
Online Node-weighted Steiner Forest and Extensions
via Disk Paintings

MohammadTaghi Hajiaghayi
Computer Science Dept.

Univ of Maryland
College Park, MD, USA

Email: hajiagha@cs.umd.edu

Vahid Liaghat
Computer Science Dept.

Univ of Maryland
College Park, MD, USA

Email: vliaghat@cs.umd.edu

Debmalya Panigrahi∗

Computer Science Dept.
Duke University

Durham, NC, USA
Email: debmalya@cs.duke.edu

Abstract—We give the first polynomial-time online algo-
rithm for the node-weighted Steiner forest problem with a
poly-logarithmic competitive ratio. The competitive ratio
of our algorithm is optimal up to a logarithmic factor. For
the special case of graphs with an excluded fixed minor
(e.g., planar graphs), we obtain a logarithmic competitive
ratio, which is optimal up to a constant, using a different
online algorithm. Both these results are obtained as special
cases of generic results for a large class of problems that
can be encoded as online {0,1}-proper functions.

Our results are obtained by using a new framework for
online network design problems that we call disk paintings.
The central idea in this technique is to amortize the cost
of primal updates to a set of carefully selected mutually
disjoint fixed-radius dual disks centered at a subset of
terminals. We hope that this framework will be useful for
other online network design problems.

I. INTRODUCTION

Steiner problems, where the goal is to find the min-
imum weight subgraph of a given (undirected) graph
that satisfies a given set of connectivity requirements,
form a fundamental class of optimization problems
that have attracted substantial attention over the last
few decades. The Steiner tree (ST) problem—which
asks for the minimum weight subgraph connecting a
given set of vertices called terminals—is perhaps the
most representative problem in this class. This paper
deals with its well-studied generalization called the
the Steiner forest (SF) problem where the connectivity
requirement is represented by a set of vertex pairs called
terminal pairs that need to be individually connected
in the classical online model, i.e., the input graph is
given offline but the terminal pairs arrive sequentially
in online steps. The selected subgraph starts off as the
empty subgraph, but has to be augmented to satisfy
the new connectivity constraint in each online step. We
measure the performance of our algorithms using the

∗Part of this work was done while the author was at Microsoft
Research, Redmond.

classical notion of competitive ratio, i.e., the maximum
ratio (over all input sequences) of the weight1 of the
algorithmic solution to that of the offline optimum.

Steiner problems have typically been studied in two
weight models: the edge-weighted (EW) model and the
node-weighted (NW) model, depending on whether the
weight function is defined on the edges or the vertices
respectively. The NW model is more general since an
edge of weight w in the EW model can be replaced
in the NW model by two edges connected by a node
of weight w; therefore, algorithmic results in the NW
model also apply to the EW model.

The online ST problem was originally considered in
the EW model, where Imase and Waxman [1] showed
that the greedy strategy of adding the minimum cost
subset of edges in each online step obtains a competitive
ratio of O(logk), which is optimal up to constants.
(Throughout this paper, m and n will represent the num-
ber of edges and vertices in the input graph respectively,
while k will represent the number of terminals.) This
result was generalized to online EW SF by Awerbuch
et al [2], who showed a competitive ratio of O(log2 n)
for the greedy algorithm. This result was later improved
by Berman and Coulston [3] who proposed an online
algorithm based on the primal dual framework [4], [5]
that achieves a competitive ratio of O(logn).

However, much less progress has been reported for
NW versions of these problems. Unlike in the EW
model, the NW ST problem generalizes the set cover
problem. The first algorithm with a poly-logarithmic
competitive ratio for the online set cover problem was
proposed by Alon et al [6] who introduced an on-
line adaptation of the classical LP relaxation technique
to solve this problem. Recently, Naor et al [7] used
this technique in conjunction with structural properties
of the NW ST problem to give an O(logn log2 k)-

1expected weight, if the algorithm is randomized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357664211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

competitive algorithm for the online NW ST problem.
They also presented a poly-logarithmic competitive al-
gorithm for the online NW SF problem, but the running
time of the algorithm is quasi-polynomial. It is impor-
tant to note that there is a qualitative difference between
quasi-polynomial time algorithms and polynomial time
algorithms for NW graphs. NW undirected graphs can
be reduced to EW directed graphs, which allows for
the application of known techniques for obtaining a
poly-logarithmic approximation for the directed Steiner
tree problem (see, e.g., Charikar et al [8]) in quasi-
polynomial time. In fact, the algorithm of Naor et al
for the online NW SF problem implicitly uses this
transformation. In contrast, obtaining a poly-logarithmic
approximation for the directed Steiner tree problem in
polynomial time is a major open question. Therefore,
polynomial-time algorithms for NW Steiner problems
must develop novel techniques that successfully bypass
this reduction to directed graphs. Naor et al developed
such a set of techniques for the online NW ST problem,
and posed the more general NW SF problem as their
main open question. We resolve this question in this
paper by introducing a new generic technique that we
call disk paintings and using it in conjunction with a
connection between the NW ST problem and the non-
metric facility location problem previously observed by
Naor et al. The competitive ratio of our algorithm is
O(logn log2 k), which matches the competitive ratio for
the NW ST problem [7] and is optimal up to a logarith-
mic factor due to a lower bound of Ω(logn logk) [6],
[7]. An interesting observation is that our algorithm
yields a distinct algorithm for the online NW ST prob-
lem from that of Naor et al when applied to NW ST
instances.

