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ABSTRACT

A 3D Navier-Stokes investigation of a high pressure

turbine rotor blade including tip clearance effects is

presented.

The 3D Navier-Stokes code developed at ONERA solves

the three-dimensional unsteady set of mass-averaged

Navier-Stokes equations by the finite volume technique. A

one step Lax-Wendroff type scheme is used in a rotating

frame of reference. An implicit residual smoothing

technique has been implemented, which accelerates the

convergence towards the steady state. A mixing length

model adapted to 3D configurations is used.

The turbine rotor flow is calculated at transonic

operating conditions. The tip clearance effect is taken into

account. The gap region is discretized using more than

55,000 points within a multi-domain approach.

The solution accounts for the relative motion of the

blade and casing surfaces. The total mesh is composed of

five sub-domains and counts 710,000 discretization points.

The effect of the tip clearance on the main flow is

demonstrated. The calculation results are compared to a

3D inviscid calculation, without tip clearance.

NOMENCLATURE

cp specific heat coefficient

F
	

total specific energy

flux densities

7 	 identity tensor

K Von Karman constant

Ma, relative Mach number

P static pressure

Pt, relative stagnation pressure

Pr Prandtl number

Pr, turbulent Prandtl number

V 	 relative velocity

S
	

source terms

T temperature

Tr, relative stagnation temperature

d
	

distance to walls

e
	

internal specific energy

f
	

conservative variables

mixing-length

9
	

heat flux

turbulent diffusion enthalpy flux

r 	 radius

S
	 reduced curvilinear abscissa

0
	

rotational speed

0
	

relative flow angle

specific heat-coefficient ratio

boundary layer thickness

x
	

thermal conductivity

molecular viscosity

FUt
	 eddy viscosity

density

I 	 shear stress tensor

r-R Reynolds tensor

vorticity vector
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SUBSCRIPTS

1
	

inlet plane

2
	

analysis plane

is
	

isentropic

bt
	

blade tip

casing
	 tensorial product

INTRODUCTION

Numerical Methods for Turbomachinery Components

Design 

The use of advanced computational methods to improve

performance of turbomachinery components as well as to

reduce the design and development time and cost is very

efficient. For a number of years, SNECMA has been

spending much effort to include new design and analysis

codes in its engine component development methodology.

Thus, ONERA and SNECMA have been working jointly

on numerical methods for many years for the prediction of

steady flows in turbomachinery.

The last step in the prediction of steady flows in turbine

is achieved with the use of three-dimensional Navier-

Stokes solvers. For purely aerodynamic cases such as

those encountered in low pressure turbines, the quality of

the flow field prediction is essentially dependent on the

ability of the code to calculate accurate wall aerodynamics.

This can be obtained relatively easily by the use of a

viscous solver, a high level of discretization and a 'good'

turbulence model. It was underlined by Chevrin and Vuillez

(1990) and by Petot and Fourmaux (1992), that the

mixing-length turbulence models give fairly accurate results

for nominal working conditions at reasonable costs for

turbine blade channel flows. This is confirmed by the

results of Ameri and Arnone (1992) and those of Boyle and

Giel (1992) for 2D and 3D flows including heat transfer

predictions.

The work is much more complicated for highly cooled

turbine blades for which the complete prediction of the

flow field including film cooling and cooling injections is a

task of major difficulty due to the complexity of the

geometry but also of the flow which includes several

scales of phenomena and very strong thermodynamic

gradients. A step in this direction was recently

accomplished by Dorney and Davis (1992). However,

these promising results can give essentially qualitative

information unless a very high level of discretization is

used.

For quantitative results, 3D Navier-Stokes simulations

already provide valuable information on the flow structure

in blade channels, even when ignoring cooling flows. This

was recently demonstrated on high pressure turbine stators

by Wegener et al. (1992).

Numerical Approach 

The solver used at SNECMA for the prediction of

viscous flows in blade to blade channels was developed at

ONERA and is described by Cambier and Escande (1990),

Vuillot (1989) and Couaillier (1990).

For turbine flows the previous results were focused on

the application of the code to stators by Escande and

Cambier (1991). A calculation on a compressor rotor

obtained using this code, was presented by Couaillier et al.

(1991). A transonic fan blade was computed with the

original two-step explicit scheme.

