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Abstract

In the first part of this expository paper, we present and discuss the
interplay of Dirichlet polynomials in some classical problems of number
theory, notably the Lindelöf Hypothesis. We review some typical proper-
ties of their means and continue with some investigations concerning their
supremum properties. Their random counterpart is considered in the last
part of the paper, where a analysis of their supremum properties, based
on methods of stochastic processes, is developed.

1 Introduction

This is an expository article on the interplay of Dirichlet polynomials in some
classical problems of number theory, notably the Lindelöf Hypothesis (LH), the
Riemann Hypothesis (RH), as well as on their typical means and supremum
properties. Some of the efficient methods used in this context are also sketched.
In recent works [26],[27],[28],[47],[48],[49],[50] lying at the interface of probability
theory, the theory of Dirichlet polynomials and of the one of the Riemann zeta-
function, we had to apply and combine these results. The growing interaction
between various specialities of analysis, further motivated us in this project to
put in the same framework a certain number of basic and very important results
and tools arising from the theory of Dirichlet polynomials and of the Riemann
zeta-function; and to let them at disposal to analysts and probabilists who are
not necessarily number theorists. In doing so, our wish is to spare their time in
the sometimes tedious enterprise of finding the relevant results with the mostly
appropriate methods to establish them.

The interplay with the LH and RH is presented in Section 2, where some
equivalent reformulations of the LH in terms of approximating Dirichlet poly-
nomials, arising notably from Túran’s works, are discussed. The link between
the RH and the absence of zeros of the approximating Dirichlet polynomials
in some regions of the complex plane was thoroughly investigated by Túran
in [41],[42],[43],[44] and later by Montgomery in [29],[30]. Some of the most
striking results are presented.

In Section 3, we investigate the behavior of the mean value of Dirichlet
polynomials. The used reference sources are [21], [30], [36] and naturally [40].
To begin, we follow an approach based on the Fourier inversion formula. Next,
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the mean value estimates are established by means of a version of Hilbert’s
inequality due to Montgomery and Vaughan [29]. A simple argument is provided
for establishing the lower bound. The corresponding results for the zeta-function
are briefly mentionned and discussed. Some basic results concerning suprema of
Dirichlet polynomials are presented in Section 4. The analysis of the suprema
of their random counterpart is made in the two last sections. These are notably
built on works of Halász [13], Bayart, Konyagin, Queffélec [1],[23],[33],[34],[35]
and Lisfhits, Weber [26],[27],[47].

2 Interplay in Number Theory

To any real valued function d defined on the integers, we may associate the
Dirichlet polynomials

DN (s) =
N∑

n=1

d(n)
ns

, (s = σ + it). (1)

The particular case d(n) ≡ 1 is already of crucial importance, since it is in-
timately related to the behavior of the Riemann Zeta-function. We shall first
investigate this link. Recall that the Riemann Zeta-function is defined on the
half-plane {s : <s > 1} by the series ζ(s) =

∑∞
n=1 n−s, which admits a mero-

morphic continuation to the entire complex plane.
And we have the following classical approximation result ([40], Theorem

4.11)

ζ(s) =
∑

n≤x

1
ns
− x1−s

1− s
+O(x−σ), (2)

uniformly in the region σ ≥ σ0 > 0, |t| ≤ Tx := 2πx/C, C being a constant > 1.
The celebrated Lindelöf Hypothesis claiming that

ζ(
1
2

+ it) = Oε(|t|ε) (3)

can be reformulated in terms of Dirichlet polynomials. This was observed since
quite a long time and Turán [42] had shown that the truth of the inequality

∣∣∣
N∑

n=1

(−1)n

nit

∣∣∣ ≤ CN1/2+ε(2 + |t|)ε (4)

with an arbitrary small ε > 0, is equivalent to the LH. Alternatively, the equiv-
alent reformulation ([40], Chap. XIII)

1
T

∫ T

1

∣∣ζ(
1
2

+ it)
∣∣2kdt = Oε

(
T ε

)
, k = 1, 2, . . . (5)

which reduces to
∫ T

T/2

∣∣ζ(
1
2

+ it)
∣∣2kdt = Oε

(
T 1+ε

)
, k = 1, 2, . . . (6)

2



yields when combined with (2), the equivalence with

∫ n

n/2

∣∣∣
n∑

m=1

1
m1/2+it

∣∣∣
2k

dt = O(
n1+ε

)
, k = 1, 2, . . . (7)

or, by using Euler-MacLaurin formula, with
∫ n

n/2

∣∣∣s
∫ n

0

y−1−sB1(y)dy
∣∣∣
2k

dt = O(
n1+ε

)
, k = 1, 2, . . . (8)

where B1(y) = {y} − 1/2, mod 1 is the first Bernoulli function. The term
n1−s/(1− s) can be indeed neglected since

∫ n

n
2

∣∣∣ n
1
2−it

1
2 − it

∣∣∣
2k

dt ≤ Cnk

∫ ∞

n
2

dt

(1
4 + t2)k

≤ Ck nkn−2k+1 ≤ Ck n1−k.

We see with (7) that all the mystery of the LH is hidden in the Dirichlet
sum

∑n
m=1 m−1/2−it, n/2 ≤ t ≤ n.

Remark 1 The best known result is due to Huxley [19],

ζ(
1
2

+ it) = Oε(t32/205+ε). (9)

In the recent work [28], in order to understand the behavior of ζ( 1
2 + it) as t

tends to infinity, the time t is modelized by a Cauchy random walk, namely
the sequence of partial sums Sn = X1 + . . . + Xn of a sequence of independent
Cauchy distributed random variables X1, X2, . . . (with characteristic function
ϕ(t) = e−|t|). The almost sure asymptotic behavior of the system

ζn := ζ(
1
2

+ iSn), n = 1, 2, . . .

is investigated. Put for any positive integer n

Zn = ζ(1/2 + iSn)−E ζ(1/2 + iSn) = ζn −E ζn.

The crucial preliminary study of second order properties of the system {Zn, n ≥
1} yields the striking fact that this one nearly behaves like a system of non-
correlated variables, i.e. the variables Zn are weakly orthogonal. More precisely,
there exist constants C, C0

E |Zn|2 = log n + C + o(1), n →∞,

and for m > n + 1,
∣∣E ZnZm

∣∣ ≤ C0 max
( 1

n
,

1
2m−n

)
. (10)

The proof is very technical. And the main result of [28], which follows from a
convergence criterion, states

lim
n→∞

∑n
k=1 ζ( 1

2 + iSk)− n

n1/2(log n)b

(a.s.)
= 0, (11)

for any real b > 2.
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Now we pass to the interplay with the Riemann Hypothesis. As is well-
known, the Riemann Zeta-function has 1 as unique and simple pole in the whole
complex plane. In the half-plane <z ≤ 0, the Riemann Zeta-function has simple
zeros at −2,−4,−6, . . ., and only at these points which are called trivial zeros.
There exist also non-trivial zeros in the band {s : 0 < <s < 1}. The Riemann
Hypothesis asserts that all non-trivial zeros of the ζ-function have abscissa 1

2 .
The validity of RH implies ([40], p.300) that

ζ(
1
2

+ it) = O
(

exp
{
A

log t

log log t

})
,

A being a constant, which is even a stronger form of LH; the latter being strictly
weaker than RH.

In several papers, Turán investigated the interconnection between the RH
and the absence of zeros of the approximating Dirichlet polynomials in some
regions of the complex plane. For instance, he proved in [41] that if for n > n0,
none of the Dirichlet polynomials

∑n
m=1 m−s vanishes in a half-strip

σ ≥ 1 +
log3 n√

n
, γn ≤ t ≤ γn + en3

,

with a suitable real γn, then the RH is true.
However Montgomery has shown in [30] that for n > n0, any interval [γ, γ +

en3
] contains the imaginary part of a zero. Another definitive result established

by Montgomery in the same paper is that if 0 < c < 4
π −1, then for all n > n(c),∑n

m=1 m−s has zeros in the half-plane

σ > 1 + c
log log n

log n
, (12)

whereas if c > 4
π − 1, n > n(c), then

∣∣ ∑n
m=1 m−s − ζ(s)

∣∣ ≤ |ζ(s)|/2, so that∑n
m=1 m−s do not vanish in a half-strip (12).
In the other direction, Turán showed ([44], Satz II) that if the RH is true,

none of the Dirichlet polynomials
∑n

m=1 m−s vanishes in a half-strip

σ ≥ 1, c1 ≤ t ≤ ec2

√
log n log log n, (13)

when n ≥ c3.
There are also results for Dirichlet polynomials expanded over the primes.