We show that in addition to solving the online NW SF
problem on arbitrary graphs, disk paintings can be used
to exploit combinatorial properties of graphs with an
excluded constant-sized minor (such as planar graphs
and more generally, graphs that can be embedded in
surfaces of bounded genus) in online Steiner problems.
We obtain an O(logn) competitive algorithm (optimal
up to constants) for the online NW SF problem, which
improves upon the online NW SF algorithm for general
graphs described above. To the best of our knowledge,
this is the first instance of an online network design
problem where planarity (or more generally, exclusion
of a fixed minor) has been successfully exploited to
obtain an improved competitive ratio compared to the
best known (in this case, also the best achievable) result
for arbitrary graphs. We hope that disk paintings will be
useful for other online network design problems in the

future.
We also extend our results (both for general graphs

and for graphs with an excluded fixed minor) to all
{0,1}-proper functions [5], which includes the SF
problem as a special case but also includes other
problems such as T -join, point-to-point connection
problems, lower capacitated partitioning, and location-
design/location-routing problems. We will formally de-
scribe a few examples of such problems later; for a
detailed description of problems that can be represented
by proper functions, the reader is referred to [5].

Before describing our results and techniques in detail,
we remark that offline NW Steiner problems have been
studied previously. Klein and Ravi [9] introduced the
notion of spider decompositions to give an O(logk)-
approximation for the NW ST problem, which is opti-
mal up to constants. (The constant in the approximation
ratio was improved later [10].) The Klein-Ravi result
also extends to the SF problem, and more generally, to
all proper functions. Recently, Demaine et al [11] gave
an O(1)-competitive algorithm for the NW SF problem
in planar graphs, where the constant was further im-
proved by Moldenhauer [12] and the algorithm general-
ized to higher connectivity by Chekuri et al [13]. In fact,
our online algorithm for planar graphs employs the disk
painting technique in conjunction with structural ideas
developed in [11] for the corresponding offline problem.
Several other offline NW network design problems have
been considered in the literature (see, e.g., [14], [15],
[16]).

A. Problems

We are now ready to formally define the SF problem
(from now on, the problems we refer to are online
and NW, unless otherwise stated). Let G = (V,E) be
an undirected graph containing n vertices (|V | = n)
and m edges (|E| = m), and let w : V → R≥0 be the
node weight function. The subgraph induced on G by a
subset of vertices S is denoted by G[S], and has weight
w(S) = ∑v∈S w(v). The graph G and the weight function
w are given offline.

In the SF problem, we are given a new pair of
terminals (also called a demand) sh, th ∈ V (sh and th
are called the endpoints of the demand) in online step h.
The algorithm maintains a subset of vertices X such that
G[X] connects all pairs of terminals that have arrived
thus far. In response to the arrival of a new terminal
pair, the vertex set X can be augmented to ensure this
property. The goal is to minimize the weight of X , i.e.,
w(X). We note that the ST problem is a special case
of the SF problem where one terminal in each terminal
pair is a fixed vertex.

2

We also consider the more general class of Steiner
problems that can be represented by {0,1}-proper func-
tions [5]. We adapt an approach due to Goemans
and Williamson [5] and Demaine, Hajiaghayi, and
Klein [11] to define a general family of node-weighted
network-design problems. Let G = (V,E) be a con-
nected graph with a node-weight function w. Following
Demaine et al. [11], a {0,1}-function f : 2V → {0,1}
is proper for node-weighted problems if the following
properties hold:

1) Symmetry f (S) = f (V\S) for every S⊆V .
2) Disjointness If S1 and S2 are disjoint, then f (S1) =

f (S2) = 0 implies f (S1∪S2) = 0.
3) Nullity f (φ) = f (V) = 0.
4) Terminality Every vertex v with f ({v}) = 1 has

weight w(v) = 0.
5) Efficiency For any subset S, the value f (S) is

computable in polynomial time.
A proper function defines a family of cuts on the

graph and the network design problem asks for a
minimum-cost subgraph X which covers all the cuts,
i.e., G[X] must contain an edge of the cut (S,V\S)
for every set S with f (S) = 1. For a subset of vertices
X ⊆ V , we may use the set X and the subgraph G[X]
interchangeably, when it is clear from the context. A
set X satisfies a proper function f , if X covers all the
cuts defined by f . Equivalently, we say X is feasible if
it satisfies f .

Following [17], we extend the notion of proper func-
tions to the online setting where in each online step
h, a proper function qh on the vertices is presented.
Let fh denote the cumulative function of the step, i.e.,
fh(S) = max j≤h q j(S) for every S ⊆ V . The following
shows that a cumulative function is proper too (proof
in the full version).

Proposition 1. Let q1 and q2 be proper functions for
a set of vertices V with node weights w. Let f (S) :=
max{q1(S),q2(S)} for every S ⊆ V . The function f is
proper.

In the online variant of the problem, the solution
produced at the end of online step h must satisfy fh.

Note that the SF problem can be represented by the
following proper function: in online step h with terminal
pair (sh, th), for any subset S⊆V ,

qh(S) =
{

1, if |{sh, th}∩S|= 1
0, otherwise.

These functions qh satisfy properties 1-4 of proper
functions by definition. For terminality, all terminals
must have zero cost. We show later that this property
can be ensured w.l.o.g.

As examples of other problems that can be rep-
resented by proper functions, let us now define the
point-to-point connection problem [18] and the T -join
problem [19]. In the (offline) point-to-point connection
problem, we are given a set of terminal pairs (sh, th) (as
in SF) but instead of pairing them, they are represented
as a set of sources X and sinks Y such that |X |= |Y |. The
goal is to find a minimum cost subgraph such that the
number of sources in any connected component equals
the number of sinks in the component. In the online
version of the problem, every online step comprises a set
of sources Xh and a set of sink Yh such that |Xh|= |Yh|.
The corresponding proper function is given by: for any
subset S⊆V ,

qh(S) =
{

1, if |Xh∩S| 6= |Yh∩S|
0, otherwise.

Note that if |Xh|= |Yh|= 1, then the problem is identical
to online SF.