The most recent progress made at ONERA was obtained

on the numerical method and led to an increase of

robustness, accuracy and calculation time reduction. The

numerical techniques are presented below in section I.

We choose to present the calculation of a high pressure

turbine rotor flow with tip clearance. This geometry is

highly loaded, the flow is transonic and weak shocks

interact with the tip leakage flow.

Our purpose is to demonstrate the adequacy of the 3D

Navier-Stokes analysis for the prediction, understanding

and later optimization of blade tip geometry.

The simulation technique for the rotor with tip clearance

is presented in Part II. Finally, the analysis of the results

including the comparison with a 3D Euler calculation of the

rotor without tip clearance are presented in part III.

Interest for the Flow in Unshrouded Rotors 

The use of unshrouded rotors in highly loaded turbines is

a widespread solution to obtain lower values of mechanical

stresses in the blades. The drawback of this solution is

related to the losses created by the leakage flow. In the

same time, the tip of the blade has to be cooled by either

injection in the groove or film cooling at the casing. The

investigation of this very complicated flow region thus

becomes a matter of prime importance.

The tip clearances in unshrouded rotors have been

investigated for a long time by experimental means. The

aim was to work out correlations predicting the influence

of the tip clearance on the exit main flow or to validate

simple models of the leakage flow. Several parameters

describing this influence were retained as predominent.

Among them the height of the gap compared to the height

of the blade is obviously of most importance. The influence

of other factors could be studied but a complete
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description of the flow was impossible. Its detailed

structure remained unknown until recent numerical work. A

very complete overview of the state of the art of the latter

approach was written by Booth (1985).

With the development of 3D Navier-Stokes solvers, the

situation has changed, and the turbine designer can obtain,

in the same time and at reasonable costs, a better

knowledge of the influence of the tip clearance on the

flow, and indicative data to improve the blade tip

geometry. However, the optimization of the tip clearance

remains mainly related to technological know-how and

several studies on optimization have demonstrated the

complexity of the task (Heyes et al., 1991).

A Short Overview of Numerical Tip Clearance Studies

Several numerical investigations have been performed

recently for the study of tip clearance flows for either

compressor or turbine rotors. The most frequently tested

turbine geometries are highly loaded rotor blades.

The influence of tip clearance on the main flow is all the

more important for low aspect ratio turbines as the

clearance height cannot be decreased for technological

reasons.

The study of Briley et al. (1991) on the high turning

Generic Gas Generator Turbine rotor blade is representative

of what can be done within this approach. For instance,

the influence of an upstream backstep on the reduction of

tip clearance losses is found to be negligible. This might be

indicative that the leakage flow is essentially driven by

shear stress due to the casing. The level of discretization is

among the highest encountered in literature, but very little

information is given on the gap meshing technique.

A thorough study of a low aspect ratio turbine with and

without tip clearance has been performed by Choi and

Knight (1991). Although the level of discretization seems

low, interesting techniques have been developed

concerning the grid generation, and a detailed analysis of

the gap region is provided.

Another purpose of running 3D viscous calculations can

be to build a numerical data base for the assessment and

validation of tip leakage flow models used in simplified

simulation approaches such as throughflow calculations.

For this purpose the 3D results have to be detailed and

accurate. The best way to obtain such numerical results is

to discretize the geometry as precisely as possible. This

was underlined by Perrin et al. (1991).

Various grid generation techniques have already been

tried by several authors for the gap region discretization.

The approaches for turbine and compressor blades are

different as long as the blade thickness is to be considered

as a major parameter. The simplest one is to use a single

domain. This leads to highly skewed grid when describing

the tip of the blade.

In recent works (Choi, 1992), turbine calculations with

tip clearances were run on 0 type meshes wrapping around

the blade, with an added inner domain in the gap region.

This domain is either an H type or an 0 type grid. The

latter offers an easy treatment of the continuity between

inner and outer 0 domains. In the case of highly cambered

blades, however, it leads to severely distorted grids.

Our approach for the tip clearance flow prediction is to

use a highly refined grid able to stand the very strong

gradients due to the relative motion of the blade and

casing.