Their local suprema are intimately connected with zerofree regions of the Rie-
mann zeta-function. Among several results proved in [43], we may quote the
following. Suppose there are constants α ≥ 2, 0 < β ≤ 1, τ(α, β), such that for
a τ > τ(α, β) the inequality

∣∣∣
∑

N1≤p≤N2

1
piτ

∣∣∣ ≤ N log10 N

τβ
(14)

holds for all N1, N2 integers with τα ≤ N ≤ N1 ≤ N2 ≤ 2N ≤ eτβ/10
. Then

([43], Theorem 1) ζ(σ + iτ) does not vanish if σ > 1− β3/(e10α2). For the sake
of orientation, Turán also remarked that for the sum

S =
∑

N≤n≤2N

1
nit

, τ ≥ 2
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the elementary formula |(ν +1)1+iτ −ν1+iτ − (1 + iτ)νiτ | ¿ τ2/ν, gives at once

|S| ¿ (N log N)/τ (15)

if N ≥ τ2. But the relevant sum is
∑N

n=1
(−1)n

nit according to (4).
Farag recently showed in [10] that these sums possess zeros near every verti-

cal line in the critical strip. The proof is notably based on a ”localized” version
of Kronecker’s Theorem (section 3).

The likely best known result concerning zerofree regions is due to Ford [11]:
ζ(σ + it) 6= 0 whenever |t| ≥ 3 and

σ ≥ 1− 1
57.54(log |t|)2/3(log log |t|)1/3

. (16)

Remark 2 Speaking of the RH, it is difficult not mentionning the striking
equivalent reformulation proved by Robin in [37], which is at the same time
likely the most simple. Let an integer n be termed ”colossally abundant” if, for
some ε > 0, σ(n)/n1+ε ≥ σ(m)/m1+ε for m < n and σ(n)/n1+ε > σ(m)/m1+ε

for m > n, where σ(n) is the sum of divisors of n. Using colossally abundant
numbers, Robin showed that the RH is true if and only if

σ(n)
n

< eγ log log n,

for n > 5040, where γ is Euler’s constant. Let {xn, n ≥ 1} be the sequence
of colossally abundant numbers. In the same paper, he also showed that the
sequence {σ(xn)/xn log log xn, n ≥ 1} contains an infinite number of local ex-
trema. In relation with Robin’s result, Lagarias showed in [24] that the RH is
true if and only if

σ(n) ≤ Hn + eHn log Hn,

where Hn =
∑

j≤n 1/j is the n-th harmonic number.
Grytczuk [12] investigated the upper bound for σ(n) with some different n.

Let (2, n) = 1 and n =
∏k

j=1 p
αj

j , where the pj are prime numbers and αj ≥ 1.
Then, for all odd positive integers n > 39/2,

σ(2n) <
39
40

eγ2n log log 2n, and σ(n) < eγn log log n.

Some other criteria equivalent to the RH can be found in [6].

3 Mean Values of Dirichlet Polynomials

Let k be some positive integer. Considerable efforts were made to finding good
estimates for the mean integrals

1
2T

∫ T

−T

∣∣∣
N∑

n=1

1
nσ+it

∣∣∣
2k

dt,

because of Bohr’s theory of almost periodic functions, and of the ”mean value”
equivalent reformulations of the LH. First notice that

lim
T→∞

1
2T

∫ T

−T

∣∣∣
N∑

n=1

1
nσ+it

∣∣∣
2k

dt =
∞∑

m=1

d2
k,N (m)
m2σ

, (17)
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where dk,N (m) denotes the number of representations of m as a product of k
factors less or equal to N . We propose to deduce this from the Fourier inversion
formula. This seems to be a natural approach, although we could not refer to
some book or paper. If ν is a distribution on R and ν̂(t) =

∫
R

eitxν(dx) denotes
its characteristic function, then

lim
T→∞

1
2T

∫ T

−T

e−itx0 ν̂(t)dt = ν{x0}. (18)

From this also follows that limT→∞ 1
2T

∫ T

−T
|ν̂(t)|2dt =

∑
x∈R ν({x})2 and more

generally

lim
T→∞

1
2T

∫ T

−T

|ν̂(t)|2kdt =
∑

x∈R

ν∗k({x})2, (19)

for any positive integer k. Apply (19) to the measure ν =
∑N

n=1
1

nσ δ{− log n},
where δ{x} is the Dirac measure at point x, then ν̂(t) =

∑N
n=1 n−(σ+it) and

lim
T→∞

1
2T

∫ T

−T

∣∣
N∑

n=1

1
nσ+it

∣∣2k
dt =

∑

x∈R

( ∑
n1...nk=ex

1
nσ

1 . . . nσ
k

)2

=
∑

Y =ex

Y∈N

#{(n1, . . . , nk), ni ≤ N :
∏k

i=1 ni = Y }2
Y 2σ

=
∑

Y ∈N

d2
k,N (Y )
Y 2σ

.

Clearly

lim
N→∞

∑

Y ∈N

d2
k,N (Y )
Y 2σ

=
∞∑

m=1

d2
k(m)
m2σ

,

where dk(m) denotes the number of representations of m as a product of k
factors. An equivalent formulation of the LH being that for σ > 1

2 , k = 1, 2, . . .

lim
T→∞

1
T

∫ T

1

∣∣ζ(σ + it)
∣∣2kdt =

∞∑
m=1

d2
k(m)
m2σ

, (20)

the LH can be interpreted as a kind of generalized Fourier inversion formula for
the infinite measure

∑∞
n=1

1
nσ δ{− log n}. This approach is investigated in [48],

see also [51] section 13.7.
One can precise a little more (18). Let

MT (ν, x0) =
1

2T

∫ T

−T

e−itx0 ν̂(t)dt.

Proposition 3 For any non-decreasing sequence {Tp, p ≥ 1} of positive reals,
any x0 ∞∑

k=1

∣∣MTk+1(ν, x0)−MTk
(ν, x0)

∣∣2 ≤ 24ν2(R). (21)

The total mass of the measure appears this time, unlike in (18). Notice also
that (21) alone already implies that MT (ν, x0) converges, as T tends to infinity.
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Proof. Consider the kernels

VT (ϑ) =
eiTϑ − 1

iTϑ
, VT (y) = <(VT (y)

)
=

sin Ty

Ty
.

By the Cauchy-Schwarz inequality, we first observe that

∣∣MT2(x0)−MT1(x0)
∣∣2 =

∣∣∣
∫

R

[
VT2(x− x0)− VT1(x− x0)

]
ν(dx)

∣∣∣
2

≤ ν(R).
∫

R

[
VT2(x− x0)− VT1(x− x0)

]2
ν(dx).

Introduce a new measure ν̂, a regularization of ν defined as follows:

dν̂

dx
(x) =

∫

|ϑ|<|x|
|x|−3ϑ2ν(dϑ) +

∫

|ϑ|≥|x|
|ϑ|−1ν(dϑ).

From the basic elementary inequalities

|VT2(ϑ)− VT1(ϑ)| ≤ min
{T2 − T1

2
|ϑ|, 2(T2 − T1)

T2

}
, T2 ≥ T1,

|VT1(ϑ)| ≤ 2
T1|ϑ| ,

we have ([25], Section 4)

‖VT2 − VT1‖22,ν ≤ 8ν̂(
1
T2

,
1
T1

].

Thereby
∫

R

[
VT2(x− x0)− VT1(x− x0)

]2
ν(dx) ≤

∫

R

∣∣VT2(y)− VT1(y)
∣∣2νx0(dy)

≤ 8ν̂x0(
1
T2

,
1
T1

],

where we write νy(A) = ν(A− y), for each A ∈ B(R). And

ν̂x0(R) =
∫ (∫

|ϑ|<|x|
|x|−3dx ϑ2 +

∫

|x|<|ϑ|
dx|ϑ|−1

)
ν(dϑ) ≤ 3νx0(R) = 3ν(R).