In the (offline) T -join problem, we are given an even
set of terminals T and the goal is to find a minimum cost
subgraph of the input graph that contains at least one
edge for every cut that has an odd number of terminals
on both sides. In the online version, each online step
adds an even set of vertices Th to T . The corresponding
proper function is given by: for any subset S⊆V ,

qh(S) =
{

1, if |Th∩S| is odd
0, otherwise.

Finally, we need to define H-minor-free graphs. A
graph H is a minor of graph G if H can be realized
from G by the following set of operations: contracting
an edge, deleting an edge, or deleting a vertex. As
mentioned above, some of the results in this paper will
apply to classes of input graphs where a fixed graph H
of constant size is not a minor of any graph in the class.

Assumptions. In the rest of paper, w.l.o.g., we assume
the terminals are distinct and have weight 0. This can
be ensured in the Steiner forest problem by attaching a
proxy vertex of weight 0 to every vertex of the graph. In
every online step, we interpret the corresponding proxy
vertices as the terminal pair. Let T denote the set of
vertices with weight 0, i.e., the possible terminals and
let k denote the number of terminals that have arrived.

B. Our Results

We show the following result for proper functions.

Theorem 1. There is a randomized online algorithm
with competitive ratio O(log2 k logn) for network design
problems characterized by proper functions.

3

When applied to the SF problem, we obtain the
following corollary.

Corollary 1. There is a randomized polynomial-time
algorithm for the online node-weighted Steiner forest
problem that has a competitive ratio of O(logn log2 k).

This result:
• improves upon the result of Naor et al [7] for SF in

two ways: their running time was quasi-polynomial
and competitive ratio was O(log3 n log7 k).

• matches the competitive ratio of Naor et al for ST
up to constants.

• is optimal up to O(logn) since online set cover
(which SF generalizes) has a randomized lower
bound of Ω(logn logk) [6], [20].

Next, we obtain the following result for graphs with
an excluded fixed minor.

Theorem 2. There is a deterministic polynomial-time
algorithm with a competitive ratio of O(logk) for H-
minor-free node-weighted input graphs, where H is
a fixed graph of constant size, for network design
problems characterized by proper functions.

When applied to the SF problem, we obtain the
following corollary.

Theorem 3. There is a deterministic polynomial-time
algorithm for the online node-weighted Steiner forest
problem that has a competitive ratio of O(logk) for H-
minor-free input graphs, where H is a fixed graph of
constant size.

For H-minor-free graphs, this result:
• improves upon Theorem 1 for SF and upon [7] for

ST. (We note the lower bound of O(logn logk) does
not apply in the H-minor-free case.)

• is optimal up to a constant since there is an
Ω(logk) lower bound for the online EW ST prob-
lem. (This lower bound can be demonstrated by
using a diamond graph, which is planar. We omit
the details for brevity.)

C. Our Techniques: Disk Paintings

The principle of weak duality in minimization prob-
lems asserts that the optimal solution to a primal linear
program (LP) is lower bounded by any feasible so-
lution to the dual LP. This has inspired the classical
(offline) primal-dual method [4], [5] where a progres-
sively constructed dual solution guides the choices made
by the algorithm in the primal solution. For Steiner
problems, the dual solution is constructed by growing
moats around every terminal. When two moats collide,

they are merged by buying the path connecting the
corresponding terminals and the merged moat continues
growing. Thus, the sets with positive dual variables form
a laminar family. The crux of the analysis is to charge
the cost of purchased paths to the sum of the radii of
the moats, and highly relies on the fact that when two
growing moats collide, they have roughly the same radii.

However, in online settings, this property cannot be
ensured since the terminals are identified sequentially
in online steps. In fact, in any online step, there is only
one moat that is growing, namely the one containing
the new terminal. In spite of this difficulty, the primal-
dual framework has recently been utilized for online
algorithms in two distinct lines of work: either a dual
solution is used to guide the construction of a fractional
solution to the primal LP, which is then been rounded
online to produce an integer solution (see, e.g., the
survey by Buchbinder and Naor [21]) or the algorithm
maintains a multi-layered collection of laminar families
of moats (see, e.g., [17]).

While our technique of disk paintings also utilizes
the broad framework of using a dual solution to guide
the algorithmic choices, we deviate significantly from
these previous approaches in the structure of the dual
solution that we construct, which we describe below. A
disk painting is simply a set of disjoint disks centered
at terminals. Since we have NW graphs, disks intersect
at vertices rather than edges. In fact, unlike in the EW
case, more than two disks can cumulatively cause an
intersection at a vertex. To visualize these disks, let us
assign a distinct color to every disk and an area equal
to its weight to every vertex. Then, a disk may color a
vertex either wholly or partially. For example if x,y,z
are three vertices of weight 2w each connected by edges
(x,y) and (y,z), and we add a disk of radius 5w centered
at x, then the disk colors y fully (i.e. its entire weight)
but z only partially (half its weight). An intersection is
caused at a vertex when the sum of weights colored
by disks containing the vertex (either fully or partially)
exceeds the total weight of the vertex.

To formally define disk paintings, we first need
to define distances between vertices. For any pair of
vertices u,v, let dw(u,v) denote the weight of the
shortest path between u and v (including u,v) w.r.t.
a node weight function w. For a set S of vertices,
let dw(S,v) = minu∈S dw(u,v). A painting is a function
p : V ×Θ → R≥0, where Θ is a set of colors. Let
p(v) denote the total colored area of vertex v, i.e.,
p(v) = ∑θ∈Θ p(v,θ). A painting p is feasible if the
colored area of a vertex does not exceed its weight,
i.e., p(v)≤ w(v) for every vertex v. The union of a set

4

of paintings p1, p2, . . . is the painting p = ∑i pi (i.e.,
p(v,θ) = ∑i pi(v,θ) for every vertex v and color θ).
Further, p1, p2, . . . are said to be non-overlapping if their
union is feasible.