I CALCULATION TOOL

Physical Model

The physical model is the compressible mass averaged

Navier-Stokes equations associated with an algebraic

mixing-lengh turbulence model. The Navier-Stokes

equations are written in a cartesian coordinate system

(x,y,z) rotating with angular velocity 5 around the x-axis as

follows :

Continuity equation :

at + div (p17) = 0

Momentum equation:

017 .	 – 	 –
at + div (pi/ 	 + pl ) = div (i+t—R )

	
(I )

+p(1-22 F –2(2X V)

Energy equation :

+ div (pE17 +p17) = div [

+ p 512 F.

Assuming a perfect gas, the static pressure is given by

the following law :

p =(y– 1 )p(E – —
2

17 `) ,
1

(2)

where 7 is the ratio of the constant specific heats.

Using Stokes' hypothesis, the shear stress tensor is

given by the following expression :

T=- 
3
-- 11(dIVV )i +24D 	 (3)

where IA is the molecular viscosity calculated with the

averaged internal energy, / being the unit tensor and 0 the

following operator:
=	 ( VV + V 17 1 ) 	 (4)

2
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The heat flux is given by Fourier's law:

= –XV T 	
CPr

(5)

where Pr is the Prandtl number assumed constant and

equal to 0.72 and where the molecular viscosity is given

by Sutherland's law.

The Reynolds tensor ft? and the turbulent diffusion

enthalpy flux qt are given by the model of Michel et al.

(1969).

7.--?vi t (div17)%+2µ,D 	 (6)

Cpp.,
qr – 	 VT	 (7)

Pr,

where Prt is the turbulent Prandtl number commonly fixed

at 0.9. The eddy viscosity tit is obtained as follows :

	

pi2F2im 	 (8)

K  d
1 = 0,085 8 th (

	

	 (9)
0,085 • 8

where K=0.41 is the Von Karman constant. F is the Van

Driest viscous sublayer damping function given by :

F (4) = 1 – exp( 	
26K

where	 p 1 2 111,:tt 1 65 1

In equation (9), d is Buleev's "modified

is used to account for the influence of

corner flows, and (3 is a "modified

thickness". Equations (8), (9) and (10)

equation for A t , which is solved by a Newton method.

In the following we use system (1), written in a more

compact form :

af

	

— + thy (F –F,)= S , 	 (11)
Dt

where f denotes the conservative variables, F the flux

densities corresponding to the convective terms, Fv the

flux densities corresponding to the viscous terms and S

denotes the source terms.

Numerical Scheme

The numerical scheme used to solve the system of

equations considered here is an implicit scheme which can

be decomposed in an explicit stage and an implicit stage.

The explicit stage is based on the scheme proposed by Ni

(1982), for the solution of the Euler equations in a fixed

frame of reference. More precisely, the idea of "distribution

formulae" introduced by Ni in a one step Lax-Wendroff

type scheme is used to solve the Navier-Stokes equation

system including source terms due to rotation. The implicit

stage has been proposed by Lerat et al. (1983) for the

Euler equations, and already used by Couaillier et al.

(1992) for the Euler equations associated with the Ni

scheme.

Explicit Ni scheme

We briefly recall the discretization that we use. More

details, especially concerning the contour integral

appearing in the following, are given by Billonnet et al.

(1992).

Time discretization. We use a Lax-Wendroff time

discretization scheme, where the solution f '7 + 1 , at the time
t n4-1 = t n + At is obtained from the solution at time t n

by the following expression :

f "1= f n – div (F" – Fy n ) + At S"

+ —At2 divi A" .div (F" – Fv n )]+ Ot
t asn

2 	 2 at

where A is the Jacobian matrix of the convective fluxes. It

corresponds to a first order time discretization in the

viscous region and to a second order time discretization in

the perfect flow region (Cambier et al., 1988). The scheme

can be rewritten as follows :

8f =	 div (F" – F„" )+ At Sn

f n+1 = fn 5fn 52fn

It has to be noted that if Sf is the function defined by

S= Sf(f), then the term as/at is equal to Sf(8f).
Space discretization.  In the following, we denote by A,

B, C, D, E, F, G, 11, the eight mesh points defining the cell

0 the center of which is the point a, and by a, b, c, d, e, f,

g, h, the eight centers of the cells surrounding the mesh

point G and defining the staggered cell (.4G (fig. 1). The

volumes of the cells fla and (.0G are respectively denoted by

v(0,1 and p(wG).

