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Abstract-h this paper, we investigate a class of hypoquadratically convergent methods for 
minimizing an objective function subject to equality constraints via the Lagrange multipliers method. 
The above class of inexact Newton methods has already been successfully applied for solving systems 
of nonlinear algebraic equations. 

1. INTRODUCTION 

In [l], we investigated a class of inexact Newton methods which were hypoquadratically conver- 

gent. These methods were designed for solving nonlinear systems of algebraic equations. In this 

paper, we apply the above methods to the problem of minimizing an objective function subject 

to equality constraints via the Lagrange multipliers method. 

Consider the following nonlinear programming problem 

subject to the equality constraints 

gi(cl,Q,~ . . 

minf(n,x2,...,z,), (1) 

%> = 0, i = 1,2,...,m; m 5 n, (2) 

where the independent variables and the values of the objective and the constraining functions 

are real. 

The classical method of Lagrange multipliers yields the following necessary conditions: If 

(&,~2,...,%) T satisfies (2) and is a minimum or maximum point of the objective function f, 

then 

gi(Z1,22,. . . ,2,) = 0, (3) 

and 

-&f(V2,.- ,i.,)+~~i~yi(ilii2,....l.)=O, 
i=l 

(4) 

for H = 1,2,. . , , n, and some X1, X2, . . , A, which are called the Lagrange multipliers. 

A point (21, ~2,. . . , &,)T satisfying Conditions (3) and (4) is called a stationary point. It is 

well-known that in order to determine if the stationary point is a maximum, minimum, or a saddle 
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point of the objective function, one has to examine the behavior of the second derivatives of the 

objective function in its immediate neighborhood. The aim of this paper is to present a method 

for finding such stationary points, which can then be subject to such further investigations [2,3]. 

2. DESCRIPTION OF THE METHOD 

Let us introduce the following notation. Put 

O=.f+~kfli, 

i=l 

then 

Now put 

or 

where 

Now put 

where 

T 

F= 
aa aa 

Q~,QZ ,... ,~rnr~,~, . . . . E 
n 

F(x) = (Fi(xT)>, for i= 1,2 ,..., m,m+l,m+2 ,..., m+n, (5) 

Fi = gi, for i = 1,2,. . . ,m and Fm+j = e, j= 1,2 )..., 12. 

z = (R, Q2,. . .I %a+n) 
T 

> 

Xn+i = Ai, for i= 1,2 ,,.., m. 

Equations (3) and (4) can now be rewritten as 

F(S) = 0. 

Denote by F’(z) the Jacobian of F at z: 

F’(x) = 
d(Fl(z), . . . , Fn+m(z)) _ j= l,...,n+m, 

d(Xl,X2,...,Xn+na) - k= l,...,n+m, 

where 

aFi agi 

aFi aSk 

ay=azi! 

(6) 

(7) 

(8) 

for i= 1,2,..., m, and j = 1,2 ,..., n, 

for i= 1,2,..., m, and j=n+l,n+2 ,..., n-km, 

fori=m+l,m+2,...,m+n; j=l,2,...,n, 

fori=m+l,m+2,..., m+n; j=n+k,k=1,2 ,..., n. 
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Thus, the Jacobian in (8) can be represented by the following (m + n) x (m + TI) matrix 

1 
gj&) ag,o u 0 0 * as1 asa ... ax, . . . 0 

ag,o &@ m ax, at, ... ah 0 0 . . 0 

\ i 
a%(2) aa@ a%(t) agl(z) as9(r) 

ax,arl axsax, ... az,ax, ax, 
a;$) 

ax, .‘. n 1 

Our problem now is to solve approximately (3) and (4) or, equivalently, equation (7). To this 

aim we shall use the hypoquadratic convergence method first presented in [l]. 

The following is the iterative method under consideration: 

xi+1 := 2i + hi, (9) 

where hi is a solution of the equation 

F’(xi)hi + F(q) = ri, (10) 

x0 being the initial approximate solution. If ri = 0 for i = 0, 1, . . . , then the iterative method (9) 

is the exact Newton method. 
Denote by B(xo, R) the ball with center x0 and radius R for some given R > 0: 

B(xo,R) = {x I 11~ - 

We assume that F is defined on a domain containing 

DEFINITION 2.1. [l] Consider the numerical series 

x011 L RI. 

the ball B(zo, R), x0 E R”+m. 

tai,ai > U. 
i=o 

(11) 

Assume that the series (11) is convergent and set 

Then the series (11) is hypoquadratically convergent if 

forsomeO<a<landl<t<2. 