Therefore ∣∣MT2(x0)−MT1(x0)
∣∣2 ≤ 24ν̂(

1
T2

,
1
T1

].

The claimed inequality follows easily.

Let k, N be fixed but arbitrary positive integers. Put for T > 0

MT =
1

2T

∫ T

−T

∣∣∣
N∑

n=1

1
nσ+it

∣∣∣
2k

dt.

As an immediate consequence of the preceding Proposition, we get
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Corollary 4 For any non-decreasing sequence {Tj , j ≥ 1} of positive reals,

∞∑

j=1

∣∣MTj+1 −MTj

∣∣2 ≤ 3.22k+3
( N∑

n=1

1
nσ

)2k

. (22)

Now let λ1, . . . , λN be distinct real numbers and consider the simplest mean
integral ∫ T

0

∣∣∣
N∑

n=1

d(n)eitλn

∣∣∣
2

dt.

The following form of Hilbert’s inequality due to Montgomery and Vaughan
yields precise estimates of this integral.

Lemma 5 Let δ > 0 be a real number such that |λm−λn| ≥ δ whenever m 6= n.
Then ∣∣∣∣

∑
1≤m,n≤N

m6=n

xmyn

λm − λn

∣∣∣∣ ≤
π

δ

( N∑
m=1

|xm|2
)1/2( N∑

n=1

|yn|2
)1/2

. (23)

By squaring out and integrating term-by-term, we get

∫ T

0

∣∣∣
N∑

n=1

d(n)eitλn

∣∣∣
2

dt = T

N∑
n=1

d2(n)+2<
{ ∑

1≤m<n≤N

d(m)d(n)
ei(λm−λn)T − 1

i(λm − λn)

}
.

Since the sum in the parenthesis is the difference

∑

1≤m<n≤N

d(m)eiλmT d(n) e−iλnT 1
i(λm − λn)

−
∑

1≤m<n≤N

d(m)d(n)
i(λm − λn)

,

by applying (23) to each part, we get

∣∣∣
∑

1≤m<n≤N

d(m)d(n)
ei(λm−λn)T − 1

i(λm − λn)

∣∣∣ ≤ 2π

δ

N∑
n=1

|d(n)|2.

Consequently, we have

Proposition 6

∣∣∣∣
∫ T

0

∣∣∣
N∑

n=1

d(n)eitλn

∣∣∣
2

dt− T

N∑
n=1

|d(n)|2
∣∣∣∣ ≤

4π

δ

N∑
n=1

|d(n)|2. (24)

Choose λn = log n and observe that for m < n ≤ N , λn − λm = log n
m ≥

log n
n−1 ≥ cN−1. We get in this case

∣∣∣∣
1
T

∫ T

0

∣∣∣
N∑

n=1

d(n)
nit

∣∣∣
2

dt−
N∑

n=1

d2(n)
∣∣∣∣ ≤ C

N

T

N∑
n=1

|d(n)|2. (25)

This inequality remains true without change when replacing the interval of
integration by any other of same length.
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Consider now higher moments. Let q be some positive integer and denote

Eq =
{

k = (k1, . . . , kN ); ki ∈ N : k1 + . . . + kN = q
}

.

We assume that λ1, . . . , λN are linearly independent reals. The typical example
is λj = log pj , j = 1, . . . , N , where p1, p2, . . . , pN are different primes, see (68).

Introduce a coefficient of linear spacing of order q by putting

ξ = ξλ(N, q) := inf
h,k∈Eq

h6=k

∣∣(h1 − k1)λ1 + . . . + (hN − kN )λN

∣∣.

By assumption ξλ(N, q) > 0 and ξλ(N, 1) = inf 1≤i,j≤N
i6=j

∣∣λi−λj

∣∣. If we expand
the integrand, next integrate, we shall get similarly

Proposition 7 For any interval J , denoting |J | its length,

1
|J |

∫

J

∣∣∣
N∑

n=1

d(n)eitλn

∣∣∣
2q

dt ≤ ( N∑
n=1

|d(n)|2)q
(
q! +

2 min(Nq, πq!)
|J |ξ

)
. (26)

Proof. Let J = [d, d + T ]. Put P (t) =
∑N

n=1 d(n)eitλn . Plainly

∣∣P (t)
∣∣2q =

∑

k,h∈Eq

(q!)2

k1!h1! . . . kN !hN !

N∏
n=1

d(n)knd(n)
hn

eit(kn−hn)λn

=
∑

k∈Eq

( q!
k1! . . . kN !

)2 N∏
n=1

|d(n)|2kn + R(t) (27)

where

R(t) =
∑

k,h∈Eq
k 6=h

( (q!)2

k1!h1! . . . kN !hN !

) N∏
n=1

d(n)knd(n)
hn

eit(kn−hn)λn . (28)

By integrating and using linear independence

1
T

∫

J

∣∣P (t)
∣∣2qdt =

∑

k∈Eq

( q!
k1! . . . kN !

)2 N∏
n=1

|d(n)|2kn

+
∑

k,h∈Eq
k 6=h

(q!)2

k1!h1! . . . kN !hN !

N∏
n=1

d(n)knd(n)
hn

×
[ei(d+T )

∑N

n=1
(kn−hn)λn − eid

∑N

n=1
(kn−hn)λn

iT (
∑N

n=1(kn − hn)λn)

]
. (29)

Put

ck =
N∏

n=1

(d(n)ei(d+T )λn)kn

kn!
, dk =

N∏
n=1

(d(n)eidλn)kn

kn!
, lk =

N∑
n=1

knλn.
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Then

1
T

∫

J

∣∣P (t)
∣∣2qdt = (q!)2

∑

k∈Eq

|dk|2 +
(q!)2

iT

{ ∑
k,h∈Eq

k 6=h

ckch

lk − lh
−

∑
k,h∈Eq

k 6=h

dkdh

lk − lh

}
.

(30)
We shall apply Hilbert’s inequality under the following form: let {xk, yk, k ∈

Eq}. Let also {λk, k ∈ Eq} be distinct real numbers such that min{|λk−λh|, k 6=
h} ≥ δ. Let ν = #{Eq} and consider a bijection i : {1, . . . , ν} → Eq. By using
Lemma 5

∣∣∣
∑

k,h∈Eq
k 6=h

xkyh

λk − λh

∣∣∣ =
∣∣∣

∑
1≤u,v≤ν

u6=v

xi(u)yi(v)

λi(u) − λi(v)

∣∣∣

≤ π

δ

( ∑

1≤u≤ν

|xi(u)|2
)1/2( ∑

1≤v≤ν

|yi(v)|2
)1/2

=
π

δ

( ∑

k∈Eq

|xk|2
)1/2( ∑

h∈Eq

|yh|2
)1/2

. (31)

Apply it to each of the two sums in parenthesis of the right-term in (30), we
find

(q!)2

T

∣∣∣∣
∑

k,h∈Eq
k 6=h

ckch

lk − lh
−

∑
k,h∈Eq

k 6=h

dkdh

lk − lh

∣∣∣∣ ≤
2π(q!)2

Tξ

∑

k∈Eq

|dk|2 ≤ 2πq!
Tξ

[ N∑
n=1

|d(n)|2
]q

,

(32)
since

(q!)2
∑

k∈Eq

|dk|2 =
∑

k1+...+kN=q

[ q!
k1! . . . kN !

]2 N∏
n=1

|d(n)|2kn

≤ q!
∑

k1+...+kN=q

q!
k1! . . . kN !

N∏
n=1

|d(n)|2kn = q!
[ N∑

n=1

|d(n)|2
]q

.

(33)

The way to bound in (33), in turn, already appeared in [38].
By substituting in (30), we therefore obtain

1
T

∫

J

∣∣P (t)
∣∣2qdt ≤ q!

(
1 +

2π

Tξ

) [ N∑
n=1

|d(n)|2
]q

. (34)

Further, from (29) we also get by using Cauchy-Schwarz inequality

1
T

∫

J

∣∣P (t)
∣∣2qdt =

∑

k∈Eq

( q!
k1! . . . kN !