At each time step t ", the solution f" is known at each

point of the mesh, and the space discretization of the one-

step scheme (12) is made of the following three stages :

i) The calculation of VD and VT, at each mesh point G,

for the evaluation of the viscous term at time t " is

performed as follows :

1 	V6ndS
v (wG) aco,

1  
T dS

v(wG) a,G

(1 0)

distance" which

several walls in

boundary layer

give an implicit

(12)

82f" , At	 At2 DS'
— div (A" 8f")+
2	 2	 at

(13.a)

(13.b)

(13.c)

vi7G =

V TG =

(14-a)

(14-b)

4
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Fig. 1 : Notations for the spatial
discretization

ii) The calculation of the first order term (13.a) at the

cell centers is performed as follows :

Sf a = = 	 t 	 (F – F,). rT dS + At S a n
v (Qa ) ao.

a

Al2 as-
2	 at G

where the vector Na is an expression which brings in only

the cell geometry Oa .

The time step At used to integrate the solution in time

with the scheme above is a local time step determined

from the following formula which takes into account the

convection and diffusion limitations :

	

2112.	 h	 /,),( 11 4.	 )At = mIra 	
	V + c 	 2	 Pr	 Pr,

where h is a characteristic length of the mesh cell,

representing an evaluation of the dimension of the

numerical dependence domain, c the local sound speed. ri

is a numerical coefficient which has to reflect the stability

conditions for the convection part (CFL criterion) and for

the diffusion part.

Artificial Viscosity. Due to the non dissipative property

of the scheme in the sense of Kreiss, a fourth order linear

dissipation D4 is added. A second order non linear

dissipation D2 is also added in order to capture the flow

discontinuities correctly. This treatment is analogous to

that proposed by Jameson and Schmidt (1985) with a

numerical boundary treatment introduced by Erikson

(1984). Let us denote by f " l 'EG the value of f obtained

after the explicit stage (16); by adding the artificial

viscosity we get a new value of f :

f n+1,ED G = f n+1,E G

Ar  , ,
" E2,./ 	 " 4(	 )16.	 (17)v (a)G )

The coefficients €2 and e4 depend on the local geometry

and on a sensor evaluating second differences of the local

aerodynamic field. Because it is important to detect

contact discontinuities, a combination of pressure and

velocity differences is used.

Implicit stage

The implicit stage preserves the space centered

approach, the conservative property, the accuracy and the

dissipative (or non-dissipative) aspect of the explicit stage.

This implicit stage consists in solving the following

factorised operator (ADI technique) :

	[ni =ijd, 1,S1],RG = RG *
	

(18)

where RG . and the operator IS, are defined by:
	R* G fn+1,ED G f n G 	 (19)

IS, 	
At 	

= [ 1 + 
13r 	 ( At 

p
2 

(A	 )	 )]	 (20)

	

2 v ( coG )	 V

The space operator S is defined by AA) 4)
- I+1/241- 1/2, and

p(An) is the spectral radius of the matrix Anni, nt beeing

the surface vector of the staggered cell in the / direction.

The parameters /3 / are chosen in order to increase the

stability domain. For the inviscid case, by a 3-D linear

stability analysis of the Euler system of equations,

assuming a cartesian and uniform grid, one can

determinate their values ensuring the unconditional stability

of the method. However, for the Navier-Stokes equations,

(15)

The source term San at point a is calculated from a mean

value of the variable f. The first order term of (13.a) at

mesh point G is obtained by taking the arithmetic mean of

the values of Sf computed at the cell centers a, b, c, d, e,

f, g, h.

iii) The first order term values Sf is known at the nodes

for the calculation of the second order source term and at

the barycenters of the cells for the calculation of [div(ASf)].

The second order term 45 2 f is directly determined at mesh

point G.