A disk of radius r centered at vertex v is a painting
p in which the area within a radius r of v is colored by
some unique color θ v, i.e., for every vertex u,

p(u,θ v)=

 w(u) if d(v,u)≤ r
0 if d(v,u)−w(u)≥ r
r− (d(v,u)−w(u)) otherwise

A painting that comprises a union of disks centered
at terminals is called a disk painting. This is the only
kind of painting that we will use in this paper; hence,
we will often simply call it a painting. A vertex u is
inside the disk if d(v,u) is strictly less than r, and on
the boundary if it is not inside but has a neighbor that
is inside. The continent of a disk is the set of vertices
inside the disk.

Having described some of the key concepts of disk
paintings, let us now give a high-level description of
our algorithmic technique based on disk paintings. We
will formally describe our algorithm later for all proper
functions, but for the purpose of this informal discus-
sion, let us focus on the SF problem. Our algorithms can
be thought of as augmented greedy algorithms. In every
online step, we initially perform a greedy augmentation
of the primal solution that satisfies the new constraint,
i.e., buy the cheapest path in the SF problem between
the terminal pair after reducing the cost of all nodes in
the current solution to 0. To account for the resulting
increase in the cost of the primal solution, we aim to
add a disk of radius equal to (or a constant factor of) the
increase in the primal cost. If we are able to place such a
disk centered at either of the two terminals in the new
pair without violating feasibility of the disk painting,
then we terminate the online step. The more challenging
scenario is when such disks cause infeasibility of the
painting. In this case, the algorithm augments the primal
solution with a graph element that depends on the
problem. For example, in the case of SF in general
graphs, the algorithm connects the two terminals to a
vertex on which the infeasibility occurred. On the other
hand, for SF in graphs with an excluded minor, the
algorithm connects all the centers of the intersecting
disks via a spider. A spider is a tree with at most one
vertex of degree greater than two, which is called the
center of the spider. The paths connecting the center to
the leaves are called the legs of the spider. The crux of
the analysis is to show that the total primal cost in these
instances where we are unable to add a new disk to the

disk painting can be amortized to the existing disks by
charging the disks that caused the infeasibility.

Note: Due to lack of space, detailed proofs are deferred
to the full version of the paper.

II. PRELIMINARIES

Before we describe the algorithms for the network
design problem, we need to introduce a few notations.
Consider a graph G with a vertex-weight function w and
a proper function f defined over 2V (G). Let T denote
the set of vertices with zero weight. A vertex t is a
terminal of a proper function f , if f ({t}) = 1. Note that
by Terminality, t ∈ T . For a set S ⊆V , let δ (S)⊆V\S
denote the neighbors of S.

Properties of Proper Functions. The following is the
direct result of the disjointness of a proper function.

Proposition 2. If a set S does not contain a terminal,
then f (S) = 0.

A proper function is trivial if for every S⊆V , f (S) =
0. Observe that if for a set S, f (S) = 1, then f (V\S) = 1.
Thus by Proposition 2, both S and V\S contain at least
one terminal. This leads to the next proposition.

Proposition 3. Any non-trivial proper function has at
least two terminals.

For a subset X ⊆V , let CC(X) denote the collection
of connected components of G[X]. The following lemma
(formally proved in [11]) gives a polynomial-time test
for whether a set X is feasible. The lemma easily follows
from applying the properties of proper functions on the
connected components of G[X].

Lemma 1 (Lemma 7 in [11]). A subset X is feasible if
and only if X contains all the terminals and f (C) = 0
for every C ∈CC(X).

Lemma 1, together with the Efficiency property, guar-
antees that given a subset X ⊆ V , in polynomial time
we can either (i) find a set S such that f (S) = 1 and
δ (S)∩X = φ ; or (ii) verify that X is a feasible solution.
Indeed the following lemma provides a more refined
structural property of a feasible solution.

Lemma 2. Let S ⊆ T ⊆ V and let X be a feasible
solution. If f (S) = 1 and there are no terminals in T\S,
then G[X] contains a path from a terminal τ ∈ S to a
vertex v ∈ δ (T).

Lemma 2 is particularly interesting when T is the
continent of a disk centered at a terminal. If the other
terminals are not inside the disk, then any feasible
solution connects the center to a vertex on the boundary.

5

Given a graph G, contracting a connected set of
vertices S denotes replacing S by a super-vertex adjacent
to δ (S). A contraction of a graph G (denoted by G) is
obtained by contracting connected subsets of vertices in
G. For a vertex v in G, let γ(v) denote the set of vertices
of G that have been contracted to form v. If a vertex v
is not part of a contracted set, then it retains its label,
i.e., γ(v) = {v}. We note that by definition, for every v
in V (G), γ(v) is connected in G. We extend the notation
by defining γ(S) =

⋃
v∈S γ(v) for any set S⊆V (G). For

simplicity, we consider G to be a contraction of itself.
We refer to the original vertices in G as simple vertices.

Let V (G) denote the set of vertices of G, and let wG
be a node weight function over V (G). For a contraction
G, we derive a corresponding weight function by re-
ducing the cost of super-vertices to zero, i.e., for every
vertex v ∈V (G),

wG(v) =
{

wG(v) if γ(v) = {v}
0 otherwise

Let H be an induced subgraph of G. Let G be a
contraction. The contracted subgraph H is obtained
from H by contracting V (H) ∩ γ(v) to v for every
v ∈G. Note that H ⊆G. When there is no ambiguity, a
contracted subgraph may retain the label of the original
subgraph, i.e., we may refer to H by H as well.

Let f be a proper function w.r.t. the graph G. Given a
contraction G, a contracted function f G is obtained by
setting f G(S) = f (

⋃
v∈S γ(v)) for every set S⊆V (G). In

other words, the cuts retain their f -value. Indeed, f G is
proper too.