)2 N∏
n=1

|d(n)|2kn

+
∑

k,h∈Eq
k 6=h

(q!)2

k1!h1! . . . kN !hN !

N∏
n=1

d(n)knd(n)
hn

×
[ei(d+T )

∑N

n=1
(kn−hn)λn − eid

∑N

n=1
(kn−hn)λn

iT (
∑N

n=1(kn − hn)λn)

]

10



≤ q!
[ N∑

n=1

|d(n)|2
]q

+
2

Tξ

( N∑
n=1

|d(n)|
)2q

≤
(
q! +

2Nq

Tξ

)[ N∑
n=1

|d(n)|2
]q

. (35)

Combining the two last estimates gives

1
T

∫

J

∣∣P (t)
∣∣2qdt ≤

(
q! +

2 min(Nq, πq!)
Tξ

)[ N∑
n=1

|d(n)|2
]q

. (36)

Now we pass to high moments of Dirichlet approximating polynomials

1
T

∫ T

0

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt.

Apply Proposition 6 to

( N∑
n=1

1
n

1
2+it

)ν

:=
Nν∑

m=1

bm

m
1
2+it

. (37)

Since δ ≥ min
{

log(1 + m−n
n ) : 1 ≤ n < m ≤ Nν

} ≥ 1
2Nν , we get

∣∣∣∣
∫ T

0

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt− T

Nν∑
m=1

b2
m

m

∣∣∣∣ ≤ CNν
Nν∑

m=1

b2
m

m
. (38)

Recall that dν(n) denotes the number of representations of the integer n as a
product of ν factors. As bm = #{(n1, . . . , nν); nj ≤ N : m = n1 . . . nν} ≤
dν(m), and ([21], Section 9.5)

∑

m≤N

d2
ν(m)
m

= (Cν + o(1)) logν2
N, (39)

it follows that

1
T

∫ T

0

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt ≤ Cν(1 +
Nν

T
) logν2

N. (40)

Hence if T ≥ Nν

1
T

∫ T

0

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt ≤ Cν logν2
N. (41)

The latter estimate is in fact two-sided, see Corollary 10. It can also be refor-
mulated as

cν

Nν∑
m=1

b2
m

m
≤ 1

T

∫ T

0

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt ≤ Cν

Nν∑
m=1

b2
m

m
. (42)

11



Now, by using approximation formula (2), it follows that the reformulation (5)
of the LH is also equivalent to

1
N

∫ N

0

∣∣∣
N∑

n=1

1
n

1
2+it

− N
1
2−it

1
2 − it

∣∣∣
2ν

dt = Oε(Nε) ν = 1, 2, . . . . (43)

The critical range of values of T in (41) is thus T ∼ N . But it is a simple matter
to observe that in this case, estimate (41) can no longer be true, unless the LH is
false. Indeed by the Minkowski inequality, if (41) and (43) were simultaneously
true, we would have

1
N

∫ N

0

∣∣∣N
1
2−it

1
2 − it

∣∣∣
2ν

dt =
Nν−1

2

∫ N

0

dt

( 1
4 + t2)ν

∼ CNν−1 = Oε(Nε), (44)

which is absurd as soon as ν > 1. It also follows from these observations that
the order of

1
T

∫ T

0

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt

is necessarily much bigger for T ≤ Nν than for T ≥ Nν .

Concerning upper bounds, there is a useful argument ([29], p.131) which can
be applied for arbitrary even powers. Consider the kernel

KT (t) =
(
1− |t|/T )χ{|t|≤T}, K̂T (u) = T−1

( sin Tu

u

)2
.

Then

χ{|t−H|≤T} ≤ KT (t−H) + KT (t−H + T ) + KT (t−H − T ). (45)

This can be used to prove

Proposition 8 Let q be any positive integer. Let c1, . . . , cN be complex numbers
and nonnegative reals a1, . . . , aN such that |cn| ≤ an, n = 1, . . . , N . Then for
any reals ϕ1, . . . , ϕN and any reals T, T0 with T > 0

∫

|t−T0|≤T

∣∣∣
N∑

n=1

cneitϕn

∣∣∣
2q

dt ≤ 3
∫

|t|≤T

∣∣∣
N∑

n=1

aneitϕn

∣∣∣
2q

dt. (46)

From (46) one can derive the following lower bound [49].

Theorem 9 For any positive integer q, there exists a constant cq, such that for
any reals ϕ1, . . . , ϕN , any non-negative reals a1, . . . , aN , and any T > 0,

cq

( N∑
n=1

a2
n

)q

≤ 1
2T

∫

|t|≤T

∣∣∣
N∑

n=1

aneitϕn

∣∣∣
2q

dt. (47)

The L1-case is related to Ingham’s inequality. Recall the sharp form due to
Mordell [31]: let 0 < ϕ1 < . . . < ϕN and let γ be such that min

1<n≤N
ϕn − ϕn−1 ≥

γ > 0. Then

N
sup
n=1

|an| ≤ K

T

∫ T

−T

∣∣∣
N∑

n=1

aneitϕn

∣∣∣dt with T =
π

γ
, (48)
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where K ≤ 1. Further with no restriction, one has a very similar inequality in
the theory of uniformly almost periodic functions:

N
sup
n=1

|an| ≤ lim sup
T→∞

1
2T

∫ T

−T

∣∣∣
N∑

n=1

aneitϕn

∣∣∣dt ≤ sup
t∈R

∣∣∣
N∑

n=1

aneitϕn

∣∣∣, (49)

Inequality (47) is obtained by choosing cn = εnan in (46), where ε = {εn, n ≥
1} is a Rademacher sequence, next taking expectation and using Khintchine-
Kahane inequalities for Rademacher sums. We shall deduce from it the following
lower bound.

Corollary 10 For every N , T and ν

cν logν2
N ≤ 1

2T

∫

|t|≤T

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt.

Indeed, apply (47) with q = 2 to the sum

( N∑
n=1

1
n

1
2+it

)ν

:=
Nν∑

m=1

bm

m
1
2+it

.

Then for all N and T

cν

Nν∑
m=1

b2
m

m
≤ 1

2T

∫

|t|≤T

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt.

Notice that if m ≤ N , bm = dν(m) and we know that

∑

m≤x

d2
ν(m)
m

= (Cν + o(1)) logν2
x.

See [21] section 9.5. Thus

Nν∑
m=1

b2
m

m
≥

N∑
m=1

b2
m

m
≥ cν logν2

N

Henceforth

cν logν2
N ≤ 1

2T

∫

|t|≤T

∣∣∣
N∑

n=1

1
n

1
2+it

∣∣∣
2ν

dt.

Put

Mν(T ) =
∫ T

0

∣∣ζ(
1
2

+ it)
∣∣2ν

dt

The corresponding inequality for the Riemann Zeta-function is Ramachandra’s
well-known lower bound and we recall ([40] p.180, see also [21] section 9.5 and
[36]) that

cνT (log T )ν2 ≤ Mν(T ). (50)
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Assuming RH, Soundararajan recently proved in [39] that for every positive
real number ν, and everyε > 0, we have

Mν(T ) ≤ Cν,ε T (log T )ν2+ε. (51)

We conclude this section by mentionning and briefly discussing some related
results for the Riemann ζ-function.

Remark 11 (Mean value results for the ζ-function) For the critical value σ =
1/2, the best known results are

∫ T

0

|ζ(
1
2

+ it)|2dt = T log
( T

2π

)
+ (2γ − 1)T + E(T ), (52)

where γ is Euler’s constant and the error term E(T ) satisfies E(T ) ¿ε T 1/3+ε,
see [40] p.176. And

∫ T

0

|ζ(
1
2

+ it)|4dt =
T log4 T

2π2
+O(T log3 T ), (53)

see [40] p.148. The approximation (2) already suffices to show

∫ T

0

|ζ(
1
2

+ it)|2dt = O(T log T ). (54)

The very formulation of (2) yields for the fourth moment that it is equivalent
to work with ∣∣∣

∑

n≤x

1
ns
− x1−s

1− s

∣∣∣
4

, x ∼ T,

instead of |ζ( 1
2 + it)|4, when 0 ≤ t ≤ T . However there is apparently no known

proof of
∫ T

0
|ζ( 1

2 + it)|4dt = O(T log4 T ) based on (2), which is a bit frustrating.
In place of this bound, one has to use the following more elaborated approximate
equation

ζ(s) =
∑

n≤x

1
ns

+ χ(s)
∑

n≤y

1
n1−s

+O(x−σ log |t|) +O(|t| 12−σyσ−1), (55)

in which h is a positive constant, 0 < σ < 1, 2πxy = t, x > h > 0, y > h > 0
and

χ(s) =
ζ(s)

ζ(1− s)
= 2s−1π2 sec

( sπ

2Γ(s)

)
.