Using the "distribution formulae" introduced by Ni, the

scheme (12) can then be written :

f = f [ —8 T (A 8f )° . A7aG i
	8f	a	 At

(16)

5
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o) Implicit scheme

it is not possible to obtain unconditional stability by using

this implicit stage. Nevertheless, the domain of stability is

larger than by using only the explicit stage. To illustrate

this fact, we consider the one-dimensional scalar equation

of +aa af = v a2f
at	 ax	 ax 2

The domains of stability for the explicit scheme and for the

implicit scheme are plotted on (fig. 2), where we have

used the following relations :

A =a—
At 

ox	 SX 2 	 2

(Sx being the space step.

a) Explicit scheme

Fig. 2 : Stability domain

It is obvious that by using the implicit stage the stability

domain becomes larger, and that the stability condition is

controlled only by the dissipative term. For the 3-D

calculations presented in this paper, the value of /3 /

ensuring stability and good convergence rate is equal to -1.

The new value V .'" is obtained from the implicit stage as

follows :

fG n+1, 1 G = f n G + RG (21)

We use fictitious points to apply the numerical boundary

condition (of Neumann or Dirichlet type) on the residual R

in the implicit stage.

Calculation time reduction

The (710200 grid points) calculation presented in part 2

has been performed twice. A first computation has been

run using the purely explicit scheme, a second one with

the implicit scheme.

For the explicit calculation, 20000 iterations with a

time step factor of n=0.3 were necessary to achieve

convergence, characterized by a decrease of maximum

residue of 3 orders of magnitude. The computation took 10

As per iteration and point on a Cray YMP, resulting in total

CPU run time of 40 hours.

For the computation using the implicit step, the run-time

per iteration and grid point increased up to 12 As. However

a time step factor of n =3 could be used and only 3000

iterations were necessary to achieve a similar degree of

convergence. Hence, CPU run time could be reduced to

only 7 hours for the same application.

II ADAPTATION TO TIP CLEARANCE CALCULATIONS

Grid Generation 

Meshing of The Blade Channel. The computational

domain is divided into five subdomains, each of which

supports a structured grid. The approach chosen to

generate the grid for a rotor with tip clearance is derived

from the method employed for stators (Escande, 1991). A

radially stacked mesh formed by 2-D H-O-H grid surfaces

extends from hub to casing, thus leaving a gap in the tip

clearance region (fig. 3).

The radial distribution of the 2-D surfaces is clustered

near hub and casing to capture the endwall boundary-

layers correctly. This distribution is interpolated from the

streamlines predicted by a throughflow calculation. This

in-house developed throughflow code not only provides

streamlines for the mesh surfaces, but also aerodynamic

data for boundary conditions and initial flow field.

On each of the so-defined axisymmetric surfaces, an

H +0 +H grid is generated. The 0 grid wrapping around

the airfoil is created in three steps. At first, a coarse 0 grid

is built using an algebraic mesh generator. A 2-D grid

optimization using the method proposed by Jacquotte and

Cabello (1988) is then performed on that grid to gain the

essential properties of regularity and orthogonality.

6
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Meshing of the Tip Clearance. The gap left in the 0-

mesh between the blade tip and the casing is divided into

two sub-domains formed by an 0 mesh leaning on the

outer 0-mesh described above, and an inner H-mesh (fig.

4). Both subdomains extend over 11 axisymmetric surfaces

which are radially equidistant and stacked from the blade

tip to the casing. Only the surface corresponding to the

blade tip and the one corresponding to the casing coincide

with the outer grid surfaces. On those two surfaces, the

0-0 interface has coinciding grid nodes. Since the mesh

cell size at the inner 0-H interface is larger than at the 0-0

boundary, it was not judged necessary to keep coinciding

points there, although special care was paid to the

regularity of the mesh in the whole tip region (fig. 5 and

6).

This two-domain grid of the gap region has the

advantage of saving grid points in the central region of the

clearance and to be well adapted to the next evolution in

which the groove and its cooling injection will be taken into

account. It was finally chosen after several tests on other

types of grids such as those employed by Billonnet et al.

(1992).

The total number of grid points is equal to 710,200

which divides into following /*J*K distribution

25*21*67 upstream H zone

+ 185*41 *67 channel 0 zone

+ 45*37*67 downstream H zone

+185*15*11 clearance 0 zone

+ 75*30*11 clearance H zone

Boundary Conditions

As stated before, the aerothermodynamic conditions

result from a previous throughflow calculation. A radial

distribution of stagnation pressure, stagnation temperature

and flow angle is imposed upstream in the relative frame.