Proposition 4. The contracted function f G is proper
w.r.t. to G and wG.

Properties of Disk Paintings. The following proposi-
tions hold for a set of non-overlapping disks.

Proposition 5. If u is on the boundary of a disk centered
at v, then p(u,θ v) is strictly positive.

Proposition 6. A vertex inside a disk cannot be on the
boundary of another disk.

Fact 1. Since the weight of a terminal is zero, the center
of a disk is inside the disk.

We emphasize that by Proposition 6, the disks may
share a vertex only on their boundaries. This is indeed
a crucial observation which ultimately leads to our
algorithm for the network design problem. Fact 1 is
implicitly used in our analysis since we assume the
center of a disk is inside the disk no matter how small
is the radius. The next lemma shows the relationship

between a painting and the optimum offline solution for
SF. This lemma is also not used explicitly in our anal-
ysis; however, we exploit it to design our algorithms.
This is the key property of disk paintings which might
be of independent interest.

Lemma 3. Let L be a painting comprising disks
centered at a subset of terminals S such that for any
terminal pair (s, t), s (resp., t) is not inside a disk
centered at t (resp., s). If T be any subgraph of G
connecting all terminal pairs with at least one terminal
in S, then w(T) is at least the sum of the radii of the
disks.

III. ONLINE NODE-WEIGHTED NETWORK DESIGN

We start by describing a special variant of the well-
studied facility location problem. The input comprises
a set of facilities each with a setup cost, and a set of
clients each with a connection cost to every facility, and
a set of connectivity demands. The group non-metric
facility location problem (GNFL) asks for a mapping of
clients to facilities that minimizes the sum of setup costs
and connection costs while satisfying demands defined
below.

Let Λ and Ψ denote the set of facilities and clients,
respectively. For a facility λ ∈Λ, let ω(λ)∈R≥0 denote
the setup cost of λ . For a client ψ ∈ Ψ and a facility
λ ∈Λ, let d(ψ,λ) ∈R≥0 denote the cost of connecting
ψ to λ .

A mapping M : Ψ→ Λ assigns clients to facilities. A
mapping is a partial function, i.e., some of the clients
may not be connected to a facility. A facility λ is open
if for some client ψ , M(ψ) = λ . The cost c(M) of a
mapping M is the sum of setup costs of open facilities
and connection costs used in the mapping, i.e.,

c(M) = ∑
λ |∃ψ,M(ψ)=λ

ω(λ)+ ∑
ψ,λ |M(ψ)=λ

d(ψ,λ)

In the GNFL problem, the demands are in the form
of groups of clients D = 〈g1,g2, . . .〉 where gi ⊆ Ψ. A
mapping M satisfies D if for every group gi ∈D at least
one client λ ∈ gi is mapped to a facility. Given a set of
demands, the goal is to find a mapping of minimum
cost that satisfies all demands. In the online variant of
the problem, the set of facilities and setup costs are
known in advance but the demands arrive online one at
a time, revealing the connection costs of a client if it
was not present in previous demands. Upon receiving a
new demand, we need to augment the mapping to cover
at least one client of the new demand.

Bounded Group Non-metric Facility Location. Given
a graph G = (V,E) with node weights w, the bounded

6

group non-metric facility location problem w.r.t a real
value r (r-BFL) is an instance of the GNFL problem
as follows. Recall that T ⊆V is the set of zero-weight
vertices.
• For every vertex v ∈V we have a facility (with the

same label);
• The setup cost function is identical to the node-

weight function;
• For every zero-weight vertex t ∈ T we have a client

(with the same label); and
• For a client t ∈ T , consider a disk of radius r cen-

tered at t in G. For every vertex v on the boundary
of the disk, the connection cost between t and v
is d(t,v) = dw(t,v)−w(v). For every other client-
facility pair (t,v) the connection cost is infinity.
Note that this includes the facilities that are too far
(dw(t,v)−w(v) ≥ r) as well as those that are too
close (dw(t,v)< r).

In other words, a client can be mapped only to the
facilities on the boundary of the disk, the cost of which
is the distance for touching the facility in G.

For a pair of groups of vertices g1 and g2, let
dw(g1,g2) = minu∈g1,v∈g2 dw(u,v) be the distance be-
tween the groups in G. Let D denote the set of demands.
We restrict the input of r-BFL by adding the following
assumption.
• Every pair of demands g1,g2 ∈D should be at least

2r far from each other in G, i.e., dw(g1,g2)≥ 2r.
At any time in the algorithm, we say a client is active

if it has appeared in a demand so far. When the exact
radius is not a concern, we may refer to r-BFL as BFL.
Given a mapping M, the graph H(M) is the subgraph of
G induced by the vertices of shortest paths connecting t
to v for every client t and facility v such that M(t) = v.
Observe that w(H(M))≤ c(M).

We note that since the demands are disjoint in BFL,
we may collapse every group to a single client and thus
it reduces to the non-metric facility location problem
(NFL)[22], [23]. In other words, we replace clients
in a demand g by a special client cg such that for
every facility v, d(cg,v) = mint∈g d(t,v). Let BFLALG
be an online algorithm for the BFL problem with
competitive ratio αBFL. We use BFLALG as a black-
box to show that the network design problem admits
a competitive ratio of O(log(k) ·αBFL). In fact, Alon
et al. [23] give an online randomized algorithm for the
NFL problem with competitive ratio O(log(k) log(n)),
i.e., αBFL = O(log(k) log(n)). (Here n is the number
of facilities and k is the number of active clients).
Therefore our competitive ratio is O(log2 k logn).

