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Abstract. In this paper, we consider the problem for the existence of positive solutions of quasi-
linear elliptic system ⎧⎪⎨

⎪⎩
−Δpu = λa(x)uα vγ , x ∈ Ω,

−Δqv = λb(x)uη vβ , x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where the λ > 0 is a parameter, Ω is a bounded domain in R
N(N > 1) with smooth bound-

ary ∂Ω , and the Δpz = div(|∇z|p−2∇z) is the p -Laplacian operator. Here a(x) and b(x) are
C1 sign-changing functions that maybe are negative near the boundary. Using the method of
sub-super solutions and comparison principle, which studied the existence of positive solutions
for quasilinear elliptic system. The main results of the present paper are new and extend the
previously known results.

1. Introduction

In this note we consider the existence of positive solutions for the system⎧⎪⎨
⎪⎩

−Δpu = λa(x)uαvγ , x ∈ Ω,

−Δqv = λb(x)uηvβ , x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(1.1)

where λ > 0 is a parameter, 1 < p,q < N , and Ω is a bounded domain in R
N(N > 1)

with smooth boundary ∂Ω , and the Δpz = div(|∇z|p−2∇z) is the p -Laplacian operator.
Here a(x) and b(x) are C1 sign-changing functions that maybe are negative near the
boundary.

Problem (1.1) arises in the theory of quasi-regular and quasi-conformal mappings
as well as in the study of non- Newtonian fluids. In the latter case, the pair (p,q) is
a characteristic of the medium. Media with (p,q) > (2,2) are called dilatant fluids
and those with (p,q) < (2,2) are called pseudo-plastics. If (p,q) = (2,2) , they are
Newtonian fluids.
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When p = q = 2, the following system{
Δu = a(|x|)vα , x ∈ R

N ,

Δv = b(|x|)uβ , x ∈ R
N ,

for which existence results for boundary blow-up positive solutions can be found in a
recent paper by Lair and Wood [12]. The authors established that all positive entire
radial solutions of systems above are boundary blow-up provided that∫ ∞

0
ta(t)dt = ∞,

∫ ∞

0
tb(t)dt = ∞.

On the other hand, if ∫ ∞

0
ta(t)dt < ∞,

∫ ∞

0
tb(t)dt < ∞,

then all positive entire radial solutions of this system are bounded.
F. Cı̀rstea and V.Rǎdulescu [5] extended the above results to a larger class of sys-

tems {
Δu = a(|x|)g(v), x ∈ R

N ,

Δv = b(|x|) f (u), x ∈ R
N .

Z.D.Yang [15] extended the above results to a class of systems{
div(|∇u|p−2∇u) = a(|x|)g(v), x ∈ R

N ,

div(|∇v|q−2∇v) = b(|x|) f (u), x ∈ R
N .

Caisheng Chen [3] discussed the existence and non-existence of positive weak
solution to the following system⎧⎪⎪⎨

⎪⎪⎩
−Δu = λuαvγ , x ∈ Ω,

−Δv = λuδ vβ , x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω.

D.D. Hai [11] studied the existence and nonexistence of positive solutions for the
quasilinear system ⎧⎪⎨

⎪⎩
−Δpu = λa(x) f (u,v), x ∈ Ω,

−Δqv = μb(x)g(u,v), x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

(E)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, p,q > 1,λ ,μ are

positive parameters, a(x),b(x) are bounded functions that can change sign, which ob-
tained existence results for the quasilinear system (E) when f (t,t) is p-sublinear in
0 and g(t, t) is q-sublinear at 0 , and λ ,μ are small. Nonexistence results are also
obtained.
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Motivated by the above results, we focus on further extending the study in [3] to
the system (1.1) and supplementary the results in [11]. In fact, we study the existence
of positive solution to the system (1.1) with sign-changing weight functions a(x) and
b(x) . Due to this weight functions, the existence are challenging and nontrivial. Our
approach is based on the method of sub-super solutions, see [3, 14].