Since the presence of the endwall viscous zones is not

seen by a meridional calculation, an algebraic filter is

applied to those distributions in order to take into account

the influence of the boundary layers near the rotating hub

and stationary casing (fig. 8).
Downstream, radial equilibrium and static pressure at

mid-height are imposed during the first fifty iterations

followed by a non-reflective condition to avoid shock

reflexion due to imposed circumferentially uniform

pressure.

An adiabatic, zero velocity condition is imposed on all

wall surfaces. On the rotating ones, this condition is

applied in the relative frame. At the casing, this is done in

the absolute fixed coordinate system, followed by a

variable transformation backward into the relative system.

Boundaries between subdomains are treated using

trilinear interpolation on the unknowns. This technique

does not imply matching grid nodes at the interface which

greatly facilitates the meshing of complex geometries.

However, trilinear interpolation being not conservative for

non-matching points, the use of coinciding grid points is

recommended in difficult areas such as the 0-0 interface in

the clearance region. For such a -curved boundary non-

matching points would lead to holes between the

boundaries and thus to interpolation errors. For other less

curved boundaries the high level of discretization allows

non matching grid points, the interpolation being precise

enough.

Flow -Field Initialization 

The initial flow field is obtained through interpolation of

the calculation variables in the meridional flow field. The

velocity vectors are then progressively deflected in order to

be tangent to all solid surfaces. Filtering functions are

applied to all rotating walls to simulate the rotating

boundary layers. Near the casing, the relative velocity

vectors are progressively turned into azimuthal direction to

take the presence of the stationary casing into

consideration.

Adaptation of the Turbulence Model 

As stated above, the employed mixing length model

requires computation of a typical distance to the wall and a

boundary thickness S. This can be done in a

straightforward manner in the same way as exposed by

Michel et al. (1969). In the clearance gap the modified

distance d is taken to be

d = dbtdc✓(dbt+dd (22)

dbt and dc respectively being the distance from

computation point to blade tip and to casing. Outside the

clearance and near the casing in the surrounding 0-zone, d

is a combined function of the distance to the endwalls and

to the tip edges of the suction and pressure side.

This approach ensures the continuity of the eddy

viscosity.

Euler Calculation

The 3D Euler calculation was performed on the same

geometry without clearance gap at identical operating

conditions.

The 3D Euler code was already presented by Vuillot

(1989) and Fourmaux and Petot (1991). From the

8

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/19/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



r tip  

1-h
ub	 Pt, (bar)

3.0 	 8.0 	 1000

Fig. 8 : Inlet condition profiles
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+ Navier-Stokes computation

o Euler computation

industrial standpoint, its ability to predict a part of the

secondary flow in a low pressure stator when computing a

flow with a non uniform radial distribution of stagnation

pressure was underlined by Vialonga et al. (1992). A high

density H-C mesh (more than 110,000 points) is chosen.

- Ill ANALYSIS OF THE RESULTS

Geometry and Operating Conditions

The shape of the flowpath is conical at hub and

cylindrical at the casing (fig. 7). The inlet conditions for

both calculations stem from a throughflow calculation. The

inlet plane is located at one axial chord upstream of the

blade's leading edge. At this station, the inner radius of the

flowpath is equal to 324.06 mm and the outer radius to

371.6 mm. The analysis plane is located at 25 % axial

gap height
0.36 mm

I

chord downstream of the blade trailing edge where the

inner radius is equal to 319.32 mm and the outer radius to

371.6 mm. The gap height is taken to be 0.73 % of

channel height which is equivalent to 0.36 mm.

The aerodynamic operating conditions are presented in

table 1. The rotational speed is equal to 13500 rpm. The

cooling of the blade tip is not modelled in this calculation.

Hub

10%

Mean

50%

Tip

90%

01 (deg) 60.20 60.20 53.70

Mari 0.59 0.52 0.40

02 (deg) -65.70 -67.50 -66.50

Mart 1.06 1.13 1.11

Table 1 : Operating Conditions of the Blade. Throughflow

predictions.

Analysis
plane

The inlet conditions are shown as radial evolutions on

fig. 8. These distributions do not represent operating

conditions such as those encountered downstream from a

guide vane, but have been chosen almost uniform in order

to obtain a better understanding of the basic phenomena.

The deflection of the relative flow-angle at the tip,

=-90° represents the influence of the stationary casing.