Algorithm for Online Network Design. We are now

ready to describe algorithm NDALG For every integer
i ∈ Z, the algorithm keeps a 2i-BFL instance Li. We
augment the mapping of the instances using BFLALG
. Let Di and Mi denote the demands and the current
mapping for the instance Li, respectively. Our algorithm
maintains a partial solution X guaranteeing that for
every i, the solution for Li is included in X , i.e.,
H(Mi)⊆ X . Let I denote the number of BFL instances
with at least one demand. Indeed one can show that the
algorithm can be modified such that I = O(log(k)), the
details are presented in the full version of the paper.

The algorithm maintains the invariant that for any
demand in Li (corresponding to a group of clients g)
the following neighborhood clearance (NC) holds at the
time of arrival of the demand in Li.

Definition 1 (NC(g,i)). The neighborhood of a group
g ⊆ T is clear in Li if both the following conditions
hold:

• The group g is at least 2 · 2i far in G from any
previous demand in Di; and

• For every (currently) open facility v in Mi, the
connection cost d(t,v) is infinite for every t ∈ g.

If one of the conditions fails, NC(g, i) does not hold and
an active client of Li or an open facility of Li closest
to g is the witness of the failure.

The algorithm starts by initializing X and Mi’s to
empty. At any time step h, let fh be the cumulative
function. Let Th denote the set of terminals of fh. We
augment the solution X iteratively until it satisfies fh.
At each iteration, the following process is executed.

Let X be the current partial solution. Let G denote a
contraction of G by contracting every connected com-
ponent of G[X]. Let f denote the contracted function of
fh w.r.t. G. Recall that by Proposition 3, f has at least
two terminals. Let (τ1,τ2) denote the closest pair of
terminals of f w.r.t. wG. Let D be the distance between
them. We first buy the shortest path between τ1 and τ2
(thus incurring a cost of D). Note that this shortest path
may contain super-vertices. Adding a super-vertex u to
X implies setting X as the union of X and γ(u). Recall
that γ(u) is the set of simple vertices contracted to u.
Since γ(u) denotes a connected component of X , adding
a super-vertex u to X does not change X in this step of
the algorithm.

Consider the integer i such that 4 ·2i ≤ D < 4 ·2i+1.
Let g(τ1) = γ(τ1)∩Th (resp. g(τ2) = γ(τ2)∩Th) be the
group of terminals of fh contracted to τ1 (resp. τ2). If the
neighborhood of either g(τ1) or g(τ2) is clear, we give
the corresponding group as a new demand to BFLALG
for Li. We mimic the solution of BFLALG , i.e., if Mi

7

is augmented by mapping a client t ∈ T to a facility
v ∈V , we buy the shortest path in G connecting t to v.
However, if none of the neighborhoods is clear, let z1
and z2 denote the witnesses of failure corresponding to
NC(g(τ1), i) and NC(g(τ2), i). We then connect τ1 to z1
and τ2 to z2 by buying shortest paths w.r.t. w.

Analysis. We distinguish between two types of costs
incurred by the algorithm. The simulation cost is the
total weight of vertices being purchased for covering
the augmentations of mappings in every iteration, i.e.,
the simulation cost is at most ∑i w(H(Mi)). The cost
due to the weight of other vertices in X is called the
connectivity cost. Note that we may incur a connectivity
cost in two places in the algorithm: (i) when buying the
shortest path; or (ii) when buying the paths connecting
terminals to the corresponding witnesses of failure.

Recall that I denotes the number of BFL instances
with at least one demand. Let OPT denote the weight
of an optimal (offline) solution of the network design
problem. We show that both simulation and connectivity
costs are at most O(I ·αBFL) ·OPT. For every i ∈Z, let
OPTi denote the cost of an optimal (offline) solution
for Li. First we show that OPTi is a lower bound
for OPT. Intuitively, by applying Lemma 2 in every
iteration, one can show that for every demand g ∈ Di,
the optimal solution contains a path from a terminal
t ∈ g to a vertex at the boundary of a disk of radius
2i centered at t. Indeed such a path connects t to a
facility in Li. Thus we can get a feasible solution for Li
by opening a facility at the intersection of the optimal
solution with the boundaries of the disks centered at the
active terminals and then connecting every demand to
the closest open facility.

Lemma 4. For every i ∈Z, OPTi ≤ OPT.

We are now ready to prove the bound on the cost of
the algorithm.

Lemma 5. The total cost incurred by the algorithm is
within O(I ·αBFL) factor of OPT.

Lemma 4 directly leads to the desired bound for the
simulation cost:

∑
i

w(H(Mi))≤∑
i

c(Mi)≤ αBFL ∑
i

OPTi ≤ αBFLI ·OPT

We show a similar upper bound for the connectivity
cost. For every i, let Di denote the set of demands so
far for Li. First we claim that BFLALG incurs the cost
at least 2i for satisfying each demand.

Claim 1. For every i, c(Mi)≥ |Di| ·2i.

Consider an arbitrary iteration of the algorithm. Sup-
pose h demands have arrived so far and let fh denote
the cumulative function. Let Th ⊆ V (G) denote the
terminals of fh. Let X be the partial solution at the start
of iteration and let G be the contraction obtained from
G by contracting the connected components of X . Let
f denote the corresponding contracted function. In the
algorithm, we find the closest pair of terminals (τ1,τ2)
that are D far from each other. We buy the shortest path
between τ1 and τ2, thus incurring a connectivity cost D.

We partition the iterations into different classes.
Class i comprises iterations for which i satisfies 4 ·2i ≤
D < 4 ·2i+1. We show at any time in the algorithm, the
total connection cost incurred for Class i iterations is
bounded by O(1) ·c(Mi) which, together with Claim 1,
completes the proof of the lemma.

IV. ONLINE NETWORK DESIGN IN GRAPHS
EXCLUDING A FIXED MINOR

Before we describe the deterministic algorithm for H-
minor-free graphs, we need to introduce some notation.
In the rest of the section, unless specified otherwise, all
graphs are H-minor-free for a fixed graph H.