This function verifies in any fixed strip α ≤ σ ≤ β, |χ(s)| ∼ (
t/2π

)
, as t →∞.

The knewledge concerning moments
∫ T

0

|ζ(
1
2

+ it)|kdt

beyond k = 4 is, at least, very sparse. For the case k = 12, we may quote the
beautiful result due to Heath-Brown

∫ T

0
|ζ( 1

2 + it)|12dt ¿ T 2 log17 T . See [40]
p. 79, 95 and 178 for the aforementionned facts. See also [21] Section 8.3.
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There are also alternative mean-value theorems involving integrals of the
form

J(δ) =
∫ ∞

0

|ζ(
1
2

+ it)|2ke−δtdt, δ → 0.

The behavior of these integrals is similar to the one of

I(T ) =
∫ T

0

|ζ(
1
2

+ it)|2kdt, T →∞,

and this follows notably from integral versions of a well-known Tauberian result
of Hardy and Littlewood. More precisely, if f ≥ 0, then ([40], (7.12.1) and
(7.12.2))

∫ ∞

0

f(t)e−δtdt
δ→0

˜
1
δ

⇒
∫ T

0

f(t)dt
T→∞
˜ T. (56)

When 1/2 < σ < 1, we have

∫ T

1

|ζ(σ + it)|2dt = T

∞∑
n=1

1
n2σ

+O(
T 2−2σ

)
. (57)

∫ T

1

|ζ(σ + it)|4dt = T

∞∑
n=1

d2
2(n)
n2σ

+Oε

(
T 3/2−σ+ε

)
. (58)

There are also results for k = 1/2. For k > 2 integer, it is known ([40],
p.125) that

lim
T→∞

1
T

∫ T

1

∣∣ζ(σ + it)
∣∣2kdt =

∞∑
n=1

d2
k(n)
n2σ

, (σ > 1− 1/k). (59)

We refer to [21], Chapter 8 and notably Theorem 8.5 for improvments of this,
up to power 12, under weaker conditions on σ.

Remark 12 (Square function of the Riemann-zeta function) Let θ = {Tj , j ≥
1} be such that Tj ↑ ∞. Given any fixed positive integer k, we define for
1/2 < σ < 1 the ζ-square function Sθ(k, σ) associated to θ as follows

Sθ(k, σ) :=
( ∞∑

j=1

∣∣∣ 1
Tj+1

∫ Tj+1

0

|ζ(σ + it)|2kdt− 1
Tj

∫ Tj

0

|ζ(σ + it)|2k
∣∣∣
2
)1/2

.

The finiteness in (21) of the square function linked to the Fourier inversion for-
mula and the analogy described at the beginning of Section 2 between Lindelöf
Hypothesis and Fourier inversion formula suggest to investigate properties of
the ζ-square function Sθ(k, σ).
Problem. For which sequences θ is Sθ(k, σ) finite for all 1/2 < σ < 1? When is
the same also true independently of the value of k ≥ 1?

In the case k = 1, k = 2, it follows trivially from (57), (58) that any geomet-
rically increasing sequence θ, Tj+1/Tj ≥ M > 1, is suitable. One may wonder
whether this condition is also necessary for the finiteness of Sθ(k, σ) for every
1/2 < σ < 1. The case k = 1/2 is also of interest.
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It may be worth noticing that for the approximating term in (2), we have
for any integers n ≥ m ≥ 1,

∣∣∣
n∑

k=1

1
k

1
2+it

− n
1
2−it

1
2 − it

∣∣∣
2

−
∣∣∣

m∑

k=1

1
k

1
2+it

− m
1
2−it

1
2 − it

∣∣∣
2

=
n∑

`=m+1

1
`

+ 2
∑

m+1≤k≤n
1≤`<k

<
{

1√
k`

eit log k
` −

∫ log k
`

log k−1
`

e( 1
2+it)xdx

}
. (60)

This follows from the more homogeneous reformulation

∣∣∣
n∑

k=1

1
k

1
2+it

− n
1
2−it

1
2 − it

∣∣∣
2

=
n∑

`=1

1
`
+2

∑

1≤`<k≤n

<
{

1√
k`

eit log k
` −

∫ log k
`

log k−1
`

e( 1
2+it)xdx

}
.

(61)
Indeed,

n∑

`=1

1
`

+ 2
∑

1≤`<k≤n

<
{

1√
k`

eit log k
` −

∫ log k
`

log k−1
`

e( 1
2+it)xdx

}

=
n∑

`=1

1
`

+ 2
∑

1≤`<k≤n

<
{

1√
k`

eit log k
`

}
− 2

∑

1≤`<k≤n

<
{ ∫ log k

`

log k−1
`

e( 1
2+it)xdx

}

=
∣∣∣

n∑

k=1

1
k

1
2+it

∣∣∣
2

− 2
n−1∑

`=1

<
{ ∫ log n

`

0

e( 1
2+it)xdx

}

=
∣∣∣

n∑

k=1

1
k

1
2+it

∣∣∣
2

− 2
n−1∑

`=1

<
{

1
1
2 + it

[(n

`

) 1
2+it

− 1
]}

=
∣∣∣

n∑

k=1

1
k

1
2+it

∣∣∣
2

− 2<
{

n
1
2+it

( 1
2 + it)

n−1∑

`=1

1
`

1
2+it

}
+

n
1
4 + t2

.

If 1/2 < σ < 1, there is a similar formula ([48], Corollary 5)

∣∣∣
n∑

k=1

1
kσ+it

− nσ−it

σ − it

∣∣∣
2

=
n∑

`=1

1
`2σ

+ 2
∑

1≤`<k≤n

<
{

eit log k
`

(k`)σ

−`1−2σ

∫ log k
`

log k−1
`

e(1−σ+it)xdx

}
− Ψσ

(1− σ)2 + t2
, (62)

where Ψσ = σ + (1− 2σ)2σ

∞∑

k=1

∫ 1

0

t− t2

2
(k + t)−2σ−1dt +O(n1−2σ).

4 Supremum of Dirichlet polynomials

We begin with some general considerations. Let d : N → R. The supremum of
the Dirichlet polynomials P (s) =

∑N
n=1 d(n)n−s over lines {s = σ + it, t ∈ R}

is naturally related to that of corresponding Dirichlet series, via the abscissa of
uniform convergence

σu = inf
{

σ :
∞∑

n=1

d(n)n−σ−it converges uniformly over t ∈ R
}

,
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through the relation

σu = lim sup
N→∞

log sup
t∈R

∣∣
N∑

n=1

d(n)n−it
∣∣

log N
. (63)

We refer to [4],[18] or [15] for background and related results. This naturally
justifies the investigation of the supremum of Dirichlet polynomials.

It is natural to start by comparing the behavior of the suprema of Dirichlet
polynomials with the one of trigonometric polynomials, which we shall do by
investigating Rudin-Shapiro polynomials. We refer to [29] Chapter 7 where a
comparative study is presented.

Rudin-Shapiro polynomials. Recall the classical setting. For any trigonometric
polynomial we have

∑N
n=1 |d(n)|√

N
≤ sup

t∈R
|

N∑
n=1

d(n)eint| ≤
N∑

n=1

|d(n)|. (64)

The arguments for getting the lower bound are the inequality between the sup-
norm and L2-norm, the orthogonality of (eint)n and Hölder inequality.