Therefore the relative stagnation pressure and temperature

are sharply modified at the vicinity of the casing

boundary-layer. This effect is of course not seen by the

Euler calculation.

Inlet
plane

Fig. 7 : Meridional view of the flowpath

9
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relative flow angle

Fig. 9 : Mean distributions in the analysis plane + Navier-Stokes
o Euler

relative stagnation pressure
	 relative stagnation temperature

Fig. 10 : Flow field contours in the analysis plane

Distribution in the Analysis Plane 

The radial distributions of mean relative stagnation

pressure, stagnation temperature and flow angle in the

analysis plane (fig. 9) show the location of at least three

vortices. The minima of relative stagnation pressure are

situated at about 30, 60, 95% height and correspond to

under-turning maxima on the flow angle representation.

The temperature distribution in the analysis plane recalls

the inlet profile on which analogous variations have been

superimposed.

The radial evolutions of pressure, temperature and angle

are completed by views of the corresponding two-

dimensional distributions of the same scalars in the

analysis plane (fig. 10). The previously mentioned loss

cores can easily be identified in the 2D representation.

The lack of smoothness of the mean radial distributions

in the mid-height region reveals a still insufficient degree of

radial discretization in this area, characterized by the

complex secondary flows described below.

10
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Fig. 11 : Secondary flow velocity vectors in the analysis plane

3D Euler

Fig. 12 : Secondary flow velocity vectors in a blade cutting plane

Secondary Flow Velocities

Passage and Corner Vortices. The loss cores appear as

vortex centers on the secondary flow velocity

representation of fig. 11, and correspond to the well-

known passage vortices and to the tip clearance vortex.

The two counter-rotating vortices are very close to one

another. This leads to the disappearance of any free stream

zone and to the coupling of the two vortices, mutually

tending to amplify the under-turning in the mid-height

region. At root section, a zone of under-turning due to

corner vortices is detected. The birth of the passage

vortices leading to fluid migration from the endwalls to the

mid-height zone along the suction side - the contrary

happening on pressure side - is shown in a plane cutting

the blade in fig. 12.

The Euler secondary flow pattern shown for the same

planes in fig. 11 and 12 reveals passage vorticies of lower

intensity than for the Navier-Stokes computation and

located closer to the endwalls. They correspond to the

slight under-turning maxima of the deviation angle

11
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near blade tip section

mid clearance section

near casing section

casing section

(1cirl332.5m/s)

Fig. 13 : Relative velocities in clearance sections

distribution also given for the Euler computation in fig. 9.

The much higher intensity of the passage vortices in the

Navier-Stokes computation than in the Euler computation

can be explained as follows. Passage vorticies are due to

incoming vorticity which is quite low for the Euler

computation as can be seen on the almost uniform inlet

conditions on fig. 8. For the Navier-Stokes computation

these conditions are corrected near the endwalls to

account for the viscous shear which leads to a higher level

of vorticity and thus to stronger secondary flows.

Analysis of the Tip Clearance Region
A sharply defined clockwise vortex near the casing in

fig. 11 can be identified as a tip-clearance vortex, resulting

in an under-turning zone on the mean angle distribution and

a loss core on the pressure distribution. Its origin is due to

fluid migration from the pressure side to the suction side in

the trailing edge part of the clearance gap.

This migration is displayed by the gap velocity

distribution in fig. 13. The radial evolution of relative

velocity vectors reveals two opposite flows. In the leading

edge part of the gap, fluid migration is occuring from

suction to pressure side, due to viscous shearing induced

by the stationary casing. At the rear part of the clearance,

a pressure-driven flow from pressure to suction side is

taking place. This migration is most significant at mid-gap

and vanishes at the casing where viscous shear only is

present.

This effect is illustrated by the relative Mach number

contours shown in fig. 14 for respective heights of 90 and

95%, as well as for blade-tip, mid-clearance and near-

casing sections. The deterioration of the flow field due to

clearance effect fluid migration appears on the suction side

where it extends from the throat to the trailing edge and

affects a region between 95% channel height and casing.

The pressure side seems less affected by this kind of

phenomenon. The Euler flow-field is almost unvarying in

the whole tip region. Therefore only the 95% blade-height

section is presented here.