A painting is said to be r-uniform if it is a union of
disks whose radii are r. When the exact radius is not
important, we may refer to an r-uniform painting as a
uniform painting.

Disk Fitting. We use a disk fitting process called
DISKFIT repeatedly to construct a painting. Recall that
a vertex v is simple, if v ∈V (G). Let L be a painting
of a contraction G. Given a connected set S of simple
vertices and a radius r, the DISKFIT process tries to
contract S and add a disk of radius r centered at the
resulting super-vertex in L . We call this a trial. The trial
might either be successful, or fail for multiple reasons
that we describe below.

If for any reason the trial finishes unsuccessfully, L
and G will remain unchanged and the process returns
a vertex called a witness. Let us now describe a trial.
If for a vertex v ∈ S, v is already contracted in G or
L (v)> 0, the trial fails and the corresponding witness
is defined as the (super-)vertex u ∈ V (G) for which
v ∈ γ(u). Otherwise, the trial contracts S to a vertex
s. Let G′ denote the resulting graph. Note that L
is still a valid painting for G′. Let p be a disk of
radius r centered at s in G′. If the union of p and
L is feasible in G′, we augment L to L + p (after
changing the underlying graph to G′) and the trial
terminates successfully. Otherwise, p and L are said to
intersect at the vertices where L + p is infeasible. The

8

trial terminates unsuccessfully by reporting an infeasible
vertex in L + p as the witness, breaking ties arbitrarily.

Binding Spiders. Let L be the union of a set of disks
on a contraction G. Suppose v is a witness reported by
the DISKFIT process in an unsuccessful trial for adding
a disk over a set of simple (and connected) vertices S.
Let Lv denote the centers of the disks whose boundary
or continent contains v. (Note that if a vertex of S
is already contracted in G, then the witness may be
inside a disk.) A binding spider w.r.t. to the witness v
reported by DISKFIT process is a spider in G centered
at v and connected with shortest paths w.r.t. wG to (i)
every vertex in Lv, and (ii) the vertex u ∈ V (G) with
γ(u)∩ S 6= φ that is closest to v. The following shows
that the cost of buying a binding spider depends only
on the degree of the center.

Lemma 6. Let ϒ be a binding spider w.r.t. an unsuc-
cessful trial for putting a disk of radius r, centered at a
set S, in an r-uniform painting. If the center of spider
has degree d, then wG(ϒ)≤ d · r+w(S∩ γ(ϒ)).

In the algorithm, we only call the DISKFIT process
for a set S if S is already in the output X . Therefore
Lemma 6 implies that the cost of buying a binding spi-
der is at most w(γ(ϒ)\X)≤wG(ϒ)−w(S∩γ(ϒ))≤ d ·r.

Recall that for a fixed graph H, the average degree of
an H-minor-free graph is bounded by some constant cH .
(It is shown in [24], [25] that cH = O(h

√
logh) where

h = |V (H)|.) For simplicity of notation, we introduce
two constants α =max{cH ,3} and µ = 2α . The follow-
ing lemma together with Lemma 6 provides a means to
charge the cost of spiders with sufficiently large number
of legs to (the radii of) disks in our analysis. Note that
if a binding spider has more than two leaves, its center
has to be on the boundary of multiple disks.

Lemma 7. Let L be the union of N disks on an H-
minor-free graph. For a vertex v, let η(v) denote the
number of disks whose boundary contains v. Then,

∑
v|η(v)≥α

η(v)≤ α ·N.

Algorithm for H-Minor-Free Graphs. We are now
ready to describe algorithm MFSFALG . For every
i∈Z, the algorithm keeps a painting Li on a contraction
of G. Throughout the algorithm, the changes to the
painting Li are made only by adding disks of radius
2i using the DISKFIT process. Therefore, Li is a 2i-
uniform painting comprising non-overlapping disks of
radius 2i.

Initially, Li’s are empty paintings on G. At a time
step h, let fh denote the cumulative function. We itera-
tively augment the solution until fh is satisfied. In every
iteration, let X denote the current partial solution and
let G denote a contraction obtained by contracting every
connected component of G[X]. Let f be the correspond-
ing contracted function. By Proposition 3, there are at
least two terminals in G. Let (τ1,τ2) denote the closest
pair of terminals of f . Let D = dwG(τ1,τ2). We first buy
the shortest path in G connecting τ1 to τ2. Now consider
the integer i such that µ · 2i < D ≤ µ · 2i+1. Using the
DISKFIT process, we try putting a disk of radius 2i

centered at γ(τ1) in Li. If the trial is unsuccessful,
we do the same process for γ(τ2). If both trials are
unsuccessful, let c1 and c2 denote the corresponding
witnesses of failure. We buy the binding spiders w.r.t.
c1 and c2.

Analysis. Let I denote the number of paintings with at
least one disk. We will now show that the competitive
ratio of MFSFALG is O(I). Indeed, the same argument
as that of Section III, shows that the algorithm can
be slightly modified such that I = O(logk), thereby
proving Theorem 2. Let OPT denote the weight of an
optimal solution to the network design problem. L*et
Ci denote the centers of disks in Li. First, we show the
relationship between the paintings and OPT.

Lemma 8. For every i, the total radii of disks in Li is
a lower bound for the optimal solution.

We are now ready to prove the main lemma.

Lemma 9. The total cost incurred by the algorithm is
at most O(I) ·OPT.