Rudin and Shapiro constructed a fairly simple sequence d(n) ∈ {−1, +1}
such that the right order of the lower bound is attained:

sup
t∈R

|
N∑

n=1

d(n)eint| ≤ (2 +
√

2)
√

N + 1 ∼ (2 +
√

2)
∑N

n=1 |d(n)|√
N

. (65)

Consider now the Dirichlet polynomials instead of the trigonometric ones. It is
known from [23] and [35] that

Theorem 13 For any (d(n))

sup
t∈R

|
N∑

n=1

d(n)nit| ≥ α1

∑N
n=1 |d(n)|√

N
exp{β1

√
log N log log N}. (66)

and for some (d(n))

sup
t∈R

|
N∑

n=1

d(n)nit| ≤ α2

∑N
n=1 |d(n)|√

N
exp{β2

√
log N log log N}, (67)

with some universal constants α1, α2, β1, β2.

A finer result with explicit constants was recently obtained by de la Bretèche
in [5]. Therefore the lower bound for Dirichlet polynomials is necessarily worse
than in the classical case. Notice also that the construction in [35] is a prob-
abilistic one; no explicit example of Rudin-Shapiro type is known for Dirichlet
polynomials.

There is a basic reduction step in the study of the suprema. Introduce a
useful notion. A set of numbers ϕ1, ϕ2, . . . , ϕk is linearly independent if no
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linear relation a1ϕ1 + a2ϕ2 + . . . + akϕk = 0, with integer coefficients, not all
zero, holds. For a proof of the classical result below, we refer to [16].
Kronecker’s theorem. If ϕ1, ϕ2, . . . , ϕk, 1 are linearly independent, ϑ1, ϑ2, . . . , ϑk

are arbitrary, and N , ε are positive, then there are integers n > N , n1, n2, . . . , nk

such that
max

1≤m≤k
|nϕm − nm − ϑm| < ε.

Consequently, the set of points {nϕ1}, {nϕ1}, . . . , {nϕk} is dense in Tk.
Let p1, p2, . . . , pk be different primes. By the fundamental theorem of arith-

metic
log p1, log p2, . . . , log pk are linearly independent. (68)

This will enable to replace the Dirichlet polynomial by some relevant trigono-
metric polynomial. Introduce the necessary notation. Let 2 = p1 < p2 < . . .

be the sequence of consecutive primes. If n =
∏τ

j=1 p
aj(n)
j , we write a(n) ={

aj(n), 1 ≤ j ≤ τ
}
. According to the standard notation we also denote

Ω(n) = a1(n) + . . . + aτ (n) and by π(N) the number of prime numbers less
or equal to N . Let us fix N . We put in what follows µ = π(N) and define for
z = (z1, . . . , zµ) ∈ Tµ,

Q(z) =
N∑

n=2

d(n)n−σe2iπ〈a(n),z〉,

H. Bohr’s observation states that

sup
t∈R

∣∣
N∑

n=2

d(n)n−(σ+it)
∣∣ = sup

z∈Tµ

∣∣Q(z)
∣∣ . (69)

Remark 14 Naturally no similar reduction occurs when considering the supre-
mum over a given bounded interval I. However, when the length of I is of
exponential size with respect to N , precisely when

|I| ≥ e(1+ε)ωN(log Nω) log N ,

the related supremum becomes comparable, for ω large, to the one taken over the
real line, with an error term of order O(ω−1). This is in turn a rather general
phenomenon due to existence of ”localized” versions of Kronecker’s theorem;
and in the present case to Turán’s estimate (see [46] for a slighly improved
form of it using a probabilistic approach, and references therein). When the
length is of sub-exponential order, the study however still belong to the field of
application of the general theory of regularity of stochastic processes.

Before going further notice, as an immediate consequence of Kronecker’s
Theorem, that if ϕ1, ϕ2, . . . , ϕN are linearly independent then

sup
t∈R

∣∣
N∑

n=1

d(n)e−itϕn
∣∣ =

N∑
n=1

|d(n)|. (70)

Let us first consider lower bounds. Subsets A ⊆ {1, . . . , N} such that

∀{δn, n ∈ A} ∈ {
0,

1
2
}A

, ∃z ∈ Tτ :
τ∑

j=1

aj(n)zj = δn mod(1), ∀n ∈ A
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are of particular interest, since e2iπ〈a(n),z〉 = 1 or −1 according to δn = 0 or 1/2.
As 〈a(pj), z〉 = zj , by choosing z so that zj = 0 or 1/2, we deduce with (69)

Bohr’s lower bound ([3])

E sup
t∈R

∣∣
N∑

n=2

d(n)n−it
∣∣ ≥

∑

p≤N

|d(p)|p−σ.

This was generalized in [34] by Queffélec who proved

Proposition 15 For any integer m ≥ 1

Cm E sup
t∈R

∣∣
N∑

n=2

d(n)n−it
∣∣ ≥

( ∑
n≤N

Ω(n)=m

|d(n)| 2m
m+1

)m+1
2m

,

where Cm =
(

2√
π

)m−1 m
m
2 (m+1)

m+1
2

2m(m!)
2

m+1
, (C1 = 1). Further Cm ≤ m

m
2 .

These estimates are crucial ([23], see section 4) in the proof of Theorem 13.

Local suprema of Dirichlet polynomials. Let ϕ1, . . . , ϕN be linearly indepen-
dent reals. In [50], the local suprema of the Dirichlet polynomials P (t) =∑N

n=1 cneitϕn is investigated. Let q be some positive integer. Then ([50], The-
orem 4),
There exists a constant Cq depending on q only, such that for any intervals J, L

( 1
|J |

∫

J

∣∣ sup
t∈L

|P (ϑ + t)|dϑ
)1/2q

≤ Cq Bmax
{

1, |L|ϕ̃N

}1/2q
{[ N∑

n=1

|cn|2
]1/2

+

min
(
|L|, 1

ϕ̃N

)[ N∑
n=1

|cn|2ϕ2
n

]1/2
}

, (71)

where B =
[
q!

(
1 + 2π

|J|ξϕ(N,q)

)]1/2q, ϕ̃N = supn≤N |ϕn|.
This result is used in the same paper to investigate by means of Turán’s

result (14), zerofree regions of the Riemann-zeta function.

5 Random Dirichlet polynomials

Studies for random Dirichlet polynomials and random Dirichlet series were de-
veloped in [13] and [33],[34],[35] notably, see also [26],[27] and references therein.
Such investigations concerning random Dirichlet series and random power series
go back to earlier works of Hartman [14], Clarke [7] and Dvoretzky-Erdös [8],[9].

Let us first quote some general results. For instance let ξ = {ξ, ξn, n ≥ 1}
be a sequence of i.i.d. random variables and let σc and σa be, respectively, the
almost sure abscissa of convergence and of absolute convergence of the Dirichlet
series

∑∞
n=1 ξnn−s. If ξ 6= 0 holds with positive probability, let kξ := sup{γ :

E |ξ|γ < ∞}. The connection between the abscissas σc and σa and integrability
of ξ has been clarified by Clarke in [7].
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Proposition 16 We have the implications:

kξ = 0 ⇒ σa = σc = ∞
0 < kξ ≤ 1 ⇒ σa = σc = 1/kξ

(kξ > 1 and E ξ 6= 0) ⇒ σa = σc = 1
(kξ > 1 and E ξ = 0) ⇒ σa = 1 and σc = max(1/kξ, 1/2).

(72)

Now let here and throughout the remaining part of the paper ε = {εi, i ≥ 1}
be a sequence of independent Rademacher random variables (P{εi = ±1} =
1/2) with basic probability space (Ω,A,P). The following result is due to
Bayart, Konyagin and Quéffelec [1].

Theorem 17 Let {d(n), n ≥ 1} be a sequence of complex numbers. If

lim sup
N→∞

1
log log N

N∑
n=0

|d(n)|2 = γ > 0,

then for almost all ω the series
∑∞

n=0 εn(ω)d(n)nit diverges for each t ∈ R.

The result is nearly optimal: if 0 < δn → 0, there exists a sequence {d(n), n ≥ 1}
such that lim supN→∞

1
δN log log N

∑N
n=0 |d(n)|2 > 0, but for each ω, the series∑∞

n=0 εn(ω)d(n)nit converges for at least one t ∈ R.
In relation with the above, we may quote Hedenmalm and Saksman’s exten-

sion [17] of Carleson’s result:

Theorem 18 Under the assumption
∑∞

n=0 |d(n)|2 < ∞ the Dirichlet series

∞∑
n=0

εnd(n)n−1/2+it

converges for almost all t.