Suppose that the iterative method (9) converges to a solution x of the equation (7). Then, we 

have 
i-l 

Xi = x0 + xhh andx=xo+ehi. (12) 
k=O i=O 

NOW, assume that the series in equation (12) is dominated by the series in Condition (II), that 

is, 

llhill 5 Dai, i = 0,l I...T 
cA)IIA 27:1-c 
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for some constant D > 0. Then the series 

a=0 
is called the iterative majorant for method (9), and we have 

11~ - ~;11 I Rd. (13) 

We may assume that relation (13) holds for almost all i. 

DEFINITION 2.2. [l] The iterative method (9) is convergent hypoquadratically, if there exists 
an iterative majorant series which is convergent hypoquadratically. 

We shall now show how to make the inexact Newton method (9) hypoquadratically convergent. 

Consider the sequence 
1’ Ui = a0 , (14 

where 1 < t < 2 and a0 = IjF(zo)ll is sufficiently small, and set 

R=Faf. (15) 
i=O 

Assume that the following conditions are satisfied: 

(Al) There exists a constant C > 0 such that 

IIJYZ + h) - F(z) - e+ll 5 wl12 (16) 
for all z and z + h belonging to B(zo, R). 

(AZ) For every z E B(zo, R) and y E R”+“, if h is a solution of the equation 

F’(z)h + y = 0, (17) 

then 

llhll I mdl (18) 
for some constant K > 0. 

Moreover, assume that equation (7) can be solved with arbitrary accuracy, that is, llrill in (10) 

can be made arbitrarily small. Thus, we assume that 

llcll 54, (19) 
for i=O,l,..., and p > 2 is fixed. 

THEOREM 2.1. In addition to the assumptions (AI),( and Condition (19), suppose that 

a0 = llF(~o)ll < 1 is so small that 

Clag 5 at 
-l/(2--1) 

or a0 < C, 7 (20) 

where 1 < t < 2 and C1 = 4CK2 + 1. Then the sequence of approximate solutions {xi} 

determined by equation (9) converges to a solution x of the equation (7) and z;, x E B(so, R) 

with R given by equation (15). Th e convergence is hypoquadratic. 

PROOF. The proof results from the proof of Theorem 2.1 in [l] . I 

REMARK 2.1. Condition (16) is satisfied if F’(z) is Lipschitz continuous. If F’(x) is Hijlder 
continuous, then Condition (16) is replaced by the following. 

llF(~ + h) - F(s) - F’(z)hll 5 CV#+“, 

for all z and z + h belonging to B(zo, R) and some 0 < cx < 1. Then the condition imposed on 

the parameter t is 

1<t<1+cY, 

and we also assume that p in Condition (19) satisfies the following condition 

p> 1+a. I 

REMARK 2.2. Condition (16) is satisfied if the second derivatives of f and gi are Lipschitz 
continuous. a 
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3. SAMPLE APPLICATION OF THE METHOD 

The plane 

gl=Iz+my+nz=O 

is passing through the center of the ellipsoid 

g2=~+$+~-1=0, (a > b > c). (22) 

The problem of finding the halfaxes obtained through the intersection of the plane and the 

ellipsoid is equivalent to finding the extremum values of the function 

f = r2 = x2 + y2 + 22, (23) 

provided its independent variables are subject to the constraints (21) and (22). Putting 

qx, y, z) = f(x, y, z) + X1g1(x, Y, z> + X2!72(x, YT z) 

= 22 + y2 + z2 + 2p(la: + my + nz) + x 
( 

$+$+$ , 
> 

where Xr = 2~ and X2 = A, we get by equation (4) the partial derivatives of Cp 

z+/Ll+x$=o, ~+,MI+X$=O, and z+,~n+X$=0. 

By adding the equations (24) multiplied by 2, y, z, respectively, we get 

x = -T2. 

(24) 

Hence, we obtain from (24) 

la2 mb2 nc2 
x= -Pa2_r2' Y=-pb2_r2' 

and z = -p-. 
c2 - T2 

By adding the equations (25) multiplied by 1, m, n, respectively, we obtain 

Pa2 m2b2 n2c2 

a2 - r2 + b2 _ r2 + - = 0. 
c2 - r2 

(25) 

(26) 

Thus, the extremum values for r2 can be obtained from equation (26) which yields 

(12a2 + m2b2 + n2c2)r4 - (12a2(b2 + c2) + m2b2(a2 + c”) 

+ n2c2(a2 + b2))r2 + a2b2c2(12 + m2 + n2) = 0. (27) 

On the other hand, equation (25) implies 

x2+ y2+g = P2 = p2 
12a4 m2b4 n2c4 

(a2 _ r2)2 + (b2 _r2)2 + (~2 -~2)2 
> 

' 

Hence, we get 

12a4 m2b4 n2c4 

> 

-l/2 

p=-r 
(a2 _ ,2)2 + (b2 _r2)2 + (,2_r2)2 ’ 

Let us now deal with specific numbers by putting 

(28) 

(29) l=m=n=l; a = 3, b = 2, c = 1. 
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Thus, equation (27) becomes 

14r4 - 98r2 + 108 = 0. 