Let X denote the partial solution at an iteration of
the algorithm. For every v ∈V (G), let w̃(v) denote the
cost of buying a vertex v w.r.t. X , i.e., in w̃(v) = w(v)
if v /∈ X and let w̃(v) = 0 if x ∈ V . Let (τ1,τ2) denote
the closest pair of terminals. An iteration is of Type i if
µ2i < D≤ µ2i+1 where D = dwG(τ1,τ2) is the length of
the shortest path between τ1 and τ2. We show that the
cost of the vertices purchased in all iterations of Type i
is bounded by O(|Ci| ·2i)=O(OPT). In the rest of proof,
we only consider Type i iterations for an arbitrary i.

Recall that in every iteration, we buy a path connect-
ing τ1 and τ2 and we may additionally buy two binding
spiders. A binding spider ϒ is said to be expensive if
w̃(ϒ), the cost of buying it, is strictly more than α ·2i.
We classify iterations as follows:

1) Process DISKFIT successfully added a disk of
radius 2i centered at either τ1 or τ2.

2) Process DISKFIT was unsuccessful and neither of

9

the binding spiders was expensive.
3) Process DISKFIT was unsuccessful and at least one

binding spider was expensive.
For each of the above cases, we can show that the

increase in the weight of X can be charged to the radii
of the disks in Li. Further details are presented in the
full version of the paper.

ACKNOWLEDGMENT

The authors would like to thank Anupam Gupta for
suggesting that dual disks lead to simpler proofs of
online edge-weighted network design results.

REFERENCES

[1] M. Imase and B. M. Waxman, “Dynamic steiner tree
problem,” SIAM J. Discrete Math., vol. 4, no. 3, pp.
369–384, 1991.

[2] B. Awerbuch, Y. Azar, and Y. Bartal, “On-line general-
ized steiner problem,” Theor. Comput. Sci., vol. 324, no.
2-3, pp. 313–324, 2004.

[3] P. Berman and C. Coulston, “On-line algorithms for
steiner tree problems (extended abstract),” in STOC,
1997, pp. 344–353.

[4] A. Agrawal, P. N. Klein, and R. Ravi, “When trees
collide: An approximation algorithm for the generalized
steiner problem on networks,” SIAM J. Comput., vol. 24,
no. 3, pp. 440–456, 1995.

[5] M. X. Goemans and D. P. Williamson, “A general ap-
proximation technique for constrained forest problems,”
SIAM J. Comput., vol. 24, no. 2, pp. 296–317, 1995.

[6] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor, “The online set cover problem,” SIAM J. Com-
put., vol. 39, no. 2, pp. 361–370, 2009.

[7] J. Naor, D. Panigrahi, and M. Singh, “Online node-
weighted steiner tree and related problems,” in FOCS,
2011, pp. 210–219.

[8] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel,
S. Guha, and M. Li, “Approximation algorithms for
directed steiner problems,” J. Algorithms, vol. 33, no. 1,
pp. 73–91, 1999.

[9] P. N. Klein and R. Ravi, “A nearly best-possible ap-
proximation algorithm for node-weighted steiner trees,”
J. Algorithms, vol. 19, no. 1, pp. 104–115, 1995.

[10] S. Guha and S. Khuller, “Improved methods for ap-
proximating node weighted steiner trees and connected
dominating sets,” Inf. Comput., vol. 150, no. 1, pp. 57–
74, 1999.

[11] E. D. Demaine, M. Hajiaghayi, and P. N. Klein, “Node-
weighted steiner tree and group steiner tree in planar
graphs,” in ICALP (1), 2009, pp. 328–340.

[12] C. Moldenhauer, “Primal-dual approximation algorithms
for node-weighted steiner forest on planar graphs,” Inf.
Comput., vol. 222, pp. 293–306, 2013.

[13] C. Chekuri, A. Ene, and A. Vakilian, “Node-weighted
network design in planar and minor-closed families of
graphs,” in ICALP (1), 2012, pp. 206–217.

[14] S. Guha, A. Moss, J. Naor, and B. Schieber, “Efficient
recovery from power outage (extended abstract),” in
STOC, 1999, pp. 574–582.

[15] A. Moss and Y. Rabani, “Approximation algorithms for
constrained node weighted steiner tree problems,” SIAM
J. Comput., vol. 37, no. 2, pp. 460–481, 2007.

[16] Z. Nutov, “Approximating steiner networks with node-
weights,” SIAM J. Comput., vol. 39, no. 7, pp. 3001–
3022, 2010.

[17] J. Qian and D. P. Williamson, “An O(logn)-competitive
algorithm for online constrained forest problems,” in
ICALP (1), 2011, pp. 37–48.

[18] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, “The
point-to-point delivery and connection problems: com-
plexity and algorithms,” Discrete Applied Mathematics,
vol. 36, no. 3, pp. 267–292, 1992.

[19] J. Edmonds and E. L. Johnson, “Matching: A well-
solved class of integer linear programs,” in Combina-
torial Optimization, 2001, pp. 27–30.

[20] S. Korman, “On the use of randomization in the online
set cover problem,” M.S. thesis, Weizmann Institute of
Science, 2005.

[21] N. Buchbinder and J. Naor, “The design of competitive
online algorithms via a primal-dual approach,” Foun-
dations and Trends in Theoretical Computer Science,
vol. 3, no. 2-3, pp. 93–263, 2009.

[22] D. S. Hochbaum, “Heuristics for the fixed cost median
problem,” Mathematical programming, vol. 22, no. 1,
pp. 148–162, 1982.

[23] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor, “A general approach to online network opti-
mization problems,” ACM Transactions on Algorithms,
vol. 2, no. 4, pp. 640–660, 2006.

[24] W. Mader, “Homomorphieeigenschaften und mittlere
kantendichte von graphen,” Mathematische Annalen, vol.
174, no. 4, pp. 265–268, 1967.

[25] A. V. Kostochka, “Lower bound of the Hadwiger num-
ber of graphs by their average degree,” Combinatorica,
vol. 4, no. 4, pp. 307–316, 1984.

10