A simple and elegant proof is given in Konyagin and Quéffelec [23] p.158/159.

6 Supremum of random Dirichlet polynomials

Now consider the random Dirichlet polynomials

D(s) =
N∑

n=1

εnd(n)n−s, s = σ + it, (73)

and examine their supremum properties. When d(n) ≡ 1, there are optimal
results. If σ = 0, then for some absolute constant C, and all integers N ≥ 2

C−1 N

log N
≤ E sup

t∈R
|

N∑
n=2

εnn−it| ≤ C
N

log N
. (74)

This has been proved by Halász and was later extended by Queffélec to the
range of values 0 ≤ σ < 1/2. Queffélec gave a probabilistic proof of the original
one, using Bernstein’s inequality for polynomials.
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Theorem 19 There exists a constant Cσ depending on σ only, such that for
all integers N ≥ 2 we have,

C−1
σ

N1−σ

log N
≤ E sup

t∈R
|

N∑
n=2

εnn−σ−it| ≤ Cσ
N1−σ

log N
. (75)

Extensions of (75) were obtained in the recent works [26],[27]. The approach
used does not appeal to Bernstein’s inequality, and is completely based on
stochastic process method, notably the metric entropy method. Further a new
lower bound is obtained, which is of a completely different nature than Bohr’s
deterministic lower bound used in Queffélec’s proof. For random Dirichlet poly-
nomials defined in (73), a new approach is developed in [26]. Define

Lj =
{

n = pj ñ : ñ ≤ N

pj
and P+(ñ) ≤ pµ/2

}
, j ∈ (µ/2, µ].

Theorem 20 (Lower bound)

E sup
t∈R

|D(σ + it)| ≥ c
∑

µ/2<j≤µ

( ∑

n∈Lj

d(n)2 n−2σ
)1/2

.

Now we turn to upper bounds. We assume that d is sub-multiplicative:

d(nm) ≤ d(n)d(m) provided (n,m) = 1. (76)

A typical example is for instance function dK(n) = χ{(n,K) = 1}. Naturally
all multiplicative functions are sub-multiplicative, and so is the case of d(n) =
λω(n), where λ > 1 and ω(n) = #{p : p | n}.

In [47] a general upper bound is obtained, containing and strictly improving
the main results in [26],[27]. Further the proof is entirely based on Gaussian
comparison properties, all suprema of auxiliary Gaussian processes used being
computable exactly. Introduce a basic decomposition. Denote by P+(n) the
largest prime divisor of n. Then

{2, . . . , N} =
∑

1≤j≤π(N)

Ej , Ej =
{
2 ≤ n ≤ N : P+(n) = pj

}

It is natural to disregard cells Ej such that d(n) ≡ 0, n ∈ Ej . We thus set
Hd =

{
1 ≤ j ≤ π(N) : d|Ej

6≡ 0
}
, τd = max (Hd). The relevant assumption is

the following:

p|n =⇒ d(n) ≤ C d(
n

p
), and d(pj) ≤ C1λ

j , (77)

for some positive C, C1, λ with λ <
√

2, any prime number p, any integers n, j.
Clearly, if C <

√
2, the second property is implied by the first, although this

is not always so as the following example yields. Fix some prime number P1 as
well as some reals 1 < λ1 <

√
2, C1 ≥ 1, and put

d(n) =
{

C1λ
j , if P j

1 ||n,
1, if (n, P1) = 1.

(78)
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Then d is sub-multiplicative, and satisfies condition (77) with a constant C
which has to be larger than C1λ. Now put

D1(M) =
M∑

m=1

d(m), D̃1(M) = max
1≤m≤M

D1(m)
m

,

D2(M) =
M∑

m=1

d(m)2, D̃2
2(M) = max

1≤m≤M

D2(m)
m

. (79)

Theorem 21 (Upper bound) Let d be a non-negative sub-multiplicative func-
tion. Assume that condition (77) is realized. Let 0 ≤ σ < 1/2. Then there exists
a constant Cσ,d depending on σ and d only, such that for any integer N ≥ 2,

E sup
t∈R

|D(σ + it)| ≤ Cσ,d D̃2(N)B,

where

B =





N1/2−στ
1/2
d

(log N)1/2 , if
(

N log log N
log N

)1/2 ≤ τd ≤ π(N),

N3/4−σ(log log N)1/4

(log N)3/4 , if
(

N
(log N) log log N

)1/2 ≤ τd ≤
(

N log log N
log N

)1/2
,

N1/2−σ
(

τd log log τd

log τd

)1/2 , if 1 ≤ τd ≤
(

N
(log N) log log N

)1/2
.

This yields, when combined with Theorem 20, sharp estimates. Consider the
following example.

Example 1. Take some positive integer K, and let dK(n) = χ{(n,K) = 1}.
Then dK is sub-multiplicative and condition (77) is satisfied with C = 1 = λ.
By (73), this defines the remarkable class of random Dirichlet polynomials,

D(s) =
∑

(n,K)=1
1≤n≤N

εn

ns
, (80)

containing the one of Eτ -based Dirichlet polynomials considered in [35] and
[26], where Eτ =

{
2 ≤ n ≤ N : P+(n) ≤ pτ}. Here HdKτ

=
∑

j≤τ Ej . We
therefore neglect cells Ej , j > τ . Further, we have D̃1(N) = D̃2(N) ≤ 1. As a
consequence of Corollary 3 of [47] and Theorem 20, we have in particular

Theorem 22 Let 0 ≤ σ < 1/2.

a) If
(

N log log N
log N

)1/2 ≤ τ ≤ π(N),

C1(σ)
N1/2−στ1/2

(log N)1/2
≤ E sup

t∈R

∣∣ ∑

n∈Eτ

εnn−σ−it
∣∣ ≤ C2(σ)

N1/2−στ1/2

(log N)1/2
.

b) If
(

N
(log N) log log N

)1/2 ≤ τ ≤ (
N log log N

log N

)1/2.

C1(σ)
N1/2−στ1/2

(log N)1/2
≤ E sup

t∈R

∣∣ ∑

n∈Eτ

εnn−σ−it
∣∣ ≤ C2(σ)

N3/4−σ(log log N)1/4

(log N)3/4
.
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c) If 1 ≤ τ ≤ (
N

(log N) log log N

)1/2
. Assume that τ ≥ Nε for some fixed 0 < ε <

1/2. Then,

C1(σ, ε)
N1/2−στ1/2

(log τ)1/2
≤ E sup

t∈R

∣∣ ∑

n∈Eτ

εnn−σ−it
∣∣ ≤ C2(σ)N1/2−σ

(τ log log τ

log τ

)1/2
.

We notice that the gap is always less that (log log N)1/2. Theorem 21 also
applies (see [47]) to the case τ ¿ε Nε, as well as to other classes of examples,
for instance

Example 2. Consider multiplicative functions satisfying the following condi-
tion:

d(pa)
d(pa−1)

≤ λ, a = 1, 2, . . . (81)

Clearly (81) implies (77) and further Md := supp d(p) < ∞, with Md ≤ λd(1).
By theorem 2 of [15], any non-negative multiplicative function d satisfying a
Wirsing type condition d(pm) ≤ λ1λ

m
2 , for some constants λ1 > 0 and 0 < λ2 <

2 and all prime powers pm ≤ x, also satisfies

1
x

∑

n≤x

d(n) ≤ C(λ1, λ2) exp
{ ∑

p≤x

d(p)− 1
p

}
, (82)

where C(λ1, λ2) depends on λ1, λ2 only. This and the fact that d2 is multiplica-
tive and satisfies (81) with λ2 < 2, yield that

D̃1(N) ≤ C(λ)(log N)Md , D̃2(N) ≤ C(λ)(log N)M2
d . (83)

Proof of Theorem 21 (Sketch). The proof is long and technically delicate. We
only outline the main steps and will avoid calculation details. Let M ≤ N
and 0 < σ < 1/2. Fix some integer ν in [1, τ ] and let Fν =

∑
1≤j≤ν Ej ,

F ν =
∑

ν<j≤τ Ej . The basic principle of the proof consists of a decomposition
of Q in (69) into a sum of two trigonometric polynomials Q = Qε

1 + Qε
2, where

Qε
1(z) =

∑

n∈Fν

εnd(n)n−σe2iπ〈a(n),z〉, Qε
2(z) =

∑

n∈F ν

εnd(n)n−σe2iπ〈a(n),z〉.

