

1
do

(15) for each node V in 𝐿(𝑁
1
) do

(16) if the IE of V contains 𝑢 then
(17) flag1 = true
(18) end if
(19) end for
(20) if flag1 = false then
(21) add 𝑢 to 𝐿(𝑁

1
)

(22) end if
(23) end for
(24) for each node 𝑢 in 𝑉

2
do

(25) for each node V in 𝐿(𝑁
2
) do

(26) if the IE of V contains 𝑢 then
(27) flag2 = true
(28) end if
(29) end for
(30) if flag2 = false then
(31) add 𝑢 to 𝐿(𝑁

2
)

(32) end if
(33) end for
(34) 𝑑 = 0
(35) for each node 𝑢 in 𝐿(𝑁

1
) do

(36) 𝑐 = |IE| − |EE|
(37) if𝑐 > 0 then
(38) 𝑑 = 𝑑 + 𝑐

(39) end if
(40) end for
(41) for each node 𝑢 in 𝐿(𝑁

2
) do

(42) 𝑐 = |IE| − |EE|
(43) if 𝑐 > 0 then
(44) 𝑑 = 𝑑 + 𝑐

(45) end if
(46) end for
(47) return 𝑑 = 𝑑/2

Algorithm 3: Computing the 𝑑
𝑒
-distance for 𝑁

1
= (𝑉
1
, 𝐸
1
) and

𝑁
2
= (𝑉
2
, 𝐸
2
).

most𝑂(𝑛3) time, where 𝑛 = max(|𝑉
1
|, |𝑉
2
|). So, it takes totally

𝑂(𝑛
5

) time to findout all internal and external semiequivalent
nodes for every node in the two networks. In a similar way, we
have that it also takes 𝑂(𝑛5) time to find out all internal and
external equivalent nodes for every node in the two networks.
Subsequently we spend 𝑂(𝑛) time computing the formula
(1). In conclusion, it costs totally 𝑂(𝑛5) time to compute the
distance between two networks, where 𝑛 is the maximum
between their node numbers.

5. Conclusion

In [11], Nakhleh introduced a polynomial-time computable
m-distance in the space of reduced phylogenetic networks.
In order to enlarge the space of phylogenetic networks we
can compare, we devised a polynomial-time computable
𝑑
𝑒
-distance on the space of partly reduced phylogenetic

networks, which can be viewed as half of the symmetric
difference of two multisets on the same set of elements.
To our knowledge, the space is the largest space that has
a polynomial-time computable metric. 𝑑

𝑒
-distance is also

a metric on the space of reduced phylogenetic networks
which is included in the space of partly reduced phylogenetic
networks. In general, for two phylogenetic networks, their𝑑

𝑒
-

distance is larger than their m-distance. From [12], we have
that the 𝑑

𝑒
-distance is also a metric on the space of tree-child

phylogenetic networks, semibinary tree-sibling time consis-
tent phylogenetic networks, and multilabeled phylogenetic
trees. However, the 𝑑

𝑒
-distance is not a metric on the space

of all rooted phylogenetic networks; for example, in the two
phylogenetic networks in Figure 4, their 𝑑

𝑒
-distance is 0, but

they are not isomorphic.
𝑑
𝑒
-distance can also apply to computing the dissimilarity

for other types of networks, such as spiking neural networks
[18–20], which will be a direction of further research.
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