Hence, we get for r2 the approximate value 

r2 = 5 63 . 1 

and by virtue of equation (28), we obtain 

p = -0.64. 

(30) 

(31) 

Consequently, we determine from equations (25) and (31) the following values 

2 = 1.71, y = -1.57, 2 = -0.14. (32) 

Having found the numerical solution to the problem (21)-(23) with specific numerical values from 

(29), we are now in a position to illustrate the iterative method (9) by using the same problem 

as presented above, i.e., find an extremum value of the function 

f(x, y, %> = x2 + Y2 + .z2 (33) 

subject to constraints 

g2(x, Y, %) = ; + $ + z2 -l=O. 

Now, using the Lagrange multipliers Xi = ,u, instead of Ai = 2~ as in equation (24), and X2 = A, 

the problem reduces to solving the system (7) or (34), (35) and 

aa 
-=22:+p++o, ax 
a@ 
-_=2y+~+A$=o, 
ay 
aa 
-=22r+p++2z=o. 
a2 

(36) 

Thus, the system F(z, y, %, ,u, A) = 0 (see equation (7)) consists of the equations (34)-(36), and 

its Jacobian is the following 

F’(? Y,Z,hX) = 

1 2(1+$) ;X 0 0 1 2(1+3 $Y 0 0 1 2% 0 0 1 

2(1+x) 

0 0 1 1 1 25 25 2% 0 0 1. 
Since the determinant of F’ at the stationary point is not zero, the Jacobian is nonsingular in some 

neighborhood of that point. It follows that the equation (10) has a solution if 20 belongs to that 

neighborhood. The other assumptions of Theorem 2.1 can also be satisfied, since all functions 

involved are continuous, hence bounded in any closed neighborhood of the initial point xc. 

Consider the same problem (l),( 2) w h ere we look for a stationary point Z = (fi, 22, . . . , ?cn) 

with 51 2 0, f2 2 0,. . . ,Z, > 0. We may still use the iterative method (9) with 

xi = (%I, Xiz>. . . , Xi”, Zi,+lr xi,+2,. . . ) I;,+,), (37) 
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where the first n coordinates are supposed to be nonnegative. In the case when some of them are 

negative, we replace them with 0 and denote the new iterate with yi. The next iteration step is 

then defined as in equation (9), that is, 

G+l = Yi + hi, (38) 

where 

F’(yi)hi + F(yi) = ri. (39) 

Now suppose that the iteration sequence (9) contains an infinite subsequence of the form given by 

equation (38). Denote by z* the limit of the iteration sequence {zi} obtained by implementing 

the changes made in equation (38). If 

2* = (xl*, x2*, . . . ,x73*, xn+1*, xn+z*, . . . , %+m*), 

then ti* > 0, x2* > 0,. . . ,x,,* 2 0. In this fashion, we obtain a critical point whose first 

n coordinates are nonnegative. Moreover, if for some 1 5 j 5 n, we would need to use the 

formula (38) infinitely many times, then in the limit xj* = 0. 

REMARK 3.1. In using the above modification, one has to make sure that IIF(yi)ll 5 1. But this 

is feasible for as i + 00 the sequence {F(zi)} converges to 0. I 

Let us modify the example from the beginning of this section by replacing equation (34) by 

gi(x,y,z)=a:-y-%=o, (40) 

and with an additional condition 

x L 0, y>o, 220. (41) 

Let us choose our initial guess 20 so that the conditions of Theorem 2.1 are satisfied. If 

z. = (x, Y,t,p, A) = (1.5,1.3,0.1, -1.25, -5) (42) 

then substituting these values into the equation (40) and replacing equation (36) by 

dO 
-=2x+p+A$=O, 
8X 

aa 
-=2y-/A+x~=oo, 
aY 

(43) 

- = 22 - /l + X2% = 0, 
a2 

we get 

llF(z0)1j2 = (0.1)2 + (-0.32)2 + (0.6)2 + (0.45)2 = 0.67 < 1. 

Thus, our initial guess (42) satisfies the condition 

a0 = IlJy~o)ll < 1, 

of Theorem 2.1. 
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