By the contraction principle E supz∈Tτ

∣∣Qε
i (z)

∣∣ ≤ CE supz∈Tτ

∣∣Qi(z)
∣∣, i = 1, 2

where Qi is the same process as Qε
i except that the Rademacher random vari-

ables εn are replaced by independent N (0, 1) random variables µn. Conse-
quently, both the suprema of Q1 and of Q2 can be estimated, via their associated
L2-metric. First evaluate the supremum of Q2. We have

Q2(z) =
∑

ν<j≤τ

e2iπzj

∑

n∈Ej

µnd(n)n−σe
2iπ{

∑
k

ak( n
pj

)zk}
.

And so
sup

z∈Tτ

∣∣Q2(z)
∣∣ ≤ 4 sup

γ∈Γ

∣∣X(γ)
∣∣, (84)

where the random process X is defined by

X(γ) =
∑

ν<j≤τ

αj

∑

n∈Ej

µn
d(n)
nσ

β n
pj

, γ ∈ Γ, (85)
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with γ =
(
(αj)ν<j≤τ , (βm)1≤m≤N/2

)
and Γ =

{
γ : |αj | ∨ |βm| ≤1, ν <j ≤ τ, 1≤

m ≤ N/2
}
. The problem now reduces to estimating the supremum over Γ of

the real valued Gaussian process X. Plainly

‖Xγ −Xγ′‖22 ≤ 2
∑

ν<j≤τ

∑

n∈Ej

d(n)2n−2σ
[
(αj − α′j)

2 + (β n
pj
− β′n

pj

)2
]
.

Condition (77) and Abel summation yield

‖Xγ −Xγ′‖22 ≤ 2
∑

ν<j≤τ

∑

n∈Ej

d(n)2

n2σ

[
(αj − α′j)

2 + (β n
pj
− β′n

pj

)2
]

≤ λ2
∑

ν<j≤τ

(αj − α′j)
2 N1−2σD̃2

2(N/pj)
pj

+ Cλ2
∑

m≤N/pν

K2
m(βm − β′m)2,

where Km =
∑

ν<j≤τ
mpj≤N

d(m)2

(mpj)2σ and
∑

m≤N/pν
Km ≤ CN1−σD̃1( N

pν
)/
√

ν log ν,

by Abel summation. Define a second Gaussian process by putting for all γ ∈ Γ

Y (γ) =
∑

ν<j≤τ

(D̃2
2(N/pj)N1−2σ

pj

)1/2
αjξ

′
j +

∑

m≤N/pν

Km βmξ′′m := Y ′
γ + Y ′′

γ ,

where ξ′i, ξ′′j are independent N (0, 1) random variables. Thus for some suitable
constant C, one has ‖Xγ − Xγ′‖2 ≤ C‖Yγ − Yγ′‖2 for all γ, γ′ ∈ Γ. By the
Slepian lemma ([51], Lemma 10.2.3), and (84)

E sup
z∈Tτ

∣∣Q2(z)
∣∣ ≤ CE sup

γ∈Γ

∣∣Y (γ)
∣∣. (86)

As

E sup
γ∈Γ

|Y ′(γ)| ≤ C N
1
2−σD̃2(N/pν)

τ1/2

(log τ)1/2

E sup
γ∈Γ

|Y ′′(γ)| ≤ CN1−σD̃1(N/pν)
ν1/2 log ν

, (87)

by reporting (87) into (86), we get

E sup
z∈Tτ

∣∣Q2(z)
∣∣ ≤ C

(
N1/2−σD̃2(N/pν)

τ1/2

(log τ)1/2
+

N1−σD̃1(N/pν)
ν1/2 log ν

)
. (88)

For estimating the supremum of Q1, we introduce the auxiliary Gaussian
process

Υ(z) =
∑

n∈Fν

d(n)n−σ
{
ϑn cos 2π〈a(n), z〉+ ϑ′n sin 2π〈a(n), z〉}, z ∈ Tν ,

where ϑi, ϑ′j are independent N (0, 1) random variables. By symmetrization

E sup
z∈Tν

∣∣Q1(z)
∣∣ ≤

√
8πE sup

z∈Tν

∣∣Υ(z)
∣∣. (89)
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Plainly ‖Υ(z)−Υ(z)
∥∥2

2
≤ 4π2

∑
n∈Fν

d(n)2

n2σ

[ ∑ν
j=1 aj(n)|zj − z′j |

]2
. Now,

∑

n∈Fν

d(n)2

n2σ

[ ν∑

j=1

aj(n)|zj − z′j |
]2

=
ν∑

j=1

|zj − z′j |2
∑

n∈Fν

aj(n)2d(n)2

n2σ

+
∑

1≤j1,j2≤ν
j1 6=j2

|zj1 − z′j1 | |zj2 − z′j2 |
∑

n∈Fν

aj1(n)aj2(n)d(n)2

n2σ
:= S + R.

By sub-multiplicativity, we have for R

R ≤ C
∑

j1 6=j2

|zj1 − z′j1 ||zj2 − z′j2 |
∞∑

b1,b2=1

b1d(pb1
j1

)2

p2b1σ
j1

b2d(pb2
j2

)2

p2b2σ
j2

∑

k≤N/p
b1
j1

p
b2
j2

d(k)2

k2σ
.

(90)
By using Abel summation, one deduces that

R ≤ CλD̃2(N)2N1−2σ
[ ν∑

j=1

|zj − z′j |
pj

]2

,

As to S, we have similarly

S ≤
ν∑

j=1

|zj − z′j |2
∞∑

b=1

b2d(pb
j)

2

p2bσ
j

∑

m≤ N

pb
j

d(m)2

m2σ

≤ CD̃2(N)2N1−2σ
[ ν∑

j=1

|zj − z′j |2
pj

]
. (91)

Consequently

‖Υ(z)−Υ(z)
∥∥

2
≤ CλN1/2−σD̃2(N) max

[ ν∑

j=1

|zj − z′j |
pj

,
[ ν∑

j=1

|zj − z′j |2
pj

] 1
2
]

≤ CλN1/2−σD̃2(N)(log log ν)1/2
( ν∑

j=1

|zj − z′j |2
pj

)1/2

, (92)

where we used Cauchy-Schwarz’s inequality in the last inequality. Let g1, . . . , gν

be independent standard Gaussian r.v.’s. Then U(z) :=
∑ν

j=1 gjp
−1/2
j zj satisfies

‖U(z)− U(z′)‖2 =
(∑ν

j=1

|zj−z′j |2
pj

)1/2
. And so

∥∥Υ(z)−Υ(z)
∥∥

2
≤ CλN1/2−σD̃2(N)(log log ν)1/2‖U(z)− U(z′)‖2. (93)

Henceforth

E sup
z,z′∈T ν

|Υ(z′)−Υ(z)| ≤ CλN1/2−σD̃2(N)(log log ν)1/2E sup
z,z′∈T ν

|U(z′)−U(z)|.

But obviously supz∈T ν |U(z)| =
∑ν

j=1 |gj |p−1/2
j , and so E supz′∈T ν |U(z′) −

U(z)| ≤ C(ν/ log ν)1/2. By reporting, and since ‖Υ(z)‖2 ≤ CN1/2−σD̃2(N), for
any z ∈ Tν , we get

E sup
z′∈T ν

|Υ(z′)| ≤ CN1/2−σD̃2(N)
(ν log log ν

log ν

)1/2
. (94)
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By substituting in (89) and combining with (88) consequently get

E sup
t∈R

|D(σ+it)| ≤ Cσ,λ N1/2−σD̃2(N)
[(ν log log ν

log ν

)1/2+
τ1/2

(log τ)1/2
+

N1/2

ν1/2 log ν

]
.

(95)
The proof is accomplished by estimating separately the upper bound in the
three cases:

i) (N log log N
log N )1/2 ≤ τ ≤ π(N).

ii) ( N
(log N) log log N )1/2 ≤ τ ≤ (N log log N

log N )1/2.

iii) 1 ≤ τ ≤ (
N

(log N) log log N )1/2.
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