The comparison between isentropic relative Mach

number evolution along the blade for the Navier-Stokes and

Euler computations (fig. 15), reveals that the capture of

the reflected shock on the suction side is stronger for the

Euler code as expected. On the pressure side the

acceleration is identical for both codes. At mid-height,

global shapes of the Mach distribution are identical, with

lower values for the Navier-Stokes code due to a higher

value of static pressure at convergence for this height. A

tip clearance effect seen by the Navier-Stokes code is

12
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3D NS at 90%

blade height

3D NS at mid

clearance

3D NS at 95%

blade height

3D NS near

casing

3D NS near blade

tip section -

3D Euler at

95% blade

height

Fig. 14 : Relative Mach number contours (AMor =0.05)

— Navier-Stokes computation

- - Euler computation

Fig. 15 : Isentropic relative Mach number evolution
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Fig. 16 : static pressure distribution on the blade

taking place at the leading edge of the suction side tip

section resulting in a strong deceleration.

This effect is underlined by strong static pressure

gradients in that zone visible on the two-dimensional static

pressure distribution (fig. 16). At the trailing edge part of

the suction side a perturbated zone is also observed. This

region is separated from the previous one, probably due to

shock interaction with the clearance. The trailing edge

gradient region results from the previously mentioned

pressure driven fluid migration which affects about 5% of

the blade height. At the pressure side Euler and Navier-

Stokes distributions are nearly identical which leads to the

conclusion that this side is less affected by tip clearance

effects.

Essential Features 

The tip clearance thickness was chosen to be

representative of actual working conditions of engines. Its

value can be considered as very low compared to the tip

clearances studied in the case of lower aspect ratio

turbines (Liu et al., 1991). However the calculation shows

that the extent of the affected region downstream of the

blade is about 10% of the total height of the flowpath (fig.

10 and 11). The exit conditions of the rotor are thus
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notably modified by the presence of the tip clearance

effect. This underlines the importance of including tip

clearance modelling in the analysis of rotor blades by 3D

Navier-Stokes calculations. The re-distribution of

stagnation temperature and pressure profiles is as well of

prime importance for the design of the following stator.

However the flow features shown in this work have to be

considered carefully, the cooling injections having not been

taken into account yet.

CONCLUSIONS

A three-dimensional investigation of the flow around a

high pressure turbine rotor was performed with a Navier-

Stokes solver and an Euler solver. The tip clearance was

taken into account in the Navier-Stokes calculation.

A methodology was worked out for the meshing of this

type of geometry. The finally chosen five-domain

discretization technique allows a high level of

automatization.

The implicit residual smoothing technique introduced

into the one-step Lax-Wendroff algorithm leads to a

significant run time reduction. The CFL numbers used

were equal to three. The total CPU-time duration of the

calculation is lower than seven hours using the implicit

scheme on a CRAY-YMP compared to about fourty hours

for a similar calculation with the explicit scheme.

The high number of discretization points (more than

710,000) leads to a precise description of the tip clearance

region. However, the radial distribution of the

discretization surfaces is too loose in the mid-channel

region leading to an insufficient level of accuracy in this

area.

The analysis of the flow can be summarized as follows :

1. The two counter-rotating passage vortices greatly

influence the main flow, radially redistributing the

stagnation temperature and pressure profiles.

2. These two passage-vortices strongly interact with

one another leading to a high under-turning of the flow in

the mid-height region.

3. Under-turning is detected near the hub, due to the

growth of corner vortices.

4. The calculated interaction between leakage and main

flow is very important although the height of the gap is

lower than 0.73% of blade span. The interaction zone

appears right from the leading edge region.

5. No separation zone is detected on the tip of the

blade.

6. The leakage flow can be divided into two parts : the

main-stream pressure driven flow at the rear part of the

clearance and the shroud dominated zone at the front part.

7. The leakage losses calculated at exit have an

amplitude equal to those due to passage vortices although

being concentrated in the top 10% of the channel.

Even though very detailed results were obtained at the

end of this calculation, a thorough validation of the

approach using experimental data has to be undertaken in

order to provide the designer with a valuable tool for this

kind of problem.

For further investigations, the cooling air emitted in the

groove as well as the exact geometry of this part of the

blade will have to be modelled. The multi-domain approach

of the code will be of great help for this purpose.
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