To precisely state our existence result we need the eigenvalue problem

−Δpφ1 = λ1|φ1|p−2φ1, x ∈ Ω, φ1 = 0, x ∈ ∂Ω, (1.2)

−Δqφ∗
1 = λ ∗

1 |φ∗
1 |q−2φ∗

1 , x ∈ Ω, φ∗
1 = 0, x ∈ ∂Ω. (1.3)

Let λ1 > 0 be the principal eigenvalue and φ1 > 0 with ‖φ1‖∞ = 1 the correspond-
ing eigenfunction of −Δp and λ ∗

1 > 0 be the principal eigenvalue and φ∗
1 > 0 with

‖φ∗
1 ‖∞ = 1 the corresponding eigenfunction of −Δq , with the Dirichlet boundary con-

dition. It is well known that

∂φ1

∂ν
< 0 and

∂φ∗
1

∂ν
< 0 on ∂Ω ,

where ν is the unit outward normal, while φ1,φ∗
1 = 0 on ∂Ω . This result is well known

and hence, depending on Ω, there exist σ ,σ∗ ∈ (0,1],δ > 0 and m > 0 such that (see
[14])

λ1φ p
1 −|∇φ1|p � −m, on Ωδ , (1.4)

φ1 � σ , on Ω0 = Ω\Ωδ , (1.5)

and
λ1φ∗

1
q−|∇φ∗

1 |q � −m, on Ωδ , (1.6)

φ∗
1 � σ∗, on Ω0 = Ω\Ωδ , (1.7)

where Ωδ = {x ∈ Ω|d(x,∂Ω) < δ}. We will also consider the unique solution, e1(x) ,
e2(x) ∈C1(Ω), of the boundary value problem

−Δpe1 = 1, x ∈ Ω, e1 = 0, x ∈ ∂Ω, (1.8)

−Δqe2 = 1, x ∈ Ω, e2 = 0, x ∈ ∂Ω, (1.9)

to discuss our existence result. It is known that ei(x) > 0(i = 1,2) in Ω and

∂ei(x)
∂ν

< 0 on ∂Ω(i = 1,2) (see [8, 9, 10]).

2. Existence results

In this section, we shall establish our existence result via the method of sub and
supersolutions. A pair of nonnegative functions (ψ1,ψ2) , (z1,z2) , are called a subso-
lution and supersolution of (1.1) if they satisfy (ψ1,ψ2) = (0,0) = (z1,z2) , on ∂Ω∫

Ω
|∇ψ1|p−2|∇ψ1| ·∇ f1dx � λ

∫
Ω

a(x)ψ1
α ψ2

γ f1dx,

∫
Ω
|∇ψ2|q−2|∇ψ2| ·∇ f2dx � λ

∫
Ω

b(x)ψ1
ηψ2

β f2dx,
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and ∫
Ω
|∇z1|p−2|∇z1| ·∇ f1dx � λ

∫
Ω

a(x)z1
αz2

γ f1dx,

∫
Ω
|∇z2|p−2|∇z2| ·∇ f2dx � λ

∫
Ω

a(x)z1
η z2

β f2dx,

for all test functions f1(x) ∈W 1,p
0 (Ω) and f2(x) ∈W 1,q

0 (Ω) with f1, f2 � 0. Then the
following result holds:

LEMMA 1. (See [17]) Suppose there exist sub and super-solutions (ψ1,ψ2) and
(z1,z2) respectively of (1.1) such that (ψ1,ψ2) � (z1,z2) . Then (1.1) has a solution
(u,v) such that (u,v) ∈ [(ψ1,ψ2),(z1,z2)] .

We make the following assumptions:

(i) α,β � 0, γ,η > 0 and (p−1−α)(q−1−β )> γη ;

(ii) Assume that there exist positive constants a0,a1,b0 and b1 , such that

a(x) � −a0,b(x) � −b0 on Ωδ

and

a(x) � a1,b(x) � b1 on Ω\Ωδ ;

(iii) Suppose that there exists ε > 0 such that:

λ1

m
a0 < min

{
c1,c2εd2−d1

}
,

λ1

m
a0 < min

{
c1ε−(d2−d1),c2

}

and

max

{
λ1

c1
ε1−d1 ,

λ ∗
1

c2
ε1−d2

}
� min

{
1

‖a‖∞
,

1
‖b‖∞

}
,

where

c1 = a1

(
p−1

p
σ

p
p−1

)α(
q−1

q
σ∗ q

q−1

)γ
, c2 = b1

(
p−1

p
σ

p
p−1

)η(
q−1

q
σ∗ q

q−1

)β
,

d1 =
α

p−1
+

γ
q−1

, d2 =
η

p−1
+

β
q−1

.

Now we are ready to state our existence results.
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THEOREM 1. Let (i)− (iii) hold. Then there exists a positive solution of (1.1) for
every λ ∈ [λ (ε),λ (ε)] , where

λ = min

{
m

a0εd1−1 ,
m

b0εd1−1 ,
1

‖a‖∞
,

1
‖b‖∞

}
, (2.1)

λ = max

{
λ1

c1εd1−1 ,
λ ∗

1

c2εd2−1

}
. (2.2)

REMARK 1. Note that (iii) implies λ < λ .

Proof. Let

(ψ1,ψ2) = (
p−1

p
ε

1
p−1 φ

p
p−1

1 ,
q−1

q
ε

1
q−1 φ∗

1

q
q−1 ),

we shall verify that (ψ1,ψ2) is a sub-solution of (1.1). Let f1 ∈ W 1,p
0 (Ω) , then a

calculation shows that∫
Ω
|∇ψ1|p−2∇ψ1 ·∇ f1dx = ε

∫
Ω

φ1|∇φ1|p−2∇φ1 ·∇ f1dx

= ε
{∫

Ω
|∇φ1|p−2∇(φ1 f1)dx−

∫
Ω
|∇φ1|p f1dx

}
(2.3)

= ε
{∫

Ω
[λ1φ p

1 −|∇φ1|p] f1dx

}
.

A similarly calculation shows that
∫

Ω
|∇ψ2|q−2∇ψ2 ·∇ f2dx = ε

{∫
Ω
[λ ∗

1 φ∗
1

q−|∇φ∗
1 |q] f2dx

}
. (2.4)

First, we consider the case when x ∈ Ωδ . We have λ1φ p
1 − |∇φ1|p � −m on Ωδ

and since λ � λ , we have λ � m
a0εd1−1 . Then

−εm � −λa0ε
α

p−1 + γ
q−1 . (2.5)

Hence

ε(λ1φ p
1 −|∇φ1|p) � −mε

� −λa0ε
α

p−1+ γ
q−1

� −λa0(
p−1

p
ε

1
p−1 ‖φ1‖

p
p−1
∞ )α(

q−1
q

ε
1

q−1 ‖φ∗
1 ‖

q
q−1
∞ )γ

� λa(x)ψα
1 ψγ

2 .

(2.6)

A similar argument shows that:

ε(λ ∗
1 φ∗

1
q−|∇φ∗

1 |q) � λb(x)ψη
1 ψβ

2 . (2.7)
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Then we obtain from (2.3) , (2.4) and (2.6) , (2.7) that∫
Ωδ

|∇ψ1|p−2|∇ψ1| ·∇ f1dx � λ
∫

Ωδ
a(x)ψ1

α ψ2
γ f1dx, (2.8)

∫
Ωδ

|∇ψ2|q−2|∇ψ2| ·∇ f2dx � λ
∫

Ωδ
b(x)ψ1

ηψ2
β f2dx. (2.9)

On the other hand, on Ω\Ωδ , we note that

φ1 � σ > 0, φ∗
1 � σ∗ > 0, a(x) � a1, b(x) � b1

and since λ � λ , we have λ � λ1
c1εd1−1 . Then

ελ1 � λa1

( p−1
p

ε
1

p−1 σ
p

p−1

)α(q−1
q

ε
1

q−1 σ∗ q
q−1

)γ
. (2.10)

Hence

ε(λ1φ p
1 −|∇φ1|p) � ελ1φ p

1

� ελ1‖φ1‖p
∞

� ελ1

� a1
( p−1

p
ε

1
p−1 σ

p
p−1

)α(q−1
q

ε
1

q−1 σ∗ q
q−1

)γ

� λa(x)ψα
1 ψγ

2 .

(2.11)

A similar argument shows that:

ε(λ ∗
1 φ∗

1
q−|∇φ∗

1 |q) � λb(x)ψη
1 ψβ

2 . (2.12)

Then we obtain from (2.3) , (2.4) and (2.11) , (2.12) that∫
Ω−Ωδ

|∇ψ1|p−2|∇ψ1| ·∇ f1dx � λ
∫

Ω−Ωδ
a(x)ψ1

α ψ2
γ f1dx, (2.13)

∫
Ω−Ωδ

|∇ψ2|q−2|∇ψ2| ·∇ f2dx � λ
∫

Ω−Ωδ
b(x)ψ1

ηψ2
β f2dx. (2.14)

Since Ω = Ωδ ∪ (Ω\Ωδ ) , We obtain from (2.8) , (2.9) and (2.13) , (2.14) that∫
Ω
|∇ψ1|p−2|∇ψ1| ·∇ f1dx � λ

∫
Ω

a(x)ψ1
α ψ2

γ f1dx, (2.15)

∫
Ω
|∇ψ2|q−2|∇ψ2| ·∇ f2dx � λ

∫
Ω

b(x)ψ1
ηψ2

β f2dx, (2.16)

we have shown that (ψ1,ψ2) is sub-solution.
Now, we will construct a super-solution (z1,z2) of (1.1). It is clear that:

−div(|∇z1|p−2∇z1) = A, x ∈ Ω, (2.17)
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−div(|∇z2|q−2∇z2) = B, x ∈ Ω. (2.18)

We denote
z1(x) = Ae1(x),z2(x) = Be2(x), (2.19)

where the constants A,B > 0 are large and to be chosen later. We shall verify that is a
super-solution of (1.1).

Next, since λ � λ we have λ � 1
‖b‖∞

,λ � 1
‖a‖∞

. Let l1 = ‖e1‖∞ , l2 = ‖e2‖∞ ,

since (i) hold, it is easy to prove that there exist positive large constants A,B such
that([3]):

Ap−1−α � Bγ lα
1 lγ

2

� λ‖a‖∞Bγ lα
1 lγ

2 ,
(2.20)

and
Bq−1−β � Aη lη

1 lβ
2

� λ‖b‖∞Aη lη
1 lβ

2 ,
(2.21)

These imply that:

Ap−1 � λa(x)zα
1 zγ

2, Bq−1 � λb(x)zδ
1 zβ

2 (2.22)

Let f1 ∈W 1,p
0 (Ω) , f2 ∈W 1,q

0 (Ω) with f1, f2 > 0. Then we obtain from (2.12) ,
(2.13) and (2.17) that∫

Ω
|∇z1|p−2|∇z1| ·∇ f1dx = Ap−1

∫
Ω

f1(x)dx � λ
∫

Ω
a(x)z1

αz2
γ f1dx, (2.23)

∫
Ω
|∇z2|p−2|∇z2| ·∇ f2dx = Bq−1

∫
Ω

f2(x)dx � λ
∫

Ω
a(x)z1

η z2
β f2dx. (2.24)

a.e. in Ω . Thus, (z1,z2) is a super-solution of (1.1). Obviously, we have zi(x) �
ψi(x) in Ω with large A,B for i = 1,2. Thus, by Lemma 1, there exists a positive
solution (u,v) of (1.1) such that (ψ1,ψ2) � (u,v) � (z1,z2) . This completes the proof
of Theorem 1. �
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